Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications
Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped C...
Saved in:
Published in | Journal of fluorescence Vol. 29; no. 5; pp. 1191 - 1200 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against
Escherichia coli
ATCC 8739 (gram -) and
Staphylococcus aureus
ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs. |
---|---|
AbstractList | Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs. Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs.Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5-20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as -7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs. Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs. Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types of amino acids viz. Arginine (A), Lysine (L), Histidine (H), Cysteine (C), and Methionine (M). These amino acid derived N- and/or S- doped CDs were found to be in spherical shapes with 5–20 nm particle size range determined by Transition Electron Microscope (TEM) images and Dynamic Light Scattering (DLS) measurements. Thermal degradation, functional groups, and surface potential of the CDs were determined by Thermogravimetric Analysis (TGA), FT-IR spectroscopy, and zeta potential measurements, respectively. Although the zeta potential value of Cysteine derived CD (C-CD) was measured as −7.45±1.32 mV, the zeta potential values of A-CD, L-CD, H-CD, and M-CD particles were measured as +2.84±0.67, +2.61±1.0, +4.10±1.50 and+2.20±0.60 mV, respectively. Amongst the CDs, C- CDs was found to possess the highest quantum yield, 89%. Moreover, the blood compatibility test of CDs, determined with hemolysis and blood clotting tests was shown that CDs at 0.25 mg/mL concentration, CDs has less than 5% hemolysis ratio and higher than 50% blood clotting indexes. Furthermore, A-CD was modified with polyethyleneimine (PEI) and was found that the zeta potential values was increased to +34.41±4.17 mV (from +2.84±0.67 mV) inducing antimicrobial capability to these materials. Minimum Inhibition Concentration (MIC) of A-CD dots was found as 2.5 mg/mL whereas the PEI modified A-CDs, A-CD-PEI was found as 1 mg/mL against Escherichia coli ATCC 8739 (gram -) and Staphylococcus aureus ATCC 6538 (gram +) bacteria strains signifying the tunability of CDs. |
Author | Sahiner, Nurettin Silan, Coskun Suner, Selin S. Sahiner, Mehtap |
Author_xml | – sequence: 1 givenname: Nurettin orcidid: 0000-0003-0120-530X surname: Sahiner fullname: Sahiner, Nurettin email: sahiner71@gmail.com, nsahiner@health.usf.edu organization: Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University, Nanoscience and Technology Research and Application Center (NANORAC), Department of Ophthalmology, Morsani School of Medicine, University of South Florida – sequence: 2 givenname: Selin S. surname: Suner fullname: Suner, Selin S. organization: Faculty of Sciences and Arts, Chemistry Department, Canakkale Onsekiz Mart University – sequence: 3 givenname: Mehtap surname: Sahiner fullname: Sahiner, Mehtap organization: Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University – sequence: 4 givenname: Coskun surname: Silan fullname: Silan, Coskun organization: School of Medicine, Department of Pharmacology, Canakkale Onsekiz Mart University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31502060$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtP3DAUhS0E4jHlD7BAlth0k3L9yMReDlP6kFCLRLurZDmxg4wSO9jOYv49HgaoxIKVr63v3Ht9zgna98FbhM4IfCEAzWUiIGRdAZEVUM5ItdlDx6RuWMWl5PulhppVUIM8QicpPQCAFFwcoiNGaqCwhGP075fLMdxbj7U3-G4e-jnir2GyBq91bIMvl5xwH8OIV6PzAa86Z8pDiPg2ZOuz0wO-cmG0xnWlXE3TUIrsgk-f0EGvh2RPX84F-vvt-s_6R3Xz-_vP9eqm6lhT58pwMFSwvmWyEUzoRjIiGFBNOOM94R3rjKamFdTWjVzSZa_BNlaDIZYK0bIF-rzrO8XwONuU1ehSZ4dBexvmpGihimHbrgt08Q59CHP0ZTtFGeFUFM-21PkLNbflY2qKbtRxo159KwDdAV0MKUXbvyEE1DYctQtHlXDUczhqU0Tinahz-dmpHLUbPpaynTSVOf7exv9rf6B6ArPXoic |
CitedBy_id | crossref_primary_10_1016_j_saa_2024_125625 crossref_primary_10_1016_j_carbon_2022_03_043 crossref_primary_10_1016_j_ijbiomac_2023_126846 crossref_primary_10_1016_j_mtcomm_2020_101222 crossref_primary_10_2478_msp_2024_0009 crossref_primary_10_1002_slct_202100468 crossref_primary_10_1021_acs_langmuir_4c03942 crossref_primary_10_1021_acsomega_2c04751 crossref_primary_10_3390_catal12111376 crossref_primary_10_1021_acssuschemeng_2c07045 crossref_primary_10_1088_2053_1591_ac31fc crossref_primary_10_3389_fbioe_2020_573407 crossref_primary_10_3390_nano11040935 crossref_primary_10_1016_j_jphotochem_2023_115066 crossref_primary_10_1088_1742_6596_2086_1_012121 crossref_primary_10_1002_smll_202303773 crossref_primary_10_1016_j_mtcomm_2023_106991 crossref_primary_10_1016_j_jddst_2020_101889 crossref_primary_10_1007_s00339_022_05466_4 crossref_primary_10_1021_acsapm_2c01579 crossref_primary_10_1002_slct_202204621 crossref_primary_10_1016_j_jics_2021_100181 crossref_primary_10_1016_j_poly_2025_117468 crossref_primary_10_1039_D2NJ03420D crossref_primary_10_1002_slct_202404933 crossref_primary_10_1016_j_jphotochem_2024_116108 crossref_primary_10_1016_j_heliyon_2024_e41020 crossref_primary_10_1002_macp_202100242 crossref_primary_10_1016_j_gce_2022_05_004 crossref_primary_10_1016_j_foodres_2025_115999 crossref_primary_10_1007_s10895_024_03649_1 crossref_primary_10_1021_acssensors_0c01556 crossref_primary_10_1186_s12989_020_00363_1 crossref_primary_10_3390_nano11081877 crossref_primary_10_1021_acsabm_2c00850 crossref_primary_10_1016_j_scitotenv_2020_141385 crossref_primary_10_3389_fbioe_2023_1333752 crossref_primary_10_1007_s42452_021_04287_z crossref_primary_10_1016_j_jcis_2022_01_005 crossref_primary_10_1021_acsaom_3c00411 crossref_primary_10_1016_j_jphotochem_2023_114914 crossref_primary_10_1007_s10895_021_02798_x crossref_primary_10_1088_1742_6596_1825_1_012062 crossref_primary_10_3390_ma15072395 crossref_primary_10_1007_s12668_020_00741_1 crossref_primary_10_1007_s40010_024_00901_y crossref_primary_10_1177_00037028241279464 crossref_primary_10_1007_s42823_022_00359_1 crossref_primary_10_1016_j_mseb_2025_118090 crossref_primary_10_1039_D3TB01378B crossref_primary_10_1002_bio_4045 crossref_primary_10_1007_s13762_021_03723_2 crossref_primary_10_1016_j_optmat_2022_112829 crossref_primary_10_1002_slct_202200448 crossref_primary_10_1007_s11696_022_02454_z crossref_primary_10_1002_aoc_70007 crossref_primary_10_1021_acsanm_4c04649 crossref_primary_10_1016_j_envint_2022_107572 crossref_primary_10_1016_j_jece_2024_114444 crossref_primary_10_1016_j_molliq_2021_117583 crossref_primary_10_1111_php_13261 crossref_primary_10_3390_nano12142365 crossref_primary_10_1016_j_microc_2023_108470 crossref_primary_10_1002_asia_202401098 crossref_primary_10_1016_j_mcat_2021_111517 crossref_primary_10_1002_slct_202200574 crossref_primary_10_1016_j_saa_2023_123609 crossref_primary_10_3390_ma16196512 crossref_primary_10_1016_j_jhazmat_2023_132671 crossref_primary_10_1016_j_toxrep_2024_101794 crossref_primary_10_1166_jbn_2021_3131 crossref_primary_10_1016_j_ijpx_2023_100209 crossref_primary_10_1016_j_impact_2020_100244 crossref_primary_10_1002_jccs_202300200 crossref_primary_10_3389_fchem_2021_713104 crossref_primary_10_1080_01694243_2022_2108271 crossref_primary_10_3390_c6030058 crossref_primary_10_1016_j_jddst_2025_106667 |
Cites_doi | 10.1007/s11051-012-1414-3 10.1039/C5RA09525E 10.1021/ja062677d 10.1039/C5AN01487E 10.1016/j.carbon.2016.04.003 10.1016/j.msec.2014.01.038 10.1016/j.snb.2016.07.169 10.1016/j.nantod.2016.08.006 10.1021/acsami.5b00448 10.1021/am506076r 10.1016/j.bios.2017.01.067 10.1016/j.apsusc.2017.05.036 10.1016/j.carbon.2016.10.089 10.1021/ac301945z 10.1021/ar400023s 10.1039/c2jm34690g 10.1039/C4RA11158C 10.1039/C4NJ00965G 10.1021/ja309270h 10.1016/j.snb.2015.05.021 10.1016/j.apsusc.2015.03.029 10.1126/science.1154663 10.1039/C4RA10885J 10.1039/C4NR00693C 10.1021/ac500289c 10.1016/j.bios.2016.08.098 10.1016/j.snb.2016.09.186 10.1039/b907612c |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s10895-019-02431-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1573-4994 |
EndPage | 1200 |
ExternalDocumentID | 31502060 10_1007_s10895_019_02431_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Canakkale Onsekiz Mart University grantid: COMU BAP, TSA-2018-2457 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z7W Z7X Z7Y Z83 Z87 Z88 Z8O Z8P Z8Q Z8R Z8W Z91 Z92 ZMTXR ZOVNA ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM ABRTQ 7X8 |
ID | FETCH-LOGICAL-c375t-d40d283fb397838a79318302a1434f14c3cda2db82e579626fa0e7ea0d1e288b3 |
IEDL.DBID | U2A |
ISSN | 1053-0509 1573-4994 |
IngestDate | Fri Jul 11 13:59:22 EDT 2025 Fri Jul 25 11:11:27 EDT 2025 Wed Feb 19 02:29:47 EST 2025 Thu Apr 24 23:10:36 EDT 2025 Tue Jul 01 01:39:06 EDT 2025 Fri Feb 21 02:34:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Blood compatibility Fluorescence carbon dots Antimicrobial CDs Microwave technique Amino acid derived CDs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-d40d283fb397838a79318302a1434f14c3cda2db82e579626fa0e7ea0d1e288b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0120-530X |
PMID | 31502060 |
PQID | 2314281058 |
PQPubID | 2043853 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2288007318 proquest_journals_2314281058 pubmed_primary_31502060 crossref_primary_10_1007_s10895_019_02431_y crossref_citationtrail_10_1007_s10895_019_02431_y springer_journals_10_1007_s10895_019_02431_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands |
PublicationTitle | Journal of fluorescence |
PublicationTitleAbbrev | J Fluoresc |
PublicationTitleAlternate | J Fluoresc |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li, Lau, Tang, Jic, Yang (CR7) 2014; 6 Dong, Li, Zhou, Wang, Chi, Chen (CR10) 2012; 84 Zhang, Zhang, Liang, Li, Qiu (CR11) 2014; 86 Zou, Hou, Fa, Zhang l, Dong, Li, Huo, Yang (CR21) 2017; 239 Sagbas, Sahiner, Khan, Jawaid, Inamuddin, Asiri (CR17) 2019 Liu, Zhang, Dai, Li (CR16) 2012; 134 Zhang, Gao, Li (CR18) 2014; 38 Philippidis, Stefanakis, Anglos, Ghanotakis (CR22) 2013; 15 Dong, Cai, You, Chi (CR9) 2015; 140 Kudr, Richtera, Xhaxhiu, Hynek, Heger, Zitka, Adam (CR26) 2017; 92 Yuan, Li, Fan, Meng, Fan, Yang (CR1) 2016; 11 Xue, Zhang, Zou, Lan, Zhan, Zhao (CR8) 2015; 219 Cheng, Li, Zhai, Xu, Cao, Liu (CR14) 2014; 6 Liu, Li, Dong, Zhang, Fan, Lin, Luo, Li (CR28) 2017; 87 Wang, Sun, Zhuo, Zhang, Wang (CR19) 2014; 4 He, Shu, Yang, Ma, Huang, Xu, Wang, Hu, Zhang, Xu (CR29) 2017; 422 Fernando, Sahu, Liu, Lewis, Guliants, Jafariyan, Wang, Bunker, Sun (CR15) 2015; 7 Karfa, Roy, Patra, Kumar, Tarafdar, Madhuri, Sharma (CR24) 2015; 5 CR25 Li, Kang, Liu, Lee (CR3) 2012; 22 Sun, Zhou, Lin, Wang, Fernando, Pathak, Meziani, Harruff, Wang, Wang, Luo, Yang, Kose, Chen, Veca, S-Y (CR2) 2006; 128 Ding, Zhu, Tian (CR12) 2014; 47 Song, Quan, Xu, Liu, Cui, Liu (CR6) 2016; 104 Zeng, Ma, Wang, Chen, Zhou, Zheng, Yub, Huang (CR23) 2015; 342 Wang, Xu, Lu, Chen, Yuan, Wei, Ye, Chen (CR20) 2016; 241 Wang, Wang, Guo, Liu, Qin (CR4) 2014; 4 Gao, Ma, Li, Dai, Xiao, Zhao, Gong (CR27) 2017; 112 Mehta, Jha, Kailasa (CR13) 2014; 38 Ponomarenko, Schedin, Katsnelson, Yang, Hill, Novoselov, Geim (CR5) 2008; 320 2431_CR25 KAS Fernando (2431_CR15) 2015; 7 T Liu (2431_CR28) 2017; 87 H Li (2431_CR3) 2012; 22 YW Zeng (2431_CR23) 2015; 342 B-X Zhang (2431_CR18) 2014; 38 F Yuan (2431_CR1) 2016; 11 L Zhang (2431_CR11) 2014; 86 Y Dong (2431_CR9) 2015; 140 F Gao (2431_CR27) 2017; 112 J Kudr (2431_CR26) 2017; 92 Y Dong (2431_CR10) 2012; 84 M Xue (2431_CR8) 2015; 219 LA Ponomarenko (2431_CR5) 2008; 320 A Philippidis (2431_CR22) 2013; 15 P Karfa (2431_CR24) 2015; 5 C Wang (2431_CR19) 2014; 4 L Cheng (2431_CR14) 2014; 6 VN Mehta (2431_CR13) 2014; 38 X Li (2431_CR7) 2014; 6 Q Liu (2431_CR16) 2012; 134 G He (2431_CR29) 2017; 422 Z Wang (2431_CR20) 2016; 241 D Wang (2431_CR4) 2014; 4 Z Song (2431_CR6) 2016; 104 YP Sun (2431_CR2) 2006; 128 S Zou (2431_CR21) 2017; 239 C Ding (2431_CR12) 2014; 47 S Sagbas (2431_CR17) 2019 |
References_xml | – volume: 15 start-page: 1414 year: 2013 ident: CR22 article-title: Microwave heating of arginine yields highly fluorescent nanoparticles publication-title: J Nanopart Res doi: 10.1007/s11051-012-1414-3 – volume: 5 start-page: 58141 year: 2015 end-page: 58153 ident: CR24 article-title: Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd /Fe , cell imaging and enhanced antibacterial activity publication-title: RSC Adv doi: 10.1039/C5RA09525E – volume: 128 start-page: 7756 issue: 24 year: 2006 end-page: 7757 ident: CR2 article-title: Quantum-sized carbon dots for bright and colorful photoluminescence publication-title: J Am Chem Soc doi: 10.1021/ja062677d – volume: 140 start-page: 7468 year: 2015 end-page: 7486 ident: CR9 article-title: Sensing applications of luminescent carbon based dots publication-title: Analyst doi: 10.1039/C5AN01487E – volume: 104 start-page: 169 year: 2016 end-page: 178 ident: CR6 article-title: Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione publication-title: Carbon doi: 10.1016/j.carbon.2016.04.003 – volume: 38 start-page: 20 year: 2014 end-page: 27 ident: CR13 article-title: One-pot green synthesis of carbon dots by using juice for fluorescent imaging of bacteria ( ) and yeast ( ) cells publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2014.01.038 – volume: 239 start-page: 1033 year: 2017 end-page: 1041 ident: CR21 article-title: An efficient fluorescent probe for fluazinam using N, S co-doped carbon dots from l-cysteine publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.07.169 – volume: 11 start-page: 565 year: 2016 end-page: 586 ident: CR1 article-title: Shining carbon dots: synthesis and biomedical and optoelectronic applications publication-title: Nano Today doi: 10.1016/j.nantod.2016.08.006 – year: 2019 ident: CR17 article-title: Nanocarbon and its composites publication-title: Chapter 22: Carbon dots: Preparation, Properties and Application – volume: 7 start-page: 8363 year: 2015 end-page: 8376 ident: CR15 article-title: Carbon quantum dots and applications in photocatalytic energy conversion publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b00448 – volume: 6 start-page: 20487 year: 2014 end-page: 20497 ident: CR14 article-title: Polycation-b-Polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging publication-title: ACS Appl Mater Interfaces doi: 10.1021/am506076r – ident: CR25 – volume: 92 start-page: 133 year: 2017 end-page: 139 ident: CR26 article-title: Carbon dots based FRET for the detection of DNA damage publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.01.067 – volume: 422 start-page: 257 year: 2017 end-page: 265 ident: CR29 article-title: Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.05.036 – volume: 112 start-page: 131 year: 2017 end-page: 141 ident: CR27 article-title: Rational design of high quality citric acid-derived carbon dots by selecting efficient chemical structure motifs publication-title: Carbon doi: 10.1016/j.carbon.2016.10.089 – volume: 84 start-page: 8378 year: 2012 end-page: 8382 ident: CR10 article-title: Graphene quantum dot as a green and facile sensor for free chlorine in drinking water publication-title: Anal Chem doi: 10.1021/ac301945z – volume: 47 start-page: 20 year: 2014 end-page: 30 ident: CR12 article-title: Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging publication-title: Acc Chem Res doi: 10.1021/ar400023s – volume: 22 start-page: 24230 year: 2012 end-page: 24253 ident: CR3 article-title: Carbon nanodots: synthesis, properties and applications publication-title: J Mater Chem A doi: 10.1039/c2jm34690g – volume: 4 start-page: 51658 year: 2014 end-page: 51665 ident: CR4 article-title: Luminescent properties of milk carbon dots and their Sulphur and nitrogen doped analogues publication-title: RSC Adv doi: 10.1039/C4RA11158C – volume: 38 start-page: 4615 year: 2014 end-page: 4621 ident: CR18 article-title: Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots publication-title: New J Chem doi: 10.1039/C4NJ00965G – volume: 134 start-page: 18932 year: 2012 end-page: 18935 ident: CR16 article-title: Nitrogen-doped colloidal graphene quantum dots and their size dependent Electrocatalytic activity for the oxygen reduction reaction publication-title: J Am Chem Soc doi: 10.1021/ja309270h – volume: 219 start-page: 50 year: 2015 end-page: 56 ident: CR8 article-title: Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2015.05.021 – volume: 342 start-page: 136 year: 2015 end-page: 143 ident: CR23 article-title: N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.03.029 – volume: 320 start-page: 356 year: 2008 end-page: 358 ident: CR5 article-title: Chaotic Dirac billiard in graphene quantum dots publication-title: Science doi: 10.1126/science.1154663 – volume: 4 start-page: 54060 year: 2014 end-page: 54065 ident: CR19 article-title: Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application publication-title: RSC Adv doi: 10.1039/C4RA10885J – volume: 6 start-page: 5323 year: 2014 end-page: 5328 ident: CR7 article-title: Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots publication-title: Nanoscale doi: 10.1039/C4NR00693C – volume: 86 start-page: 4423 year: 2014 end-page: 4430 ident: CR11 article-title: Boron-doped graphene quantum dots for selective glucose sensing based on the “abnormal” aggregation-induced photoluminescence enhancement publication-title: Anal Chem doi: 10.1021/ac500289c – volume: 87 start-page: 772 year: 2017 end-page: 778 ident: CR28 article-title: A colorimetric and fluorometric dual-signal sensor for arginine detection by inhibiting the growth of gold nanoparticles/carbon quantum dots composite publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.08.098 – volume: 241 start-page: 1324 year: 2016 end-page: 1330 ident: CR20 article-title: Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.09.186 – volume: 38 start-page: 20 year: 2014 ident: 2431_CR13 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2014.01.038 – ident: 2431_CR25 doi: 10.1039/b907612c – volume-title: Chapter 22: Carbon dots: Preparation, Properties and Application year: 2019 ident: 2431_CR17 – volume: 22 start-page: 24230 year: 2012 ident: 2431_CR3 publication-title: J Mater Chem A doi: 10.1039/c2jm34690g – volume: 241 start-page: 1324 year: 2016 ident: 2431_CR20 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.09.186 – volume: 219 start-page: 50 year: 2015 ident: 2431_CR8 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2015.05.021 – volume: 6 start-page: 20487 year: 2014 ident: 2431_CR14 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am506076r – volume: 15 start-page: 1414 year: 2013 ident: 2431_CR22 publication-title: J Nanopart Res doi: 10.1007/s11051-012-1414-3 – volume: 84 start-page: 8378 year: 2012 ident: 2431_CR10 publication-title: Anal Chem doi: 10.1021/ac301945z – volume: 134 start-page: 18932 year: 2012 ident: 2431_CR16 publication-title: J Am Chem Soc doi: 10.1021/ja309270h – volume: 86 start-page: 4423 year: 2014 ident: 2431_CR11 publication-title: Anal Chem doi: 10.1021/ac500289c – volume: 239 start-page: 1033 year: 2017 ident: 2431_CR21 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2016.07.169 – volume: 6 start-page: 5323 year: 2014 ident: 2431_CR7 publication-title: Nanoscale doi: 10.1039/C4NR00693C – volume: 11 start-page: 565 year: 2016 ident: 2431_CR1 publication-title: Nano Today doi: 10.1016/j.nantod.2016.08.006 – volume: 38 start-page: 4615 year: 2014 ident: 2431_CR18 publication-title: New J Chem doi: 10.1039/C4NJ00965G – volume: 140 start-page: 7468 year: 2015 ident: 2431_CR9 publication-title: Analyst doi: 10.1039/C5AN01487E – volume: 104 start-page: 169 year: 2016 ident: 2431_CR6 publication-title: Carbon doi: 10.1016/j.carbon.2016.04.003 – volume: 342 start-page: 136 year: 2015 ident: 2431_CR23 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2015.03.029 – volume: 112 start-page: 131 year: 2017 ident: 2431_CR27 publication-title: Carbon doi: 10.1016/j.carbon.2016.10.089 – volume: 87 start-page: 772 year: 2017 ident: 2431_CR28 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2016.08.098 – volume: 92 start-page: 133 year: 2017 ident: 2431_CR26 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2017.01.067 – volume: 320 start-page: 356 year: 2008 ident: 2431_CR5 publication-title: Science doi: 10.1126/science.1154663 – volume: 47 start-page: 20 year: 2014 ident: 2431_CR12 publication-title: Acc Chem Res doi: 10.1021/ar400023s – volume: 128 start-page: 7756 issue: 24 year: 2006 ident: 2431_CR2 publication-title: J Am Chem Soc doi: 10.1021/ja062677d – volume: 4 start-page: 54060 year: 2014 ident: 2431_CR19 publication-title: RSC Adv doi: 10.1039/C4RA10885J – volume: 422 start-page: 257 year: 2017 ident: 2431_CR29 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.05.036 – volume: 7 start-page: 8363 year: 2015 ident: 2431_CR15 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b00448 – volume: 4 start-page: 51658 year: 2014 ident: 2431_CR4 publication-title: RSC Adv doi: 10.1039/C4RA11158C – volume: 5 start-page: 58141 year: 2015 ident: 2431_CR24 publication-title: RSC Adv doi: 10.1039/C5RA09525E |
SSID | ssj0009848 |
Score | 2.5078204 |
Snippet | Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types... Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types... Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1–4 min via microwave technique from five different types... Nitrogen (N-) and sulfur (S-) doped carbon dots (CDs) were synthesized in a single step in a few min, 1-4 min via microwave technique from five different types... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1191 |
SubjectTerms | Amino acids Amino Acids - chemical synthesis Amino Acids - chemistry Analytical Chemistry Biochemistry Biocompatibility Biocompatible Materials - analysis Biological and Medical Physics Biomedical and Life Sciences Biomedical materials Biomedical Technology Biomedicine Biophysics Biotechnology Blood Blood Coagulation Tests Carbon - chemistry Carbon dots Clotting Cysteine E coli Fluorescent Dyes - chemical synthesis Fluorescent Dyes - chemistry Functional groups Healthy Volunteers Hemolysis Histidine Humans Infrared analysis Infrared spectroscopy Lysine Methionine Microwaves Molecular Structure Nitrogen Nitrogen - chemistry Original Article Photon correlation spectroscopy Polyethyleneimine Quantum Dots - chemistry Sulfur Sulfur - chemistry Thermal degradation Thermogravimetric analysis Zeta potential |
Title | Nitrogen and Sulfur Doped Carbon Dots from Amino Acids for Potential Biomedical Applications |
URI | https://link.springer.com/article/10.1007/s10895-019-02431-y https://www.ncbi.nlm.nih.gov/pubmed/31502060 https://www.proquest.com/docview/2314281058 https://www.proquest.com/docview/2288007318 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7ahNJcSpM-ss0DFXJrDbIseeWju82DloZCupBCwehlWEjt4PUe8u8747V3E5IGcrQsy_bMSPqkmW8EcOS8FFxZEWWZ0REahYqsH3McDLEgI4hvab_jx3l6NpXfLtVlTwqbD9Hug0uyG6lvkd00sYmJdCNw2otunsOmorU7WvFU5OtUu1ouCXCKItN41lNlHm7j7nR0D2Pe8492087Ja3jV40WWLxW8Dc9CtQMvJ8MxbTvwoovhdPM38Od81jY1GgQzlWcXi6ty0bCv9XXwbGIaW1d40c4ZEUpY_ndW1Sx3M48FdcN-1i2FDeGbvnR8fFIdy285t9_C9OT41-Qs6g9PiFwyVm3kJfcIHUqb0OaONtgPY8r1ZRAgyTKWLnHeCG-1CERHFWlpeBgHw30chNY2eQcbVV2FXWA4EEllvQlZGaRKUu1smvCgUs2FU9KOIB5kWLg-szgdcHFVrHMik9wLlHvRyb24GcGn1TPXy7waj9beH1RT9H1sXiAyxbUTqlmP4OPqNkqfXB6mCvUC6-CvkDMyxjrvlypdvS5BLCx4ykfwedDxuvH_f8uHp1Xfgy3R2RuFpe3DRtsswgHimNYewmZ--vv78WFnvv8A1X_ntA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BEWovCMqjWwoYiRtEchw76xzDttUC7QqJrtQDUuRXpJVKUmWzh_77zmST3aICEsc4EzuZ8eOLZ74xwAfnpeDKiijLjI6wU6jI-jHHyRALMoL4lvY7zmfpdC6_XqrLnhS2HKLdB5dkN1PfIbtpYhMT6UbgshfdPIRHCAY0BXLNRb5NtavlmgCnKDKNZz1V5s91_L4c3cOY9_yj3bJz-hSe9HiR5WsDP4MHodqH3clwTNs-PO5iON3yOfycLdqmxg7BTOXZj9VVuWrYcX0dPJuYxtYVXrRLRoQSlv9aVDXL3cJjQd2w73VLYUPY0ueOj0-mY_kd5_YLmJ-eXEymUX94QuSSsWojL7lH6FDahDZ3tMFxGFOuL4MASZaxdInzRnirRSA6qkhLw8M4GO7jILS2yUvYqeoqHADDiUgq603IyiBVkmpn04QHlWounJJ2BPGgw8L1mcXpgIurYpsTmfReoN6LTu_FzQg-bp65XufV-Kf00WCaoh9jywKRKf47oZn1CN5vbqP2yeVhqlCvUAY_hZyRMcq8Wpt001yCWFjwlI_g02DjbeV_f5fD_xN_B7vTi_Oz4uzL7Ntr2BNd36MQtSPYaZtVeIOYprVvuy58C6FS6RM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BKx6XqhQKgQKLxA2srtdrZ310U6LyiipBpB6QrH1ZilTsyHEO_ffM-JEEFZA4ej1-zczuft6ZbxbgrXVS8NiIIE21CtAp4sC4McfBEBtSgviG1ju-zpKLufx0FV_tsPjbbPchJNlxGqhKU9mcLl1xukN8U8QsJgKOwCkwuLkL-zgch-TXc5Fty-4q2ZHhYspS42lPm_nzPX6fmm7hzVux0nYKmh7CQY8dWdYZ-xHc8eURPJgMW7Ydwb02n9OuHsOP2aKpK3QOpkvHvq2vi3XNzquld2yia1OVeNCsGJFLWPZzUVYsswuHDVXNLivSBPolO2u5-WRGlu0Eup_AfPrh--Qi6DdSCGw0jpvASe4QRhQmooUepbFPhlT3SyNYkkUobWSdFs4o4YmaKpJCcz_2mrvQC6VMdAx7ZVX6Z8BwUJKxcdqnhZdxlChrkoj7OFFc2FiaEYSDDnPbVxmnzS6u8219ZNJ7jnrPW73nNyN4t7lm2dXY-Kf0yWCavO9vqxxRKv5HoZnVCN5sTqP2KfyhS1-tUQY_hQKTIco87Uy6eVyEuFjwhI_g_WDj7c3__i7P_0_8Ndy_PJ_mXz7OPr-Ah6J1PcpWO4G9pl77lwhvGvOq9eBfPM7tTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+and+Sulfur+Doped+Carbon+Dots+from+Amino+Acids+for+Potential+Biomedical+Applications&rft.jtitle=Journal+of+fluorescence&rft.au=Sahiner%2C+Nurettin&rft.au=Suner%2C+Selin+S.&rft.au=Sahiner%2C+Mehtap&rft.au=Silan%2C+Coskun&rft.date=2019-09-01&rft.issn=1053-0509&rft.eissn=1573-4994&rft.volume=29&rft.issue=5&rft.spage=1191&rft.epage=1200&rft_id=info:doi/10.1007%2Fs10895-019-02431-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10895_019_02431_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-0509&client=summon |