Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues

The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemica...

Full description

Saved in:
Bibliographic Details
Published inLasers in medical science Vol. 35; no. 5; pp. 1141 - 1151
Main Authors Silveira, Landulfo, Pasqualucci, Carlos Augusto, Bodanese, Benito, Pacheco, Marcos Tadeu Tavares, Zângaro, Renato Amaro
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318 ) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
AbstractList The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318 ) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis—BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: 10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal tissue is subtracted from the abnormal tissues. In this study, we evaluated the use of the normal-subtracted spectra to evidence the biochemical differences in the pre-cancerous and cancerous skin tissues compared with normal skin, and to discriminate the groups with altered tissues with respect to the normal sites. Raman spectra from skin tissues [normal (Normal), benign (dermatitis-BEN), basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (KER)] were obtained in vivo (Silveira et al., 2015, doi: https://doi.org/10.1002/lsm.22318) and used to develop the spectral model. The mean spectrum of the normal sites (circumjacent to each lesion) from each subject was calculated and subtracted from each individual spectrum of that particular subject independently of the group (Normal, BEN, BCC, SCC, KERAT). The mean spectra of each altered group and the mean spectra of the differences were firstly evaluated in terms of biochemical contribution or differentiation comparing the normal site. Then, the normal-subtracted spectra were submitted to discriminant models based on partial least squares and principal components regression (PLS-DA and PCR-DA), and the discrimination were compared with the model using non-subtracted spectra. Results showed that the peaks of nucleic acids, lipids (triolein) and proteins (elastin and collagens I, III, and IV) were significantly different in the lesions, higher for the pre- and neoplastic lesions compared with normal and benign. The PLS-DA showed that the groups could be discriminated with 90.3% accuracy when the mean-subtracted spectra were used, contrasting with 75.1% accuracy when the non-subtracted spectra were used. Also, when discriminating non-neoplastic tissue (Normal + BEN) from pre- and neoplastic sites (BCC + SCC + KERAT), the accuracy increases to 92.5% for the normal-subtracted compared with 85.3% for the non-subtracted. The subtraction of the mean normal spectrum from the subject obtained circumjacent to each lesion could significantly increase the diagnostic capability of the Raman-based discrimination algorithm.
Author Pasqualucci, Carlos Augusto
Bodanese, Benito
Zângaro, Renato Amaro
Silveira, Landulfo
Pacheco, Marcos Tadeu Tavares
Author_xml – sequence: 1
  givenname: Landulfo
  orcidid: 0000-0002-6616-3334
  surname: Silveira
  fullname: Silveira, Landulfo
  email: landulfo.silveira@gmail.com, lsjunior@anhembi.br
  organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM
– sequence: 2
  givenname: Carlos Augusto
  surname: Pasqualucci
  fullname: Pasqualucci, Carlos Augusto
  organization: Department of Cardiovascular Pathology, Faculty of Medicine, Universidade de São Paulo – USP
– sequence: 3
  givenname: Benito
  surname: Bodanese
  fullname: Bodanese, Benito
  organization: Department of Oncology, Hospital Regional do Oeste – HRO
– sequence: 4
  givenname: Marcos Tadeu Tavares
  surname: Pacheco
  fullname: Pacheco, Marcos Tadeu Tavares
  organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM
– sequence: 5
  givenname: Renato Amaro
  surname: Zângaro
  fullname: Zângaro, Renato Amaro
  organization: Center for Innovation, Technology and Education – CITE, Universidade Anhembi Morumbi – UAM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31853808$$D View this record in MEDLINE/PubMed
BookMark eNp9kctq3TAQhkVJaU7SvkAXRdBNNm50sy0vS-gNQgMlge6ELOsclNiSq5EJfZS-bebEpy1kkY1ufP_M6P9PyFFM0RPylrMPnLH2HDjjTFaMdxUTnayr-xdkwxUeGqZ-HpENE42udCf4MTkBuGWMtw2Xr8ix5LqWmukN-fM95cmOFSx9ydYVP9A5-zkn5wFC3NG0pT_sZCOF2TtEqA3T_r0kOgRweX-zxVO4C5FigRCDo3c-25IgALVxoNGnebQQLNBtThPtfQy7SEcPIcUD8jjFWqQEgMXDa_Jya0fwbw77Kbn5_On64mt1efXl28XHy8rJti7V0KlB1Y1ydmi8VVK0uAzKtkKJpm9aJ22tOs_6vhZdr9CmQYsObdDOs65u5Ck5W-vip39h32Im_JcfR4tzL2CEFLpVneYC0fdP0Nu05IjTGaG4aGr0VSP17kAt_eQHM6NHNv82f01HQKyAywkg--0_hDOzT9asyRpM1jwma-5RpJ-IXCi2oIMYShifl8pVCtgn7nz-P_YzqgdB8bqq
CitedBy_id crossref_primary_10_1002_bit_27894
crossref_primary_10_1016_j_xjidi_2024_100303
crossref_primary_10_3390_jcm12237428
crossref_primary_10_1016_j_saa_2025_125787
crossref_primary_10_3390_cancers14122820
crossref_primary_10_3390_molecules27092843
crossref_primary_10_1007_s00216_022_04477_7
crossref_primary_10_1088_1742_6596_1859_1_012033
crossref_primary_10_1186_s43074_023_00098_0
Cites_doi 10.1002/jbio.201800400
10.1158/0008-5472.CAN-05-2815
10.1046/j.0022-202X.2004.22208.x
10.1117/1.JBO.17.7.077003
10.1002/jrs.4607
10.1117/1.JBO.23.10.105001
10.1089/pho.2011.3191
10.1364/OL.26.001782
10.1002/cem.785
10.1158/0008-5472.CAN-18-2791
10.1056/NEJMra1708701
10.1088/0031-9155/45/2/201
10.1016/j.molstruc.2007.06.014
10.1590/S0103-50532012005000073
10.1364/AO.51.005038
10.1016/j.jphotobiol.2018.06.013
10.1080/05704928.2014.923902
10.1117/1.JBO.19.11.117003
10.1016/j.saa.2011.10.049
10.1002/jrs.1107
10.1021/ja01548a002
10.1002/jbio.201700288
10.1016/j.molstruc.2006.01.004
10.1117/1.JBO.23.5.057002
10.1366/000370207782597003
10.1007/s10103-017-2317-4
10.5021/ad.2018.30.1.64
10.1177/0003702816686593
10.1007/978-3-540-79347-2_2
10.1021/ja0356176
10.1016/0584-8539(85)80099-4
10.21873/invivo.11512
10.1172/JCI57415
10.1016/0076-6879(95)46019-5
10.1007/s10103-017-2173-2
10.1111/exd.12768
10.1002/jrs.1734
10.1007/s00216-006-0937-9
10.1016/j.ajpath.2010.11.017
10.1039/b821856k
10.1016/0898-5529(89)90004-3
10.1046/j.1523-1747.2001.01258.x
10.1002/lsm.22318
10.1111/jicd.12253
10.1080/10739149.2010.508318
10.1371/journal.pone.0010427
10.1016/j.det.2017.06.010
10.1016/j.vibspec.2018.11.009
10.1039/c2an36579k
10.1002/bip.1976.360150807
10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3
10.1117/1.JBO.21.3.037001
10.5772/64582
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
NPM
3V.
7QO
7RV
7SP
7U5
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8D
HCIFZ
K9.
KB0
L7M
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10103-019-02935-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1435-604X
EndPage 1151
ExternalDocumentID 31853808
10_1007_s10103_019_02935_w
Genre Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2009/01788-5
  funderid: http://dx.doi.org/10.13039/501100001807
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 306344/2017-3; 301325/2016-2
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 306344/2017-3
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2009/01788-5
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 301325/2016-2
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z83
Z87
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
7SP
7U5
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H8D
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-d94d4564cad6ea4327a43d4a72426b67c3a549e0bb529b4935d8296138ce09563
IEDL.DBID U2A
ISSN 0268-8921
1435-604X
IngestDate Mon Jul 21 11:02:54 EDT 2025
Sat Aug 23 14:20:14 EDT 2025
Wed Feb 19 02:31:24 EST 2025
Tue Jul 01 03:07:25 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Fri Feb 21 02:32:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Spectral model
Raman spectroscopy
In vivo diagnosis
Skin neoplasia
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-d94d4564cad6ea4327a43d4a72426b67c3a549e0bb529b4935d8296138ce09563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6616-3334
PMID 31853808
PQID 2412653188
PQPubID 46654
PageCount 11
ParticipantIDs proquest_miscellaneous_2328749812
proquest_journals_2412653188
pubmed_primary_31853808
crossref_primary_10_1007_s10103_019_02935_w
crossref_citationtrail_10_1007_s10103_019_02935_w
springer_journals_10_1007_s10103_019_02935_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Lasers in medical science
PublicationTitleAbbrev Lasers Med Sci
PublicationTitleAlternate Lasers Med Sci
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Atkins, Buckley, Blades, Turner (CR35) 2017; 71
Feng, Moy, Nguyen, Zhang, Zhang, Fox, Sebastian, Reichenberg, Markey, Tunnell (CR54) 2018; 23
Kumari, Ghosh, Patil, Augustine, Venkatesiah, Rao (CR57) 2017; 8
Hirobe (CR1) 1995; 10
Sammut, Webb (CR51) 2011
Khristoforova, Bratchenko, Myakinin, Artemyev, Moryatov, Orlov, Kozlov, Zakharov (CR11) 2019; 12
Hsu, Moore, Krimm (CR44) 1976; 15
Ensley, Gutkind, Jacobs, Lippman (CR46) 2003
Peticolas (CR32) 1995; 246
Zhao, Zeng, Kalia, Lui (CR7) 2017; 35
Saatkamp, de Almeida, Bispo, Pinheiro, Fernandes, Silveira (CR17) 2016; 21
Lima, Daniel, Navarro, Bodanese, Pasqualucci, Pacheco, Zângaro, Silveira (CR29) 2019; 100
Hirakawa, Okada, Sasagawa, Tsuboi (CR33) 1985; 41
Silveira, Bodanese, Zângaro, Pacheco (CR20) 2010; 38
Marasà, Marasà, Sciancalepore (CR58) 2008; 143
Nunes, Freitas, Pinheiro, Bastos (CR24) 2012; 23
Singh (CR37) 2008; 876
Weedon, Weedon (CR50) 2010
Varkentin, Mazurenka, Blumenröther, Behrendt, Emmert, Morgner, Meinhardt-Wollweber, Rahlves, Roth (CR61) 2018; 11
Ash, Dubec, Donne, Bashford (CR21) 2017; 32
Beier, Berger (CR18) 2009; 134
Gniadecka, Philipsen, Sigurdsson, Wessel, Christensen, Hercogova, Rossen, Thomsen, Gniadecki, Hansen, Wulf (CR55) 2004; 122
CR41
Ryu, Kye, Choi, Ahn, Kye, Seo (CR59) 2018; 30
Lim, Nichols, Migden, Rajaram, Reichenberg, Markey, Ross, Tunnell (CR4) 2014; 19
Li, Yang, Li (CR27) 2012; 51
Maiti, Apetri, Zagorski, Carey, Anderson (CR31) 2004; 126
De Gelder, De Gussem, Vandenabeele, Moens (CR39) 2007; 38
Anastassopoulou, Kyriakidou, Malesiou, Rallis, Theophanides (CR10) 2019; 33
Barker, Rayens (CR30) 2003; 17
Cárcamo, Aliaga, Clavijo, Brañes, Campos-Vallette (CR56) 2012; 86
Dunn, Scott, Glen (CR25) 1989; 2
Varkentin, Mazurenka, Blumenröther, Behrendt, Emmert, Morgner, Meinhardt-Wollweber, Rahlves, Roth (CR8) 2018; 11
Lloyd, Orr, Christie-Brown, McCarthy, Rose, Thomas, Stone (CR28) 2013; 138
Hanlon, Manoharan, Koo, Shafer, Motz, Fitzmaurice, Kramer, Itzkan, Dasari, Feld (CR12) 2000; 45
Battifora (CR47) 1976; 37
Turani, Fatemizadeh, Blumetti, Daveluy, Moraes, Chen, Mehregan, Andersen, Nasiriavanaki (CR60) 2019; 79
Moreira, Silveira, Pacheco, da Silva, Rocco (CR23) 2018; 185
Kumar, Rai, Rai, Rai, Singh, Singh (CR43) 2006; 791
Haka, Volynskaya, Gardecki, Nazemi, Lyons, Hicks, Fitzmaurice, Dasari, Crowe, Feld (CR13) 2006; 66
Mckinney, Woodman (CR48) 2019
Silveira, Borges, Navarro, Giana, Zângaro, Pacheco, Fernandes (CR16) 2017; 32
Zhao, Lui, McLean, Zeng (CR19) 2007; 61
Schmälzlin, Moralejo, Gersonde, Schleusener, Darvin, Thiede, Roth (CR9) 2018; 23
Czamara, Majzner, Pacia, Kochan, Kaczor, Baranska (CR40) 2015; 46
Nehal, Bichakjian (CR2) 2018; 379
Talari, Movasaghi, Rehman, Rehman (CR36) 2014; 50
Bankapur, Zachariah, Chidangil, Valiathan, Mathur (CR34) 2010; 5
Huang, Zeng, Hamzavi, McLean, Lui (CR26) 2001; 26
Ruiz-Chica, Medina, Sanchez-Jimenez, Ramirez (CR38) 2004; 35
Ratushny, Gober, Hick, Ridky, Seykora (CR3) 2012; 122
Stone, Hart Prieto, Crow, Uff, Ritchie (CR14) 2007; 387
Bodanese, Silveira, Zângaro, Pacheco, Pasqualucci, Silveira (CR52) 2012; 30
Caspers, Lucassen, Carter, Bruining, Puppels (CR53) 2001; 116
Zhang, Chen, Xiao, Wang, Qin (CR49) 2011; 178
CR22
Takeda, Iavazzo, Garfinkel, Scheinberg, Edsall (CR42) 1958; 80
Silveira, Pacheco, Bodanese, Pasqualucci, Zângaro, Silveira (CR6) 2015; 47
Silveira, Silveira, Bodanese, Zângaro, Pacheco (CR15) 2012; 17
Schleusener, Gluszczynska, Reble, Gersonde, Helfmann, Fluhr, Lademann, Röwert-Huber, Patzelt, Meinke (CR5) 2015; 24
Goldenberg, Stockfleth, Rosen, Shumack (CR45) 2010
E Schmälzlin (2935_CR9) 2018; 23
K Czamara (2935_CR40) 2015; 46
O Mckinney (2935_CR48) 2019
M Barker (2935_CR30) 2003; 17
B Bodanese (2935_CR52) 2012; 30
J Schleusener (2935_CR5) 2015; 24
M Takeda (2935_CR42) 1958; 80
A Varkentin (2935_CR61) 2018; 11
TH Ryu (2935_CR59) 2018; 30
AJ Ruiz-Chica (2935_CR38) 2004; 35
J Anastassopoulou (2935_CR10) 2019; 33
X Li (2935_CR27) 2012; 51
CG Atkins (2935_CR35) 2017; 71
JS Singh (2935_CR37) 2008; 876
J De Gelder (2935_CR39) 2007; 38
2935_CR22
CJ Saatkamp (2935_CR17) 2016; 21
ACS Talari (2935_CR36) 2014; 50
Z Huang (2935_CR26) 2001; 26
PJ Caspers (2935_CR53) 2001; 116
SL Hsu (2935_CR44) 1976; 15
L Lim (2935_CR4) 2014; 19
L Silveira (2935_CR16) 2017; 32
CA Nunes (2935_CR24) 2012; 23
C Ash (2935_CR21) 2017; 32
AMF Lima (2935_CR29) 2019; 100
AS Haka (2935_CR13) 2006; 66
YA Khristoforova (2935_CR11) 2019; 12
D Weedon (2935_CR50) 2010
KS Nehal (2935_CR2) 2018; 379
G Goldenberg (2935_CR45) 2010
J Zhao (2935_CR7) 2017; 35
AY Hirakawa (2935_CR33) 1985; 41
T Hirobe (2935_CR1) 1995; 10
A Bankapur (2935_CR34) 2010; 5
A Varkentin (2935_CR8) 2018; 11
N Stone (2935_CR14) 2007; 387
WL Peticolas (2935_CR32) 1995; 246
H Battifora (2935_CR47) 1976; 37
Z Turani (2935_CR60) 2019; 79
FL Silveira (2935_CR6) 2015; 47
L Marasà (2935_CR58) 2008; 143
V Ratushny (2935_CR3) 2012; 122
S Kumar (2935_CR43) 2006; 791
JF Ensley (2935_CR46) 2003
X Feng (2935_CR54) 2018; 23
C Sammut (2935_CR51) 2011
L Silveira (2935_CR20) 2010; 38
JJ Cárcamo (2935_CR56) 2012; 86
K Kumari (2935_CR57) 2017; 8
2935_CR41
L Silveira (2935_CR15) 2012; 17
M Gniadecka (2935_CR55) 2004; 122
NC Maiti (2935_CR31) 2004; 126
BD Beier (2935_CR18) 2009; 134
J Zhang (2935_CR49) 2011; 178
LP Moreira (2935_CR23) 2018; 185
WJ Dunn (2935_CR25) 1989; 2
EB Hanlon (2935_CR12) 2000; 45
GR Lloyd (2935_CR28) 2013; 138
J Zhao (2935_CR19) 2007; 61
References_xml – ident: CR22
– volume: 12
  start-page: e201800400
  year: 2019
  ident: CR11
  article-title: Portable spectroscopic system for in vivo skin neoplasms diagnostics by Raman and autofluorescence analysis
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201800400
– volume: 66
  start-page: 3317
  year: 2006
  end-page: 3322
  ident: CR13
  article-title: In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2815
– volume: 122
  start-page: 443
  year: 2004
  end-page: 449
  ident: CR55
  article-title: Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue
  publication-title: J Invest Dermatol
  doi: 10.1046/j.0022-202X.2004.22208.x
– volume: 17
  start-page: 077003
  year: 2012
  ident: CR15
  article-title: Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.7.077003
– volume: 46
  start-page: 4
  year: 2015
  end-page: 20
  ident: CR40
  article-title: Raman spectroscopy of lipids: a review
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4607
– volume: 23
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR9
  article-title: Nonscanning large-area Raman imaging for ex vivo/in vivo skin cancer discrimination
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.23.10.105001
– volume: 30
  start-page: 381
  year: 2012
  end-page: 387
  ident: CR52
  article-title: Discrimination of basal cell carcinoma and melanoma from normal skin biopsies in vitro through Raman spectroscopy and principal component analysis
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2011.3191
– volume: 26
  start-page: 1782
  year: 2001
  end-page: 1784
  ident: CR26
  article-title: Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements
  publication-title: Opt Lett
  doi: 10.1364/OL.26.001782
– volume: 17
  start-page: 166
  year: 2003
  end-page: 173
  ident: CR30
  article-title: Partial least squares for discrimination
  publication-title: J Chemom
  doi: 10.1002/cem.785
– volume: 79
  start-page: 2021
  year: 2019
  end-page: 2030
  ident: CR60
  article-title: Optical radiomic signatures derived from optical coherence tomography images to improve identification of melanoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-2791
– volume: 379
  start-page: 363
  year: 2018
  end-page: 374
  ident: CR2
  article-title: Update on keratinocyte carcinomas
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1708701
– volume: 45
  start-page: R1
  year: 2000
  end-page: R59
  ident: CR12
  article-title: Prospects for in vivo Raman spectroscopy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/2/201
– volume: 876
  start-page: 127
  year: 2008
  end-page: 133
  ident: CR37
  article-title: FTIR and Raman spectra and fundamental frequencies of biomolecule: 5-methyluracil (thymine)
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2007.06.014
– volume: 23
  start-page: 2003
  year: 2012
  end-page: 2010
  ident: CR24
  article-title: Chemoface: a novel free user-friendly interface for chemometrics
  publication-title: J Braz Chem Soc
  doi: 10.1590/S0103-50532012005000073
– volume: 51
  start-page: 5038
  year: 2012
  end-page: 5043
  ident: CR27
  article-title: Discrimination of serum Raman spectroscopy between normal and colorectal cancer using selected parameters and regression-discriminant analysis
  publication-title: Appl Opt
  doi: 10.1364/AO.51.005038
– volume: 185
  start-page: 223
  year: 2018
  end-page: 234
  ident: CR23
  article-title: Detecting urine metabolites related to training performance in swimming athletes by means of Raman spectroscopy and principal component analysis
  publication-title: J Photochem Photobiol B Biol
  doi: 10.1016/j.jphotobiol.2018.06.013
– volume: 50
  start-page: 46
  year: 2014
  end-page: 111
  ident: CR36
  article-title: Raman spectroscopy of biological tissues
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2014.923902
– volume: 19
  start-page: 117003
  year: 2014
  ident: CR4
  article-title: Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.11.117003
– year: 2011
  ident: CR51
  publication-title: Leave-one-out cross-validation
– year: 2019
  ident: CR48
  publication-title: Crash course pathology
– volume: 86
  start-page: 360
  year: 2012
  end-page: 365
  ident: CR56
  article-title: Raman study of the shockwave effect on collagens
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2011.10.049
– volume: 35
  start-page: 93
  year: 2004
  end-page: 100
  ident: CR38
  article-title: Characterization by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.1107
– volume: 80
  start-page: 3813
  year: 1958
  end-page: 3818
  ident: CR42
  article-title: Raman spectra of amino acids and related compounds. IX. Ionization and deuterium substitution in glycine, alanine and β-alanine
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01548a002
– volume: 11
  year: 2018
  ident: CR61
  article-title: Trimodal system for skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201700288
– volume: 791
  start-page: 23
  year: 2006
  end-page: 29
  ident: CR43
  article-title: Infrared, Raman and electronic spectra of alanine: a comparison with ab intio calculation
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2006.01.004
– year: 2003
  ident: CR46
  publication-title: Head and neck cancer: emerging perspectives
– volume: 23
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR54
  article-title: Raman biophysical markers in skin cancer diagnosis
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.23.5.057002
– volume: 10
  start-page: 223
  year: 1995
  end-page: 237
  ident: CR1
  article-title: Structure and function of melanocytes: microscopic morphology and cell biology of mouse melanocytes in the epidermis and hair follicle
  publication-title: Histol Histopathol
– volume: 61
  start-page: 1225
  year: 2007
  end-page: 1232
  ident: CR19
  article-title: Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy
  publication-title: Appl Spectrosc
  doi: 10.1366/000370207782597003
– volume: 32
  start-page: 1909
  year: 2017
  end-page: 1918
  ident: CR21
  article-title: Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-017-2317-4
– volume: 143
  start-page: 169
  year: 2008
  end-page: 173
  ident: CR58
  article-title: Collagen IV, laminin, fibronectin, vitronectin. Comparative study in basal cell carcinoma. Correlation between basement membrane molecules expression and invasive potential
  publication-title: G Ital Dermatol Venereol
– volume: 30
  start-page: 64
  year: 2018
  end-page: 70
  ident: CR59
  article-title: Features causing confusion between basal cell carcinoma and squamous cell carcinoma in clinical diagnosis
  publication-title: Ann Dermatol
  doi: 10.5021/ad.2018.30.1.64
– volume: 71
  start-page: 767
  year: 2017
  end-page: 793
  ident: CR35
  article-title: Raman spectroscopy of blood and blood components
  publication-title: Appl Spectrosc
  doi: 10.1177/0003702816686593
– start-page: 682
  year: 2010
  end-page: 697
  ident: CR50
  article-title: Tumors of the epidermis
  publication-title: Weedon’s skin pathology
– start-page: 17
  year: 2010
  end-page: 35
  ident: CR45
  article-title: Histopathology of skin cancer
  publication-title: Managing skin cancer
  doi: 10.1007/978-3-540-79347-2_2
– volume: 126
  start-page: 2399
  year: 2004
  end-page: 2408
  ident: CR31
  article-title: Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0356176
– volume: 41
  start-page: 209
  year: 1985
  end-page: 216
  ident: CR33
  article-title: Infrared and Raman spectra of adenine and its 15N and 13C substitution products
  publication-title: Spectrochim Acta A Mol Spectrosc
  doi: 10.1016/0584-8539(85)80099-4
– volume: 33
  start-page: 567
  year: 2019
  end-page: 572
  ident: CR10
  article-title: Infrared and Raman spectroscopic studies of molecular disorders in skin cancer
  publication-title: In Vivo
  doi: 10.21873/invivo.11512
– volume: 122
  start-page: 464
  year: 2012
  end-page: 472
  ident: CR3
  article-title: From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma
  publication-title: J Clin Invest
  doi: 10.1172/JCI57415
– volume: 246
  start-page: 389
  year: 1995
  end-page: 416
  ident: CR32
  article-title: Raman spectroscopy of DNA and proteins
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(95)46019-5
– volume: 32
  start-page: 787
  year: 2017
  end-page: 795
  ident: CR16
  article-title: Quantifying glucose and lipid components in human serum by Raman spectroscopy and multivariate statistics
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-017-2173-2
– volume: 24
  start-page: 767
  year: 2015
  end-page: 772
  ident: CR5
  article-title: In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy
  publication-title: Exp Dermatol
  doi: 10.1111/exd.12768
– volume: 11
  year: 2018
  ident: CR8
  article-title: Trimodal system for in vivo skin cancer screening with combined optical coherence tomography-Raman and colocalized optoacoustic measurements
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201700288
– volume: 38
  start-page: 1133
  year: 2007
  end-page: 1147
  ident: CR39
  article-title: Reference database of Raman spectra of biological molecules
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.1734
– volume: 387
  start-page: 1657
  year: 2007
  end-page: 1668
  ident: CR14
  article-title: The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-006-0937-9
– volume: 178
  start-page: 382
  year: 2011
  end-page: 390
  ident: CR49
  article-title: FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2010.11.017
– volume: 134
  start-page: 1198
  year: 2009
  end-page: 1202
  ident: CR18
  article-title: Method for automated background subtraction from Raman spectra containing known contaminants
  publication-title: Analyst
  doi: 10.1039/b821856k
– volume: 2
  start-page: 349
  year: 1989
  end-page: 376
  ident: CR25
  article-title: Principal components analysis and partial least squares regression
  publication-title: Tetrahedron Comput Methodol
  doi: 10.1016/0898-5529(89)90004-3
– volume: 116
  start-page: 434
  year: 2001
  end-page: 442
  ident: CR53
  article-title: In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.2001.01258.x
– volume: 47
  start-page: 6
  year: 2015
  end-page: 16
  ident: CR6
  article-title: Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.22318
– volume: 8
  start-page: e12253
  year: 2017
  ident: CR57
  article-title: Expression of type III collagen correlates with poor prognosis in oral squamous cell carcinoma
  publication-title: J Investig Clin Dent
  doi: 10.1111/jicd.12253
– volume: 38
  start-page: 268
  year: 2010
  end-page: 282
  ident: CR20
  article-title: Discrete wavelet transform for denoising Raman spectra of human skin tissues used in a discriminant diagnostic algorithm
  publication-title: Instrum Sci Technol
  doi: 10.1080/10739149.2010.508318
– volume: 5
  start-page: e10427
  year: 2010
  ident: CR34
  article-title: Raman tweezers spectroscopy of live, single red and white blood cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010427
– volume: 35
  start-page: 495
  year: 2017
  end-page: 504
  ident: CR7
  article-title: Using Raman spectroscopy to detect and diagnose skin cancer in vivo
  publication-title: Dermatol Clin
  doi: 10.1016/j.det.2017.06.010
– volume: 100
  start-page: 131
  year: 2019
  end-page: 141
  ident: CR29
  article-title: Discrimination of non-melanoma skin cancer and keratosis from normal skin tissue in vivo and ex vivo by Raman spectroscopy
  publication-title: Vib Spectrosc
  doi: 10.1016/j.vibspec.2018.11.009
– volume: 138
  start-page: 3900
  year: 2013
  end-page: 3908
  ident: CR28
  article-title: Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis
  publication-title: Analyst
  doi: 10.1039/c2an36579k
– volume: 15
  start-page: 1513
  year: 1976
  end-page: 1528
  ident: CR44
  article-title: Vibrational spectrum of the unordered keratin polypeptide chain: a Raman study of feather
  publication-title: Biopolymers
  doi: 10.1002/bip.1976.360150807
– ident: CR41
– volume: 37
  start-page: 2275
  year: 1976
  end-page: 2282
  ident: CR47
  article-title: Spindle cell carcinoma. Ultrastructural evidence of squamous origin and collagen production by the tumor cells
  publication-title: Cancer
  doi: 10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3
– volume: 21
  start-page: 37001
  year: 2016
  ident: CR17
  article-title: Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.21.3.037001
– volume: 23
  start-page: 2003
  year: 2012
  ident: 2935_CR24
  publication-title: J Braz Chem Soc
  doi: 10.1590/S0103-50532012005000073
– volume: 143
  start-page: 169
  year: 2008
  ident: 2935_CR58
  publication-title: G Ital Dermatol Venereol
– volume: 33
  start-page: 567
  year: 2019
  ident: 2935_CR10
  publication-title: In Vivo
  doi: 10.21873/invivo.11512
– volume: 23
  start-page: 1
  year: 2018
  ident: 2935_CR54
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.23.5.057002
– volume: 134
  start-page: 1198
  year: 2009
  ident: 2935_CR18
  publication-title: Analyst
  doi: 10.1039/b821856k
– volume: 178
  start-page: 382
  year: 2011
  ident: 2935_CR49
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2010.11.017
– volume: 24
  start-page: 767
  year: 2015
  ident: 2935_CR5
  publication-title: Exp Dermatol
  doi: 10.1111/exd.12768
– volume-title: Crash course pathology
  year: 2019
  ident: 2935_CR48
– volume: 122
  start-page: 443
  year: 2004
  ident: 2935_CR55
  publication-title: J Invest Dermatol
  doi: 10.1046/j.0022-202X.2004.22208.x
– volume: 86
  start-page: 360
  year: 2012
  ident: 2935_CR56
  publication-title: Spectrochim Acta A Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2011.10.049
– volume: 5
  start-page: e10427
  year: 2010
  ident: 2935_CR34
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0010427
– volume: 80
  start-page: 3813
  year: 1958
  ident: 2935_CR42
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01548a002
– start-page: 17
  volume-title: Managing skin cancer
  year: 2010
  ident: 2935_CR45
  doi: 10.1007/978-3-540-79347-2_2
– volume: 45
  start-page: R1
  year: 2000
  ident: 2935_CR12
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/45/2/201
– volume: 21
  start-page: 37001
  year: 2016
  ident: 2935_CR17
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.21.3.037001
– volume-title: Head and neck cancer: emerging perspectives
  year: 2003
  ident: 2935_CR46
– volume: 185
  start-page: 223
  year: 2018
  ident: 2935_CR23
  publication-title: J Photochem Photobiol B Biol
  doi: 10.1016/j.jphotobiol.2018.06.013
– volume-title: Leave-one-out cross-validation
  year: 2011
  ident: 2935_CR51
– volume: 32
  start-page: 787
  year: 2017
  ident: 2935_CR16
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-017-2173-2
– volume: 47
  start-page: 6
  year: 2015
  ident: 2935_CR6
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.22318
– volume: 100
  start-page: 131
  year: 2019
  ident: 2935_CR29
  publication-title: Vib Spectrosc
  doi: 10.1016/j.vibspec.2018.11.009
– volume: 11
  year: 2018
  ident: 2935_CR8
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201700288
– volume: 17
  start-page: 166
  year: 2003
  ident: 2935_CR30
  publication-title: J Chemom
  doi: 10.1002/cem.785
– volume: 10
  start-page: 223
  year: 1995
  ident: 2935_CR1
  publication-title: Histol Histopathol
– volume: 35
  start-page: 93
  year: 2004
  ident: 2935_CR38
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.1107
– volume: 387
  start-page: 1657
  year: 2007
  ident: 2935_CR14
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-006-0937-9
– volume: 32
  start-page: 1909
  year: 2017
  ident: 2935_CR21
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-017-2317-4
– volume: 30
  start-page: 64
  year: 2018
  ident: 2935_CR59
  publication-title: Ann Dermatol
  doi: 10.5021/ad.2018.30.1.64
– volume: 35
  start-page: 495
  year: 2017
  ident: 2935_CR7
  publication-title: Dermatol Clin
  doi: 10.1016/j.det.2017.06.010
– volume: 126
  start-page: 2399
  year: 2004
  ident: 2935_CR31
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0356176
– volume: 23
  start-page: 1
  year: 2018
  ident: 2935_CR9
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.23.10.105001
– volume: 71
  start-page: 767
  year: 2017
  ident: 2935_CR35
  publication-title: Appl Spectrosc
  doi: 10.1177/0003702816686593
– volume: 791
  start-page: 23
  year: 2006
  ident: 2935_CR43
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2006.01.004
– volume: 41
  start-page: 209
  year: 1985
  ident: 2935_CR33
  publication-title: Spectrochim Acta A Mol Spectrosc
  doi: 10.1016/0584-8539(85)80099-4
– volume: 138
  start-page: 3900
  year: 2013
  ident: 2935_CR28
  publication-title: Analyst
  doi: 10.1039/c2an36579k
– volume: 37
  start-page: 2275
  year: 1976
  ident: 2935_CR47
  publication-title: Cancer
  doi: 10.1002/1097-0142(197605)37:5<2275::AID-CNCR2820370518>3.0.CO;2-3
– volume: 50
  start-page: 46
  year: 2014
  ident: 2935_CR36
  publication-title: Appl Spectrosc Rev
  doi: 10.1080/05704928.2014.923902
– start-page: 682
  volume-title: Weedon’s skin pathology
  year: 2010
  ident: 2935_CR50
– volume: 30
  start-page: 381
  year: 2012
  ident: 2935_CR52
  publication-title: Photomed Laser Surg
  doi: 10.1089/pho.2011.3191
– volume: 116
  start-page: 434
  year: 2001
  ident: 2935_CR53
  publication-title: J Invest Dermatol
  doi: 10.1046/j.1523-1747.2001.01258.x
– volume: 46
  start-page: 4
  year: 2015
  ident: 2935_CR40
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4607
– volume: 11
  year: 2018
  ident: 2935_CR61
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201700288
– ident: 2935_CR22
– volume: 79
  start-page: 2021
  year: 2019
  ident: 2935_CR60
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-2791
– volume: 51
  start-page: 5038
  year: 2012
  ident: 2935_CR27
  publication-title: Appl Opt
  doi: 10.1364/AO.51.005038
– volume: 38
  start-page: 268
  year: 2010
  ident: 2935_CR20
  publication-title: Instrum Sci Technol
  doi: 10.1080/10739149.2010.508318
– volume: 2
  start-page: 349
  year: 1989
  ident: 2935_CR25
  publication-title: Tetrahedron Comput Methodol
  doi: 10.1016/0898-5529(89)90004-3
– volume: 379
  start-page: 363
  year: 2018
  ident: 2935_CR2
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1708701
– volume: 19
  start-page: 117003
  year: 2014
  ident: 2935_CR4
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.11.117003
– volume: 38
  start-page: 1133
  year: 2007
  ident: 2935_CR39
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.1734
– volume: 12
  start-page: e201800400
  year: 2019
  ident: 2935_CR11
  publication-title: J Biophotonics
  doi: 10.1002/jbio.201800400
– volume: 26
  start-page: 1782
  year: 2001
  ident: 2935_CR26
  publication-title: Opt Lett
  doi: 10.1364/OL.26.001782
– volume: 15
  start-page: 1513
  year: 1976
  ident: 2935_CR44
  publication-title: Biopolymers
  doi: 10.1002/bip.1976.360150807
– volume: 122
  start-page: 464
  year: 2012
  ident: 2935_CR3
  publication-title: J Clin Invest
  doi: 10.1172/JCI57415
– volume: 17
  start-page: 077003
  year: 2012
  ident: 2935_CR15
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.7.077003
– volume: 876
  start-page: 127
  year: 2008
  ident: 2935_CR37
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2007.06.014
– volume: 61
  start-page: 1225
  year: 2007
  ident: 2935_CR19
  publication-title: Appl Spectrosc
  doi: 10.1366/000370207782597003
– volume: 246
  start-page: 389
  year: 1995
  ident: 2935_CR32
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(95)46019-5
– ident: 2935_CR41
  doi: 10.5772/64582
– volume: 66
  start-page: 3317
  year: 2006
  ident: 2935_CR13
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2815
– volume: 8
  start-page: e12253
  year: 2017
  ident: 2935_CR57
  publication-title: J Investig Clin Dent
  doi: 10.1111/jicd.12253
SSID ssj0017613
Score 2.313438
Snippet The differences in the biochemistry of normal and cancerous tissue could be better exploited by Raman spectroscopy when the spectral information from normal...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1141
SubjectTerms Accuracy
Algorithms
Basal cell carcinoma
Biochemistry
Collagen
Dentistry
Dermatitis
Diagnostic systems
Elastin
Keratosis
Lasers
Lesions
Lipids
Medical diagnosis
Medicine
Medicine & Public Health
Nucleic acids
Optical Devices
Optics
Original Article
Photonics
Quantum Optics
Raman spectra
Raman spectroscopy
Skin
Skin cancer
Skin diseases
Spectrum analysis
Squamous cell carcinoma
Subtraction
Tissues
Triolein
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA9aQeyD2A_1tJYIvrXBTbIfyZOIWIrQPpQW7m3Jl-XomT27e_Rv6X_rTDZ3pxT7si-b7IbMZGaSye83hHyS2mtfGce4CIGVjWuYLkzNBLeBS6dUmRLtZ-f16VX5Y1pN84Fbn69VrmxiMtS-c3hG_hk8jahBYZT6svjNsGoUZldzCY2n5BlSl6FWN9P1hovDFl2OZyyKKS14Bs1k6BxPN4k0K8DjVezuX8f0INp8kClNDujkFXmZI0f6dRT1DnkS4i7Z_otPcJc8P8uZ8j1yf47B6Jz1SzskRmZPF0hgmWAB0Jh2P-mF-WUiTVjLW0MN1ve6pkNHEak7VvsaAu1vZpEi-iHOHL1BCuaun_XURE8j3j5HFGZPEaVCbYiz60jnAU_gcpM0ivEjQ5Jxv0-uTr5ffjtluQwDc7KpBuZ16ZF0xhlfB1NK0cDDl6ZB727rxkkDm8xQWFsJbUuYTK-EhqlXLiDNoXxNtmIXw1tCbQXRApjYWvBQBi3BuDYWYpK68GA3DJ8QvpJB6zJHOZbKmLcbdmWUWwtya5Pc2rsJOVr3WYwMHY-2PliJts2rtW83ujUhH9evYZ1h8sTAZC6hjcTKABrioQl5M6rE-neIQJeqgN7HKx3ZfPz_Y3n3-FjekxcCN_fpbvAB2Rpul-EDRECDPUxq_gdcGwIV
  priority: 102
  providerName: ProQuest
Title Normal-subtracted preprocessing of Raman spectra aiming to discriminate skin actinic keratosis and neoplasias from benign lesions and normal skin tissues
URI https://link.springer.com/article/10.1007/s10103-019-02935-w
https://www.ncbi.nlm.nih.gov/pubmed/31853808
https://www.proquest.com/docview/2412653188
https://www.proquest.com/docview/2328749812
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xTeLjAUH5WGFURuINLCV2PuzHAu0m0Co0Uak8RXbiTdWKOy2p9rfsv-XOSbqhARIvyUPOTpSzz2ff_X4H8E7qSlepKXksnONJXuZcRybjIrYulqVSSQi0H8-yo3nyZZEuOlBY3We79yHJYKlvgd3ikPujeYRrVMqvdmAvxb07JXLNxXgbO8CNuWxPVhRXWsQdVObPffy-HN3xMe_ER8OyM30Cjzt_kY1bBT-Fe84P4MFnyvGhMm0DeHSLUXAA94-7WPkzuJ6RO7ri9cY2gZO5YhdEYRmAASjM1qfsxPw0ngW05aVhhip8nbFmzQir29b7ahyrz5eeEf7BL0t2TiTM63pZM-Mr5in_nHCYNSOcCrPOL888Wzk6g-tEwle0nTRBy_VzmE8n3z8d8a4QAy9lnja80klFtDOlqTJnEilyvFSJyWl9t1leSoPbTBdZmwptE_yxlRIa1aBKR0SH8gXs-rV3-8Bsiv4CGtlMxC5xWqJ5zS16JVlUoeUw8RDiXh9F2bGUU7GMVXHDr0w6LFCHRdBhcTWE99s2Fy1Hxz-lD3o1F918rQv0Y0SG5kipIbzdPsaZRuETgz9zgzKSagNo9IiG8LIdHtvXEQZdqghbf-jHy03nf_-WV_8n_hoeCtruh2zhA9htLjfuDfpEjR3BTr7I8aqmhyPYGx_--DrB-8fJ7NvJKEyPXxrsCFU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkaAcEJTXQgEjwQksEjsvHxBCwLKl3T2gVuot9Ytq1a2zNFmt-Cn8CX4jM06yC6rorZdcYjtWZjwz9vj7hpCXQlppU2VYzJ1jSW5yJiOVMR5rFwtTFElItI8n2egw-XqUHm2Q3z0WBq9V9jYxGGpbGTwjfwuehmegMEXxfv6DYdUozK72JTRatdhzP5ewZavf7X4C-b7ifPj54OOIdVUFmBF52jArE4scKkbZzKlE8BweNlE5Oiud5UYo2DO5SOuUS51IkdqCS_B6hXHI2idg3GvkeiLAkyMyffhllbXIs7YcM88KVkgedyCdDqoXh5tLkkXgYVO2_NcRXohuL2Rmg8Mb3iG3u0iVfmhV6y7ZcH6b3PqLv3Cb3Bh3mfl75NcEg98Zqxe6CQzQls6RMDPAEKAxrb7Tb-pMeRqwneeKKqwndkKbiiIyuK0u1jhan049RbSFnxp6ipTPVT2tqfKWerztjqjPmiIqhmrnpyeezhye-HVNwizaQZqgU_V9cnglAnpANn3l3SNCdQrRCZj0jMcucVKAMc81xEBZZMFOqXhA4l4Gpek40bE0x6xcszmj3EqQWxnkVi4H5PWqz7xlBLm09U4v2rKzDnW51uUBebF6DesakzUKfuYC2gisRCAh_hqQh61KrD6HiHdRRND7Ta8j68H_P5fHl8_lObk5Ohjvl_u7k70nZIvjwUK4l7xDNpvzhXsK0VejnwWVp-T4qtfYHyPpPVc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVTBAUH5WyhgJDiBReL8-oAQ0K5aSldVRaXegh271apLsjRZrXgUXoWnY8ZxdkEVvfWSyzqOtTOeGXvm-wbgZSSNNIkqeSis5XFWZlwGKuUi1DaMyjyPXaL9YJzuHsefT5KTNfjdY2GorLK3ic5Qm7qkO_K36GlEigqDB7ZTXxZxuD16P_vBqYMUZVr7dhqdiuzbnws8vjXv9rZR1q-EGO18_bTLfYcBXkZZ0nIjY0N8KqUyqVVxJDJ8mFhl5Lh0mpWRwvOTDbROhNSxjBKTC4keMC8tMfhFOO8NWM_oVDSA9Y8748OjZQ4jS7vmzCLNeS5F6CE7HrgXujomyQP0twlf_OsWL8W6l_K0zv2N7sBtH7eyD52i3YU1W23Crb_YDDdh48Dn6e_BrzGFwlPezHXr-KANmxF9pgMl4GBWn7Ij9V1VzCE9LxRT1F3sjLU1I5xw12ustaw5n1SMsBfVpGTnRABdN5OGqcqwimrfCQPaMMLIMG2ryVnFppbu__wQt4puktZpWHMfjq9FRA9gUNWVfQRMJxiroIFPRWhjKyM07ZnGiCgNDFotFQ4h7GVQlJ4hnRp1TIsVtzPJrUC5FU5uxWIIr5fvzDp-kCtHb_WiLbytaIqVZg_hxfJn3OWUulH4Z85xTER9CSRGY0N42KnE8nOEf4_yAN9-0-vIavL_r-Xx1Wt5Dhu4v4ove-P9J3BT0C2DK1LegkF7MbdPMRRr9TOv8wy-Xfc2-wNs70Lp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normal-subtracted+preprocessing+of+Raman+spectra+aiming+to+discriminate+skin+actinic+keratosis+and+neoplasias+from+benign+lesions+and+normal+skin+tissues&rft.jtitle=Lasers+in+medical+science&rft.au=Silveira%2C+Landulfo&rft.au=Pasqualucci%2C+Carlos+Augusto&rft.au=Bodanese%2C+Benito&rft.au=Pacheco%2C+Marcos+Tadeu+Tavares&rft.date=2020-07-01&rft.issn=0268-8921&rft.eissn=1435-604X&rft.volume=35&rft.issue=5&rft.spage=1141&rft.epage=1151&rft_id=info:doi/10.1007%2Fs10103-019-02935-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10103_019_02935_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-8921&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-8921&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-8921&client=summon