Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models
Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets f...
Saved in:
Published in | Clinical cancer research Vol. 27; no. 12; pp. 3383 - 3396 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.
In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.
The comprehensive multiomics analysis and functional experiment revealed that
and
had strong effects on cell proliferation, and
and
contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.
This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance. |
---|---|
AbstractList | Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.
In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.
The comprehensive multiomics analysis and functional experiment revealed that
and
had strong effects on cell proliferation, and
and
contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.
This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance. Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.PURPOSEGemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.EXPERIMENTAL DESIGNIn this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.The comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.RESULTSThe comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.CONCLUSIONSThis integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance. |
Author | You, Lei Cao, Zhe Zhang, Taiping Qiu, Jiangdong Gu, Jin Feng, Mengyu Zhao, Fangyu Guo, Wenbo Liu, Yueze Zhang, Michael Q. Yang, Gang Guan, Wenfang Xiong, Guangbing Zhao, Yupei |
Author_xml | – sequence: 1 givenname: Gang surname: Yang fullname: Yang, Gang – sequence: 2 givenname: Wenfang surname: Guan fullname: Guan, Wenfang – sequence: 3 givenname: Zhe surname: Cao fullname: Cao, Zhe – sequence: 4 givenname: Wenbo surname: Guo fullname: Guo, Wenbo – sequence: 5 givenname: Guangbing surname: Xiong fullname: Xiong, Guangbing – sequence: 6 givenname: Fangyu surname: Zhao fullname: Zhao, Fangyu – sequence: 7 givenname: Mengyu surname: Feng fullname: Feng, Mengyu – sequence: 8 givenname: Jiangdong surname: Qiu fullname: Qiu, Jiangdong – sequence: 9 givenname: Yueze surname: Liu fullname: Liu, Yueze – sequence: 10 givenname: Michael Q. surname: Zhang fullname: Zhang, Michael Q. – sequence: 11 givenname: Lei surname: You fullname: You, Lei – sequence: 12 givenname: Taiping surname: Zhang fullname: Zhang, Taiping – sequence: 13 givenname: Yupei surname: Zhao fullname: Zhao, Yupei – sequence: 14 givenname: Jin orcidid: 0000-0003-3968-8036 surname: Gu fullname: Gu, Jin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33674273$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxTAQhYMovn-CkqWbah5Nm-JKii9QlIuCu5CmU4m0iSa5wv33plx14cZNMhy-c2DO7KFN5x0gdETJKaVCnlFSy4KUnJ227aKgTcGbWmygXSpEXXBWic08_zA7aC_GN0JoSUm5jXY4r-qS1XwX-VuX4DXoZD8BX4PzkzX4wulxFW3EfsjaZGzSnXWAF5DFpJ0BbB1-zEOA7DS4nbWAu1UWkwWXih5CTuzxS47M8UPC976HMR6grUGPEQ6__330fHX51N4Udw_Xt-3FXWF4LbJdNM1gCEgqKsoI45WQndRMsIoSXRtiBiplk18hewa8M9RUmghDuhLy8nwfnaxz34P_WEJMarLRwDhqB34ZFSsbWUpGmiqjx9_ospugV-_BTjqs1E9JGRBrwAQfY4DhF6FEzcdQc9FqLlrlYyjaqPkY2Xf-xzc3max3KWg7_uP-Au1Ij2E |
CitedBy_id | crossref_primary_10_1186_s12943_024_02128_2 crossref_primary_10_3389_fphar_2022_910292 crossref_primary_10_1016_j_phymed_2021_153711 crossref_primary_10_1038_s41419_025_07476_5 crossref_primary_10_3390_ijms252413334 crossref_primary_10_1089_ars_2022_0203 crossref_primary_10_1016_j_trecan_2021_04_005 crossref_primary_10_1016_j_drudis_2024_104053 crossref_primary_10_1016_j_biopha_2023_115359 crossref_primary_10_1016_j_heliyon_2023_e23004 crossref_primary_10_1038_s42003_023_05368_y crossref_primary_10_1093_jpp_rgae149 crossref_primary_10_3390_pharmaceutics15061577 crossref_primary_10_1016_j_bbrc_2023_149451 crossref_primary_10_1007_s10565_022_09746_w crossref_primary_10_3390_biom12060815 crossref_primary_10_1016_j_bbrep_2022_101291 crossref_primary_10_1186_s13062_022_00347_5 crossref_primary_10_1186_s12967_024_05528_6 crossref_primary_10_3390_cancers15030628 crossref_primary_10_1038_s41392_024_01734_2 crossref_primary_10_1007_s10147_023_02396_w crossref_primary_10_1186_s13036_023_00372_6 crossref_primary_10_1002_jcp_31223 crossref_primary_10_1002_mc_23420 crossref_primary_10_1016_j_phymed_2023_155004 crossref_primary_10_1159_000536059 crossref_primary_10_3390_ijms23042093 crossref_primary_10_1016_j_bcp_2024_116492 crossref_primary_10_1016_j_heliyon_2023_e17194 crossref_primary_10_1016_j_tranon_2023_101803 crossref_primary_10_1186_s13062_024_00513_x crossref_primary_10_1002_ctm2_1684 crossref_primary_10_1186_s12935_022_02785_7 crossref_primary_10_1007_s00210_025_03938_x crossref_primary_10_1016_j_semcancer_2025_01_003 crossref_primary_10_1155_2023_6510571 crossref_primary_10_1016_j_heliyon_2024_e36434 crossref_primary_10_1177_17588359241234487 crossref_primary_10_1016_j_celrep_2024_114176 crossref_primary_10_1172_jci_insight_185269 crossref_primary_10_1016_j_gendis_2023_101143 crossref_primary_10_3390_ijms25021066 crossref_primary_10_1016_j_intimp_2023_110709 crossref_primary_10_1158_1535_7163_MCT_21_0474 crossref_primary_10_1002_mco2_274 crossref_primary_10_1016_j_cellsig_2023_110840 crossref_primary_10_3389_fendo_2023_1127441 |
Cites_doi | 10.1038/nm.2344 10.1093/nar/gkm952 10.1038/nature16965 10.1093/annonc/mdx416 10.1177/1758835920940946 10.1128/MCB.00085-18 10.1158/2159-8290.CD-16-0441 10.1186/s13059-014-0550-8 10.1016/j.tibs.2019.03.011 10.1093/jnci/djt347 10.1038/jid.2014.479 10.3322/caac.21590 10.1016/j.drup.2015.10.002 10.1186/s13045-019-0777-7 10.1016/j.febslet.2013.08.047 10.1016/j.molcel.2018.09.010 10.1158/0008-5472.CAN-14-0155 10.1016/j.celrep.2016.07.023 10.1111/jcmm.15348 10.1038/nm.3954 10.1093/bioinformatics/bts515 10.1016/j.canlet.2013.01.002 10.1016/j.semcancer.2017.11.015 10.1158/0008-5472.CAN-16-2339 10.3390/cancers9110157 10.1093/bioinformatics/btt285 10.1172/JCI41939 10.1002/hep.28621 10.1038/ncomms7744 10.1084/jem.20170438 10.1172/JCI91561 10.1182/blood-2014-09-603555 10.1002/hep.30622 10.1038/nature14169 10.1182/blood-2011-03-340323 10.1038/nmeth.1923 10.1093/bioinformatics/btt656 10.1038/nm.4038 10.1158/0008-5472.CAN-08-4312 10.1097/JP9.0000000000000028 10.1093/nar/gku840 10.1093/nar/gks1094 10.1093/bioinformatics/bts635 10.1093/bioinformatics/btu170 10.1097/JP9.0000000000000010 10.1038/leu.2014.339 10.1158/2159-8290.CD-18-0349 10.1016/j.canlet.2017.02.020 |
ContentType | Journal Article |
Copyright | 2021 American Association for Cancer Research. |
Copyright_xml | – notice: 2021 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-19-3975 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 3396 |
ExternalDocumentID | 33674273 10_1158_1078_0432_CCR_19_3975 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c375t-d599fc0e815612023658b8a252610a7c0cf1889cf158d2e3bc1c6a05c0b4e2653 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Fri Jul 11 08:55:18 EDT 2025 Mon Jul 21 06:05:53 EDT 2025 Tue Jul 01 01:30:39 EDT 2025 Thu Apr 24 22:57:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2021 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-d599fc0e815612023658b8a252610a7c0cf1889cf158d2e3bc1c6a05c0b4e2653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3968-8036 |
PMID | 33674273 |
PQID | 2498482096 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2498482096 pubmed_primary_33674273 crossref_primary_10_1158_1078_0432_CCR_19_3975 crossref_citationtrail_10_1158_1078_0432_CCR_19_3975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2021 |
References | Rahib (2022061020121071900_bib2) 2014; 74 Penna (2022061020121071900_bib44) 2015; 135 Tiriac (2022061020121071900_bib46) 2018; 8 Dobin (2022061020121071900_bib21) 2013; 29 Saygin (2022061020121071900_bib32) 2017; 214 Blum (2022061020121071900_bib29) 2018 Tiberi (2022061020121071900_bib42) 2015; 29 Jones (2022061020121071900_bib43) 2011; 118 Liao (2022061020121071900_bib22) 2014; 30 Luo (2022061020121071900_bib27) 2013; 29 Griffiths-Jones (2022061020121071900_bib23) 2008; 36 Gao (2022061020121071900_bib14) 2015; 21 Koster (2022061020121071900_bib39) 2010; 120 Binenbaum (2022061020121071900_bib5) 2015; 23 Morris (2022061020121071900_bib28) 2014 Franceschini (2022061020121071900_bib26) 2013; 41 Xiong (2022061020121071900_bib11) 2017; 397 Bolger (2022061020121071900_bib20) 2014; 30 Rijal (2022061020121071900_bib33) 2015; 125 Xu (2022061020121071900_bib36) 2018; 38 Langmead (2022061020121071900_bib24) 2012; 9 Feng (2022061020121071900_bib37) 2012; 28 Farge (2022061020121071900_bib15) 2017; 7 Petropoulos (2022061020121071900_bib40) 2019; 44 Love (2022061020121071900_bib25) 2014; 15 Maeda (2022061020121071900_bib4) 2019; 2 Waddell (2022061020121071900_bib18) 2015; 518 Zhao (2022061020121071900_bib31) 2020; 24 Piquet (2022061020121071900_bib41) 2018; 72 Wang (2022061020121071900_bib10) 2009; 69 Izumchenko (2022061020121071900_bib16) 2017; 28 Zhu (2022061020121071900_bib30) 2020; 12 Ratnam (2022061020121071900_bib38) 2017; 127 Smith (2022061020121071900_bib50) 2014; 42 Greenhalf (2022061020121071900_bib7) 2014; 106 Xu (2022061020121071900_bib8) 2013; 333 Pu (2022061020121071900_bib3) 2019; 2 Xu (2022061020121071900_bib35) 2013; 587 Amrutkar (2022061020121071900_bib6) 2017; 9 Witkiewicz (2022061020121071900_bib48) 2015; 6 Siegel (2022061020121071900_bib1) 2020; 70 Du (2022061020121071900_bib19) 2017; 77 Witkiewicz (2022061020121071900_bib49) 2016; 16 Choi (2022061020121071900_bib13) 2019; 54 Bailey (2022061020121071900_bib17) 2016; 531 Noll (2022061020121071900_bib9) 2016; 22 Xiong (2022061020121071900_bib12) 2019; 12 Nicolle (2022061020121071900_bib47) 2016; 64 Wei (2022061020121071900_bib34) 2019; 70 Collisson (2022061020121071900_bib45) 2011; 17 |
References_xml | – volume: 17 start-page: 500 year: 2011 ident: 2022061020121071900_bib45 article-title: Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy publication-title: Nat Med doi: 10.1038/nm.2344 – volume: 36 start-page: D154 year: 2008 ident: 2022061020121071900_bib23 article-title: miRBase: tools for microRNA genomics publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm952 – volume: 531 start-page: 47 year: 2016 ident: 2022061020121071900_bib17 article-title: Genomic analyses identify molecular subtypes of pancreatic cancer publication-title: Nature doi: 10.1038/nature16965 – volume: 28 start-page: 2595 year: 2017 ident: 2022061020121071900_bib16 article-title: Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors publication-title: Ann Oncol doi: 10.1093/annonc/mdx416 – volume: 12 start-page: 1758835920940946 year: 2020 ident: 2022061020121071900_bib30 article-title: The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star publication-title: Ther Adv Med Oncol doi: 10.1177/1758835920940946 – volume: 38 start-page: e00085 year: 2018 ident: 2022061020121071900_bib36 article-title: DHTKD1 deficiency causes Charcot-Marie tooth disease in mice publication-title: Mol Cell Biol doi: 10.1128/MCB.00085-18 – volume: 7 start-page: 716 year: 2017 ident: 2022061020121071900_bib15 article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-16-0441 – volume: 15 start-page: 550 year: 2014 ident: 2022061020121071900_bib25 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 44 start-page: 752 year: 2019 ident: 2022061020121071900_bib40 article-title: Replication licensing aberrations, replication stress, and genomic instability publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2019.03.011 – volume: 106 start-page: djt347 year: 2014 ident: 2022061020121071900_bib7 article-title: Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial publication-title: J Natl Cancer Inst doi: 10.1093/jnci/djt347 – volume: 135 start-page: 960 year: 2015 ident: 2022061020121071900_bib44 article-title: miR-214 as a key hub that controls cancer networks: small player, multiple functions publication-title: J Invest Dermatol doi: 10.1038/jid.2014.479 – volume: 70 start-page: 7 year: 2020 ident: 2022061020121071900_bib1 article-title: Cancer statistics, 2020 publication-title: CA Cancer J Clin doi: 10.3322/caac.21590 – volume: 23 start-page: 55 year: 2015 ident: 2022061020121071900_bib5 article-title: Gemcitabine resistance in pancreatic ductal adenocarcinoma publication-title: Drug Resist Updat doi: 10.1016/j.drup.2015.10.002 – volume: 12 start-page: 97 year: 2019 ident: 2022061020121071900_bib12 article-title: Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer publication-title: J Hematol Oncol doi: 10.1186/s13045-019-0777-7 – volume: 587 start-page: 3587 year: 2013 ident: 2022061020121071900_bib35 article-title: DHTKD1 is essential for mitochondrial biogenesis and function maintenance publication-title: FEBS Lett doi: 10.1016/j.febslet.2013.08.047 – volume: 72 start-page: 888 year: 2018 ident: 2022061020121071900_bib41 article-title: The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage publication-title: Mol Cell doi: 10.1016/j.molcel.2018.09.010 – volume: 74 start-page: 2913 year: 2014 ident: 2022061020121071900_bib2 article-title: Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0155 – volume: 16 start-page: 2017 year: 2016 ident: 2022061020121071900_bib49 article-title: Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer publication-title: Cell Rep doi: 10.1016/j.celrep.2016.07.023 – volume: 24 start-page: 7686 year: 2020 ident: 2022061020121071900_bib31 article-title: Expression, function and clinical application of stanniocalcin-1 in cancer publication-title: J Cell Mol Med doi: 10.1111/jcmm.15348 – volume: 21 start-page: 1318 year: 2015 ident: 2022061020121071900_bib14 article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response publication-title: Nat Med doi: 10.1038/nm.3954 – start-page: 428 volume-title: Bioinformatics year: 2014 ident: 2022061020121071900_bib28 article-title: ChAMP: 450k chip analysis methylation pipeline – volume: 28 start-page: 2782 year: 2012 ident: 2022061020121071900_bib37 article-title: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts515 – volume: 333 start-page: 152 year: 2013 ident: 2022061020121071900_bib8 article-title: ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance publication-title: Cancer Lett doi: 10.1016/j.canlet.2013.01.002 – volume: 54 start-page: 101 year: 2019 ident: 2022061020121071900_bib13 article-title: Challenges in Ras therapeutics in pancreatic cancer publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2017.11.015 – volume: 77 start-page: 2661 year: 2017 ident: 2022061020121071900_bib19 article-title: Pancreatic cancer progression relies upon mutant p53-induced oncogenic signaling mediated by NOP14 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-2339 – volume: 9 start-page: 157 year: 2017 ident: 2022061020121071900_bib6 article-title: Pancreatic cancer chemoresistance to gemcitabine publication-title: Cancers doi: 10.3390/cancers9110157 – volume: 29 start-page: 1830 year: 2013 ident: 2022061020121071900_bib27 article-title: Pathview: an R/Bioconductor package for pathway-based data integration and visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt285 – volume: 120 start-page: 3594 year: 2010 ident: 2022061020121071900_bib39 article-title: Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer publication-title: J Clin Invest doi: 10.1172/JCI41939 – volume: 64 start-page: 1121 year: 2016 ident: 2022061020121071900_bib47 article-title: Patient-derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management publication-title: Hepatology doi: 10.1002/hep.28621 – volume: 6 start-page: 6744 year: 2015 ident: 2022061020121071900_bib48 article-title: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets publication-title: Nat Commun doi: 10.1038/ncomms7744 – volume: 214 start-page: 2715 year: 2017 ident: 2022061020121071900_bib32 article-title: CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors publication-title: J Exp Med doi: 10.1084/jem.20170438 – volume: 127 start-page: 3796 year: 2017 ident: 2022061020121071900_bib38 article-title: NF-kappaB regulates GDF-15 to suppress macrophage surveillance during early tumor development publication-title: J Clin Invest doi: 10.1172/JCI91561 – volume: 125 start-page: 2815 year: 2015 ident: 2022061020121071900_bib33 article-title: Inositol polyphosphate 4-phosphatase II (INPP4B) is associated with chemoresistance and poor outcome in AML publication-title: Blood doi: 10.1182/blood-2014-09-603555 – volume: 70 start-page: 1197 year: 2019 ident: 2022061020121071900_bib34 article-title: Sirtuin-1/mitochondrial ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells publication-title: Hepatology doi: 10.1002/hep.30622 – year: 2018 ident: 2022061020121071900_bib29 article-title: SMAP: exploiting high-throughput sequencing data of patient derived xenografts publication-title: bioRxiv – volume: 518 start-page: 495 year: 2015 ident: 2022061020121071900_bib18 article-title: Whole genomes redefine the mutational landscape of pancreatic cancer publication-title: Nature doi: 10.1038/nature14169 – volume: 118 start-page: 4140 year: 2011 ident: 2022061020121071900_bib43 article-title: HDM-2 inhibition suppresses expression of ribonucleotide reductase subunit M2, and synergistically enhances gemcitabine-induced cytotoxicity in mantle cell lymphoma publication-title: Blood doi: 10.1182/blood-2011-03-340323 – volume: 9 start-page: 357 year: 2012 ident: 2022061020121071900_bib24 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods doi: 10.1038/nmeth.1923 – volume: 30 start-page: 923 year: 2014 ident: 2022061020121071900_bib22 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 22 start-page: 278 year: 2016 ident: 2022061020121071900_bib9 article-title: CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma publication-title: Nat Med doi: 10.1038/nm.4038 – volume: 69 start-page: 2400 year: 2009 ident: 2022061020121071900_bib10 article-title: Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-4312 – volume: 2 start-page: 100 year: 2019 ident: 2022061020121071900_bib4 article-title: Adjuvant and neoadjuvant therapy for pancreatic cancer publication-title: J Pancreatol doi: 10.1097/JP9.0000000000000028 – volume: 42 start-page: 11517 year: 2014 ident: 2022061020121071900_bib50 article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response publication-title: Nucleic Acids Res doi: 10.1093/nar/gku840 – volume: 41 start-page: D808 year: 2013 ident: 2022061020121071900_bib26 article-title: STRING v9.1: protein-protein interaction networks, with increased coverage and integration publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1094 – volume: 29 start-page: 15 year: 2013 ident: 2022061020121071900_bib21 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 30 start-page: 2114 year: 2014 ident: 2022061020121071900_bib20 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 2 start-page: 6 year: 2019 ident: 2022061020121071900_bib3 article-title: PD-1 immunotherapy in pancreatic cancer: current status publication-title: J Pancreatol doi: 10.1097/JP9.0000000000000010 – volume: 29 start-page: 1202 year: 2015 ident: 2022061020121071900_bib42 article-title: PcG methylation of the HIST1 cluster defines an epigenetic marker of acute myeloid leukemia publication-title: Leukemia doi: 10.1038/leu.2014.339 – volume: 8 start-page: 1112 year: 2018 ident: 2022061020121071900_bib46 article-title: Organoid profiling identifies common responders to chemotherapy in pancreatic cancer publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0349 – volume: 397 start-page: 94 year: 2017 ident: 2022061020121071900_bib11 article-title: The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.02.020 |
SSID | ssj0014104 |
Score | 2.5692163 |
Snippet | Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3383 |
SubjectTerms | Animals Cell Line, Tumor Deoxycytidine - analogs & derivatives Drug Resistance, Neoplasm - genetics Gene Expression Regulation, Neoplastic Heterografts Humans Ketoglutarate Dehydrogenase Complex - genetics Mice Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - genetics Pancreatic Neoplasms - metabolism Phosphatidylinositol 3-Kinases - genetics |
Title | Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33674273 https://www.proquest.com/docview/2498482096 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0bihrIkjp1NjijAtqAiVLVi4RLZjq1WKgnq7iLBj-G3MmM7j5byKBcrsuxxlPkynhl7Zgh5aoXJcmVZlHBWRzyrdaS4tJEUFrbf2IBKjrHDu--y7QP-ZimWk8mP0a2lzVrN9Pdz40r-h6vQB3zFKNkLcLYnCh3wDPyFFjgM7T_xeCfkesDbPwvjAoxPZRlZmM8abH-FmuSeWaGqiP_xEcg9eHDqon5WYt8JqqHvfY7VqIZ3_wqK6BJIAnm7dhXTjldjRbbsIiq1nx6SBvXO5Y_BD72QYWvEOz4b7239YBo76i6lc9d-OjTDwDaMU-3YLcHc9SkfmBkkaYype3lwXpogXQVINOaLQ3Ti16cG6GDGRsIUrefRxpymvvbtr0Jf5M7_EBacleVelBQRaFpi2OW6k_0zm19_JdEZQyKvkEyFZCogUyVFhWQukcsMzBCskPFy521_SsUTV56yXzlEiAGZ5-e-zWnd5zcGjVNs9q-Ta8EioS88vG6QiWlukiu74c7FLdKOUEYDymiHMtpaOkIZHVBGjxo6oIx6lFH1jZ5BGe1RRj3KbpOD16_2y-0olOmIdDoXMFwUhdWxwbxDCcOKBCJXuWQCjPNYznWsbZLnBbQir5lJlU50JmOhY8UNgCG9Q7aatjH3CAXj36apkMbygqsigVlgEkhbZ7gP1fmU8O4DVjrksMdSKsfVH9k3JbN-2hefxOVvE5503KlA3OIZmmxMu1lVjBc5B625yKbkrmdbTzJNszkHc-D-RZd7QK4Ov9BDsrU-2ZhHoOuu1WMHuJ-Y_KJC |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Genomic+Analysis+of+Gemcitabine+Resistance+in+Pancreatic+Cancer+by+Patient-derived+Xenograft+Models&rft.jtitle=Clinical+cancer+research&rft.au=Yang%2C+Gang&rft.au=Guan%2C+Wenfang&rft.au=Cao%2C+Zhe&rft.au=Guo%2C+Wenbo&rft.date=2021-06-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=27&rft.issue=12&rft.spage=3383&rft.epage=3396&rft_id=info:doi/10.1158%2F1078-0432.CCR-19-3975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_19_3975 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |