Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues
The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemica...
Saved in:
Published in | Lasers in medical science Vol. 35; no. 5; pp. 1141 - 1151 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi:
https://doi.org/10.1002/lsm.22318
) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm. |
---|---|
AbstractList | The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi:
https://doi.org/10.1002/lsm.22318
) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm. The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm. The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: 10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm. The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm. |
Author | Pasqualucci, Carlos Augusto Bodanese, Benito Zângaro, Renato Amaro Silveira, Landulfo Pacheco, Marcos Tadeu Tavares |
Author_xml | – sequence: 1 givenname: Landulfo orcidid: 0000-0002-6616-3334 surname: Silveira fullname: Silveira, Landulfo email: landulfo.silveira@gmail.com, lsjunior@anhembi.br organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM – sequence: 2 givenname: Carlos Augusto surname: Pasqualucci fullname: Pasqualucci, Carlos Augusto organization: Department of Cardiovascular Pathology, Faculty of Medicine, Universidade de São Paulo – USP – sequence: 3 givenname: Benito surname: Bodanese fullname: Bodanese, Benito organization: Department of Oncology, Hospital Regional do Oeste – HRO – sequence: 4 givenname: Marcos Tadeu Tavares surname: Pacheco fullname: Pacheco, Marcos Tadeu Tavares organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM – sequence: 5 givenname: Renato Amaro surname: Zângaro fullname: Zângaro, Renato Amaro organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31853808$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctq3TAQhkVJaU7SvkAXRdBNNm50sy0vS-gNQgMlge6ELOsclNiSq5EJfZS-bebEpy1kkY1ufP_M6P9PyFFM0RPylrMPnLH2HDjjTFaMdxUTnayr-xdkwxUeGqZ-HpENE42udCf4MTkBuGWMtw2Xr8ix5LqWmukN-fM95cmOFSx9ydYVP9A5-zkn5wFC3NG0pT_sZCOF2TtEqA3T_r0kOgRweX-zxVO4C5FigRCDo3c-25IgALVxoNGnebQQLNBtThPtfQy7SEcPIcUD8jjFWqQEgMXDa_Jya0fwbw77Kbn5_On64mt1efXl28XHy8rJti7V0KlB1Y1ydmi8VVK0uAzKtkKJpm9aJ22tOs_6vhZdr9CmQYsObdDOs65u5Ck5W-vip39h32Im_JcfR4tzL2CEFLpVneYC0fdP0Nu05IjTGaG4aGr0VSP17kAt_eQHM6NHNv82f01HQKyAywkg--0_hDOzT9asyRpM1jwma-5RpJ-IXCi2oIMYShifl8pVCtgn7nz-P_YzqgdB8bqq |
CitedBy_id | crossref_primary_10_1002_bit_27894 crossref_primary_10_1016_j_xjidi_2024_100303 crossref_primary_10_3390_jcm12237428 crossref_primary_10_1016_j_saa_2025_125787 crossref_primary_10_3390_cancers14122820 crossref_primary_10_3390_molecules27092843 crossref_primary_10_1007_s00216_022_04477_7 crossref_primary_10_1088_1742_6596_1859_1_012033 crossref_primary_10_1186_s43074_023_00098_0 |
Cites_doi | 10.1002/jbio.201800400 10.1158/0008-5472.CAN-05-2815 10.1046/j.0022-202X.2004.22208.x 10.1117/1.JBO.17.7.077003 10.1002/jrs.4607 10.1117/1.JBO.23.10.105001 10.1089/pho.2011.3191 10.1364/OL.26.001782 10.1002/cem.785 10.1158/0008-5472.CAN-18-2791 10.1056/NEJMra1708701 10.1088/0031-9155/45/2/201 10.1016/j.molstruc.2007.06.014 10.1590/S0103-50532012005000073 10.1364/AO.51.005038 10.1016/j.jphotobiol.2018.06.013 10.1080/05704928.2014.923902 10.1117/1.JBO.19.11.117003 10.1016/j.saa.2011.10.049 10.1002/jrs.1107 10.1021/ja01548a002 10.1002/jbio.201700288 10.1016/j.molstruc.2006.01.004 10.1117/1.JBO.23.5.057002 10.1366/000370207782597003 10.1007/s10103-017-2317-4 10.5021/ad.2018.30.1.64 10.1177/0003702816686593 10.1007/978-3-540-79347-2_2 10.1021/ja0356176 10.1016/0584-8539(85)80099-4 10.21873/invivo.11512 10.1172/JCI57415 10.1016/0076-6879(95)46019-5 10.1007/s10103-017-2173-2 10.1111/exd.12768 10.1002/jrs.1734 10.1007/s00216-006-0937-9 10.1016/j.ajpath.2010.11.017 10.1039/b821856k 10.1016/0898-5529(89)90004-3 10.1046/j.1523-1747.2001.01258.x 10.1002/lsm.22318 10.1111/jicd.12253 10.1080/10739149.2010.508318 10.1371/journal.pone.0010427 10.1016/j.det.2017.06.010 10.1016/j.vibspec.2018.11.009 10.1039/c2an36579k 10.1002/bip.1976.360150807 10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3 10.1117/1.JBO.21.3.037001 10.5772/64582 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION NPM 3V. 7QO 7RV 7SP 7U5 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ K9. KB0 L7M LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s10103-019-02935-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (ProQuest) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Dentistry |
EISSN | 1435-604X |
EndPage | 1151 |
ExternalDocumentID | 31853808 10_1007_s10103_019_02935_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2009/01788-5 funderid: http://dx.doi.org/10.13039/501100001807 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 306344/2017-3; 301325/2016-2 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 306344/2017-3 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo grantid: 2009/01788-5 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 301325/2016-2 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7V Z7W Z7X Z83 Z87 ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7SP 7U5 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H8D K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-d94d4564cad6ea4327a43d4a72426b67c3a549e0bb529b4935d8296138ce09563 |
IEDL.DBID | U2A |
ISSN | 0268-8921 1435-604X |
IngestDate | Mon Jul 21 11:02:54 EDT 2025 Sat Aug 23 14:20:14 EDT 2025 Wed Feb 19 02:31:24 EST 2025 Tue Jul 01 03:07:25 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Fri Feb 21 02:32:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Spectral model Raman spectroscopy In vivo diagnosis Skin neoplasia |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-d94d4564cad6ea4327a43d4a72426b67c3a549e0bb529b4935d8296138ce09563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6616-3334 |
PMID | 31853808 |
PQID | 2412653188 |
PQPubID | 46654 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2328749812 proquest_journals_2412653188 pubmed_primary_31853808 crossref_primary_10_1007_s10103_019_02935_w crossref_citationtrail_10_1007_s10103_019_02935_w springer_journals_10_1007_s10103_019_02935_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
PublicationTitle | Lasers in medical science |
PublicationTitleAbbrev | Lasers Med Sci |
PublicationTitleAlternate | Lasers Med Sci |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Atkins, Buckley, Blades, Turner (CR35) 2017; 71 Feng, Moy, Nguyen, Zhang, Zhang, Fox, Sebastian, Reichenberg, Markey, Tunnell (CR54) 2018; 23 Kumari, Ghosh, Patil, Augustine, Venkatesiah, Rao (CR57) 2017; 8 Hirobe (CR1) 1995; 10 Sammut, Webb (CR51) 2011 Khristoforova, Bratchenko, Myakinin, Artemyev, Moryatov, Orlov, Kozlov, Zakharov (CR11) 2019; 12 Hsu, Moore, Krimm (CR44) 1976; 15 Ensley, Gutkind, Jacobs, Lippman (CR46) 2003 Peticolas (CR32) 1995; 246 Zhao, Zeng, Kalia, Lui (CR7) 2017; 35 Saatkamp, de Almeida, Bispo, Pinheiro, Fernandes, Silveira (CR17) 2016; 21 Lima, Daniel, Navarro, Bodanese, Pasqualucci, Pacheco, Zângaro, Silveira (CR29) 2019; 100 Hirakawa, Okada, Sasagawa, Tsuboi (CR33) 1985; 41 Silveira, Bodanese, Zângaro, Pacheco (CR20) 2010; 38 Marasà, Marasà, Sciancalepore (CR58) 2008; 143 Nunes, Freitas, Pinheiro, Bastos (CR24) 2012; 23 Singh (CR37) 2008; 876 Weedon, Weedon (CR50) 2010 Varkentin, Mazurenka, Blumenröther, Behrendt, Emmert, Morgner, Meinhardt-Wollweber, Rahlves, Roth (CR61) 2018; 11 Ash, Dubec, Donne, Bashford (CR21) 2017; 32 Beier, Berger (CR18) 2009; 134 Gniadecka, Philipsen, Sigurdsson, Wessel, Christensen, Hercogova, Rossen, Thomsen, Gniadecki, Hansen, Wulf (CR55) 2004; 122 CR41 Ryu, Kye, Choi, Ahn, Kye, Seo (CR59) 2018; 30 Lim, Nichols, Migden, Rajaram, Reichenberg, Markey, Ross, Tunnell (CR4) 2014; 19 Li, Yang, Li (CR27) 2012; 51 Maiti, Apetri, Zagorski, Carey, Anderson (CR31) 2004; 126 De Gelder, De Gussem, Vandenabeele, Moens (CR39) 2007; 38 Anastassopoulou, Kyriakidou, Malesiou, Rallis, Theophanides (CR10) 2019; 33 Barker, Rayens (CR30) 2003; 17 Cárcamo, Aliaga, Clavijo, Brañes, Campos-Vallette (CR56) 2012; 86 Dunn, Scott, Glen (CR25) 1989; 2 Varkentin, Mazurenka, Blumenröther, Behrendt, Emmert, Morgner, Meinhardt-Wollweber, Rahlves, Roth (CR8) 2018; 11 Lloyd, Orr, Christie-Brown, McCarthy, Rose, Thomas, Stone (CR28) 2013; 138 Hanlon, Manoharan, Koo, Shafer, Motz, Fitzmaurice, Kramer, Itzkan, Dasari, Feld (CR12) 2000; 45 Battifora (CR47) 1976; 37 Turani, Fatemizadeh, Blumetti, Daveluy, Moraes, Chen, Mehregan, Andersen, Nasiriavanaki (CR60) 2019; 79 Moreira, Silveira, Pacheco, da Silva, Rocco (CR23) 2018; 185 Kumar, Rai, Rai, Rai, Singh, Singh (CR43) 2006; 791 Haka, Volynskaya, Gardecki, Nazemi, Lyons, Hicks, Fitzmaurice, Dasari, Crowe, Feld (CR13) 2006; 66 Mckinney, Woodman (CR48) 2019 Silveira, Borges, Navarro, Giana, Zângaro, Pacheco, Fernandes (CR16) 2017; 32 Zhao, Lui, McLean, Zeng (CR19) 2007; 61 Schmälzlin, Moralejo, Gersonde, Schleusener, Darvin, Thiede, Roth (CR9) 2018; 23 Czamara, Majzner, Pacia, Kochan, Kaczor, Baranska (CR40) 2015; 46 Nehal, Bichakjian (CR2) 2018; 379 Talari, Movasaghi, Rehman, Rehman (CR36) 2014; 50 Bankapur, Zachariah, Chidangil, Valiathan, Mathur (CR34) 2010; 5 Huang, Zeng, Hamzavi, McLean, Lui (CR26) 2001; 26 Ruiz-Chica, Medina, Sanchez-Jimenez, Ramirez (CR38) 2004; 35 Ratushny, Gober, Hick, Ridky, Seykora (CR3) 2012; 122 Stone, Hart Prieto, Crow, Uff, Ritchie (CR14) 2007; 387 Bodanese, Silveira, Zângaro, Pacheco, Pasqualucci, Silveira (CR52) 2012; 30 Caspers, Lucassen, Carter, Bruining, Puppels (CR53) 2001; 116 Zhang, Chen, Xiao, Wang, Qin (CR49) 2011; 178 CR22 Takeda, Iavazzo, Garfinkel, Scheinberg, Edsall (CR42) 1958; 80 Silveira, Pacheco, Bodanese, Pasqualucci, Zângaro, Silveira (CR6) 2015; 47 Silveira, Silveira, Bodanese, Zângaro, Pacheco (CR15) 2012; 17 Schleusener, Gluszczynska, Reble, Gersonde, Helfmann, Fluhr, Lademann, Röwert-Huber, Patzelt, Meinke (CR5) 2015; 24 Goldenberg, Stockfleth, Rosen, Shumack (CR45) 2010 E Schmälzlin (2935_CR9) 2018; 23 K Czamara (2935_CR40) 2015; 46 O Mckinney (2935_CR48) 2019 M Barker (2935_CR30) 2003; 17 B Bodanese (2935_CR52) 2012; 30 J Schleusener (2935_CR5) 2015; 24 M Takeda (2935_CR42) 1958; 80 A Varkentin (2935_CR61) 2018; 11 TH Ryu (2935_CR59) 2018; 30 AJ Ruiz-Chica (2935_CR38) 2004; 35 J Anastassopoulou (2935_CR10) 2019; 33 X Li (2935_CR27) 2012; 51 CG Atkins (2935_CR35) 2017; 71 JS Singh (2935_CR37) 2008; 876 J De Gelder (2935_CR39) 2007; 38 2935_CR22 CJ Saatkamp (2935_CR17) 2016; 21 ACS Talari (2935_CR36) 2014; 50 Z Huang (2935_CR26) 2001; 26 PJ Caspers (2935_CR53) 2001; 116 SL Hsu (2935_CR44) 1976; 15 L Lim (2935_CR4) 2014; 19 L Silveira (2935_CR16) 2017; 32 CA Nunes (2935_CR24) 2012; 23 C Ash (2935_CR21) 2017; 32 AMF Lima (2935_CR29) 2019; 100 AS Haka (2935_CR13) 2006; 66 YA Khristoforova (2935_CR11) 2019; 12 D Weedon (2935_CR50) 2010 KS Nehal (2935_CR2) 2018; 379 G Goldenberg (2935_CR45) 2010 J Zhao (2935_CR7) 2017; 35 AY Hirakawa (2935_CR33) 1985; 41 T Hirobe (2935_CR1) 1995; 10 A Bankapur (2935_CR34) 2010; 5 A Varkentin (2935_CR8) 2018; 11 N Stone (2935_CR14) 2007; 387 WL Peticolas (2935_CR32) 1995; 246 H Battifora (2935_CR47) 1976; 37 Z Turani (2935_CR60) 2019; 79 FL Silveira (2935_CR6) 2015; 47 L Marasà (2935_CR58) 2008; 143 V Ratushny (2935_CR3) 2012; 122 S Kumar (2935_CR43) 2006; 791 JF Ensley (2935_CR46) 2003 X Feng (2935_CR54) 2018; 23 C Sammut (2935_CR51) 2011 L Silveira (2935_CR20) 2010; 38 JJ Cárcamo (2935_CR56) 2012; 86 K Kumari (2935_CR57) 2017; 8 2935_CR41 L Silveira (2935_CR15) 2012; 17 M Gniadecka (2935_CR55) 2004; 122 NC Maiti (2935_CR31) 2004; 126 BD Beier (2935_CR18) 2009; 134 J Zhang (2935_CR49) 2011; 178 LP Moreira (2935_CR23) 2018; 185 WJ Dunn (2935_CR25) 1989; 2 EB Hanlon (2935_CR12) 2000; 45 GR Lloyd (2935_CR28) 2013; 138 J Zhao (2935_CR19) 2007; 61 |
References_xml | – ident: CR22 – volume: 12 start-page: e201800400 year: 2019 ident: CR11 article-title: Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis publication-title: J Biophotonics doi: 10.1002/jbio.201800400 – volume: 66 start-page: 3317 year: 2006 end-page: 3322 ident: CR13 article-title: In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-2815 – volume: 122 start-page: 443 year: 2004 end-page: 449 ident: CR55 article-title: Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue publication-title: J Invest Dermatol doi: 10.1046/j.0022-202X.2004.22208.x – volume: 17 start-page: 077003 year: 2012 ident: CR15 article-title: Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.7.077003 – volume: 46 start-page: 4 year: 2015 end-page: 20 ident: CR40 article-title: Raman spectroscopy of lipids: a review publication-title: J Raman Spectrosc doi: 10.1002/jrs.4607 – volume: 23 start-page: 1 year: 2018 end-page: 11 ident: CR9 article-title: Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.10.105001 – volume: 30 start-page: 381 year: 2012 end-page: 387 ident: CR52 article-title: Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis publication-title: Photomed Laser Surg doi: 10.1089/pho.2011.3191 – volume: 26 start-page: 1782 year: 2001 end-page: 1784 ident: CR26 article-title: Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements publication-title: Opt Lett doi: 10.1364/OL.26.001782 – volume: 17 start-page: 166 year: 2003 end-page: 173 ident: CR30 article-title: Partial least squares for discrimination publication-title: J Chemom doi: 10.1002/cem.785 – volume: 79 start-page: 2021 year: 2019 end-page: 2030 ident: CR60 article-title: Optical radiomic signatures derived from optical coherence tomography images to improve identification of melanoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-2791 – volume: 379 start-page: 363 year: 2018 end-page: 374 ident: CR2 article-title: Update on keratinocyte carcinomas publication-title: N Engl J Med doi: 10.1056/NEJMra1708701 – volume: 45 start-page: R1 year: 2000 end-page: R59 ident: CR12 article-title: Prospects for in vivo Raman spectroscopy publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/2/201 – volume: 876 start-page: 127 year: 2008 end-page: 133 ident: CR37 article-title: FTIR and Raman spectra and fundamental frequencies of biomolecule: 5-methyluracil (thymine) publication-title: J Mol Struct doi: 10.1016/j.molstruc.2007.06.014 – volume: 23 start-page: 2003 year: 2012 end-page: 2010 ident: CR24 article-title: Chemoface: a novel free user-friendly interface for chemometrics publication-title: J Braz Chem Soc doi: 10.1590/S0103-50532012005000073 – volume: 51 start-page: 5038 year: 2012 end-page: 5043 ident: CR27 article-title: Discrimination of serum Raman spectroscopy between normal and colorectal cancer using selected parameters and regression-discriminant analysis publication-title: Appl Opt doi: 10.1364/AO.51.005038 – volume: 185 start-page: 223 year: 2018 end-page: 234 ident: CR23 article-title: Detecting urine metabolites related to training performance in swimming athletes by means of Raman spectroscopy and principal component analysis publication-title: J Photochem Photobiol B Biol doi: 10.1016/j.jphotobiol.2018.06.013 – volume: 50 start-page: 46 year: 2014 end-page: 111 ident: CR36 article-title: Raman spectroscopy of biological tissues publication-title: Appl Spectrosc Rev doi: 10.1080/05704928.2014.923902 – volume: 19 start-page: 117003 year: 2014 ident: CR4 article-title: Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.11.117003 – year: 2011 ident: CR51 publication-title: Leave-one-out cross-validation – year: 2019 ident: CR48 publication-title: Crash course pathology – volume: 86 start-page: 360 year: 2012 end-page: 365 ident: CR56 article-title: Raman study of the shockwave effect on collagens publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2011.10.049 – volume: 35 start-page: 93 year: 2004 end-page: 100 ident: CR38 article-title: Characterization by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine publication-title: J Raman Spectrosc doi: 10.1002/jrs.1107 – volume: 80 start-page: 3813 year: 1958 end-page: 3818 ident: CR42 article-title: Raman spectra of amino acids and related compounds. IX. Ionization and deuterium substitution in glycine, alanine and β-alanine publication-title: J Am Chem Soc doi: 10.1021/ja01548a002 – volume: 11 year: 2018 ident: CR61 article-title: Trimodal system for skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements publication-title: J Biophotonics doi: 10.1002/jbio.201700288 – volume: 791 start-page: 23 year: 2006 end-page: 29 ident: CR43 article-title: Infrared, Raman and electronic spectra of alanine: a comparison with ab intio calculation publication-title: J Mol Struct doi: 10.1016/j.molstruc.2006.01.004 – year: 2003 ident: CR46 publication-title: Head and neck cancer: emerging perspectives – volume: 23 start-page: 1 year: 2018 end-page: 10 ident: CR54 article-title: Raman biophysical markers in skin cancer diagnosis publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.5.057002 – volume: 10 start-page: 223 year: 1995 end-page: 237 ident: CR1 article-title: Structure and function of melanocytes: microscopic morphology and cell biology of mouse melanocytes in the epidermis and hair follicle publication-title: Histol Histopathol – volume: 61 start-page: 1225 year: 2007 end-page: 1232 ident: CR19 article-title: Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy publication-title: Appl Spectrosc doi: 10.1366/000370207782597003 – volume: 32 start-page: 1909 year: 2017 end-page: 1918 ident: CR21 article-title: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2317-4 – volume: 143 start-page: 169 year: 2008 end-page: 173 ident: CR58 article-title: Collagen IV, laminin, fibronectin, vitronectin. Comparative study in basal cell carcinoma. Correlation between basement membrane molecules expression and invasive potential publication-title: G Ital Dermatol Venereol – volume: 30 start-page: 64 year: 2018 end-page: 70 ident: CR59 article-title: Features causing confusion between basal cell carcinoma and squamous cell carcinoma in clinical diagnosis publication-title: Ann Dermatol doi: 10.5021/ad.2018.30.1.64 – volume: 71 start-page: 767 year: 2017 end-page: 793 ident: CR35 article-title: Raman spectroscopy of blood and blood components publication-title: Appl Spectrosc doi: 10.1177/0003702816686593 – start-page: 682 year: 2010 end-page: 697 ident: CR50 article-title: Tumors of the epidermis publication-title: Weedon’s skin pathology – start-page: 17 year: 2010 end-page: 35 ident: CR45 article-title: Histopathology of skin cancer publication-title: Managing skin cancer doi: 10.1007/978-3-540-79347-2_2 – volume: 126 start-page: 2399 year: 2004 end-page: 2408 ident: CR31 article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein publication-title: J Am Chem Soc doi: 10.1021/ja0356176 – volume: 41 start-page: 209 year: 1985 end-page: 216 ident: CR33 article-title: Infrared and Raman spectra of adenine and its 15N and 13C substitution products publication-title: Spectrochim Acta A Mol Spectrosc doi: 10.1016/0584-8539(85)80099-4 – volume: 33 start-page: 567 year: 2019 end-page: 572 ident: CR10 article-title: Infrared and Raman spectroscopic studies of molecular disorders in skin cancer publication-title: In Vivo doi: 10.21873/invivo.11512 – volume: 122 start-page: 464 year: 2012 end-page: 472 ident: CR3 article-title: From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma publication-title: J Clin Invest doi: 10.1172/JCI57415 – volume: 246 start-page: 389 year: 1995 end-page: 416 ident: CR32 article-title: Raman spectroscopy of DNA and proteins publication-title: Methods Enzymol doi: 10.1016/0076-6879(95)46019-5 – volume: 32 start-page: 787 year: 2017 end-page: 795 ident: CR16 article-title: Quantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statistics publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2173-2 – volume: 24 start-page: 767 year: 2015 end-page: 772 ident: CR5 article-title: In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy publication-title: Exp Dermatol doi: 10.1111/exd.12768 – volume: 11 year: 2018 ident: CR8 article-title: Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements publication-title: J Biophotonics doi: 10.1002/jbio.201700288 – volume: 38 start-page: 1133 year: 2007 end-page: 1147 ident: CR39 article-title: Reference database of Raman spectra of biological molecules publication-title: J Raman Spectrosc doi: 10.1002/jrs.1734 – volume: 387 start-page: 1657 year: 2007 end-page: 1668 ident: CR14 article-title: The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies publication-title: Anal Bioanal Chem doi: 10.1007/s00216-006-0937-9 – volume: 178 start-page: 382 year: 2011 end-page: 390 ident: CR49 article-title: FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation publication-title: Am J Pathol doi: 10.1016/j.ajpath.2010.11.017 – volume: 134 start-page: 1198 year: 2009 end-page: 1202 ident: CR18 article-title: Method for automated background subtraction from Raman spectra containing known contaminants publication-title: Analyst doi: 10.1039/b821856k – volume: 2 start-page: 349 year: 1989 end-page: 376 ident: CR25 article-title: Principal components analysis and partial least squares regression publication-title: Tetrahedron Comput Methodol doi: 10.1016/0898-5529(89)90004-3 – volume: 116 start-page: 434 year: 2001 end-page: 442 ident: CR53 article-title: In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2001.01258.x – volume: 47 start-page: 6 year: 2015 end-page: 16 ident: CR6 article-title: Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics publication-title: Lasers Surg Med doi: 10.1002/lsm.22318 – volume: 8 start-page: e12253 year: 2017 ident: CR57 article-title: Expression of type III collagen correlates with poor prognosis in oral squamous cell carcinoma publication-title: J Investig Clin Dent doi: 10.1111/jicd.12253 – volume: 38 start-page: 268 year: 2010 end-page: 282 ident: CR20 article-title: Discrete wavelet transform for denoising Raman spectra of human skin tissues used in a discriminant diagnostic algorithm publication-title: Instrum Sci Technol doi: 10.1080/10739149.2010.508318 – volume: 5 start-page: e10427 year: 2010 ident: CR34 article-title: Raman tweezers spectroscopy of live, single red and white blood cells publication-title: PLoS One doi: 10.1371/journal.pone.0010427 – volume: 35 start-page: 495 year: 2017 end-page: 504 ident: CR7 article-title: Using Raman spectroscopy to detect and diagnose skin cancer in vivo publication-title: Dermatol Clin doi: 10.1016/j.det.2017.06.010 – volume: 100 start-page: 131 year: 2019 end-page: 141 ident: CR29 article-title: Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy publication-title: Vib Spectrosc doi: 10.1016/j.vibspec.2018.11.009 – volume: 138 start-page: 3900 year: 2013 end-page: 3908 ident: CR28 article-title: Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis publication-title: Analyst doi: 10.1039/c2an36579k – volume: 15 start-page: 1513 year: 1976 end-page: 1528 ident: CR44 article-title: Vibrational spectrum of the unordered keratin polypeptide chain: a Raman study of feather publication-title: Biopolymers doi: 10.1002/bip.1976.360150807 – ident: CR41 – volume: 37 start-page: 2275 year: 1976 end-page: 2282 ident: CR47 article-title: Spindle cell carcinoma. Ultrastructural evidence of squamous origin and collagen production by the tumor cells publication-title: Cancer doi: 10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3 – volume: 21 start-page: 37001 year: 2016 ident: CR17 article-title: Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease publication-title: J Biomed Opt doi: 10.1117/1.JBO.21.3.037001 – volume: 23 start-page: 2003 year: 2012 ident: 2935_CR24 publication-title: J Braz Chem Soc doi: 10.1590/S0103-50532012005000073 – volume: 143 start-page: 169 year: 2008 ident: 2935_CR58 publication-title: G Ital Dermatol Venereol – volume: 33 start-page: 567 year: 2019 ident: 2935_CR10 publication-title: In Vivo doi: 10.21873/invivo.11512 – volume: 23 start-page: 1 year: 2018 ident: 2935_CR54 publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.5.057002 – volume: 134 start-page: 1198 year: 2009 ident: 2935_CR18 publication-title: Analyst doi: 10.1039/b821856k – volume: 178 start-page: 382 year: 2011 ident: 2935_CR49 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2010.11.017 – volume: 24 start-page: 767 year: 2015 ident: 2935_CR5 publication-title: Exp Dermatol doi: 10.1111/exd.12768 – volume-title: Crash course pathology year: 2019 ident: 2935_CR48 – volume: 122 start-page: 443 year: 2004 ident: 2935_CR55 publication-title: J Invest Dermatol doi: 10.1046/j.0022-202X.2004.22208.x – volume: 86 start-page: 360 year: 2012 ident: 2935_CR56 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2011.10.049 – volume: 5 start-page: e10427 year: 2010 ident: 2935_CR34 publication-title: PLoS One doi: 10.1371/journal.pone.0010427 – volume: 80 start-page: 3813 year: 1958 ident: 2935_CR42 publication-title: J Am Chem Soc doi: 10.1021/ja01548a002 – start-page: 17 volume-title: Managing skin cancer year: 2010 ident: 2935_CR45 doi: 10.1007/978-3-540-79347-2_2 – volume: 45 start-page: R1 year: 2000 ident: 2935_CR12 publication-title: Phys Med Biol doi: 10.1088/0031-9155/45/2/201 – volume: 21 start-page: 37001 year: 2016 ident: 2935_CR17 publication-title: J Biomed Opt doi: 10.1117/1.JBO.21.3.037001 – volume-title: Head and neck cancer: emerging perspectives year: 2003 ident: 2935_CR46 – volume: 185 start-page: 223 year: 2018 ident: 2935_CR23 publication-title: J Photochem Photobiol B Biol doi: 10.1016/j.jphotobiol.2018.06.013 – volume-title: Leave-one-out cross-validation year: 2011 ident: 2935_CR51 – volume: 32 start-page: 787 year: 2017 ident: 2935_CR16 publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2173-2 – volume: 47 start-page: 6 year: 2015 ident: 2935_CR6 publication-title: Lasers Surg Med doi: 10.1002/lsm.22318 – volume: 100 start-page: 131 year: 2019 ident: 2935_CR29 publication-title: Vib Spectrosc doi: 10.1016/j.vibspec.2018.11.009 – volume: 11 year: 2018 ident: 2935_CR8 publication-title: J Biophotonics doi: 10.1002/jbio.201700288 – volume: 17 start-page: 166 year: 2003 ident: 2935_CR30 publication-title: J Chemom doi: 10.1002/cem.785 – volume: 10 start-page: 223 year: 1995 ident: 2935_CR1 publication-title: Histol Histopathol – volume: 35 start-page: 93 year: 2004 ident: 2935_CR38 publication-title: J Raman Spectrosc doi: 10.1002/jrs.1107 – volume: 387 start-page: 1657 year: 2007 ident: 2935_CR14 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-006-0937-9 – volume: 32 start-page: 1909 year: 2017 ident: 2935_CR21 publication-title: Lasers Med Sci doi: 10.1007/s10103-017-2317-4 – volume: 30 start-page: 64 year: 2018 ident: 2935_CR59 publication-title: Ann Dermatol doi: 10.5021/ad.2018.30.1.64 – volume: 35 start-page: 495 year: 2017 ident: 2935_CR7 publication-title: Dermatol Clin doi: 10.1016/j.det.2017.06.010 – volume: 126 start-page: 2399 year: 2004 ident: 2935_CR31 publication-title: J Am Chem Soc doi: 10.1021/ja0356176 – volume: 23 start-page: 1 year: 2018 ident: 2935_CR9 publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.10.105001 – volume: 71 start-page: 767 year: 2017 ident: 2935_CR35 publication-title: Appl Spectrosc doi: 10.1177/0003702816686593 – volume: 791 start-page: 23 year: 2006 ident: 2935_CR43 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2006.01.004 – volume: 41 start-page: 209 year: 1985 ident: 2935_CR33 publication-title: Spectrochim Acta A Mol Spectrosc doi: 10.1016/0584-8539(85)80099-4 – volume: 138 start-page: 3900 year: 2013 ident: 2935_CR28 publication-title: Analyst doi: 10.1039/c2an36579k – volume: 37 start-page: 2275 year: 1976 ident: 2935_CR47 publication-title: Cancer doi: 10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3 – volume: 50 start-page: 46 year: 2014 ident: 2935_CR36 publication-title: Appl Spectrosc Rev doi: 10.1080/05704928.2014.923902 – start-page: 682 volume-title: Weedon’s skin pathology year: 2010 ident: 2935_CR50 – volume: 30 start-page: 381 year: 2012 ident: 2935_CR52 publication-title: Photomed Laser Surg doi: 10.1089/pho.2011.3191 – volume: 116 start-page: 434 year: 2001 ident: 2935_CR53 publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2001.01258.x – volume: 46 start-page: 4 year: 2015 ident: 2935_CR40 publication-title: J Raman Spectrosc doi: 10.1002/jrs.4607 – volume: 11 year: 2018 ident: 2935_CR61 publication-title: J Biophotonics doi: 10.1002/jbio.201700288 – ident: 2935_CR22 – volume: 79 start-page: 2021 year: 2019 ident: 2935_CR60 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-2791 – volume: 51 start-page: 5038 year: 2012 ident: 2935_CR27 publication-title: Appl Opt doi: 10.1364/AO.51.005038 – volume: 38 start-page: 268 year: 2010 ident: 2935_CR20 publication-title: Instrum Sci Technol doi: 10.1080/10739149.2010.508318 – volume: 2 start-page: 349 year: 1989 ident: 2935_CR25 publication-title: Tetrahedron Comput Methodol doi: 10.1016/0898-5529(89)90004-3 – volume: 379 start-page: 363 year: 2018 ident: 2935_CR2 publication-title: N Engl J Med doi: 10.1056/NEJMra1708701 – volume: 19 start-page: 117003 year: 2014 ident: 2935_CR4 publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.11.117003 – volume: 38 start-page: 1133 year: 2007 ident: 2935_CR39 publication-title: J Raman Spectrosc doi: 10.1002/jrs.1734 – volume: 12 start-page: e201800400 year: 2019 ident: 2935_CR11 publication-title: J Biophotonics doi: 10.1002/jbio.201800400 – volume: 26 start-page: 1782 year: 2001 ident: 2935_CR26 publication-title: Opt Lett doi: 10.1364/OL.26.001782 – volume: 15 start-page: 1513 year: 1976 ident: 2935_CR44 publication-title: Biopolymers doi: 10.1002/bip.1976.360150807 – volume: 122 start-page: 464 year: 2012 ident: 2935_CR3 publication-title: J Clin Invest doi: 10.1172/JCI57415 – volume: 17 start-page: 077003 year: 2012 ident: 2935_CR15 publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.7.077003 – volume: 876 start-page: 127 year: 2008 ident: 2935_CR37 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2007.06.014 – volume: 61 start-page: 1225 year: 2007 ident: 2935_CR19 publication-title: Appl Spectrosc doi: 10.1366/000370207782597003 – volume: 246 start-page: 389 year: 1995 ident: 2935_CR32 publication-title: Methods Enzymol doi: 10.1016/0076-6879(95)46019-5 – ident: 2935_CR41 doi: 10.5772/64582 – volume: 66 start-page: 3317 year: 2006 ident: 2935_CR13 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-2815 – volume: 8 start-page: e12253 year: 2017 ident: 2935_CR57 publication-title: J Investig Clin Dent doi: 10.1111/jicd.12253 |
SSID | ssj0017613 |
Score | 2.313438 |
Snippet | The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1141 |
SubjectTerms | Accuracy Algorithms Basal cell carcinoma Biochemistry Collagen Dentistry Dermatitis Diagnostic systems Elastin Keratosis Lasers Lesions Lipids Medical diagnosis Medicine Medicine & Public Health Nucleic acids Optical Devices Optics Original Article Photonics Quantum Optics Raman spectra Raman spectroscopy Skin Skin cancer Skin diseases Spectrum analysis Squamous cell carcinoma Subtraction Tissues Triolein |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQeyD2A_1tJYIvrXBTbIfyZOIWIrQPpQW7m3Jl-XomT27e_Rv6X_rTDZ3pxT7si-b7IbMZGaSye83hHyS2mtfGce4CIGVjWuYLkzNBLeBS6dUmRLtZ-f16VX5Y1pN84Fbn69VrmxiMtS-c3hG_hk8jahBYZT6svjNsGoUZldzCY2n5BlSl6FWN9P1hovDFl2OZyyKKS14Bs1k6BxPN4k0K8DjVezuX8f0INp8kClNDujkFXmZI0f6dRT1DnkS4i7Z_otPcJc8P8uZ8j1yf47B6Jz1SzskRmZPF0hgmWAB0Jh2P-mF-WUiTVjLW0MN1ve6pkNHEak7VvsaAu1vZpEi-iHOHL1BCuaun_XURE8j3j5HFGZPEaVCbYiz60jnAU_gcpM0ivEjQ5Jxv0-uTr5ffjtluQwDc7KpBuZ16ZF0xhlfB1NK0cDDl6ZB727rxkkDm8xQWFsJbUuYTK-EhqlXLiDNoXxNtmIXw1tCbQXRApjYWvBQBi3BuDYWYpK68GA3DJ8QvpJB6zJHOZbKmLcbdmWUWwtya5Pc2rsJOVr3WYwMHY-2PliJts2rtW83ujUhH9evYZ1h8sTAZC6hjcTKABrioQl5M6rE-neIQJeqgN7HKx3ZfPz_Y3n3-FjekxcCN_fpbvAB2Rpul-EDRECDPUxq_gdcGwIV priority: 102 providerName: ProQuest |
Title | Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues |
URI | https://link.springer.com/article/10.1007/s10103-019-02935-w https://www.ncbi.nlm.nih.gov/pubmed/31853808 https://www.proquest.com/docview/2412653188 https://www.proquest.com/docview/2328749812 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTeLjAUH5WGFURuINLCV2PuzHAu0m0Co0Uak8RXbiTdWKOy2p9rfsv-XOSbqhARIvyUPOTpSzz2ff_X4H8E7qSlepKXksnONJXuZcRybjIrYulqVSSQi0H8-yo3nyZZEuOlBY3We79yHJYKlvgd3ikPujeYRrVMqvdmAvxb07JXLNxXgbO8CNuWxPVhRXWsQdVObPffy-HN3xMe_ER8OyM30Cjzt_kY1bBT-Fe84P4MFnyvGhMm0DeHSLUXAA94-7WPkzuJ6RO7ri9cY2gZO5YhdEYRmAASjM1qfsxPw0ngW05aVhhip8nbFmzQir29b7ahyrz5eeEf7BL0t2TiTM63pZM-Mr5in_nHCYNSOcCrPOL888Wzk6g-tEwle0nTRBy_VzmE8n3z8d8a4QAy9lnja80klFtDOlqTJnEilyvFSJyWl9t1leSoPbTBdZmwptE_yxlRIa1aBKR0SH8gXs-rV3-8Bsiv4CGtlMxC5xWqJ5zS16JVlUoeUw8RDiXh9F2bGUU7GMVXHDr0w6LFCHRdBhcTWE99s2Fy1Hxz-lD3o1F918rQv0Y0SG5kipIbzdPsaZRuETgz9zgzKSagNo9IiG8LIdHtvXEQZdqghbf-jHy03nf_-WV_8n_hoeCtruh2zhA9htLjfuDfpEjR3BTr7I8aqmhyPYGx_--DrB-8fJ7NvJKEyPXxrsCFU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAcEJTXQgEjwQksEjsvHxBCwLKl3T2gVuot9Ytq1a2zNFmt-Cn8CX4jM06yC6rorZdcYjtWZjwz9vj7hpCXQlppU2VYzJ1jSW5yJiOVMR5rFwtTFElItI8n2egw-XqUHm2Q3z0WBq9V9jYxGGpbGTwjfwuehmegMEXxfv6DYdUozK72JTRatdhzP5ewZavf7X4C-b7ifPj54OOIdVUFmBF52jArE4scKkbZzKlE8BweNlE5Oiud5UYo2DO5SOuUS51IkdqCS_B6hXHI2idg3GvkeiLAkyMyffhllbXIs7YcM88KVkgedyCdDqoXh5tLkkXgYVO2_NcRXohuL2Rmg8Mb3iG3u0iVfmhV6y7ZcH6b3PqLv3Cb3Bh3mfl75NcEg98Zqxe6CQzQls6RMDPAEKAxrb7Tb-pMeRqwneeKKqwndkKbiiIyuK0u1jhan049RbSFnxp6ipTPVT2tqfKWerztjqjPmiIqhmrnpyeezhye-HVNwizaQZqgU_V9cnglAnpANn3l3SNCdQrRCZj0jMcucVKAMc81xEBZZMFOqXhA4l4Gpek40bE0x6xcszmj3EqQWxnkVi4H5PWqz7xlBLm09U4v2rKzDnW51uUBebF6DesakzUKfuYC2gisRCAh_hqQh61KrD6HiHdRRND7Ta8j68H_P5fHl8_lObk5Ohjvl_u7k70nZIvjwUK4l7xDNpvzhXsK0VejnwWVp-T4qtfYHyPpPVc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVTBAUH5WyhgJDiBReL8-oAQ0K5aSldVRaXegh271apLsjRZrXgUXoWnY8ZxdkEVvfWSyzqOtTOeGXvm-wbgZSSNNIkqeSis5XFWZlwGKuUi1DaMyjyPXaL9YJzuHsefT5KTNfjdY2GorLK3ic5Qm7qkO_K36GlEigqDB7ZTXxZxuD16P_vBqYMUZVr7dhqdiuzbnws8vjXv9rZR1q-EGO18_bTLfYcBXkZZ0nIjY0N8KqUyqVVxJDJ8mFhl5Lh0mpWRwvOTDbROhNSxjBKTC4keMC8tMfhFOO8NWM_oVDSA9Y8748OjZQ4jS7vmzCLNeS5F6CE7HrgXujomyQP0twlf_OsWL8W6l_K0zv2N7sBtH7eyD52i3YU1W23Crb_YDDdh48Dn6e_BrzGFwlPezHXr-KANmxF9pgMl4GBWn7Ij9V1VzCE9LxRT1F3sjLU1I5xw12ustaw5n1SMsBfVpGTnRABdN5OGqcqwimrfCQPaMMLIMG2ryVnFppbu__wQt4puktZpWHMfjq9FRA9gUNWVfQRMJxiroIFPRWhjKyM07ZnGiCgNDFotFQ4h7GVQlJ4hnRp1TIsVtzPJrUC5FU5uxWIIr5fvzDp-kCtHb_WiLbytaIqVZg_hxfJn3OWUulH4Z85xTER9CSRGY0N42KnE8nOEf4_yAN9-0-vIavL_r-Xx1Wt5Dhu4v4ove-P9J3BT0C2DK1LegkF7MbdPMRRr9TOv8wy-Xfc2-wNs70Lp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal-subtracted+preprocessing+of+Raman+spectra+aiming+to+discriminate+skin+actinic+keratosis+and+neoplasias+from+benign+lesions+and+normal+skin+tissues&rft.jtitle=Lasers+in+medical+science&rft.au=Silveira%2C+Landulfo&rft.au=Pasqualucci%2C+Carlos+Augusto&rft.au=Bodanese%2C+Benito&rft.au=Pacheco%2C+Marcos+Tadeu+Tavares&rft.date=2020-07-01&rft.issn=0268-8921&rft.eissn=1435-604X&rft.volume=35&rft.issue=5&rft.spage=1141&rft.epage=1151&rft_id=info:doi/10.1007%2Fs10103-019-02935-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10103_019_02935_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-8921&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-8921&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-8921&client=summon |