Transferability of pedotransfer functions for estimating soil hydraulic properties: An analysis of controlling factors for forest soils in Switzerland

•Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 460; p. 117397
Main Authors Schoch, Julian, Nussbaum, Madlene, Walthert, Lorenz, Carminati, Andrea, Lehmann, Peter
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Elsevier
Online AccessGet full text

Cover

Loading…
Abstract •Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A novel approach for testing the controlling factors of PTF transferability. Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation.
AbstractList Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation.
•Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest soils.•Differences in laboratory methods are suggested to influence transferability.•Small covariate set is essential for better generalizability.•A novel approach for testing the controlling factors of PTF transferability. Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for large scale applications, pedotransfer functions (PTFs) are used. Many PTFs are trained for a specific region and its applicability outside this region is controversial. In this study, we analyse the controlling factors affecting PTF transferability across forest soils in Switzerland, focusing on confounders, and the entire modelling framework that we denote as model-building-and-form-of-statistical-function (i.e., the statistical method used to link covariates and responses, as well as model training and selection). We trained parsimonious Lasso models and Random Forest models with data from 24 forest sites located in the Swiss Central Plateau to create new PTFs (SwiPT). These were then transferred, alongside existing European PTFs, to forest soils of another Swiss region (Valais), which is topographically, climatically, and geologically considerably different. Our key finding is that PTFs using fewer covariates (specifically, only sand and clay content) demonstrated in average higher predictive performance when transferred, compared to PTFs using up to 11 covariates. We identify the presence of covariates acting either as confounders or whose measurement uncertainty undermines any predictive gains they might offer, as the main contributors to the limited transferability of PTFs with many covariates. In the context of measurement uncertainty, we discuss how bias introduced by different methods and laboratories could potentially contribute to this limited transferability. In addition, based on our analyses related to model-building-and-form-of-statistical-function, we conclude that effectively limiting or reducing the number of covariates is essential for developing transferable PTFs. This work advances our understanding of the mechanisms limiting PTF transferability and highlights key aspects for improving their generalisation.
ArticleNumber 117397
Author Lehmann, Peter
Walthert, Lorenz
Schoch, Julian
Nussbaum, Madlene
Carminati, Andrea
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0009-0009-8647-2124
  surname: Schoch
  fullname: Schoch, Julian
  email: julian.schoch@usys.ethz.ch
  organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
– sequence: 2
  givenname: Madlene
  orcidid: 0000-0002-6808-8956
  surname: Nussbaum
  fullname: Nussbaum, Madlene
  organization: School of Agricultural, Forest and Food Science (HAFL), Bern University of Applied Sciences (BFH), Switzerland
– sequence: 3
  givenname: Lorenz
  surname: Walthert
  fullname: Walthert, Lorenz
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
– sequence: 4
  givenname: Andrea
  orcidid: 0000-0001-7415-0480
  surname: Carminati
  fullname: Carminati, Andrea
  organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
– sequence: 5
  givenname: Peter
  surname: Lehmann
  fullname: Lehmann, Peter
  organization: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
BookMark eNqFkd9KXDEQxkOx4Kp9BckLnG1y_iR7elWR1gpCL6rXIclMtllisiSxZfsgPq9Zj-1tL4Zhhvl-zMd3Rk5iikjIJWdrzrj4uFtvMQHmR73uWT-tOZfDLN-RFd_IvhP9NJ-QFWuXnWSCn5KzUnZtlKxnK_J8n3UsDrM2Pvh6oMnRPUKqb2vqnqKtPsVCXcoUS_WPuvq4pSX5QH8eIOun4C3d57THXD2WT_QqUh11OBRfjjybYs0phKPKaVtTXmCtGu8VVKiP9MdvX_9gDjrCBXnvdCj44a2fk4evX-6vv3V3329ur6_uOjvIqXYwTmj53NvZ6N5NGy1GIWE0KMQIwIzmnIO0yDdgwdkZ2DAxYUbLGWDTDefkduFC0ju1z81cPqikvXpdpLxVupmyAdXcG5wGI5kFMUrDzTTMA8DgGHO8vdFYYmHZnErJ6P7xOFPHpNRO_U1KHZNSS1JN-HkRYnP6y2NWxXqMFsFntLW94v-HeAFqJ6da
Cites_doi 10.1046/j.1365-2389.2002.00452.x
10.2136/sssaj1993.03615995005700040035x
10.1016/j.scitotenv.2024.174346
10.1111/j.1475-2743.2006.00001.x
10.1016/j.jhydrol.2022.128540
10.1016/j.geodrs.2014.08.003
10.1029/WR012i003p00513
10.1007/978-94-017-1237-8_2
10.1007/978-1-4419-0118-7
10.1029/2020MS002242
10.1038/nature11688
10.1093/treephys/tpz030
10.3389/fenvs.2023.1213069
10.1080/00401706.1999.10485670
10.5194/hess-28-3391-2024
10.1111/j.2517-6161.1996.tb02080.x
10.5194/gmd-14-151-2021
10.5194/soil-3-191-2017
10.1016/j.geoderma.2010.09.023
10.1111/sum.12424
10.1007/s11749-016-0481-7
10.5194/soil-9-365-2023
10.1016/j.geoderma.2012.11.021
10.2136/vzj2010.0045
10.1016/j.geoderma.2009.01.006
10.1016/j.tplants.2020.04.003
10.1038/s41586-024-08089-2
10.1002/jpln.200900158
10.1016/j.geoderma.2013.07.025
10.5194/soil-7-217-2021
10.2136/sssaj1980.03615995004400050002x
10.1080/00273171.2015.1036965
10.2136/sssaj2005.0087
10.1002/2017RG000581
10.2136/sssabookser5.1.2ed.c15
10.1016/j.jhydrol.2021.127423
10.32614/CRAN.package.soilhypfit
10.1109/TIT.2012.2227680
10.3390/f12081113
10.1007/978-1-4612-3532-3_4
10.1016/j.geoderma.2013.12.013
10.1111/ejss.12192
10.1111/ecog.02881
10.3390/land12040819
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.geoderma.2025.117397
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_92be53b70cd647b1b5393dd3f00f15ec
10_1016_j_geoderma_2025_117397
S0016706125002356
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c375t-d45ec192c9ba2f58a6467d4be664dd0ba111d7ce18dcdfc9d03506b4c10de1923
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Wed Aug 27 01:31:29 EDT 2025
Wed Aug 27 16:27:40 EDT 2025
Sat Aug 30 17:14:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-d45ec192c9ba2f58a6467d4be664dd0ba111d7ce18dcdfc9d03506b4c10de1923
ORCID 0000-0001-7415-0480
0000-0002-6808-8956
0009-0009-8647-2124
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706125002356
ParticipantIDs doaj_primary_oai_doaj_org_article_92be53b70cd647b1b5393dd3f00f15ec
crossref_primary_10_1016_j_geoderma_2025_117397
elsevier_sciencedirect_doi_10_1016_j_geoderma_2025_117397
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Tóth, Weynants, Nemes, Makó, Bilas, Tóth (b0245) 2015; 66
Meteoschweiz, 2021 Räumliche Klimaanalysen - MeteoSchweiz [WWW Document]. URL
Poggio, de Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0180) 2021; 7
Nanko, Ugawa, Hashimoto, Imaya, Kobayashi, Sakai, Ishizuka, Miura, Tanaka, Takahashi, Kaneko (b0165) 2014; 213
Papritz, A., 2022. soilhypfit: Modelling of Soil Water Retention and Hydraulic Conductivity Data. R package version 348, 0–1.
Cresswell, Coquet, Bruand, McKenzie (b0045) 2006; 22
Tuller, Or (b0255) 2002; 1
Walthert, Graf, Kammer, Luster, Pezzotta, Zimmermann, Hagedorn (b0285) 2010; 173
Estévez, Mattbäck, Boman, Beucher, Björk, Österholm (b0065) 2023; 11
R Core Team (b0195) 2022
McNeish (b0140) 2015; 50
Wankmüller, Delval, Lehmann, Baur, Cecere, Wolf, Or, Javaux, Carminati (b0290) 2024; 635
Dunn, Smyth (b0060) 2018
Nussbaum, Walthert, Fraefel, Greiner, Papritz (b0170) 2017; 3
Mualem (b0160) 1976; 12
(accessed 6.14.24).
Vereecken, Weynants, Javaux, Pachepsky, Schaap, van Genuchten (b0275) 2010; 9
Hastie, Tibshirani, Tibshirani (b0100) 2020; 35
USDA (b0260) 1951
Wessolek, Kaupenjohann, Renger (b0300) 2009
Bastian, O., Beierkuhnlein, C., Klink, H.-J., Löffler, J., Steinhardt, U., Volk, M., Wilmking, M., 2002. Landscape structures and processes, in: Bastian, Olaf, Steinhardt, Uta (Eds.), Development and Perspectives of Landscape Ecology. Springer Netherlands, Dordrecht, pp. 49–112. doi:10.1007/978-94-017-1237-8_2.
Choat, Jansen, Brodribb, Cochard, Delzon, Bhaskar, Bucci, Feild, Gleason, Hacke, Jacobsen, Lens, Maherali, Martínez-Vilalta, Mayr, Mencuccini, Mitchell, Nardini, Pittermann, Pratt, Sperry, Westoby, Wright, Zanne (b0040) 2012; 491
.
McBratney, Minasny, Tranter (b0135) 2011; 160
van Genuchten (b0265) 1980; 44
Inc, T.M., 2021. MATLAB version: 9.10.0 (R2021a).
Van Looy, Bouma, Herbst, Koestel, Minasny, Mishra, Montzka, Nemes, Pachepsky, Padarian, Schaap, Toth, Verhoef, Vanderborght, van der Ploeg, Weihermüller, Zacharias, Zhang, Vereecken (b0270) 2017; 55
Walthert, Etzold, Carminati, Saurer, Köchli, Zweifel (b0280) 2024; 946
Minasny, Mc Bratney (b0155) 2002; 53
Al Majou, Hassani, Bruand (b0010) 2018; 34
Levi, Rasmussen (b0130) 2014; 219–220
Julich, Kreiselmeier, Scheibler, Petzold, Schwärzel, Feger (b0115) 2021; 12
Swisstopo, n.d. [WWW Document]. URL
Körner (b0125) 2019; 39
Puhlmann, von Wilpert (b0185) 2012; 175
Sedaghat, Shahrestani, Noroozi, Fallah Nosratabad, Bayat (b0215) 2022; 606
Medrado, Lima (b0145) 2014; 1
Tibshirani (b0235) 1996; 58
Carminati, Javaux (b0035) 2020; 25
Hebiri, Lederer (b0105) 2012; 59
Puhlmann, von Wilpert (b0190) 2011; 12
Rousseeuw, Driessen (b0210) 1999; 41
Fuentes-Guevara, Armindo, Timm, Nemes (b0070) 2022; 614
Gupta, Lehmann, Bonetti, Papritz, Or (b0085) 2021; 13
Guillaume, Aroui Boukbida, Bakker, Bieganowski, Brostaux, Cornelis, Durner, Hartmann, Iversen, Javaux, Ingwersen, Lamorski, Lamparter, Makó, Mingot Soriano, Messing, Nemes, Pomes-Bordedebat, van der Ploeg, Weber, Weihermüller, Wellens, Degré (b0080) 2023; 9
Kaya, Mishra, Francaviglia, Keshavarzi (b0120) 2023; 12
Acevedo, S., 2021. Soil texture triangles using R [WWW Document]. URL https://saryace.github.io/flipbook_soiltexture_en/#1 (accessed 9.19.24).
Dowd, C., 2022. twosamples: Fast permutation based two sample tests.
Tranter, McBratney, Minasny (b0250) 2009; 149
Roberts, Bahn, Ciuti, Boyce, Elith, Guillera-Arroita, Hauenstein, Lahoz-Monfort, Schröder, Thuiller, Warton, Wintle, Hartig, Dormann (b0205) 2017; 40
Tietje, Tapkenhinrichs (b0240) 1993; 57
Weber, Weihermüller, Nemes, Bechtold, Degré, Diamantopoulos, Fatichi, Filipović, Gupta, Hohenbrink, Hirmas, Jackisch, Lier, Koestel, Lehmann, Marthews, Minasny, Pagel, Ploeg, Bonetti (b0295) 2023; 28
Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA, pp. 383 – 411.
Richard, F., Lüscher, P., Strobel, T., 1983. Physical characteristics of soils in Switzerland. Vol. 1-5.
Szabó, Weynants, Weber (b0230) 2021; 14
Wösten, Verzandvoort, Leenaars, Hoogland, Wesseling (b0305) 2013; 195–196
BAFU, B. für U.B.| O. fédéral de l’environnement O.| U. federale dell’ambiente, 2022. Die biogeographischen Regionen der Schweiz [WWW Document]. URL https://www.bafu.admin.ch/bafu/de/home/themen/thema-landschaft/landschaft--publikationen/publikationen-landschaft/die-biogeographischen-regionen-der-schweiz.html (accessed 12.6.23).
Dowd, C., 2020. A New ECDF Two-Sample Test Statistic. doi:10.48550/arXiv.2007.01360.
Biau, Scornet (b0025) 2016; 25
Sharma, Mohanty, Zhu (b0220) 2006; 70
Hastie, Tibshirani, Friedman (bib306) 2009
Bouma (b0030) 1989
Levi (10.1016/j.geoderma.2025.117397_b0130) 2014; 219–220
Walthert (10.1016/j.geoderma.2025.117397_b0285) 2010; 173
Tóth (10.1016/j.geoderma.2025.117397_b0245) 2015; 66
10.1016/j.geoderma.2025.117397_b0020
Biau (10.1016/j.geoderma.2025.117397_b0025) 2016; 25
Wankmüller (10.1016/j.geoderma.2025.117397_b0290) 2024; 635
10.1016/j.geoderma.2025.117397_b0225
Weber (10.1016/j.geoderma.2025.117397_b0295) 2023; 28
Julich (10.1016/j.geoderma.2025.117397_b0115) 2021; 12
McBratney (10.1016/j.geoderma.2025.117397_b0135) 2011; 160
Wessolek (10.1016/j.geoderma.2025.117397_b0300) 2009
Poggio (10.1016/j.geoderma.2025.117397_b0180) 2021; 7
Guillaume (10.1016/j.geoderma.2025.117397_b0080) 2023; 9
Puhlmann (10.1016/j.geoderma.2025.117397_b0190) 2011; 12
10.1016/j.geoderma.2025.117397_b0050
10.1016/j.geoderma.2025.117397_b0175
10.1016/j.geoderma.2025.117397_b0055
10.1016/j.geoderma.2025.117397_b0015
Carminati (10.1016/j.geoderma.2025.117397_b0035) 2020; 25
Vereecken (10.1016/j.geoderma.2025.117397_b0275) 2010; 9
McNeish (10.1016/j.geoderma.2025.117397_b0140) 2015; 50
R Core Team (10.1016/j.geoderma.2025.117397_b0195) 2022
Tibshirani (10.1016/j.geoderma.2025.117397_b0235) 1996; 58
Gupta (10.1016/j.geoderma.2025.117397_b0085) 2021; 13
Körner (10.1016/j.geoderma.2025.117397_b0125) 2019; 39
Medrado (10.1016/j.geoderma.2025.117397_b0145) 2014; 1
Tranter (10.1016/j.geoderma.2025.117397_b0250) 2009; 149
Bouma (10.1016/j.geoderma.2025.117397_b0030) 1989
Dunn (10.1016/j.geoderma.2025.117397_b0060) 2018
van Genuchten (10.1016/j.geoderma.2025.117397_b0265) 1980; 44
Fuentes-Guevara (10.1016/j.geoderma.2025.117397_b0070) 2022; 614
Al Majou (10.1016/j.geoderma.2025.117397_b0010) 2018; 34
Tuller (10.1016/j.geoderma.2025.117397_b0255) 2002; 1
Minasny (10.1016/j.geoderma.2025.117397_b0155) 2002; 53
Van Looy (10.1016/j.geoderma.2025.117397_b0270) 2017; 55
Walthert (10.1016/j.geoderma.2025.117397_b0280) 2024; 946
Choat (10.1016/j.geoderma.2025.117397_b0040) 2012; 491
Nanko (10.1016/j.geoderma.2025.117397_b0165) 2014; 213
10.1016/j.geoderma.2025.117397_b0200
Sedaghat (10.1016/j.geoderma.2025.117397_b0215) 2022; 606
Hastie (10.1016/j.geoderma.2025.117397_bib306) 2009
10.1016/j.geoderma.2025.117397_b0005
USDA (10.1016/j.geoderma.2025.117397_b0260) 1951
Puhlmann (10.1016/j.geoderma.2025.117397_b0185) 2012; 175
Wösten (10.1016/j.geoderma.2025.117397_b0305) 2013; 195–196
Szabó (10.1016/j.geoderma.2025.117397_b0230) 2021; 14
Rousseeuw (10.1016/j.geoderma.2025.117397_b0210) 1999; 41
Kaya (10.1016/j.geoderma.2025.117397_b0120) 2023; 12
10.1016/j.geoderma.2025.117397_b0150
Sharma (10.1016/j.geoderma.2025.117397_b0220) 2006; 70
10.1016/j.geoderma.2025.117397_b0075
Cresswell (10.1016/j.geoderma.2025.117397_b0045) 2006; 22
Estévez (10.1016/j.geoderma.2025.117397_b0065) 2023; 11
10.1016/j.geoderma.2025.117397_b0110
Hastie (10.1016/j.geoderma.2025.117397_b0100) 2020; 35
Nussbaum (10.1016/j.geoderma.2025.117397_b0170) 2017; 3
Roberts (10.1016/j.geoderma.2025.117397_b0205) 2017; 40
Mualem (10.1016/j.geoderma.2025.117397_b0160) 1976; 12
Hebiri (10.1016/j.geoderma.2025.117397_b0105) 2012; 59
Tietje (10.1016/j.geoderma.2025.117397_b0240) 1993; 57
References_xml – volume: 14
  start-page: 151
  year: 2021
  end-page: 175
  ident: b0230
  article-title: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
  publication-title: Geosci. Model Dev.
– volume: 11
  year: 2023
  ident: b0065
  article-title: Improving prediction accuracy for acid sulfate soil mapping by means of variable selection
  publication-title: Front. Environ. Sci.
– volume: 53
  start-page: 417
  year: 2002
  end-page: 429
  ident: b0155
  article-title: Uncertainty analysis for pedotransfer functions
  publication-title: Eur. J. Soil Sci.
– volume: 55
  start-page: 1199
  year: 2017
  end-page: 1256
  ident: b0270
  article-title: Pedotransfer functions in earth system science: challenges and perspectives
  publication-title: Rev. Geophys.
– reference: (accessed 6.14.24).
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0265
  article-title: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
  publication-title: Soil Sci. Soc. Am. J.
– reference: BAFU, B. für U.B.| O. fédéral de l’environnement O.| U. federale dell’ambiente, 2022. Die biogeographischen Regionen der Schweiz [WWW Document]. URL https://www.bafu.admin.ch/bafu/de/home/themen/thema-landschaft/landschaft--publikationen/publikationen-landschaft/die-biogeographischen-regionen-der-schweiz.html (accessed 12.6.23).
– volume: 9
  start-page: 365
  year: 2023
  end-page: 379
  ident: b0080
  article-title: Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
  publication-title: Soil
– reference: Inc, T.M., 2021. MATLAB version: 9.10.0 (R2021a).
– volume: 9
  start-page: 795
  year: 2010
  end-page: 820
  ident: b0275
  article-title: Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review
  publication-title: Vadose Zone J.
– volume: 12
  start-page: 819
  year: 2023
  ident: b0120
  article-title: Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity
  publication-title: Land
– volume: 25
  start-page: 868
  year: 2020
  end-page: 880
  ident: b0035
  article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought
  publication-title: Trends Plant Sci.
– volume: 635
  start-page: 631
  year: 2024
  end-page: 638
  ident: b0290
  article-title: Global influence of soil texture on ecosystem water limitation
  publication-title: Nature
– volume: 35
  start-page: 579
  year: 2020
  end-page: 592
  ident: b0100
  article-title: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons
  publication-title: Stat. Sci.
– reference: Gee, G.W., Bauder, J.W., 1986. Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part I. Second edition. Agronomy Monograph, vol. 9. ASA and SSSA, Madison, WI, USA, pp. 383 – 411.
– volume: 173
  start-page: 207
  year: 2010
  end-page: 216
  ident: b0285
  article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl
  publication-title: J. Plant Nutr. Soil Sci.
– year: 2018
  ident: b0060
  article-title: Generalized Linear Models With Examples in R, Springer Texts in Statistics
– year: 2009
  ident: bib306
  publication-title: The elements of statistical learning: data mining, inference, and prediction
– reference: Richard, F., Lüscher, P., Strobel, T., 1983. Physical characteristics of soils in Switzerland. Vol. 1-5.
– volume: 70
  start-page: 1430
  year: 2006
  end-page: 1440
  ident: b0220
  article-title: Including Topography and Vegetation Attributes for Developing Pedotransfer Functions
  publication-title: Soil Sci. Soc. Am. J.
– reference: Meteoschweiz, 2021 Räumliche Klimaanalysen - MeteoSchweiz [WWW Document]. URL
– volume: 1
  start-page: 14
  year: 2002
  end-page: 37
  ident: b0255
  article-title: Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration–Based Models
  publication-title: Vadose Zone J.
– volume: 66
  start-page: 226
  year: 2015
  end-page: 238
  ident: b0245
  article-title: New generation of hydraulic pedotransfer functions for Europe. European
  publication-title: Journal of Soil Science
– start-page: 27053.
  year: 2009
  end-page: 10729
  ident: b0300
  publication-title: Bodenphysikalische Kennwerte und Berechnungsverfahren für die Praxis, 2
– volume: 34
  start-page: 354
  year: 2018
  end-page: 369
  ident: b0010
  article-title: Transferability of continuous- and class-pedotransfer functions to predict water retention properties of semiarid Syrian soils
  publication-title: Soil Use Manag.
– volume: 57
  start-page: 1088
  year: 1993
  end-page: 1095
  ident: b0240
  article-title: Evaluation of Pedo-Transfer Functions
  publication-title: Soil Sci. Soc. Am. J.
– volume: 12
  start-page: 1113
  year: 2021
  ident: b0115
  article-title: Hydraulic Properties of Forest Soils with Stagnic Conditions
  publication-title: Forests
– reference: Dowd, C., 2020. A New ECDF Two-Sample Test Statistic. doi:10.48550/arXiv.2007.01360.
– volume: 40
  start-page: 913
  year: 2017
  end-page: 929
  ident: b0205
  article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
– volume: 219–220
  start-page: 46
  year: 2014
  end-page: 57
  ident: b0130
  article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties
  publication-title: Geoderma
– volume: 1
  start-page: 59
  year: 2014
  end-page: 66
  ident: b0145
  article-title: Development of pedotransfer functions for estimating water retention curve for tropical soils of the Brazilian savanna
  publication-title: Geoderma Reg.
– reference: Papritz, A., 2022. soilhypfit: Modelling of Soil Water Retention and Hydraulic Conductivity Data. R package version 348, 0–1.
– reference: Dowd, C., 2022. twosamples: Fast permutation based two sample tests.
– volume: 7
  start-page: 217
  year: 2021
  end-page: 240
  ident: b0180
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0235
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
– reference: Bastian, O., Beierkuhnlein, C., Klink, H.-J., Löffler, J., Steinhardt, U., Volk, M., Wilmking, M., 2002. Landscape structures and processes, in: Bastian, Olaf, Steinhardt, Uta (Eds.), Development and Perspectives of Landscape Ecology. Springer Netherlands, Dordrecht, pp. 49–112. doi:10.1007/978-94-017-1237-8_2.
– volume: 12
  start-page: 513
  year: 1976
  end-page: 522
  ident: b0160
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 212
  year: 1999
  end-page: 223
  ident: b0210
  article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator
  publication-title: Technometrics
– reference: Acevedo, S., 2021. Soil texture triangles using R [WWW Document]. URL https://saryace.github.io/flipbook_soiltexture_en/#1 (accessed 9.19.24).
– volume: 149
  start-page: 421
  year: 2009
  end-page: 425
  ident: b0250
  article-title: Using distance metrics to determine the appropriate domain of pedotransfer function predictions
  publication-title: Geoderma
– year: 1951
  ident: b0260
  article-title: Soil survey manual
– year: 1989
  ident: b0030
  article-title: Using Soil Survey Data for Quantitative Land Evaluation
  publication-title: Advances in Soil Science: Volume 9, Advances in Soil Science
– volume: 39
  start-page: 695
  year: 2019
  end-page: 700
  ident: b0125
  article-title: No need for pipes when the well is dry—a comment on hydraulic failure in trees
  publication-title: Tree Physiol.
– volume: 606
  year: 2022
  ident: b0215
  article-title: Developing pedotransfer functions using Sentinel-2 satellite spectral indices and Machine learning for estimating the surface soil moisture
  publication-title: J. Hydrol.
– volume: 195–196
  start-page: 79
  year: 2013
  end-page: 86
  ident: b0305
  article-title: Soil hydraulic information for river basin studies in semi-arid regions
  publication-title: Geoderma
– volume: 160
  start-page: 627
  year: 2011
  end-page: 629
  ident: b0135
  article-title: Necessary meta-data for pedotransfer functions
  publication-title: Geoderma
– year: 2022
  ident: b0195
  article-title: R: A Language and Environment for Statistical Computing
– volume: 175
  start-page: 221
  year: 2012
  end-page: 235
  ident: b0185
  article-title: Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. Journal of Plant
  publication-title: Nutrition and Soil Science
– volume: 213
  start-page: 36
  year: 2014
  end-page: 45
  ident: b0165
  article-title: A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash
  publication-title: Geoderma
– volume: 13
  year: 2021
  ident: b0085
  article-title: Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework
  publication-title: J. Adv. Model. Earth Syst.
– volume: 28
  start-page: 3391
  year: 2023
  end-page: 3433
  ident: b0295
  article-title: Hydro-pedotransfer functions: A roadmap for future development
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 12
  start-page: 61
  year: 2011
  end-page: 71
  ident: b0190
  article-title: Test und Entwicklung von Pedotransferfunktionen für Wasserretention und hydraulische Leitfähigkeit von Waldböden
  publication-title: Waldökologie, Landschaftsforschung und Naturschutz
– reference: .
– volume: 614
  year: 2022
  ident: b0070
  article-title: Data correlation structure controls pedotransfer function performance
  publication-title: J. Hydrol.
– volume: 25
  start-page: 197
  year: 2016
  end-page: 227
  ident: b0025
  article-title: A random forest guided tour
  publication-title: TEST
– reference: Swisstopo, n.d. [WWW Document]. URL
– volume: 59
  start-page: 1846
  year: 2012
  end-page: 1854
  ident: b0105
  article-title: How Correlations Influence Lasso Prediction
  publication-title: IEEE Trans. Inf. Theory
– volume: 50
  start-page: 471
  year: 2015
  end-page: 484
  ident: b0140
  article-title: Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences
  publication-title: Multivar. Behav. Res.
– volume: 3
  start-page: 191
  year: 2017
  end-page: 210
  ident: b0170
  article-title: Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models
  publication-title: Soil
– volume: 22
  start-page: 62
  year: 2006
  end-page: 70
  ident: b0045
  article-title: The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils
  publication-title: Soil Use Manag.
– volume: 946
  year: 2024
  ident: b0280
  article-title: Coordination between degree of isohydricity and depth of root water uptake in temperate tree species
  publication-title: Sci. Total Environ.
– volume: 491
  start-page: 752
  year: 2012
  end-page: 755
  ident: b0040
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
– ident: 10.1016/j.geoderma.2025.117397_b0015
– volume: 53
  start-page: 417
  year: 2002
  ident: 10.1016/j.geoderma.2025.117397_b0155
  article-title: Uncertainty analysis for pedotransfer functions
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2002.00452.x
– volume: 57
  start-page: 1088
  year: 1993
  ident: 10.1016/j.geoderma.2025.117397_b0240
  article-title: Evaluation of Pedo-Transfer Functions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700040035x
– volume: 946
  year: 2024
  ident: 10.1016/j.geoderma.2025.117397_b0280
  article-title: Coordination between degree of isohydricity and depth of root water uptake in temperate tree species
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.174346
– volume: 22
  start-page: 62
  year: 2006
  ident: 10.1016/j.geoderma.2025.117397_b0045
  article-title: The transferability of Australian pedotransfer functions for predicting water retention characteristics of French soils
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2006.00001.x
– volume: 614
  year: 2022
  ident: 10.1016/j.geoderma.2025.117397_b0070
  article-title: Data correlation structure controls pedotransfer function performance
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128540
– ident: 10.1016/j.geoderma.2025.117397_b0200
– ident: 10.1016/j.geoderma.2025.117397_b0050
– volume: 1
  start-page: 59
  year: 2014
  ident: 10.1016/j.geoderma.2025.117397_b0145
  article-title: Development of pedotransfer functions for estimating water retention curve for tropical soils of the Brazilian savanna
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2014.08.003
– volume: 1
  start-page: 14
  year: 2002
  ident: 10.1016/j.geoderma.2025.117397_b0255
  article-title: Unsaturated Hydraulic Conductivity of Structured Porous Media: A Review of Liquid Configuration–Based Models
  publication-title: Vadose Zone J.
– ident: 10.1016/j.geoderma.2025.117397_b0005
– volume: 12
  start-page: 513
  year: 1976
  ident: 10.1016/j.geoderma.2025.117397_b0160
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/WR012i003p00513
– ident: 10.1016/j.geoderma.2025.117397_b0020
  doi: 10.1007/978-94-017-1237-8_2
– ident: 10.1016/j.geoderma.2025.117397_b0110
– start-page: 27053.
  year: 2009
  ident: 10.1016/j.geoderma.2025.117397_b0300
– year: 2018
  ident: 10.1016/j.geoderma.2025.117397_b0060
  doi: 10.1007/978-1-4419-0118-7
– volume: 13
  year: 2021
  ident: 10.1016/j.geoderma.2025.117397_b0085
  article-title: Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2020MS002242
– volume: 491
  start-page: 752
  year: 2012
  ident: 10.1016/j.geoderma.2025.117397_b0040
  article-title: Global convergence in the vulnerability of forests to drought
  publication-title: Nature
  doi: 10.1038/nature11688
– volume: 39
  start-page: 695
  year: 2019
  ident: 10.1016/j.geoderma.2025.117397_b0125
  article-title: No need for pipes when the well is dry—a comment on hydraulic failure in trees
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpz030
– year: 2022
  ident: 10.1016/j.geoderma.2025.117397_b0195
– volume: 11
  year: 2023
  ident: 10.1016/j.geoderma.2025.117397_b0065
  article-title: Improving prediction accuracy for acid sulfate soil mapping by means of variable selection
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2023.1213069
– volume: 41
  start-page: 212
  year: 1999
  ident: 10.1016/j.geoderma.2025.117397_b0210
  article-title: A Fast Algorithm for the Minimum Covariance Determinant Estimator
  publication-title: Technometrics
  doi: 10.1080/00401706.1999.10485670
– volume: 28
  start-page: 3391
  year: 2023
  ident: 10.1016/j.geoderma.2025.117397_b0295
  article-title: Hydro-pedotransfer functions: A roadmap for future development
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-28-3391-2024
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.geoderma.2025.117397_b0235
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. Roy. Stat. Soc.: Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 14
  start-page: 151
  year: 2021
  ident: 10.1016/j.geoderma.2025.117397_b0230
  article-title: Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-151-2021
– volume: 3
  start-page: 191
  year: 2017
  ident: 10.1016/j.geoderma.2025.117397_b0170
  article-title: Mapping of soil properties at high resolution in Switzerland using boosted geoadditive models
  publication-title: Soil
  doi: 10.5194/soil-3-191-2017
– year: 1951
  ident: 10.1016/j.geoderma.2025.117397_b0260
– volume: 175
  start-page: 221
  year: 2012
  ident: 10.1016/j.geoderma.2025.117397_b0185
  article-title: Pedotransfer functions for water retention and unsaturated hydraulic conductivity of forest soils. Journal of Plant
  publication-title: Nutrition and Soil Science
– volume: 160
  start-page: 627
  year: 2011
  ident: 10.1016/j.geoderma.2025.117397_b0135
  article-title: Necessary meta-data for pedotransfer functions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.09.023
– volume: 34
  start-page: 354
  year: 2018
  ident: 10.1016/j.geoderma.2025.117397_b0010
  article-title: Transferability of continuous- and class-pedotransfer functions to predict water retention properties of semiarid Syrian soils
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12424
– volume: 25
  start-page: 197
  year: 2016
  ident: 10.1016/j.geoderma.2025.117397_b0025
  article-title: A random forest guided tour
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 9
  start-page: 365
  year: 2023
  ident: 10.1016/j.geoderma.2025.117397_b0080
  article-title: Reproducibility of the wet part of the soil water retention curve: a European interlaboratory comparison
  publication-title: Soil
  doi: 10.5194/soil-9-365-2023
– volume: 195–196
  start-page: 79
  year: 2013
  ident: 10.1016/j.geoderma.2025.117397_b0305
  article-title: Soil hydraulic information for river basin studies in semi-arid regions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.11.021
– volume: 9
  start-page: 795
  year: 2010
  ident: 10.1016/j.geoderma.2025.117397_b0275
  article-title: Using Pedotransfer Functions to Estimate the van Genuchten–Mualem Soil Hydraulic Properties: A Review
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2010.0045
– ident: 10.1016/j.geoderma.2025.117397_b0225
– volume: 149
  start-page: 421
  year: 2009
  ident: 10.1016/j.geoderma.2025.117397_b0250
  article-title: Using distance metrics to determine the appropriate domain of pedotransfer function predictions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.01.006
– volume: 25
  start-page: 868
  year: 2020
  ident: 10.1016/j.geoderma.2025.117397_b0035
  article-title: Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.04.003
– ident: 10.1016/j.geoderma.2025.117397_b0055
– volume: 35
  start-page: 579
  year: 2020
  ident: 10.1016/j.geoderma.2025.117397_b0100
  article-title: Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons
  publication-title: Stat. Sci.
– volume: 635
  start-page: 631
  year: 2024
  ident: 10.1016/j.geoderma.2025.117397_b0290
  article-title: Global influence of soil texture on ecosystem water limitation
  publication-title: Nature
  doi: 10.1038/s41586-024-08089-2
– volume: 173
  start-page: 207
  year: 2010
  ident: 10.1016/j.geoderma.2025.117397_b0285
  article-title: Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates after acid fumigation with HCl
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200900158
– volume: 213
  start-page: 36
  year: 2014
  ident: 10.1016/j.geoderma.2025.117397_b0165
  article-title: A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.025
– volume: 7
  start-page: 217
  year: 2021
  ident: 10.1016/j.geoderma.2025.117397_b0180
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
  doi: 10.5194/soil-7-217-2021
– ident: 10.1016/j.geoderma.2025.117397_b0150
– volume: 44
  start-page: 892
  year: 1980
  ident: 10.1016/j.geoderma.2025.117397_b0265
  article-title: A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 50
  start-page: 471
  year: 2015
  ident: 10.1016/j.geoderma.2025.117397_b0140
  article-title: Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences
  publication-title: Multivar. Behav. Res.
  doi: 10.1080/00273171.2015.1036965
– volume: 70
  start-page: 1430
  year: 2006
  ident: 10.1016/j.geoderma.2025.117397_b0220
  article-title: Including Topography and Vegetation Attributes for Developing Pedotransfer Functions
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0087
– volume: 55
  start-page: 1199
  year: 2017
  ident: 10.1016/j.geoderma.2025.117397_b0270
  article-title: Pedotransfer functions in earth system science: challenges and perspectives
  publication-title: Rev. Geophys.
  doi: 10.1002/2017RG000581
– ident: 10.1016/j.geoderma.2025.117397_b0075
  doi: 10.2136/sssabookser5.1.2ed.c15
– volume: 606
  year: 2022
  ident: 10.1016/j.geoderma.2025.117397_b0215
  article-title: Developing pedotransfer functions using Sentinel-2 satellite spectral indices and Machine learning for estimating the surface soil moisture
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127423
– ident: 10.1016/j.geoderma.2025.117397_b0175
  doi: 10.32614/CRAN.package.soilhypfit
– volume: 12
  start-page: 61
  year: 2011
  ident: 10.1016/j.geoderma.2025.117397_b0190
  article-title: Test und Entwicklung von Pedotransferfunktionen für Wasserretention und hydraulische Leitfähigkeit von Waldböden
  publication-title: Waldökologie, Landschaftsforschung und Naturschutz
– volume: 59
  start-page: 1846
  year: 2012
  ident: 10.1016/j.geoderma.2025.117397_b0105
  article-title: How Correlations Influence Lasso Prediction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2012.2227680
– volume: 12
  start-page: 1113
  year: 2021
  ident: 10.1016/j.geoderma.2025.117397_b0115
  article-title: Hydraulic Properties of Forest Soils with Stagnic Conditions
  publication-title: Forests
  doi: 10.3390/f12081113
– year: 1989
  ident: 10.1016/j.geoderma.2025.117397_b0030
  article-title: Using Soil Survey Data for Quantitative Land Evaluation
  doi: 10.1007/978-1-4612-3532-3_4
– volume: 219–220
  start-page: 46
  year: 2014
  ident: 10.1016/j.geoderma.2025.117397_b0130
  article-title: Covariate selection with iterative principal component analysis for predicting physical soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.013
– volume: 66
  start-page: 226
  issue: 1
  year: 2015
  ident: 10.1016/j.geoderma.2025.117397_b0245
  article-title: New generation of hydraulic pedotransfer functions for Europe. European
  publication-title: Journal of Soil Science
  doi: 10.1111/ejss.12192
– volume: 40
  start-page: 913
  year: 2017
  ident: 10.1016/j.geoderma.2025.117397_b0205
  article-title: Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
  doi: 10.1111/ecog.02881
– year: 2009
  ident: 10.1016/j.geoderma.2025.117397_bib306
– volume: 12
  start-page: 819
  year: 2023
  ident: 10.1016/j.geoderma.2025.117397_b0120
  article-title: Combining Digital Covariates and Machine Learning Models to Predict the Spatial Variation of Soil Cation Exchange Capacity
  publication-title: Land
  doi: 10.3390/land12040819
SSID ssj0017020
Score 2.4625416
Snippet •Parsimonious Lasso models and Random Forest models were trained for Swiss data.•The transferability of pedotransfer functions was evaluated for forest...
Soil hydraulic properties (SHP) are essential for estimating fluxes in terrestrial ecosystems, plant available water, and root water uptake. To provide SHP for...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 117397
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXgttps-va2iiKAXXdhbSTKpVqS7dLuI_hB_rzNJKr158dBLKEPIN5350ky-Yew8zMDkgM4rNX7kMegoUAUCImScSZHkRW6rKh8e07tpfD9LZoNWX1QT5uSB3cJdFGNlEqGyUEMaZypSiSgEgKjCsIoSoyn6Ys7rN1P-_CBDFjS4D_yGaFBrMas0NE7opFKQzNMgFVnF_kFGGmSZ22225ekhn7hp7bA10-yyzclL6yUyzB77tumlMq1T2P7k84ovDG4u_TCnVGW9iSMh5aSiQay0eeHLef3OXz-hlav3WvMF_YdvSVD1kk8aLr08CdnzBex0VZ37jjzWGD5ozxpa8rrhTx919-XuC--z6e3N8_Vd4LsrBFpkSRdAjKuH_E4XSo6rJJcpxkyIlUnTGCBUEqMgZNpEOWiodAF0BpmqGDEFQ7zwgK0388YcMl4BsagwQ66JhASUqgyMDW6OUpACQ-qIXfQLXS6ciEbZV5e9lT00JUFTOmhG7Irw-H2bRLDtALpG6V2j_Ms1Rqzo0Sw9n3A8AU3Vf0zg6D8mcMw2yKSrFzxh6127MqfIYTp1Zt31B5vj9Yc
  priority: 102
  providerName: Directory of Open Access Journals
Title Transferability of pedotransfer functions for estimating soil hydraulic properties: An analysis of controlling factors for forest soils in Switzerland
URI https://dx.doi.org/10.1016/j.geoderma.2025.117397
https://doaj.org/article/92be53b70cd647b1b5393dd3f00f15ec
Volume 460
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BTtwwELUQvdBDBaVVF8rKh17TTdaOnfS2RUVbULkAErfI9jjbIJRdhUUIDv2Mfm9nHActpx445BDLGSWeycyzPfPM2JdUgy8Ajdc4_MkluCyxJSpEGKmNyIuyCFmVv87V_EqeXufXW-x4qIWhtMro-3ufHrx1bJnE0ZysmoZqfDOlQ4QOpC1Euy2lJiv_-uc5zSPTaaRmzFRCvTeqhG9QR3TgWOAfmua0fymI_GkjQAUe_404tRF7TnbZuwga-ax_rz225dv37O1s0UXiDL_P_oagU_uu591-5MuarzxOOWMzpwAWbIwjTOXErUFYtV3wu2Vzy38_QmfubxvHV7Q63xHN6jc-a7mJpCUkL6a1UwE7j-f0BGF4obwg6I43Lb94aNZPfRXxB3Z18uPyeJ7EMxcSJ3S-TkDm3iHqc6U10zovjEJPCtJ6pSRAag36RtDOZwU4qF0JtDOprERNgye0-JFtt8vWf2K8BsJWqUYEijAFrK09TD1OmRQYgY52xCbDQFernlqjGnLObqpBNRWppupVM2LfSR_PvYkaOzQsu0UVbaMqp9bnwurUgZLaZjYXpQAQdZrWGX7ciJWDNqsXloaimv-8wMErnj1kO3TXJw9-Ztvr7t4fIaBZ23Gw2DF7M_t5Nj8fh2WBf56T-0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqdYysMHOIZN4sROkDgsj2pLHxdaqTcTe5wlVZVdZbeqlgM_gz_CH2TGcarlxAH1kIuTjGLPZOazPPMNY69jBa4ANN7K4k-egU0iU6JCRJWpSuRFWfisyqNjOT3NvpzlZ1vs91ALQ2mVwff3Pt176zAyDqs5XjQN1fgmUvkI7UlbZMisPHDrK9y3Ld_vf0Ilv0nTvc8nH6dRaC0QWaHyVQRZ7iyCG1uaKq3zopLoMCAzTsoMIDYVugBQ1iUFWKhtCXQAJ02GEwJHoAjl3mK3M3QX1Dbh7c_rvJJExYELMpERfd5GWfI5GgV1OPOER2lOB6aC2KY2IqJvHLARGDeC3d59thNQKp_0C_GAbbn2Ibs3mXWBqcM9Yr98lKtd1xN9r_m85guHe9wwzClieqPmiIs5kXkQOG5nfDlvLvj3NXTV5UVj-YKOAzridX3HJy2vAksKyQt59FQxz0NjIC8ML5TnBS150_KvV83qR1-2_Jid3ogmnrDtdt66p4zXQGAuVgh5EReBMbWD1OEeTUIl0LOP2HhYaL3ouTz0kOR2rgfVaFKN7lUzYh9IH9dPExe3H5h3Mx2MUZepcbkwKrYgM2USk4tSAIg6jusEJzdi5aBN_Zdpo6jmHx_w7D_efcXuTE-ODvXh_vHBLrtLd_rMxedse9VduheIplbmpbdezr7d9O_yByDgNyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferability+of+pedotransfer+functions+for+estimating+soil+hydraulic+properties%3A+An+analysis+of+controlling+factors+for+forest+soils+in+Switzerland&rft.jtitle=Geoderma&rft.au=Schoch%2C+Julian&rft.au=Nussbaum%2C+Madlene&rft.au=Walthert%2C+Lorenz&rft.au=Carminati%2C+Andrea&rft.date=2025-08-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.volume=460&rft_id=info:doi/10.1016%2Fj.geoderma.2025.117397&rft.externalDocID=S0016706125002356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon