Transferability of pedotransfer functions for estimating soil hydraulic properties: An analysis of controlling factors for forest soils in Switzerland
•Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A...
Saved in:
Published in | Geoderma Vol. 460; p. 117397 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | •Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A novel approach for testing the controlling factors of PTF transferability.
Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation. |
---|---|
AbstractList | Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation. •Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A novel approach for testing the controlling factors of PTF transferability. Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation. |
ArticleNumber | 117397 |
Author | Lehmann, Peter Walthert, Lorenz Schoch, Julian Nussbaum, Madlene Carminati, Andrea |
Author_xml | – sequence: 1 givenname: Julian orcidid: 0009-0009-8647-2124 surname: Schoch fullname: Schoch, Julian email: julian.schoch@usys.ethz.ch organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland – sequence: 2 givenname: Madlene orcidid: 0000-0002-6808-8956 surname: Nussbaum fullname: Nussbaum, Madlene organization: School of Agricultural, Forest and Food Science (HAFL), Bern University of Applied Sciences (BFH), Switzerland – sequence: 3 givenname: Lorenz surname: Walthert fullname: Walthert, Lorenz organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland – sequence: 4 givenname: Andrea orcidid: 0000-0001-7415-0480 surname: Carminati fullname: Carminati, Andrea organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland – sequence: 5 givenname: Peter surname: Lehmann fullname: Lehmann, Peter organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland |
BookMark | eNqFkd9KXDEQxkOx4Kp9BckLnG1y_iR7elWR1gpCL6rXIclMtllisiSxZfsgPq9Zj-1tL4Zhhvl-zMd3Rk5iikjIJWdrzrj4uFtvMQHmR73uWT-tOZfDLN-RFd_IvhP9NJ-QFWuXnWSCn5KzUnZtlKxnK_J8n3UsDrM2Pvh6oMnRPUKqb2vqnqKtPsVCXcoUS_WPuvq4pSX5QH8eIOun4C3d57THXD2WT_QqUh11OBRfjjybYs0phKPKaVtTXmCtGu8VVKiP9MdvX_9gDjrCBXnvdCj44a2fk4evX-6vv3V3329ur6_uOjvIqXYwTmj53NvZ6N5NGy1GIWE0KMQIwIzmnIO0yDdgwdkZ2DAxYUbLGWDTDefkduFC0ju1z81cPqikvXpdpLxVupmyAdXcG5wGI5kFMUrDzTTMA8DgGHO8vdFYYmHZnErJ6P7xOFPHpNRO_U1KHZNSS1JN-HkRYnP6y2NWxXqMFsFntLW94v-HeAFqJ6da |
Cites_doi | 10.1046/j.1365-2389.2002.00452.x 10.2136/sssaj1993.03615995005700040035x 10.1016/j.scitotenv.2024.174346 10.1111/j.1475-2743.2006.00001.x 10.1016/j.jhydrol.2022.128540 10.1016/j.geodrs.2014.08.003 10.1029/WR012i003p00513 10.1007/978-94-017-1237-8_2 10.1007/978-1-4419-0118-7 10.1029/2020MS002242 10.1038/nature11688 10.1093/treephys/tpz030 10.3389/fenvs.2023.1213069 10.1080/00401706.1999.10485670 10.5194/hess-28-3391-2024 10.1111/j.2517-6161.1996.tb02080.x 10.5194/gmd-14-151-2021 10.5194/soil-3-191-2017 10.1016/j.geoderma.2010.09.023 10.1111/sum.12424 10.1007/s11749-016-0481-7 10.5194/soil-9-365-2023 10.1016/j.geoderma.2012.11.021 10.2136/vzj2010.0045 10.1016/j.geoderma.2009.01.006 10.1016/j.tplants.2020.04.003 10.1038/s41586-024-08089-2 10.1002/jpln.200900158 10.1016/j.geoderma.2013.07.025 10.5194/soil-7-217-2021 10.2136/sssaj1980.03615995004400050002x 10.1080/00273171.2015.1036965 10.2136/sssaj2005.0087 10.1002/2017RG000581 10.2136/sssabookser5.1.2ed.c15 10.1016/j.jhydrol.2021.127423 10.32614/CRAN.package.soilhypfit 10.1109/TIT.2012.2227680 10.3390/f12081113 10.1007/978-1-4612-3532-3_4 10.1016/j.geoderma.2013.12.013 10.1111/ejss.12192 10.1111/ecog.02881 10.3390/land12040819 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.geoderma.2025.117397 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_92be53b70cd647b1b5393dd3f00f15ec 10_1016_j_geoderma_2025_117397 S0016706125002356 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c375t-d45ec192c9ba2f58a6467d4be664dd0ba111d7ce18dcdfc9d03506b4c10de1923 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Wed Aug 27 16:27:40 EDT 2025 Sat Aug 30 17:14:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-d45ec192c9ba2f58a6467d4be664dd0ba111d7ce18dcdfc9d03506b4c10de1923 |
ORCID | 0000-0001-7415-0480 0000-0002-6808-8956 0009-0009-8647-2124 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706125002356 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92be53b70cd647b1b5393dd3f00f15ec crossref_primary_10_1016_j_geoderma_2025_117397 elsevier_sciencedirect_doi_10_1016_j_geoderma_2025_117397 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Tóth, Weynants, Nemes, Makó, Bilas, Tóth (b0245) 2015; 66 Meteoschweiz, 2021 Räumliche Klimaanalysen - MeteoSchweiz [WWW Document]. URL Poggio, de Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0180) 2021; 7 Nanko, Ugawa, Hashimoto, Imaya, Kobayashi, Sakai, Ishizuka, Miura, Tanaka, Takahashi, Kaneko (b0165) 2014; 213 Papritz, A., 2022. soilhypfit: Modelling of Soil Water Retention and Hydraulic Conductivity Data. R package version 348, 0–1. Cresswell, Coquet, Bruand, McKenzie (b0045) 2006; 22 Tuller, Or (b0255) 2002; 1 Walthert, Graf, Kammer, Luster, Pezzotta, Zimmermann, Hagedorn (b0285) 2010; 173 Estévez, Mattbäck, Boman, Beucher, Björk, Österholm (b0065) 2023; 11 R Core Team (b0195) 2022 McNeish (b0140) 2015; 50 Wankmüller, Delval, Lehmann, Baur, Cecere, Wolf, Or, Javaux, Carminati (b0290) 2024; 635 Dunn, Smyth (b0060) 2018 Nussbaum, Walthert, Fraefel, Greiner, Papritz (b0170) 2017; 3 Mualem (b0160) 1976; 12 (accessed 6.14.24). Vereecken, Weynants, Javaux, Pachepsky, Schaap, van Genuchten (b0275) 2010; 9 Hastie, Tibshirani, Tibshirani (b0100) 2020; 35 USDA (b0260) 1951 Wessolek, Kaupenjohann, Renger (b0300) 2009 Bastian, O., Beierkuhnlein, C., Klink, H.-J., Löffler, J., Steinhardt, U., Volk, M., Wilmking, M., 2002. Landscape structures and processes, in: Bastian, Olaf, Steinhardt, Uta (Eds.), Development and Perspectives of Landscape Ecology. Springer Netherlands, Dordrecht, pp. 49–112. doi:10.1007/978-94-017-1237-8_2. Choat, Jansen, Brodribb, Cochard, Delzon, Bhaskar, Bucci, Feild, Gleason, Hacke, Jacobsen, Lens, Maherali, Martínez-Vilalta, Mayr, Mencuccini, Mitchell, Nardini, Pittermann, Pratt, Sperry, Westoby, Wright, Zanne (b0040) 2012; 491 . McBratney, Minasny, Tranter (b0135) 2011; 160 van Genuchten (b0265) 1980; 44 Inc, T.M., 2021. MATLAB version: 9.10.0 (R2021a). Van Looy, Bouma, Herbst, Koestel, Minasny, Mishra, Montzka, Nemes, Pachepsky, Padarian, Schaap, Toth, Verhoef, Vanderborght, van der Ploeg, Weihermüller, Zacharias, Zhang, Vereecken (b0270) 2017; 55 Walthert, Etzold, Carminati, Saurer, Köchli, Zweifel (b0280) 2024; 946 Minasny, Mc Bratney (b0155) 2002; 53 Al Majou, Hassani, Bruand (b0010) 2018; 34 Levi, Rasmussen (b0130) 2014; 219–220 Julich, Kreiselmeier, Scheibler, Petzold, Schwärzel, Feger (b0115) 2021; 12 Swisstopo, n.d. [WWW Document]. URL Körner (b0125) 2019; 39 Puhlmann, von Wilpert (b0185) 2012; 175 Sedaghat, Shahrestani, Noroozi, Fallah Nosratabad, Bayat (b0215) 2022; 606 Medrado, Lima (b0145) 2014; 1 Tibshirani (b0235) 1996; 58 Carminati, Javaux (b0035) 2020; 25 Hebiri, Lederer (b0105) 2012; 59 Puhlmann, von Wilpert (b0190) 2011; 12 Rousseeuw, Driessen (b0210) 1999; 41 Fuentes-Guevara, Armindo, Timm, Nemes (b0070) 2022; 614 Gupta, Lehmann, Bonetti, Papritz, Or (b0085) 2021; 13 Guillaume, Aroui Boukbida, Bakker, Bieganowski, Brostaux, Cornelis, Durner, Hartmann, Iversen, Javaux, Ingwersen, Lamorski, Lamparter, Makó, Mingot Soriano, Messing, Nemes, Pomes-Bordedebat, van der Ploeg, Weber, Weihermüller, Wellens, Degré (b0080) 2023; 9 Kaya, Mishra, Francaviglia, Keshavarzi (b0120) 2023; 12 Acevedo, S., 2021. Soil texture triangles using R [WWW Document]. URL https://saryace.github.io/flipbook_soiltexture_en/#1 (accessed 9.19.24). Dowd, C., 2022. twosamples: Fast permutation based two sample tests. Tranter, McBratney, Minasny (b0250) 2009; 149 Roberts, Bahn, Ciuti, Boyce, Elith, Guillera-Arroita, Hauenstein, Lahoz-Monfort, Schröder, Thuiller, Warton, Wintle, Hartig, Dormann (b0205) 2017; 40 Tietje, Tapkenhinrichs (b0240) 1993; 57 Weber, Weihermüller, Nemes, Bechtold, Degré, Diamantopoulos, Fatichi, Filipović, Gupta, Hohenbrink, Hirmas, Jackisch, Lier, Koestel, Lehmann, Marthews, Minasny, Pagel, Ploeg, Bonetti (b0295) 2023; 28 Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA, pp. 383 – 411. Richard, F., Lüscher, P., Strobel, T., 1983. Physical characteristics of soils in Switzerland. Vol. 1-5. Szabó, Weynants, Weber (b0230) 2021; 14 Wösten, Verzandvoort, Leenaars, Hoogland, Wesseling (b0305) 2013; 195–196 BAFU, B. für U.B.| O. fédéral de l’environnement O.| U. federale dell’ambiente, 2022. Die biogeographischen Regionen der Schweiz [WWW Document]. URL https://www.bafu.admin.ch/bafu/de/home/themen/thema-landschaft/landschaft--publikationen/publikationen-landschaft/die-biogeographischen-regionen-der-schweiz.html (accessed 12.6.23). Dowd, C., 2020. A New ECDF Two-Sample Test Statistic. doi:10.48550/arXiv.2007.01360. Biau, Scornet (b0025) 2016; 25 Sharma, Mohanty, Zhu (b0220) 2006; 70 Hastie, Tibshirani, Friedman (bib306) 2009 Bouma (b0030) 1989 Levi (10.1016/j.geoderma.2025.117397_b0130) 2014; 219–220 Walthert (10.1016/j.geoderma.2025.117397_b0285) 2010; 173 Tóth (10.1016/j.geoderma.2025.117397_b0245) 2015; 66 10.1016/j.geoderma.2025.117397_b0020 Biau (10.1016/j.geoderma.2025.117397_b0025) 2016; 25 Wankmüller (10.1016/j.geoderma.2025.117397_b0290) 2024; 635 10.1016/j.geoderma.2025.117397_b0225 Weber (10.1016/j.geoderma.2025.117397_b0295) 2023; 28 Julich (10.1016/j.geoderma.2025.117397_b0115) 2021; 12 McBratney (10.1016/j.geoderma.2025.117397_b0135) 2011; 160 Wessolek (10.1016/j.geoderma.2025.117397_b0300) 2009 Poggio (10.1016/j.geoderma.2025.117397_b0180) 2021; 7 Guillaume (10.1016/j.geoderma.2025.117397_b0080) 2023; 9 Puhlmann (10.1016/j.geoderma.2025.117397_b0190) 2011; 12 10.1016/j.geoderma.2025.117397_b0050 10.1016/j.geoderma.2025.117397_b0175 10.1016/j.geoderma.2025.117397_b0055 10.1016/j.geoderma.2025.117397_b0015 Carminati (10.1016/j.geoderma.2025.117397_b0035) 2020; 25 Vereecken (10.1016/j.geoderma.2025.117397_b0275) 2010; 9 McNeish (10.1016/j.geoderma.2025.117397_b0140) 2015; 50 R Core Team (10.1016/j.geoderma.2025.117397_b0195) 2022 Tibshirani (10.1016/j.geoderma.2025.117397_b0235) 1996; 58 Gupta (10.1016/j.geoderma.2025.117397_b0085) 2021; 13 Körner (10.1016/j.geoderma.2025.117397_b0125) 2019; 39 Medrado (10.1016/j.geoderma.2025.117397_b0145) 2014; 1 Tranter (10.1016/j.geoderma.2025.117397_b0250) 2009; 149 Bouma (10.1016/j.geoderma.2025.117397_b0030) 1989 Dunn (10.1016/j.geoderma.2025.117397_b0060) 2018 van Genuchten (10.1016/j.geoderma.2025.117397_b0265) 1980; 44 Fuentes-Guevara (10.1016/j.geoderma.2025.117397_b0070) 2022; 614 Al Majou (10.1016/j.geoderma.2025.117397_b0010) 2018; 34 Tuller (10.1016/j.geoderma.2025.117397_b0255) 2002; 1 Minasny (10.1016/j.geoderma.2025.117397_b0155) 2002; 53 Van Looy (10.1016/j.geoderma.2025.117397_b0270) 2017; 55 Walthert (10.1016/j.geoderma.2025.117397_b0280) 2024; 946 Choat (10.1016/j.geoderma.2025.117397_b0040) 2012; 491 Nanko (10.1016/j.geoderma.2025.117397_b0165) 2014; 213 10.1016/j.geoderma.2025.117397_b0200 Sedaghat (10.1016/j.geoderma.2025.117397_b0215) 2022; 606 Hastie (10.1016/j.geoderma.2025.117397_bib306) 2009 10.1016/j.geoderma.2025.117397_b0005 USDA (10.1016/j.geoderma.2025.117397_b0260) 1951 Puhlmann (10.1016/j.geoderma.2025.117397_b0185) 2012; 175 Wösten (10.1016/j.geoderma.2025.117397_b0305) 2013; 195–196 Szabó (10.1016/j.geoderma.2025.117397_b0230) 2021; 14 Rousseeuw (10.1016/j.geoderma.2025.117397_b0210) 1999; 41 Kaya (10.1016/j.geoderma.2025.117397_b0120) 2023; 12 10.1016/j.geoderma.2025.117397_b0150 Sharma (10.1016/j.geoderma.2025.117397_b0220) 2006; 70 10.1016/j.geoderma.2025.117397_b0075 Cresswell (10.1016/j.geoderma.2025.117397_b0045) 2006; 22 Estévez (10.1016/j.geoderma.2025.117397_b0065) 2023; 11 10.1016/j.geoderma.2025.117397_b0110 Hastie (10.1016/j.geoderma.2025.117397_b0100) 2020; 35 Nussbaum (10.1016/j.geoderma.2025.117397_b0170) 2017; 3 Roberts (10.1016/j.geoderma.2025.117397_b0205) 2017; 40 Mualem (10.1016/j.geoderma.2025.117397_b0160) 1976; 12 Hebiri (10.1016/j.geoderma.2025.117397_b0105) 2012; 59 Tietje (10.1016/j.geoderma.2025.117397_b0240) 1993; 57 |
References_xml | – volume: 14 start-page: 151 year: 2021 end-page: 175 ident: b0230 article-title: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2) publication-title: Geosci. Model Dev. – volume: 11 year: 2023 ident: b0065 article-title: Improving prediction accuracy for acid sulfate soil mapping by means of variable selection publication-title: Front. Environ. Sci. – volume: 53 start-page: 417 year: 2002 end-page: 429 ident: b0155 article-title: Uncertainty analysis for pedotransfer functions publication-title: Eur. J. Soil Sci. – volume: 55 start-page: 1199 year: 2017 end-page: 1256 ident: b0270 article-title: Pedotransfer functions in earth system science: challenges and perspectives publication-title: Rev. Geophys. – reference: (accessed 6.14.24). – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0265 article-title: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils publication-title: Soil Sci. Soc. Am. J. – reference: BAFU, B. für U.B.| O. fédéral de l’environnement O.| U. federale dell’ambiente, 2022. Die biogeographischen Regionen der Schweiz [WWW Document]. URL https://www.bafu.admin.ch/bafu/de/home/themen/thema-landschaft/landschaft--publikationen/publikationen-landschaft/die-biogeographischen-regionen-der-schweiz.html (accessed 12.6.23). – volume: 9 start-page: 365 year: 2023 end-page: 379 ident: b0080 article-title: Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison publication-title: Soil – reference: Inc, T.M., 2021. MATLAB version: 9.10.0 (R2021a). – volume: 9 start-page: 795 year: 2010 end-page: 820 ident: b0275 article-title: Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review publication-title: Vadose Zone J. – volume: 12 start-page: 819 year: 2023 ident: b0120 article-title: Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity publication-title: Land – volume: 25 start-page: 868 year: 2020 end-page: 880 ident: b0035 article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought publication-title: Trends Plant Sci. – volume: 635 start-page: 631 year: 2024 end-page: 638 ident: b0290 article-title: Global influence of soil texture on ecosystem water limitation publication-title: Nature – volume: 35 start-page: 579 year: 2020 end-page: 592 ident: b0100 article-title: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons publication-title: Stat. Sci. – reference: Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA, pp. 383 – 411. – volume: 173 start-page: 207 year: 2010 end-page: 216 ident: b0285 article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl publication-title: J. Plant Nutr. Soil Sci. – year: 2018 ident: b0060 article-title: Generalized Linear Models With Examples in R, Springer Texts in Statistics – year: 2009 ident: bib306 publication-title: The elements of statistical learning: data mining, inference, and prediction – reference: Richard, F., Lüscher, P., Strobel, T., 1983. Physical characteristics of soils in Switzerland. Vol. 1-5. – volume: 70 start-page: 1430 year: 2006 end-page: 1440 ident: b0220 article-title: Including Topography and Vegetation Attributes for Developing Pedotransfer Functions publication-title: Soil Sci. Soc. Am. J. – reference: Meteoschweiz, 2021 Räumliche Klimaanalysen - MeteoSchweiz [WWW Document]. URL – volume: 1 start-page: 14 year: 2002 end-page: 37 ident: b0255 article-title: Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration–Based Models publication-title: Vadose Zone J. – volume: 66 start-page: 226 year: 2015 end-page: 238 ident: b0245 article-title: New generation of hydraulic pedotransfer functions for Europe. European publication-title: Journal of Soil Science – start-page: 27053. year: 2009 end-page: 10729 ident: b0300 publication-title: Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis, 2 – volume: 34 start-page: 354 year: 2018 end-page: 369 ident: b0010 article-title: Transferability of continuous- and class-pedotransfer functions to predict water retention properties of semiarid Syrian soils publication-title: Soil Use Manag. – volume: 57 start-page: 1088 year: 1993 end-page: 1095 ident: b0240 article-title: Evaluation of Pedo-Transfer Functions publication-title: Soil Sci. Soc. Am. J. – volume: 12 start-page: 1113 year: 2021 ident: b0115 article-title: Hydraulic Properties of Forest Soils with Stagnic Conditions publication-title: Forests – reference: Dowd, C., 2020. A New ECDF Two-Sample Test Statistic. doi:10.48550/arXiv.2007.01360. – volume: 40 start-page: 913 year: 2017 end-page: 929 ident: b0205 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography – volume: 219–220 start-page: 46 year: 2014 end-page: 57 ident: b0130 article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties publication-title: Geoderma – volume: 1 start-page: 59 year: 2014 end-page: 66 ident: b0145 article-title: Development of pedotransfer functions for estimating water retention curve for tropical soils of the Brazilian savanna publication-title: Geoderma Reg. – reference: Papritz, A., 2022. soilhypfit: Modelling of Soil Water Retention and Hydraulic Conductivity Data. R package version 348, 0–1. – reference: Dowd, C., 2022. twosamples: Fast permutation based two sample tests. – volume: 7 start-page: 217 year: 2021 end-page: 240 ident: b0180 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0235 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) – reference: Bastian, O., Beierkuhnlein, C., Klink, H.-J., Löffler, J., Steinhardt, U., Volk, M., Wilmking, M., 2002. Landscape structures and processes, in: Bastian, Olaf, Steinhardt, Uta (Eds.), Development and Perspectives of Landscape Ecology. Springer Netherlands, Dordrecht, pp. 49–112. doi:10.1007/978-94-017-1237-8_2. – volume: 12 start-page: 513 year: 1976 end-page: 522 ident: b0160 article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media publication-title: Water Resour. Res. – volume: 41 start-page: 212 year: 1999 end-page: 223 ident: b0210 article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator publication-title: Technometrics – reference: Acevedo, S., 2021. Soil texture triangles using R [WWW Document]. URL https://saryace.github.io/flipbook_soiltexture_en/#1 (accessed 9.19.24). – volume: 149 start-page: 421 year: 2009 end-page: 425 ident: b0250 article-title: Using distance metrics to determine the appropriate domain of pedotransfer function predictions publication-title: Geoderma – year: 1951 ident: b0260 article-title: Soil survey manual – year: 1989 ident: b0030 article-title: Using Soil Survey Data for Quantitative Land Evaluation publication-title: Advances in Soil Science: Volume 9, Advances in Soil Science – volume: 39 start-page: 695 year: 2019 end-page: 700 ident: b0125 article-title: No need for pipes when the well is dry—a comment on hydraulic failure in trees publication-title: Tree Physiol. – volume: 606 year: 2022 ident: b0215 article-title: Developing pedotransfer functions using Sentinel-2 satellite spectral indices and Machine learning for estimating the surface soil moisture publication-title: J. Hydrol. – volume: 195–196 start-page: 79 year: 2013 end-page: 86 ident: b0305 article-title: Soil hydraulic information for river basin studies in semi-arid regions publication-title: Geoderma – volume: 160 start-page: 627 year: 2011 end-page: 629 ident: b0135 article-title: Necessary meta-data for pedotransfer functions publication-title: Geoderma – year: 2022 ident: b0195 article-title: R: A Language and Environment for Statistical Computing – volume: 175 start-page: 221 year: 2012 end-page: 235 ident: b0185 article-title: Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. Journal of Plant publication-title: Nutrition and Soil Science – volume: 213 start-page: 36 year: 2014 end-page: 45 ident: b0165 article-title: A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash publication-title: Geoderma – volume: 13 year: 2021 ident: b0085 article-title: Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework publication-title: J. Adv. Model. Earth Syst. – volume: 28 start-page: 3391 year: 2023 end-page: 3433 ident: b0295 article-title: Hydro-pedotransfer functions: A roadmap for future development publication-title: Hydrol. Earth Syst. Sci. – volume: 12 start-page: 61 year: 2011 end-page: 71 ident: b0190 article-title: Test und Entwicklung von Pedotransferfunktionen für Wasserretention und hydraulische Leitfähigkeit von Waldböden publication-title: Waldökologie, Landschaftsforschung und Naturschutz – reference: . – volume: 614 year: 2022 ident: b0070 article-title: Data correlation structure controls pedotransfer function performance publication-title: J. Hydrol. – volume: 25 start-page: 197 year: 2016 end-page: 227 ident: b0025 article-title: A random forest guided tour publication-title: TEST – reference: Swisstopo, n.d. [WWW Document]. URL – volume: 59 start-page: 1846 year: 2012 end-page: 1854 ident: b0105 article-title: How Correlations Influence Lasso Prediction publication-title: IEEE Trans. Inf. Theory – volume: 50 start-page: 471 year: 2015 end-page: 484 ident: b0140 article-title: Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences publication-title: Multivar. Behav. Res. – volume: 3 start-page: 191 year: 2017 end-page: 210 ident: b0170 article-title: Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models publication-title: Soil – volume: 22 start-page: 62 year: 2006 end-page: 70 ident: b0045 article-title: The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils publication-title: Soil Use Manag. – volume: 946 year: 2024 ident: b0280 article-title: Coordination between degree of isohydricity and depth of root water uptake in temperate tree species publication-title: Sci. Total Environ. – volume: 491 start-page: 752 year: 2012 end-page: 755 ident: b0040 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature – ident: 10.1016/j.geoderma.2025.117397_b0015 – volume: 53 start-page: 417 year: 2002 ident: 10.1016/j.geoderma.2025.117397_b0155 article-title: Uncertainty analysis for pedotransfer functions publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2002.00452.x – volume: 57 start-page: 1088 year: 1993 ident: 10.1016/j.geoderma.2025.117397_b0240 article-title: Evaluation of Pedo-Transfer Functions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700040035x – volume: 946 year: 2024 ident: 10.1016/j.geoderma.2025.117397_b0280 article-title: Coordination between degree of isohydricity and depth of root water uptake in temperate tree species publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.174346 – volume: 22 start-page: 62 year: 2006 ident: 10.1016/j.geoderma.2025.117397_b0045 article-title: The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2006.00001.x – volume: 614 year: 2022 ident: 10.1016/j.geoderma.2025.117397_b0070 article-title: Data correlation structure controls pedotransfer function performance publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128540 – ident: 10.1016/j.geoderma.2025.117397_b0200 – ident: 10.1016/j.geoderma.2025.117397_b0050 – volume: 1 start-page: 59 year: 2014 ident: 10.1016/j.geoderma.2025.117397_b0145 article-title: Development of pedotransfer functions for estimating water retention curve for tropical soils of the Brazilian savanna publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2014.08.003 – volume: 1 start-page: 14 year: 2002 ident: 10.1016/j.geoderma.2025.117397_b0255 article-title: Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration–Based Models publication-title: Vadose Zone J. – ident: 10.1016/j.geoderma.2025.117397_b0005 – volume: 12 start-page: 513 year: 1976 ident: 10.1016/j.geoderma.2025.117397_b0160 article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media publication-title: Water Resour. Res. doi: 10.1029/WR012i003p00513 – ident: 10.1016/j.geoderma.2025.117397_b0020 doi: 10.1007/978-94-017-1237-8_2 – ident: 10.1016/j.geoderma.2025.117397_b0110 – start-page: 27053. year: 2009 ident: 10.1016/j.geoderma.2025.117397_b0300 – year: 2018 ident: 10.1016/j.geoderma.2025.117397_b0060 doi: 10.1007/978-1-4419-0118-7 – volume: 13 year: 2021 ident: 10.1016/j.geoderma.2025.117397_b0085 article-title: Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2020MS002242 – volume: 491 start-page: 752 year: 2012 ident: 10.1016/j.geoderma.2025.117397_b0040 article-title: Global convergence in the vulnerability of forests to drought publication-title: Nature doi: 10.1038/nature11688 – volume: 39 start-page: 695 year: 2019 ident: 10.1016/j.geoderma.2025.117397_b0125 article-title: No need for pipes when the well is dry—a comment on hydraulic failure in trees publication-title: Tree Physiol. doi: 10.1093/treephys/tpz030 – year: 2022 ident: 10.1016/j.geoderma.2025.117397_b0195 – volume: 11 year: 2023 ident: 10.1016/j.geoderma.2025.117397_b0065 article-title: Improving prediction accuracy for acid sulfate soil mapping by means of variable selection publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2023.1213069 – volume: 41 start-page: 212 year: 1999 ident: 10.1016/j.geoderma.2025.117397_b0210 article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator publication-title: Technometrics doi: 10.1080/00401706.1999.10485670 – volume: 28 start-page: 3391 year: 2023 ident: 10.1016/j.geoderma.2025.117397_b0295 article-title: Hydro-pedotransfer functions: A roadmap for future development publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-28-3391-2024 – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.geoderma.2025.117397_b0235 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 14 start-page: 151 year: 2021 ident: 10.1016/j.geoderma.2025.117397_b0230 article-title: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-14-151-2021 – volume: 3 start-page: 191 year: 2017 ident: 10.1016/j.geoderma.2025.117397_b0170 article-title: Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models publication-title: Soil doi: 10.5194/soil-3-191-2017 – year: 1951 ident: 10.1016/j.geoderma.2025.117397_b0260 – volume: 175 start-page: 221 year: 2012 ident: 10.1016/j.geoderma.2025.117397_b0185 article-title: Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. Journal of Plant publication-title: Nutrition and Soil Science – volume: 160 start-page: 627 year: 2011 ident: 10.1016/j.geoderma.2025.117397_b0135 article-title: Necessary meta-data for pedotransfer functions publication-title: Geoderma doi: 10.1016/j.geoderma.2010.09.023 – volume: 34 start-page: 354 year: 2018 ident: 10.1016/j.geoderma.2025.117397_b0010 article-title: Transferability of continuous- and class-pedotransfer functions to predict water retention properties of semiarid Syrian soils publication-title: Soil Use Manag. doi: 10.1111/sum.12424 – volume: 25 start-page: 197 year: 2016 ident: 10.1016/j.geoderma.2025.117397_b0025 article-title: A random forest guided tour publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 9 start-page: 365 year: 2023 ident: 10.1016/j.geoderma.2025.117397_b0080 article-title: Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison publication-title: Soil doi: 10.5194/soil-9-365-2023 – volume: 195–196 start-page: 79 year: 2013 ident: 10.1016/j.geoderma.2025.117397_b0305 article-title: Soil hydraulic information for river basin studies in semi-arid regions publication-title: Geoderma doi: 10.1016/j.geoderma.2012.11.021 – volume: 9 start-page: 795 year: 2010 ident: 10.1016/j.geoderma.2025.117397_b0275 article-title: Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review publication-title: Vadose Zone J. doi: 10.2136/vzj2010.0045 – ident: 10.1016/j.geoderma.2025.117397_b0225 – volume: 149 start-page: 421 year: 2009 ident: 10.1016/j.geoderma.2025.117397_b0250 article-title: Using distance metrics to determine the appropriate domain of pedotransfer function predictions publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.006 – volume: 25 start-page: 868 year: 2020 ident: 10.1016/j.geoderma.2025.117397_b0035 article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.04.003 – ident: 10.1016/j.geoderma.2025.117397_b0055 – volume: 35 start-page: 579 year: 2020 ident: 10.1016/j.geoderma.2025.117397_b0100 article-title: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons publication-title: Stat. Sci. – volume: 635 start-page: 631 year: 2024 ident: 10.1016/j.geoderma.2025.117397_b0290 article-title: Global influence of soil texture on ecosystem water limitation publication-title: Nature doi: 10.1038/s41586-024-08089-2 – volume: 173 start-page: 207 year: 2010 ident: 10.1016/j.geoderma.2025.117397_b0285 article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200900158 – volume: 213 start-page: 36 year: 2014 ident: 10.1016/j.geoderma.2025.117397_b0165 article-title: A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.025 – volume: 7 start-page: 217 year: 2021 ident: 10.1016/j.geoderma.2025.117397_b0180 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil doi: 10.5194/soil-7-217-2021 – ident: 10.1016/j.geoderma.2025.117397_b0150 – volume: 44 start-page: 892 year: 1980 ident: 10.1016/j.geoderma.2025.117397_b0265 article-title: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 50 start-page: 471 year: 2015 ident: 10.1016/j.geoderma.2025.117397_b0140 article-title: Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences publication-title: Multivar. Behav. Res. doi: 10.1080/00273171.2015.1036965 – volume: 70 start-page: 1430 year: 2006 ident: 10.1016/j.geoderma.2025.117397_b0220 article-title: Including Topography and Vegetation Attributes for Developing Pedotransfer Functions publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0087 – volume: 55 start-page: 1199 year: 2017 ident: 10.1016/j.geoderma.2025.117397_b0270 article-title: Pedotransfer functions in earth system science: challenges and perspectives publication-title: Rev. Geophys. doi: 10.1002/2017RG000581 – ident: 10.1016/j.geoderma.2025.117397_b0075 doi: 10.2136/sssabookser5.1.2ed.c15 – volume: 606 year: 2022 ident: 10.1016/j.geoderma.2025.117397_b0215 article-title: Developing pedotransfer functions using Sentinel-2 satellite spectral indices and Machine learning for estimating the surface soil moisture publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.127423 – ident: 10.1016/j.geoderma.2025.117397_b0175 doi: 10.32614/CRAN.package.soilhypfit – volume: 12 start-page: 61 year: 2011 ident: 10.1016/j.geoderma.2025.117397_b0190 article-title: Test und Entwicklung von Pedotransferfunktionen für Wasserretention und hydraulische Leitfähigkeit von Waldböden publication-title: Waldökologie, Landschaftsforschung und Naturschutz – volume: 59 start-page: 1846 year: 2012 ident: 10.1016/j.geoderma.2025.117397_b0105 article-title: How Correlations Influence Lasso Prediction publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2012.2227680 – volume: 12 start-page: 1113 year: 2021 ident: 10.1016/j.geoderma.2025.117397_b0115 article-title: Hydraulic Properties of Forest Soils with Stagnic Conditions publication-title: Forests doi: 10.3390/f12081113 – year: 1989 ident: 10.1016/j.geoderma.2025.117397_b0030 article-title: Using Soil Survey Data for Quantitative Land Evaluation doi: 10.1007/978-1-4612-3532-3_4 – volume: 219–220 start-page: 46 year: 2014 ident: 10.1016/j.geoderma.2025.117397_b0130 article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.013 – volume: 66 start-page: 226 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2025.117397_b0245 article-title: New generation of hydraulic pedotransfer functions for Europe. European publication-title: Journal of Soil Science doi: 10.1111/ejss.12192 – volume: 40 start-page: 913 year: 2017 ident: 10.1016/j.geoderma.2025.117397_b0205 article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography doi: 10.1111/ecog.02881 – year: 2009 ident: 10.1016/j.geoderma.2025.117397_bib306 – volume: 12 start-page: 819 year: 2023 ident: 10.1016/j.geoderma.2025.117397_b0120 article-title: Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity publication-title: Land doi: 10.3390/land12040819 |
SSID | ssj0017020 |
Score | 2.4625416 |
Snippet | •Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest... Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 117397 |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXgttps-va2iiKAXXdhbSTKpVqS7dLuI_hB_rzNJKr158dBLKEPIN5350ky-Yew8zMDkgM4rNX7kMegoUAUCImScSZHkRW6rKh8e07tpfD9LZoNWX1QT5uSB3cJdFGNlEqGyUEMaZypSiSgEgKjCsIoSoyn6Ys7rN1P-_CBDFjS4D_yGaFBrMas0NE7opFKQzNMgFVnF_kFGGmSZ22225ekhn7hp7bA10-yyzclL6yUyzB77tumlMq1T2P7k84ovDG4u_TCnVGW9iSMh5aSiQay0eeHLef3OXz-hlav3WvMF_YdvSVD1kk8aLr08CdnzBex0VZ37jjzWGD5ozxpa8rrhTx919-XuC--z6e3N8_Vd4LsrBFpkSRdAjKuH_E4XSo6rJJcpxkyIlUnTGCBUEqMgZNpEOWiodAF0BpmqGDEFQ7zwgK0388YcMl4BsagwQ66JhASUqgyMDW6OUpACQ-qIXfQLXS6ciEbZV5e9lT00JUFTOmhG7Irw-H2bRLDtALpG6V2j_Ms1Rqzo0Sw9n3A8AU3Vf0zg6D8mcMw2yKSrFzxh6127MqfIYTp1Zt31B5vj9Yc priority: 102 providerName: Directory of Open Access Journals |
Title | Transferability of pedotransfer functions for estimating soil hydraulic properties: An analysis of controlling factors for forest soils in Switzerland |
URI | https://dx.doi.org/10.1016/j.geoderma.2025.117397 https://doaj.org/article/92be53b70cd647b1b5393dd3f00f15ec |
Volume | 460 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQvdBDBaVVF8rKh17TTdaOnfS2RUVbULkAErfI9jjbIJRdhUUIDv2Mfm9nHActpx445BDLGSWeycyzPfPM2JdUgy8Ajdc4_MkluCyxJSpEGKmNyIuyCFmVv87V_EqeXufXW-x4qIWhtMro-3ufHrx1bJnE0ZysmoZqfDOlQ4QOpC1Euy2lJiv_-uc5zSPTaaRmzFRCvTeqhG9QR3TgWOAfmua0fymI_GkjQAUe_404tRF7TnbZuwga-ax_rz225dv37O1s0UXiDL_P_oagU_uu591-5MuarzxOOWMzpwAWbIwjTOXErUFYtV3wu2Vzy38_QmfubxvHV7Q63xHN6jc-a7mJpCUkL6a1UwE7j-f0BGF4obwg6I43Lb94aNZPfRXxB3Z18uPyeJ7EMxcSJ3S-TkDm3iHqc6U10zovjEJPCtJ6pSRAag36RtDOZwU4qF0JtDOprERNgye0-JFtt8vWf2K8BsJWqUYEijAFrK09TD1OmRQYgY52xCbDQFernlqjGnLObqpBNRWppupVM2LfSR_PvYkaOzQsu0UVbaMqp9bnwurUgZLaZjYXpQAQdZrWGX7ciJWDNqsXloaimv-8wMErnj1kO3TXJw9-Ztvr7t4fIaBZ23Gw2DF7M_t5Nj8fh2WBf56T-0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqdYysMHOIZN4sROkDgsj2pLHxdaqTcTe5wlVZVdZbeqlgM_gz_CH2TGcarlxAH1kIuTjGLPZOazPPMNY69jBa4ANN7K4k-egU0iU6JCRJWpSuRFWfisyqNjOT3NvpzlZ1vs91ALQ2mVwff3Pt176zAyDqs5XjQN1fgmUvkI7UlbZMisPHDrK9y3Ld_vf0Ilv0nTvc8nH6dRaC0QWaHyVQRZ7iyCG1uaKq3zopLoMCAzTsoMIDYVugBQ1iUFWKhtCXQAJ02GEwJHoAjl3mK3M3QX1Dbh7c_rvJJExYELMpERfd5GWfI5GgV1OPOER2lOB6aC2KY2IqJvHLARGDeC3d59thNQKp_0C_GAbbn2Ibs3mXWBqcM9Yr98lKtd1xN9r_m85guHe9wwzClieqPmiIs5kXkQOG5nfDlvLvj3NXTV5UVj-YKOAzridX3HJy2vAksKyQt59FQxz0NjIC8ML5TnBS150_KvV83qR1-2_Jid3ogmnrDtdt66p4zXQGAuVgh5EReBMbWD1OEeTUIl0LOP2HhYaL3ouTz0kOR2rgfVaFKN7lUzYh9IH9dPExe3H5h3Mx2MUZepcbkwKrYgM2USk4tSAIg6jusEJzdi5aBN_Zdpo6jmHx_w7D_efcXuTE-ODvXh_vHBLrtLd_rMxedse9VduheIplbmpbdezr7d9O_yByDgNyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+pedotransfer+functions+for+estimating+soil+hydraulic+properties%3A+An+analysis+of+controlling+factors+for+forest+soils+in+Switzerland&rft.jtitle=Geoderma&rft.au=Schoch%2C+Julian&rft.au=Nussbaum%2C+Madlene&rft.au=Walthert%2C+Lorenz&rft.au=Carminati%2C+Andrea&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=460&rft_id=info:doi/10.1016%2Fj.geoderma.2025.117397&rft.externalDocID=S0016706125002356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |