Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications

Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped C...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluorescence Vol. 29; no. 5; pp. 1191 - 1200
Main Authors Sahiner, Nurettin, Suner, Selin S., Sahiner, Mehtap, Silan, Coskun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
AbstractList Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.
Author Sahiner, Nurettin
Silan, Coskun
Suner, Selin S.
Sahiner, Mehtap
Author_xml – sequence: 1
  givenname: Nurettin
  orcidid: 0000-0003-0120-530X
  surname: Sahiner
  fullname: Sahiner, Nurettin
  email: sahiner71@gmail.com, nsahiner@health.usf.edu
  organization: Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Nanoscience and Technology Research and Application Center (NANORAC), Department of Ophthalmology, Morsani School of Medicine, University of South Florida
– sequence: 2
  givenname: Selin S.
  surname: Suner
  fullname: Suner, Selin S.
  organization: Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University
– sequence: 3
  givenname: Mehtap
  surname: Sahiner
  fullname: Sahiner, Mehtap
  organization: Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University
– sequence: 4
  givenname: Coskun
  surname: Silan
  fullname: Silan, Coskun
  organization: School of Medicine, Department of Pharmacology, Canakkale Onsekiz Mart University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31502060$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUhS0E4jHlD7BAlth0k3L9yMReDlP6kFCLRLurZDmxg4wSO9jOYv49HgaoxIKVr63v3Ht9zgna98FbhM4IfCEAzWUiIGRdAZEVUM5ItdlDx6RuWMWl5PulhppVUIM8QicpPQCAFFwcoiNGaqCwhGP075fLMdxbj7U3-G4e-jnir2GyBq91bIMvl5xwH8OIV6PzAa86Z8pDiPg2ZOuz0wO-cmG0xnWlXE3TUIrsgk-f0EGvh2RPX84F-vvt-s_6R3Xz-_vP9eqm6lhT58pwMFSwvmWyEUzoRjIiGFBNOOM94R3rjKamFdTWjVzSZa_BNlaDIZYK0bIF-rzrO8XwONuU1ehSZ4dBexvmpGihimHbrgt08Q59CHP0ZTtFGeFUFM-21PkLNbflY2qKbtRxo159KwDdAV0MKUXbvyEE1DYctQtHlXDUczhqU0Tinahz-dmpHLUbPpaynTSVOf7exv9rf6B6ArPXoic
CitedBy_id crossref_primary_10_1016_j_saa_2024_125625
crossref_primary_10_1016_j_carbon_2022_03_043
crossref_primary_10_1016_j_ijbiomac_2023_126846
crossref_primary_10_1016_j_mtcomm_2020_101222
crossref_primary_10_2478_msp_2024_0009
crossref_primary_10_1002_slct_202100468
crossref_primary_10_1021_acs_langmuir_4c03942
crossref_primary_10_1021_acsomega_2c04751
crossref_primary_10_3390_catal12111376
crossref_primary_10_1021_acssuschemeng_2c07045
crossref_primary_10_1088_2053_1591_ac31fc
crossref_primary_10_3389_fbioe_2020_573407
crossref_primary_10_3390_nano11040935
crossref_primary_10_1016_j_jphotochem_2023_115066
crossref_primary_10_1088_1742_6596_2086_1_012121
crossref_primary_10_1002_smll_202303773
crossref_primary_10_1016_j_mtcomm_2023_106991
crossref_primary_10_1016_j_jddst_2020_101889
crossref_primary_10_1007_s00339_022_05466_4
crossref_primary_10_1021_acsapm_2c01579
crossref_primary_10_1002_slct_202204621
crossref_primary_10_1016_j_jics_2021_100181
crossref_primary_10_1016_j_poly_2025_117468
crossref_primary_10_1039_D2NJ03420D
crossref_primary_10_1002_slct_202404933
crossref_primary_10_1016_j_jphotochem_2024_116108
crossref_primary_10_1016_j_heliyon_2024_e41020
crossref_primary_10_1002_macp_202100242
crossref_primary_10_1016_j_gce_2022_05_004
crossref_primary_10_1016_j_foodres_2025_115999
crossref_primary_10_1007_s10895_024_03649_1
crossref_primary_10_1021_acssensors_0c01556
crossref_primary_10_1186_s12989_020_00363_1
crossref_primary_10_3390_nano11081877
crossref_primary_10_1021_acsabm_2c00850
crossref_primary_10_1016_j_scitotenv_2020_141385
crossref_primary_10_3389_fbioe_2023_1333752
crossref_primary_10_1007_s42452_021_04287_z
crossref_primary_10_1016_j_jcis_2022_01_005
crossref_primary_10_1021_acsaom_3c00411
crossref_primary_10_1016_j_jphotochem_2023_114914
crossref_primary_10_1007_s10895_021_02798_x
crossref_primary_10_1088_1742_6596_1825_1_012062
crossref_primary_10_3390_ma15072395
crossref_primary_10_1007_s12668_020_00741_1
crossref_primary_10_1007_s40010_024_00901_y
crossref_primary_10_1177_00037028241279464
crossref_primary_10_1007_s42823_022_00359_1
crossref_primary_10_1016_j_mseb_2025_118090
crossref_primary_10_1039_D3TB01378B
crossref_primary_10_1002_bio_4045
crossref_primary_10_1007_s13762_021_03723_2
crossref_primary_10_1016_j_optmat_2022_112829
crossref_primary_10_1002_slct_202200448
crossref_primary_10_1007_s11696_022_02454_z
crossref_primary_10_1002_aoc_70007
crossref_primary_10_1021_acsanm_4c04649
crossref_primary_10_1016_j_envint_2022_107572
crossref_primary_10_1016_j_jece_2024_114444
crossref_primary_10_1016_j_molliq_2021_117583
crossref_primary_10_1111_php_13261
crossref_primary_10_3390_nano12142365
crossref_primary_10_1016_j_microc_2023_108470
crossref_primary_10_1002_asia_202401098
crossref_primary_10_1016_j_mcat_2021_111517
crossref_primary_10_1002_slct_202200574
crossref_primary_10_1016_j_saa_2023_123609
crossref_primary_10_3390_ma16196512
crossref_primary_10_1016_j_jhazmat_2023_132671
crossref_primary_10_1016_j_toxrep_2024_101794
crossref_primary_10_1166_jbn_2021_3131
crossref_primary_10_1016_j_ijpx_2023_100209
crossref_primary_10_1016_j_impact_2020_100244
crossref_primary_10_1002_jccs_202300200
crossref_primary_10_3389_fchem_2021_713104
crossref_primary_10_1080_01694243_2022_2108271
crossref_primary_10_3390_c6030058
crossref_primary_10_1016_j_jddst_2025_106667
Cites_doi 10.1007/s11051-012-1414-3
10.1039/C5RA09525E
10.1021/ja062677d
10.1039/C5AN01487E
10.1016/j.carbon.2016.04.003
10.1016/j.msec.2014.01.038
10.1016/j.snb.2016.07.169
10.1016/j.nantod.2016.08.006
10.1021/acsami.5b00448
10.1021/am506076r
10.1016/j.bios.2017.01.067
10.1016/j.apsusc.2017.05.036
10.1016/j.carbon.2016.10.089
10.1021/ac301945z
10.1021/ar400023s
10.1039/c2jm34690g
10.1039/C4RA11158C
10.1039/C4NJ00965G
10.1021/ja309270h
10.1016/j.snb.2015.05.021
10.1016/j.apsusc.2015.03.029
10.1126/science.1154663
10.1039/C4RA10885J
10.1039/C4NR00693C
10.1021/ac500289c
10.1016/j.bios.2016.08.098
10.1016/j.snb.2016.09.186
10.1039/b907612c
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s10895-019-02431-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1573-4994
EndPage 1200
ExternalDocumentID 31502060
10_1007_s10895_019_02431_y
Genre Journal Article
GrantInformation_xml – fundername: Canakkale Onsekiz Mart University
  grantid: COMU BAP, TSA-2018-2457
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67N
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z7Y
Z83
Z87
Z88
Z8O
Z8P
Z8Q
Z8R
Z8W
Z91
Z92
ZMTXR
ZOVNA
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ABRTQ
7X8
ID FETCH-LOGICAL-c375t-d40d283fb397838a79318302a1434f14c3cda2db82e579626fa0e7ea0d1e288b3
IEDL.DBID U2A
ISSN 1053-0509
1573-4994
IngestDate Fri Jul 11 13:59:22 EDT 2025
Fri Jul 25 11:11:27 EDT 2025
Wed Feb 19 02:29:47 EST 2025
Thu Apr 24 23:10:36 EDT 2025
Tue Jul 01 01:39:06 EDT 2025
Fri Feb 21 02:34:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Blood compatibility
Fluorescence carbon dots
Antimicrobial CDs
Microwave technique
Amino acid derived CDs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-d40d283fb397838a79318302a1434f14c3cda2db82e579626fa0e7ea0d1e288b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0120-530X
PMID 31502060
PQID 2314281058
PQPubID 2043853
PageCount 10
ParticipantIDs proquest_miscellaneous_2288007318
proquest_journals_2314281058
pubmed_primary_31502060
crossref_primary_10_1007_s10895_019_02431_y
crossref_citationtrail_10_1007_s10895_019_02431_y
springer_journals_10_1007_s10895_019_02431_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Netherlands
PublicationTitle Journal of fluorescence
PublicationTitleAbbrev J Fluoresc
PublicationTitleAlternate J Fluoresc
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li, Lau, Tang, Jic, Yang (CR7) 2014; 6
Dong, Li, Zhou, Wang, Chi, Chen (CR10) 2012; 84
Zhang, Zhang, Liang, Li, Qiu (CR11) 2014; 86
Zou, Hou, Fa, Zhang l, Dong, Li, Huo, Yang (CR21) 2017; 239
Sagbas, Sahiner, Khan, Jawaid, Inamuddin, Asiri (CR17) 2019
Liu, Zhang, Dai, Li (CR16) 2012; 134
Zhang, Gao, Li (CR18) 2014; 38
Philippidis, Stefanakis, Anglos, Ghanotakis (CR22) 2013; 15
Dong, Cai, You, Chi (CR9) 2015; 140
Kudr, Richtera, Xhaxhiu, Hynek, Heger, Zitka, Adam (CR26) 2017; 92
Yuan, Li, Fan, Meng, Fan, Yang (CR1) 2016; 11
Xue, Zhang, Zou, Lan, Zhan, Zhao (CR8) 2015; 219
Cheng, Li, Zhai, Xu, Cao, Liu (CR14) 2014; 6
Liu, Li, Dong, Zhang, Fan, Lin, Luo, Li (CR28) 2017; 87
Wang, Sun, Zhuo, Zhang, Wang (CR19) 2014; 4
He, Shu, Yang, Ma, Huang, Xu, Wang, Hu, Zhang, Xu (CR29) 2017; 422
Fernando, Sahu, Liu, Lewis, Guliants, Jafariyan, Wang, Bunker, Sun (CR15) 2015; 7
Karfa, Roy, Patra, Kumar, Tarafdar, Madhuri, Sharma (CR24) 2015; 5
CR25
Li, Kang, Liu, Lee (CR3) 2012; 22
Sun, Zhou, Lin, Wang, Fernando, Pathak, Meziani, Harruff, Wang, Wang, Luo, Yang, Kose, Chen, Veca, S-Y (CR2) 2006; 128
Ding, Zhu, Tian (CR12) 2014; 47
Song, Quan, Xu, Liu, Cui, Liu (CR6) 2016; 104
Zeng, Ma, Wang, Chen, Zhou, Zheng, Yub, Huang (CR23) 2015; 342
Wang, Xu, Lu, Chen, Yuan, Wei, Ye, Chen (CR20) 2016; 241
Wang, Wang, Guo, Liu, Qin (CR4) 2014; 4
Gao, Ma, Li, Dai, Xiao, Zhao, Gong (CR27) 2017; 112
Mehta, Jha, Kailasa (CR13) 2014; 38
Ponomarenko, Schedin, Katsnelson, Yang, Hill, Novoselov, Geim (CR5) 2008; 320
2431_CR25
KAS Fernando (2431_CR15) 2015; 7
T Liu (2431_CR28) 2017; 87
H Li (2431_CR3) 2012; 22
YW Zeng (2431_CR23) 2015; 342
B-X Zhang (2431_CR18) 2014; 38
F Yuan (2431_CR1) 2016; 11
L Zhang (2431_CR11) 2014; 86
Y Dong (2431_CR9) 2015; 140
F Gao (2431_CR27) 2017; 112
J Kudr (2431_CR26) 2017; 92
Y Dong (2431_CR10) 2012; 84
M Xue (2431_CR8) 2015; 219
LA Ponomarenko (2431_CR5) 2008; 320
A Philippidis (2431_CR22) 2013; 15
P Karfa (2431_CR24) 2015; 5
C Wang (2431_CR19) 2014; 4
L Cheng (2431_CR14) 2014; 6
VN Mehta (2431_CR13) 2014; 38
X Li (2431_CR7) 2014; 6
Q Liu (2431_CR16) 2012; 134
G He (2431_CR29) 2017; 422
Z Wang (2431_CR20) 2016; 241
D Wang (2431_CR4) 2014; 4
Z Song (2431_CR6) 2016; 104
YP Sun (2431_CR2) 2006; 128
S Zou (2431_CR21) 2017; 239
C Ding (2431_CR12) 2014; 47
S Sagbas (2431_CR17) 2019
References_xml – volume: 15
  start-page: 1414
  year: 2013
  ident: CR22
  article-title: Microwave heating of arginine yields highly fluorescent nanoparticles
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-012-1414-3
– volume: 5
  start-page: 58141
  year: 2015
  end-page: 58153
  ident: CR24
  article-title: Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd /Fe , cell imaging and enhanced antibacterial activity
  publication-title: RSC Adv
  doi: 10.1039/C5RA09525E
– volume: 128
  start-page: 7756
  issue: 24
  year: 2006
  end-page: 7757
  ident: CR2
  article-title: Quantum-sized carbon dots for bright and colorful photoluminescence
  publication-title: J Am Chem Soc
  doi: 10.1021/ja062677d
– volume: 140
  start-page: 7468
  year: 2015
  end-page: 7486
  ident: CR9
  article-title: Sensing applications of luminescent carbon based dots
  publication-title: Analyst
  doi: 10.1039/C5AN01487E
– volume: 104
  start-page: 169
  year: 2016
  end-page: 178
  ident: CR6
  article-title: Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.003
– volume: 38
  start-page: 20
  year: 2014
  end-page: 27
  ident: CR13
  article-title: One-pot green synthesis of carbon dots by using juice for fluorescent imaging of bacteria ( ) and yeast ( ) cells
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2014.01.038
– volume: 239
  start-page: 1033
  year: 2017
  end-page: 1041
  ident: CR21
  article-title: An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2016.07.169
– volume: 11
  start-page: 565
  year: 2016
  end-page: 586
  ident: CR1
  article-title: Shining carbon dots: synthesis and biomedical and optoelectronic applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.08.006
– year: 2019
  ident: CR17
  article-title: Nanocarbon and its composites
  publication-title: Chapter 22: Carbon dots: Preparation, Properties and Application
– volume: 7
  start-page: 8363
  year: 2015
  end-page: 8376
  ident: CR15
  article-title: Carbon quantum dots and applications in photocatalytic energy conversion
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b00448
– volume: 6
  start-page: 20487
  year: 2014
  end-page: 20497
  ident: CR14
  article-title: Polycation-b-Polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am506076r
– ident: CR25
– volume: 92
  start-page: 133
  year: 2017
  end-page: 139
  ident: CR26
  article-title: Carbon dots based FRET for the detection of DNA damage
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2017.01.067
– volume: 422
  start-page: 257
  year: 2017
  end-page: 265
  ident: CR29
  article-title: Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.05.036
– volume: 112
  start-page: 131
  year: 2017
  end-page: 141
  ident: CR27
  article-title: Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.089
– volume: 84
  start-page: 8378
  year: 2012
  end-page: 8382
  ident: CR10
  article-title: Graphene quantum dot as a green and facile sensor for free chlorine in drinking water
  publication-title: Anal Chem
  doi: 10.1021/ac301945z
– volume: 47
  start-page: 20
  year: 2014
  end-page: 30
  ident: CR12
  article-title: Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging
  publication-title: Acc Chem Res
  doi: 10.1021/ar400023s
– volume: 22
  start-page: 24230
  year: 2012
  end-page: 24253
  ident: CR3
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J Mater Chem A
  doi: 10.1039/c2jm34690g
– volume: 4
  start-page: 51658
  year: 2014
  end-page: 51665
  ident: CR4
  article-title: Luminescent properties of milk carbon dots and their Sulphur and nitrogen doped analogues
  publication-title: RSC Adv
  doi: 10.1039/C4RA11158C
– volume: 38
  start-page: 4615
  year: 2014
  end-page: 4621
  ident: CR18
  article-title: Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots
  publication-title: New J Chem
  doi: 10.1039/C4NJ00965G
– volume: 134
  start-page: 18932
  year: 2012
  end-page: 18935
  ident: CR16
  article-title: Nitrogen-doped colloidal graphene quantum dots and their size dependent Electrocatalytic activity for the oxygen reduction reaction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja309270h
– volume: 219
  start-page: 50
  year: 2015
  end-page: 56
  ident: CR8
  article-title: Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2015.05.021
– volume: 342
  start-page: 136
  year: 2015
  end-page: 143
  ident: CR23
  article-title: N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.03.029
– volume: 320
  start-page: 356
  year: 2008
  end-page: 358
  ident: CR5
  article-title: Chaotic Dirac billiard in graphene quantum dots
  publication-title: Science
  doi: 10.1126/science.1154663
– volume: 4
  start-page: 54060
  year: 2014
  end-page: 54065
  ident: CR19
  article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application
  publication-title: RSC Adv
  doi: 10.1039/C4RA10885J
– volume: 6
  start-page: 5323
  year: 2014
  end-page: 5328
  ident: CR7
  article-title: Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots
  publication-title: Nanoscale
  doi: 10.1039/C4NR00693C
– volume: 86
  start-page: 4423
  year: 2014
  end-page: 4430
  ident: CR11
  article-title: Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement
  publication-title: Anal Chem
  doi: 10.1021/ac500289c
– volume: 87
  start-page: 772
  year: 2017
  end-page: 778
  ident: CR28
  article-title: A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.08.098
– volume: 241
  start-page: 1324
  year: 2016
  end-page: 1330
  ident: CR20
  article-title: Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2016.09.186
– volume: 38
  start-page: 20
  year: 2014
  ident: 2431_CR13
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2014.01.038
– ident: 2431_CR25
  doi: 10.1039/b907612c
– volume-title: Chapter 22: Carbon dots: Preparation, Properties and Application
  year: 2019
  ident: 2431_CR17
– volume: 22
  start-page: 24230
  year: 2012
  ident: 2431_CR3
  publication-title: J Mater Chem A
  doi: 10.1039/c2jm34690g
– volume: 241
  start-page: 1324
  year: 2016
  ident: 2431_CR20
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2016.09.186
– volume: 219
  start-page: 50
  year: 2015
  ident: 2431_CR8
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2015.05.021
– volume: 6
  start-page: 20487
  year: 2014
  ident: 2431_CR14
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am506076r
– volume: 15
  start-page: 1414
  year: 2013
  ident: 2431_CR22
  publication-title: J Nanopart Res
  doi: 10.1007/s11051-012-1414-3
– volume: 84
  start-page: 8378
  year: 2012
  ident: 2431_CR10
  publication-title: Anal Chem
  doi: 10.1021/ac301945z
– volume: 134
  start-page: 18932
  year: 2012
  ident: 2431_CR16
  publication-title: J Am Chem Soc
  doi: 10.1021/ja309270h
– volume: 86
  start-page: 4423
  year: 2014
  ident: 2431_CR11
  publication-title: Anal Chem
  doi: 10.1021/ac500289c
– volume: 239
  start-page: 1033
  year: 2017
  ident: 2431_CR21
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2016.07.169
– volume: 6
  start-page: 5323
  year: 2014
  ident: 2431_CR7
  publication-title: Nanoscale
  doi: 10.1039/C4NR00693C
– volume: 11
  start-page: 565
  year: 2016
  ident: 2431_CR1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.08.006
– volume: 38
  start-page: 4615
  year: 2014
  ident: 2431_CR18
  publication-title: New J Chem
  doi: 10.1039/C4NJ00965G
– volume: 140
  start-page: 7468
  year: 2015
  ident: 2431_CR9
  publication-title: Analyst
  doi: 10.1039/C5AN01487E
– volume: 104
  start-page: 169
  year: 2016
  ident: 2431_CR6
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.003
– volume: 342
  start-page: 136
  year: 2015
  ident: 2431_CR23
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.03.029
– volume: 112
  start-page: 131
  year: 2017
  ident: 2431_CR27
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.089
– volume: 87
  start-page: 772
  year: 2017
  ident: 2431_CR28
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2016.08.098
– volume: 92
  start-page: 133
  year: 2017
  ident: 2431_CR26
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2017.01.067
– volume: 320
  start-page: 356
  year: 2008
  ident: 2431_CR5
  publication-title: Science
  doi: 10.1126/science.1154663
– volume: 47
  start-page: 20
  year: 2014
  ident: 2431_CR12
  publication-title: Acc Chem Res
  doi: 10.1021/ar400023s
– volume: 128
  start-page: 7756
  issue: 24
  year: 2006
  ident: 2431_CR2
  publication-title: J Am Chem Soc
  doi: 10.1021/ja062677d
– volume: 4
  start-page: 54060
  year: 2014
  ident: 2431_CR19
  publication-title: RSC Adv
  doi: 10.1039/C4RA10885J
– volume: 422
  start-page: 257
  year: 2017
  ident: 2431_CR29
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.05.036
– volume: 7
  start-page: 8363
  year: 2015
  ident: 2431_CR15
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b00448
– volume: 4
  start-page: 51658
  year: 2014
  ident: 2431_CR4
  publication-title: RSC Adv
  doi: 10.1039/C4RA11158C
– volume: 5
  start-page: 58141
  year: 2015
  ident: 2431_CR24
  publication-title: RSC Adv
  doi: 10.1039/C5RA09525E
SSID ssj0009848
Score 2.5078204
Snippet Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types...
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types...
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types...
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1191
SubjectTerms Amino acids
Amino Acids - chemical synthesis
Amino Acids - chemistry
Analytical Chemistry
Biochemistry
Biocompatibility
Biocompatible Materials - analysis
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical materials
Biomedical Technology
Biomedicine
Biophysics
Biotechnology
Blood
Blood Coagulation Tests
Carbon - chemistry
Carbon dots
Clotting
Cysteine
E coli
Fluorescent Dyes - chemical synthesis
Fluorescent Dyes - chemistry
Functional groups
Healthy Volunteers
Hemolysis
Histidine
Humans
Infrared analysis
Infrared spectroscopy
Lysine
Methionine
Microwaves
Molecular Structure
Nitrogen
Nitrogen - chemistry
Original Article
Photon correlation spectroscopy
Polyethyleneimine
Quantum Dots - chemistry
Sulfur
Sulfur - chemistry
Thermal degradation
Thermogravimetric analysis
Zeta potential
Title Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications
URI https://link.springer.com/article/10.1007/s10895-019-02431-y
https://www.ncbi.nlm.nih.gov/pubmed/31502060
https://www.proquest.com/docview/2314281058
https://www.proquest.com/docview/2288007318
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahNJcSpM-ss0DFXJrDbIseeWju82DloZCupBCwehlWEjt4PUe8u8747V3E5IGcrQsy_bMSPqkmW8EcOS8FFxZEWWZ0REahYqsH3McDLEgI4hvab_jx3l6NpXfLtVlTwqbD9Hug0uyG6lvkd00sYmJdCNw2otunsOmorU7WvFU5OtUu1ouCXCKItN41lNlHm7j7nR0D2Pe8492087Ja3jV40WWLxW8Dc9CtQMvJ8MxbTvwoovhdPM38Od81jY1GgQzlWcXi6ty0bCv9XXwbGIaW1d40c4ZEUpY_ndW1Sx3M48FdcN-1i2FDeGbvnR8fFIdy285t9_C9OT41-Qs6g9PiFwyVm3kJfcIHUqb0OaONtgPY8r1ZRAgyTKWLnHeCG-1CERHFWlpeBgHw30chNY2eQcbVV2FXWA4EEllvQlZGaRKUu1smvCgUs2FU9KOIB5kWLg-szgdcHFVrHMik9wLlHvRyb24GcGn1TPXy7waj9beH1RT9H1sXiAyxbUTqlmP4OPqNkqfXB6mCvUC6-CvkDMyxjrvlypdvS5BLCx4ykfwedDxuvH_f8uHp1Xfgy3R2RuFpe3DRtsswgHimNYewmZ--vv78WFnvv8A1X_ntA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEWovCMqjWwoYiRtEchw76xzDttUC7QqJrtQDUuRXpJVKUmWzh_77zmST3aICEsc4EzuZ8eOLZ74xwAfnpeDKiijLjI6wU6jI-jHHyRALMoL4lvY7zmfpdC6_XqrLnhS2HKLdB5dkN1PfIbtpYhMT6UbgshfdPIRHCAY0BXLNRb5NtavlmgCnKDKNZz1V5s91_L4c3cOY9_yj3bJz-hSe9HiR5WsDP4MHodqH3clwTNs-PO5iON3yOfycLdqmxg7BTOXZj9VVuWrYcX0dPJuYxtYVXrRLRoQSlv9aVDXL3cJjQd2w73VLYUPY0ueOj0-mY_kd5_YLmJ-eXEymUX94QuSSsWojL7lH6FDahDZ3tMFxGFOuL4MASZaxdInzRnirRSA6qkhLw8M4GO7jILS2yUvYqeoqHADDiUgq603IyiBVkmpn04QHlWounJJ2BPGgw8L1mcXpgIurYpsTmfReoN6LTu_FzQg-bp65XufV-Kf00WCaoh9jywKRKf47oZn1CN5vbqP2yeVhqlCvUAY_hZyRMcq8Wpt001yCWFjwlI_g02DjbeV_f5fD_xN_B7vTi_Oz4uzL7Ntr2BNd36MQtSPYaZtVeIOYprVvuy58C6FS6RM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKx6XqhQKgQKLxA2srtdrZ310U6LyiipBpB6QrH1ZilTsyHEO_ffM-JEEFZA4ej1-zczuft6ZbxbgrXVS8NiIIE21CtAp4sC4McfBEBtSgviG1ju-zpKLufx0FV_tsPjbbPchJNlxGqhKU9mcLl1xukN8U8QsJgKOwCkwuLkL-zgch-TXc5Fty-4q2ZHhYspS42lPm_nzPX6fmm7hzVux0nYKmh7CQY8dWdYZ-xHc8eURPJgMW7Ydwb02n9OuHsOP2aKpK3QOpkvHvq2vi3XNzquld2yia1OVeNCsGJFLWPZzUVYsswuHDVXNLivSBPolO2u5-WRGlu0Eup_AfPrh--Qi6DdSCGw0jpvASe4QRhQmooUepbFPhlT3SyNYkkUobWSdFs4o4YmaKpJCcz_2mrvQC6VMdAx7ZVX6Z8BwUJKxcdqnhZdxlChrkoj7OFFc2FiaEYSDDnPbVxmnzS6u8219ZNJ7jnrPW73nNyN4t7lm2dXY-Kf0yWCavO9vqxxRKv5HoZnVCN5sTqP2KfyhS1-tUQY_hQKTIco87Uy6eVyEuFjwhI_g_WDj7c3__i7P_0_8Ndy_PJ_mXz7OPr-Ah6J1PcpWO4G9pl77lwhvGvOq9eBfPM7tTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+and+Sulfur+Doped+Carbon+Dots+from+Amino+Acids+for+Potential+Biomedical+Applications&rft.jtitle=Journal+of+fluorescence&rft.au=Sahiner%2C+Nurettin&rft.au=Suner%2C+Selin+S.&rft.au=Sahiner%2C+Mehtap&rft.au=Silan%2C+Coskun&rft.date=2019-09-01&rft.issn=1053-0509&rft.eissn=1573-4994&rft.volume=29&rft.issue=5&rft.spage=1191&rft.epage=1200&rft_id=info:doi/10.1007%2Fs10895-019-02431-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10895_019_02431_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-0509&client=summon