Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models

Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets f...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 27; no. 12; pp. 3383 - 3396
Main Authors Yang, Gang, Guan, Wenfang, Cao, Zhe, Guo, Wenbo, Xiong, Guangbing, Zhao, Fangyu, Feng, Mengyu, Qiu, Jiangdong, Liu, Yueze, Zhang, Michael Q., You, Lei, Zhang, Taiping, Zhao, Yupei, Gu, Jin
Format Journal Article
LanguageEnglish
Published United States 15.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment. In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes. The comprehensive multiomics analysis and functional experiment revealed that and had strong effects on cell proliferation, and and contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance. This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.
AbstractList Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment. In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes. The comprehensive multiomics analysis and functional experiment revealed that and had strong effects on cell proliferation, and and contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance. This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.
Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.PURPOSEGemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment.In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.EXPERIMENTAL DESIGNIn this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.The comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.RESULTSThe comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance.This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.CONCLUSIONSThis integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.
Author You, Lei
Cao, Zhe
Zhang, Taiping
Qiu, Jiangdong
Gu, Jin
Feng, Mengyu
Zhao, Fangyu
Guo, Wenbo
Liu, Yueze
Zhang, Michael Q.
Yang, Gang
Guan, Wenfang
Xiong, Guangbing
Zhao, Yupei
Author_xml – sequence: 1
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
– sequence: 2
  givenname: Wenfang
  surname: Guan
  fullname: Guan, Wenfang
– sequence: 3
  givenname: Zhe
  surname: Cao
  fullname: Cao, Zhe
– sequence: 4
  givenname: Wenbo
  surname: Guo
  fullname: Guo, Wenbo
– sequence: 5
  givenname: Guangbing
  surname: Xiong
  fullname: Xiong, Guangbing
– sequence: 6
  givenname: Fangyu
  surname: Zhao
  fullname: Zhao, Fangyu
– sequence: 7
  givenname: Mengyu
  surname: Feng
  fullname: Feng, Mengyu
– sequence: 8
  givenname: Jiangdong
  surname: Qiu
  fullname: Qiu, Jiangdong
– sequence: 9
  givenname: Yueze
  surname: Liu
  fullname: Liu, Yueze
– sequence: 10
  givenname: Michael Q.
  surname: Zhang
  fullname: Zhang, Michael Q.
– sequence: 11
  givenname: Lei
  surname: You
  fullname: You, Lei
– sequence: 12
  givenname: Taiping
  surname: Zhang
  fullname: Zhang, Taiping
– sequence: 13
  givenname: Yupei
  surname: Zhao
  fullname: Zhao, Yupei
– sequence: 14
  givenname: Jin
  orcidid: 0000-0003-3968-8036
  surname: Gu
  fullname: Gu, Jin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33674273$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxTAQhYMovn-CkqWbah5Nm-JKii9QlIuCu5CmU4m0iSa5wv33plx14cZNMhy-c2DO7KFN5x0gdETJKaVCnlFSy4KUnJ227aKgTcGbWmygXSpEXXBWic08_zA7aC_GN0JoSUm5jXY4r-qS1XwX-VuX4DXoZD8BX4PzkzX4wulxFW3EfsjaZGzSnXWAF5DFpJ0BbB1-zEOA7DS4nbWAu1UWkwWXih5CTuzxS47M8UPC976HMR6grUGPEQ6__330fHX51N4Udw_Xt-3FXWF4LbJdNM1gCEgqKsoI45WQndRMsIoSXRtiBiplk18hewa8M9RUmghDuhLy8nwfnaxz34P_WEJMarLRwDhqB34ZFSsbWUpGmiqjx9_ospugV-_BTjqs1E9JGRBrwAQfY4DhF6FEzcdQc9FqLlrlYyjaqPkY2Xf-xzc3max3KWg7_uP-Au1Ij2E
CitedBy_id crossref_primary_10_1186_s12943_024_02128_2
crossref_primary_10_3389_fphar_2022_910292
crossref_primary_10_1016_j_phymed_2021_153711
crossref_primary_10_1038_s41419_025_07476_5
crossref_primary_10_3390_ijms252413334
crossref_primary_10_1089_ars_2022_0203
crossref_primary_10_1016_j_trecan_2021_04_005
crossref_primary_10_1016_j_drudis_2024_104053
crossref_primary_10_1016_j_biopha_2023_115359
crossref_primary_10_1016_j_heliyon_2023_e23004
crossref_primary_10_1038_s42003_023_05368_y
crossref_primary_10_1093_jpp_rgae149
crossref_primary_10_3390_pharmaceutics15061577
crossref_primary_10_1016_j_bbrc_2023_149451
crossref_primary_10_1007_s10565_022_09746_w
crossref_primary_10_3390_biom12060815
crossref_primary_10_1016_j_bbrep_2022_101291
crossref_primary_10_1186_s13062_022_00347_5
crossref_primary_10_1186_s12967_024_05528_6
crossref_primary_10_3390_cancers15030628
crossref_primary_10_1038_s41392_024_01734_2
crossref_primary_10_1007_s10147_023_02396_w
crossref_primary_10_1186_s13036_023_00372_6
crossref_primary_10_1002_jcp_31223
crossref_primary_10_1002_mc_23420
crossref_primary_10_1016_j_phymed_2023_155004
crossref_primary_10_1159_000536059
crossref_primary_10_3390_ijms23042093
crossref_primary_10_1016_j_bcp_2024_116492
crossref_primary_10_1016_j_heliyon_2023_e17194
crossref_primary_10_1016_j_tranon_2023_101803
crossref_primary_10_1186_s13062_024_00513_x
crossref_primary_10_1002_ctm2_1684
crossref_primary_10_1186_s12935_022_02785_7
crossref_primary_10_1007_s00210_025_03938_x
crossref_primary_10_1016_j_semcancer_2025_01_003
crossref_primary_10_1155_2023_6510571
crossref_primary_10_1016_j_heliyon_2024_e36434
crossref_primary_10_1177_17588359241234487
crossref_primary_10_1016_j_celrep_2024_114176
crossref_primary_10_1172_jci_insight_185269
crossref_primary_10_1016_j_gendis_2023_101143
crossref_primary_10_3390_ijms25021066
crossref_primary_10_1016_j_intimp_2023_110709
crossref_primary_10_1158_1535_7163_MCT_21_0474
crossref_primary_10_1002_mco2_274
crossref_primary_10_1016_j_cellsig_2023_110840
crossref_primary_10_3389_fendo_2023_1127441
Cites_doi 10.1038/nm.2344
10.1093/nar/gkm952
10.1038/nature16965
10.1093/annonc/mdx416
10.1177/1758835920940946
10.1128/MCB.00085-18
10.1158/2159-8290.CD-16-0441
10.1186/s13059-014-0550-8
10.1016/j.tibs.2019.03.011
10.1093/jnci/djt347
10.1038/jid.2014.479
10.3322/caac.21590
10.1016/j.drup.2015.10.002
10.1186/s13045-019-0777-7
10.1016/j.febslet.2013.08.047
10.1016/j.molcel.2018.09.010
10.1158/0008-5472.CAN-14-0155
10.1016/j.celrep.2016.07.023
10.1111/jcmm.15348
10.1038/nm.3954
10.1093/bioinformatics/bts515
10.1016/j.canlet.2013.01.002
10.1016/j.semcancer.2017.11.015
10.1158/0008-5472.CAN-16-2339
10.3390/cancers9110157
10.1093/bioinformatics/btt285
10.1172/JCI41939
10.1002/hep.28621
10.1038/ncomms7744
10.1084/jem.20170438
10.1172/JCI91561
10.1182/blood-2014-09-603555
10.1002/hep.30622
10.1038/nature14169
10.1182/blood-2011-03-340323
10.1038/nmeth.1923
10.1093/bioinformatics/btt656
10.1038/nm.4038
10.1158/0008-5472.CAN-08-4312
10.1097/JP9.0000000000000028
10.1093/nar/gku840
10.1093/nar/gks1094
10.1093/bioinformatics/bts635
10.1093/bioinformatics/btu170
10.1097/JP9.0000000000000010
10.1038/leu.2014.339
10.1158/2159-8290.CD-18-0349
10.1016/j.canlet.2017.02.020
ContentType Journal Article
Copyright 2021 American Association for Cancer Research.
Copyright_xml – notice: 2021 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/1078-0432.CCR-19-3975
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 3396
ExternalDocumentID 33674273
10_1158_1078_0432_CCR_19_3975
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c375t-d599fc0e815612023658b8a252610a7c0cf1889cf158d2e3bc1c6a05c0b4e2653
ISSN 1078-0432
1557-3265
IngestDate Fri Jul 11 08:55:18 EDT 2025
Mon Jul 21 06:05:53 EDT 2025
Tue Jul 01 01:30:39 EDT 2025
Thu Apr 24 22:57:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2021 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-d599fc0e815612023658b8a252610a7c0cf1889cf158d2e3bc1c6a05c0b4e2653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3968-8036
PMID 33674273
PQID 2498482096
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_2498482096
pubmed_primary_33674273
crossref_primary_10_1158_1078_0432_CCR_19_3975
crossref_citationtrail_10_1158_1078_0432_CCR_19_3975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2021
References Rahib (2022061020121071900_bib2) 2014; 74
Penna (2022061020121071900_bib44) 2015; 135
Tiriac (2022061020121071900_bib46) 2018; 8
Dobin (2022061020121071900_bib21) 2013; 29
Saygin (2022061020121071900_bib32) 2017; 214
Blum (2022061020121071900_bib29) 2018
Tiberi (2022061020121071900_bib42) 2015; 29
Jones (2022061020121071900_bib43) 2011; 118
Liao (2022061020121071900_bib22) 2014; 30
Luo (2022061020121071900_bib27) 2013; 29
Griffiths-Jones (2022061020121071900_bib23) 2008; 36
Gao (2022061020121071900_bib14) 2015; 21
Koster (2022061020121071900_bib39) 2010; 120
Binenbaum (2022061020121071900_bib5) 2015; 23
Morris (2022061020121071900_bib28) 2014
Franceschini (2022061020121071900_bib26) 2013; 41
Xiong (2022061020121071900_bib11) 2017; 397
Bolger (2022061020121071900_bib20) 2014; 30
Rijal (2022061020121071900_bib33) 2015; 125
Xu (2022061020121071900_bib36) 2018; 38
Langmead (2022061020121071900_bib24) 2012; 9
Feng (2022061020121071900_bib37) 2012; 28
Farge (2022061020121071900_bib15) 2017; 7
Petropoulos (2022061020121071900_bib40) 2019; 44
Love (2022061020121071900_bib25) 2014; 15
Maeda (2022061020121071900_bib4) 2019; 2
Waddell (2022061020121071900_bib18) 2015; 518
Zhao (2022061020121071900_bib31) 2020; 24
Piquet (2022061020121071900_bib41) 2018; 72
Wang (2022061020121071900_bib10) 2009; 69
Izumchenko (2022061020121071900_bib16) 2017; 28
Zhu (2022061020121071900_bib30) 2020; 12
Ratnam (2022061020121071900_bib38) 2017; 127
Smith (2022061020121071900_bib50) 2014; 42
Greenhalf (2022061020121071900_bib7) 2014; 106
Xu (2022061020121071900_bib8) 2013; 333
Pu (2022061020121071900_bib3) 2019; 2
Xu (2022061020121071900_bib35) 2013; 587
Amrutkar (2022061020121071900_bib6) 2017; 9
Witkiewicz (2022061020121071900_bib48) 2015; 6
Siegel (2022061020121071900_bib1) 2020; 70
Du (2022061020121071900_bib19) 2017; 77
Witkiewicz (2022061020121071900_bib49) 2016; 16
Choi (2022061020121071900_bib13) 2019; 54
Bailey (2022061020121071900_bib17) 2016; 531
Noll (2022061020121071900_bib9) 2016; 22
Xiong (2022061020121071900_bib12) 2019; 12
Nicolle (2022061020121071900_bib47) 2016; 64
Wei (2022061020121071900_bib34) 2019; 70
Collisson (2022061020121071900_bib45) 2011; 17
References_xml – volume: 17
  start-page: 500
  year: 2011
  ident: 2022061020121071900_bib45
  article-title: Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
  publication-title: Nat Med
  doi: 10.1038/nm.2344
– volume: 36
  start-page: D154
  year: 2008
  ident: 2022061020121071900_bib23
  article-title: miRBase: tools for microRNA genomics
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm952
– volume: 531
  start-page: 47
  year: 2016
  ident: 2022061020121071900_bib17
  article-title: Genomic analyses identify molecular subtypes of pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature16965
– volume: 28
  start-page: 2595
  year: 2017
  ident: 2022061020121071900_bib16
  article-title: Patient-derived xenografts effectively capture responses to oncology therapy in a heterogeneous cohort of patients with solid tumors
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdx416
– volume: 12
  start-page: 1758835920940946
  year: 2020
  ident: 2022061020121071900_bib30
  article-title: The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star
  publication-title: Ther Adv Med Oncol
  doi: 10.1177/1758835920940946
– volume: 38
  start-page: e00085
  year: 2018
  ident: 2022061020121071900_bib36
  article-title: DHTKD1 deficiency causes Charcot-Marie tooth disease in mice
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00085-18
– volume: 7
  start-page: 716
  year: 2017
  ident: 2022061020121071900_bib15
  article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-0441
– volume: 15
  start-page: 550
  year: 2014
  ident: 2022061020121071900_bib25
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 44
  start-page: 752
  year: 2019
  ident: 2022061020121071900_bib40
  article-title: Replication licensing aberrations, replication stress, and genomic instability
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2019.03.011
– volume: 106
  start-page: djt347
  year: 2014
  ident: 2022061020121071900_bib7
  article-title: Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djt347
– volume: 135
  start-page: 960
  year: 2015
  ident: 2022061020121071900_bib44
  article-title: miR-214 as a key hub that controls cancer networks: small player, multiple functions
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2014.479
– volume: 70
  start-page: 7
  year: 2020
  ident: 2022061020121071900_bib1
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21590
– volume: 23
  start-page: 55
  year: 2015
  ident: 2022061020121071900_bib5
  article-title: Gemcitabine resistance in pancreatic ductal adenocarcinoma
  publication-title: Drug Resist Updat
  doi: 10.1016/j.drup.2015.10.002
– volume: 12
  start-page: 97
  year: 2019
  ident: 2022061020121071900_bib12
  article-title: Long noncoding RNA GSTM3TV2 upregulates LAT2 and OLR1 by competitively sponging let-7 to promote gemcitabine resistance in pancreatic cancer
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-019-0777-7
– volume: 587
  start-page: 3587
  year: 2013
  ident: 2022061020121071900_bib35
  article-title: DHTKD1 is essential for mitochondrial biogenesis and function maintenance
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.08.047
– volume: 72
  start-page: 888
  year: 2018
  ident: 2022061020121071900_bib41
  article-title: The histone chaperone FACT coordinates H2A.X-dependent signaling and repair of DNA damage
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.09.010
– volume: 74
  start-page: 2913
  year: 2014
  ident: 2022061020121071900_bib2
  article-title: Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0155
– volume: 16
  start-page: 2017
  year: 2016
  ident: 2022061020121071900_bib49
  article-title: Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.07.023
– volume: 24
  start-page: 7686
  year: 2020
  ident: 2022061020121071900_bib31
  article-title: Expression, function and clinical application of stanniocalcin-1 in cancer
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15348
– volume: 21
  start-page: 1318
  year: 2015
  ident: 2022061020121071900_bib14
  article-title: High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
  publication-title: Nat Med
  doi: 10.1038/nm.3954
– start-page: 428
  volume-title: Bioinformatics
  year: 2014
  ident: 2022061020121071900_bib28
  article-title: ChAMP: 450k chip analysis methylation pipeline
– volume: 28
  start-page: 2782
  year: 2012
  ident: 2022061020121071900_bib37
  article-title: GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts515
– volume: 333
  start-page: 152
  year: 2013
  ident: 2022061020121071900_bib8
  article-title: ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2013.01.002
– volume: 54
  start-page: 101
  year: 2019
  ident: 2022061020121071900_bib13
  article-title: Challenges in Ras therapeutics in pancreatic cancer
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2017.11.015
– volume: 77
  start-page: 2661
  year: 2017
  ident: 2022061020121071900_bib19
  article-title: Pancreatic cancer progression relies upon mutant p53-induced oncogenic signaling mediated by NOP14
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-2339
– volume: 9
  start-page: 157
  year: 2017
  ident: 2022061020121071900_bib6
  article-title: Pancreatic cancer chemoresistance to gemcitabine
  publication-title: Cancers
  doi: 10.3390/cancers9110157
– volume: 29
  start-page: 1830
  year: 2013
  ident: 2022061020121071900_bib27
  article-title: Pathview: an R/Bioconductor package for pathway-based data integration and visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt285
– volume: 120
  start-page: 3594
  year: 2010
  ident: 2022061020121071900_bib39
  article-title: Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer
  publication-title: J Clin Invest
  doi: 10.1172/JCI41939
– volume: 64
  start-page: 1121
  year: 2016
  ident: 2022061020121071900_bib47
  article-title: Patient-derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management
  publication-title: Hepatology
  doi: 10.1002/hep.28621
– volume: 6
  start-page: 6744
  year: 2015
  ident: 2022061020121071900_bib48
  article-title: Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets
  publication-title: Nat Commun
  doi: 10.1038/ncomms7744
– volume: 214
  start-page: 2715
  year: 2017
  ident: 2022061020121071900_bib32
  article-title: CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors
  publication-title: J Exp Med
  doi: 10.1084/jem.20170438
– volume: 127
  start-page: 3796
  year: 2017
  ident: 2022061020121071900_bib38
  article-title: NF-kappaB regulates GDF-15 to suppress macrophage surveillance during early tumor development
  publication-title: J Clin Invest
  doi: 10.1172/JCI91561
– volume: 125
  start-page: 2815
  year: 2015
  ident: 2022061020121071900_bib33
  article-title: Inositol polyphosphate 4-phosphatase II (INPP4B) is associated with chemoresistance and poor outcome in AML
  publication-title: Blood
  doi: 10.1182/blood-2014-09-603555
– volume: 70
  start-page: 1197
  year: 2019
  ident: 2022061020121071900_bib34
  article-title: Sirtuin-1/mitochondrial ribosomal protein S5 axis enhances the metabolic flexibility of liver cancer stem cells
  publication-title: Hepatology
  doi: 10.1002/hep.30622
– year: 2018
  ident: 2022061020121071900_bib29
  article-title: SMAP: exploiting high-throughput sequencing data of patient derived xenografts
  publication-title: bioRxiv
– volume: 518
  start-page: 495
  year: 2015
  ident: 2022061020121071900_bib18
  article-title: Whole genomes redefine the mutational landscape of pancreatic cancer
  publication-title: Nature
  doi: 10.1038/nature14169
– volume: 118
  start-page: 4140
  year: 2011
  ident: 2022061020121071900_bib43
  article-title: HDM-2 inhibition suppresses expression of ribonucleotide reductase subunit M2, and synergistically enhances gemcitabine-induced cytotoxicity in mantle cell lymphoma
  publication-title: Blood
  doi: 10.1182/blood-2011-03-340323
– volume: 9
  start-page: 357
  year: 2012
  ident: 2022061020121071900_bib24
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1923
– volume: 30
  start-page: 923
  year: 2014
  ident: 2022061020121071900_bib22
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 22
  start-page: 278
  year: 2016
  ident: 2022061020121071900_bib9
  article-title: CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma
  publication-title: Nat Med
  doi: 10.1038/nm.4038
– volume: 69
  start-page: 2400
  year: 2009
  ident: 2022061020121071900_bib10
  article-title: Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-4312
– volume: 2
  start-page: 100
  year: 2019
  ident: 2022061020121071900_bib4
  article-title: Adjuvant and neoadjuvant therapy for pancreatic cancer
  publication-title: J Pancreatol
  doi: 10.1097/JP9.0000000000000028
– volume: 42
  start-page: 11517
  year: 2014
  ident: 2022061020121071900_bib50
  article-title: A gemcitabine sensitivity screen identifies a role for NEK9 in the replication stress response
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku840
– volume: 41
  start-page: D808
  year: 2013
  ident: 2022061020121071900_bib26
  article-title: STRING v9.1: protein-protein interaction networks, with increased coverage and integration
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1094
– volume: 29
  start-page: 15
  year: 2013
  ident: 2022061020121071900_bib21
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 30
  start-page: 2114
  year: 2014
  ident: 2022061020121071900_bib20
  article-title: Trimmomatic: a flexible trimmer for Illumina sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu170
– volume: 2
  start-page: 6
  year: 2019
  ident: 2022061020121071900_bib3
  article-title: PD-1 immunotherapy in pancreatic cancer: current status
  publication-title: J Pancreatol
  doi: 10.1097/JP9.0000000000000010
– volume: 29
  start-page: 1202
  year: 2015
  ident: 2022061020121071900_bib42
  article-title: PcG methylation of the HIST1 cluster defines an epigenetic marker of acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/leu.2014.339
– volume: 8
  start-page: 1112
  year: 2018
  ident: 2022061020121071900_bib46
  article-title: Organoid profiling identifies common responders to chemotherapy in pancreatic cancer
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0349
– volume: 397
  start-page: 94
  year: 2017
  ident: 2022061020121071900_bib11
  article-title: The underlying mechanisms of non-coding RNAs in the chemoresistance of pancreatic cancer
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2017.02.020
SSID ssj0014104
Score 2.5692163
Snippet Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 3383
SubjectTerms Animals
Cell Line, Tumor
Deoxycytidine - analogs & derivatives
Drug Resistance, Neoplasm - genetics
Gene Expression Regulation, Neoplastic
Heterografts
Humans
Ketoglutarate Dehydrogenase Complex - genetics
Mice
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - genetics
Pancreatic Neoplasms - metabolism
Phosphatidylinositol 3-Kinases - genetics
Title Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models
URI https://www.ncbi.nlm.nih.gov/pubmed/33674273
https://www.proquest.com/docview/2498482096
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0bihrIkjp1NjijAtqAiVLVi4RLZjq1WKgnq7iLBj-G3MmM7j5byKBcrsuxxlPkynhl7Zgh5aoXJcmVZlHBWRzyrdaS4tJEUFrbf2IBKjrHDu--y7QP-ZimWk8mP0a2lzVrN9Pdz40r-h6vQB3zFKNkLcLYnCh3wDPyFFjgM7T_xeCfkesDbPwvjAoxPZRlZmM8abH-FmuSeWaGqiP_xEcg9eHDqon5WYt8JqqHvfY7VqIZ3_wqK6BJIAnm7dhXTjldjRbbsIiq1nx6SBvXO5Y_BD72QYWvEOz4b7239YBo76i6lc9d-OjTDwDaMU-3YLcHc9SkfmBkkaYype3lwXpogXQVINOaLQ3Ti16cG6GDGRsIUrefRxpymvvbtr0Jf5M7_EBacleVelBQRaFpi2OW6k_0zm19_JdEZQyKvkEyFZCogUyVFhWQukcsMzBCskPFy521_SsUTV56yXzlEiAGZ5-e-zWnd5zcGjVNs9q-Ta8EioS88vG6QiWlukiu74c7FLdKOUEYDymiHMtpaOkIZHVBGjxo6oIx6lFH1jZ5BGe1RRj3KbpOD16_2y-0olOmIdDoXMFwUhdWxwbxDCcOKBCJXuWQCjPNYznWsbZLnBbQir5lJlU50JmOhY8UNgCG9Q7aatjH3CAXj36apkMbygqsigVlgEkhbZ7gP1fmU8O4DVjrksMdSKsfVH9k3JbN-2hefxOVvE5503KlA3OIZmmxMu1lVjBc5B625yKbkrmdbTzJNszkHc-D-RZd7QK4Ov9BDsrU-2ZhHoOuu1WMHuJ-Y_KJC
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Genomic+Analysis+of+Gemcitabine+Resistance+in+Pancreatic+Cancer+by+Patient-derived+Xenograft+Models&rft.jtitle=Clinical+cancer+research&rft.au=Yang%2C+Gang&rft.au=Guan%2C+Wenfang&rft.au=Cao%2C+Zhe&rft.au=Guo%2C+Wenbo&rft.date=2021-06-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=27&rft.issue=12&rft.spage=3383&rft.epage=3396&rft_id=info:doi/10.1158%2F1078-0432.CCR-19-3975&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_19_3975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon