Decoupled aqueous batteries using pH-decoupling electrolytes
Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, whic...
Saved in:
Published in | Nature reviews. Chemistry Vol. 6; no. 7; pp. 505 - 517 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.
Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte. |
---|---|
AbstractList | Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed. Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed. Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte. Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed. Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte. |
Author | Zhu, Yun-hai Xie, Zi-long Huang, Gang Zhuang, Zhen-bang Cui, Yang-feng Zhang, Xin-bo |
Author_xml | – sequence: 1 givenname: Yun-hai orcidid: 0000-0002-2333-2740 surname: Zhu fullname: Zhu, Yun-hai organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University – sequence: 2 givenname: Yang-feng surname: Cui fullname: Cui, Yang-feng organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, School of Materials Science and Engineering, Changchun University of Science and Technology – sequence: 3 givenname: Zi-long orcidid: 0000-0002-9937-6862 surname: Xie fullname: Xie, Zi-long organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China – sequence: 4 givenname: Zhen-bang surname: Zhuang fullname: Zhuang, Zhen-bang organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University – sequence: 5 givenname: Gang orcidid: 0000-0003-2518-8145 surname: Huang fullname: Huang, Gang organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 6 givenname: Xin-bo orcidid: 0000-0002-5806-159X surname: Zhang fullname: Zhang, Xin-bo email: xbzhang@ciac.ac.cn organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37117314$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LwzAYx4NMnM59AQ9S8OKlmpfmpeBF5suEgRc9hzRNR0fX1CQ97NubrRvKDjvlCfz-Dz-e_xUYtbY1ANwg-IAgEY8-Q5TDFGKcQkhynpIzcIl3A6Fi9G8eg6n3KwghykmW8_wCjAlHiBOUXYKnF6Nt3zWmTNRPb2zvk0KFYFxtfNL7ul0m3TwtB2j7M43RwdlmE4y_BueVaryZ7t8J-H57_ZrN08Xn-8fseZFqwmlIS1IJyjVEFcqqUlGhBctxRjEzhGWFQqygDBewFFhBikSVC00RptESM1gaMgH3w97O2Sjpg1zXXpumUe3WWGIBeY6oYDiid0foyvaujXYSM8EygihDkbrdU32xNqXsXL1WbiMPd4mAGADtrPfOVFLXQYXatsGpupEIym0LcmhBxhbkrgVJYhQfRQ_bT4bIEPIRbpfG_WmfSP0CGWWW4A |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_151629 crossref_primary_10_1016_j_joule_2023_05_024 crossref_primary_10_1016_j_materresbull_2024_112858 crossref_primary_10_1016_j_cej_2023_145503 crossref_primary_10_1002_adfm_202407313 crossref_primary_10_1038_s41560_024_01474_1 crossref_primary_10_1002_ange_202219076 crossref_primary_10_1002_anie_202410845 crossref_primary_10_1002_smll_202402325 crossref_primary_10_1002_smll_202312207 crossref_primary_10_1039_D4EE03385J crossref_primary_10_1002_ange_202409322 crossref_primary_10_1002_ange_202423265 crossref_primary_10_1093_nsr_nwad235 crossref_primary_10_1002_advs_202306504 crossref_primary_10_1016_j_seta_2024_103926 crossref_primary_10_1016_j_cej_2023_144091 crossref_primary_10_1021_jacs_3c13963 crossref_primary_10_1002_ange_202213522 crossref_primary_10_1016_j_cej_2024_153815 crossref_primary_10_1002_anie_202400916 crossref_primary_10_1021_acs_nanolett_5c00533 crossref_primary_10_1016_j_jechem_2023_12_054 crossref_primary_10_1002_advs_202206888 crossref_primary_10_1002_smll_202406658 crossref_primary_10_1002_anie_202405168 crossref_primary_10_1007_s40820_023_01256_6 crossref_primary_10_1016_j_ccr_2024_215894 crossref_primary_10_1021_acs_nanolett_3c02904 crossref_primary_10_1002_anie_202409322 crossref_primary_10_1016_j_jechem_2024_10_003 crossref_primary_10_1002_tcr_202400142 crossref_primary_10_1002_ange_202405168 crossref_primary_10_1002_inf2_12620 crossref_primary_10_1002_smll_202411558 crossref_primary_10_1021_acsnano_2c07792 crossref_primary_10_1002_anie_202212695 crossref_primary_10_1002_anie_202419394 crossref_primary_10_1002_aenm_202401328 crossref_primary_10_1016_j_joule_2023_10_010 crossref_primary_10_1039_D4YA00279B crossref_primary_10_1039_D3QI01582C crossref_primary_10_1002_cssc_202400479 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1016_j_ensm_2023_102806 crossref_primary_10_1039_D2QI02629E crossref_primary_10_1002_ange_202400916 crossref_primary_10_1002_aenm_202404032 crossref_primary_10_1002_adfm_202213966 crossref_primary_10_1021_acsenergylett_3c01802 crossref_primary_10_1016_j_jechem_2022_12_062 crossref_primary_10_1002_anie_202409071 crossref_primary_10_1002_smtd_202300832 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1002_eem2_12564 crossref_primary_10_1002_batt_202300074 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1002_anie_202503138 crossref_primary_10_1002_smll_202204757 crossref_primary_10_1016_j_ensm_2025_104088 crossref_primary_10_1038_s41467_024_47950_w crossref_primary_10_1002_ange_202410845 crossref_primary_10_1016_j_cclet_2023_108337 crossref_primary_10_1002_ange_202212695 crossref_primary_10_1039_D4CP02704C crossref_primary_10_1002_ange_202419394 crossref_primary_10_1002_adfm_202302637 crossref_primary_10_1016_j_jpowsour_2023_232818 crossref_primary_10_1039_D3EE03729K crossref_primary_10_1002_aenm_202303740 crossref_primary_10_1002_adma_202307298 crossref_primary_10_1002_anie_202219076 crossref_primary_10_1002_ange_202503138 crossref_primary_10_1016_j_ensm_2024_103661 crossref_primary_10_1016_j_device_2024_100641 crossref_primary_10_1080_21663831_2023_2178860 crossref_primary_10_1002_ange_202409071 crossref_primary_10_1007_s11426_024_2133_1 crossref_primary_10_1016_j_ensm_2023_102873 crossref_primary_10_1016_j_est_2024_111658 crossref_primary_10_1016_j_cclet_2023_109143 crossref_primary_10_1002_anie_202423265 crossref_primary_10_1038_s41467_024_44855_6 crossref_primary_10_1002_anie_202213522 crossref_primary_10_1002_inf2_12601 crossref_primary_10_1016_j_coelec_2024_101633 crossref_primary_10_1002_batt_202400706 crossref_primary_10_1021_acsami_4c09788 crossref_primary_10_1039_D3EE03584K crossref_primary_10_1016_j_esci_2024_100331 crossref_primary_10_1155_2024_2329261 crossref_primary_10_1016_j_est_2023_108467 crossref_primary_10_1002_smll_202305766 |
Cites_doi | 10.1039/D1EE02021H 10.1126/science.aab3033 10.1039/D0CS01239D 10.1038/s41578-019-0142-z 10.1016/S0378-7753(99)00298-0 10.1038/s41565-020-0641-5 10.1021/ja3091438 10.1016/j.joule.2020.07.023 10.1038/nature18593 10.1149/2.0311609jes 10.1016/j.memsci.2019.02.009 10.1021/cr020730k 10.1002/adma.201604685 10.1002/aenm.202003419 10.1002/aenm.201301389 10.1038/451652a 10.1016/j.electacta.2011.08.027 10.1038/s41560-019-0336-z 10.1002/cssc.201601317 10.1038/s41560-020-0584-y 10.1038/s41563-018-0063-z 10.3390/molecules26092721 10.1002/anie.202012017 10.3390/batteries4040053 10.1039/C4EE00165F 10.1021/cr500232y 10.1007/BF01007946 10.1039/C5EE02315G 10.1021/acs.accounts.8b00070 10.1002/anie.201410823 10.1039/C5TA03335G 10.1016/j.ensm.2019.02.024 10.1038/ncomms4317 10.1126/science.abb9554 10.1002/aenm.201502054 10.1016/0378-7753(95)02243-0 10.1016/S0378-7753(99)00476-0 10.1149/1.1392456 10.1038/ncomms2139 10.1149/1.2129706 10.1038/nnano.2015.48 10.1016/j.mtener.2017.12.012 10.1016/0378-7753(94)01955-X 10.1038/nature11477 10.1002/aenm.201501449 10.1002/anie.201909324 10.1126/science.aab1595 10.1021/cr500003w 10.1016/j.nanoen.2014.07.002 10.1038/s41578-019-0165-5 10.1002/aenm.201903589 10.1021/acs.est.6b03448 10.1038/ncomms7362 10.1021/ja01629a026 10.1002/er.5707 10.1016/j.memsci.2018.03.051 10.1016/j.ensm.2020.01.032 10.1007/s10562-006-0067-1 10.1038/ncomms2812 10.1126/sciadv.aba4098 10.1039/C4TA04419C 10.1038/natrevmats.2016.103 10.1039/c3cc00064h 10.1021/acsenergylett.7b00168 10.1002/advs.201700691 10.1021/ja01926a005 10.1149/2.0721605jes 10.1016/j.joule.2021.05.019 10.1002/adma.202001106 10.1016/j.memsci.2016.09.033 10.1002/anie.201803664 10.1002/adma.201904524 10.1126/science.1223985 10.1002/adma.202001894 10.1016/j.carbon.2019.09.018 10.1039/C4CS00015C 10.1002/adma.202000074 10.1149/1.1837942 10.1016/j.chempr.2017.03.016 10.1002/aenm.201502164 10.1039/C0EE00029A 10.1038/s41560-019-0328-z 10.1016/j.joule.2017.07.001 10.1016/S0013-4686(00)00601-0 10.1021/acs.chemrev.1c00191 10.1038/s41563-020-0667-y 10.1021/acs.jpclett.8b02543 10.1021/ja01322a022 10.1039/D0TA10685B 10.1039/C7CS00180K 10.1126/science.260.5105.176 10.1002/aenm.201700544 10.1021/acs.chemrev.0c00170 10.1016/j.matt.2021.01.004 10.1038/ncomms14083 10.1038/nenergy.2016.71 10.1016/j.cej.2021.132718 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2022 2022. Springer Nature Limited. Springer Nature Limited 2022. |
Copyright_xml | – notice: Springer Nature Limited 2022 – notice: 2022. Springer Nature Limited. – notice: Springer Nature Limited 2022. |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41570-022-00397-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2397-3358 |
EndPage | 517 |
ExternalDocumentID | 37117314 10_1038_s41570_022_00397_3 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 88I AAEEF AARCD AAWYQ AAYZH ABJCF ABJNI ABLJU ABUWG ACGFS ADBBV AFKRA AFSHS AGSTI AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD AZQEC BENPR BGLVJ BKKNO CCPQU DWQXO EBS EJD FSGXE FZEXT GNUQQ HCIFZ M2P M7S NNMJJ O9- ODYON PTHSS RNR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT NPM 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-d3f857c01f14fda58c86924526e364ba16b562b0d82a0518f98c5125371260de3 |
IEDL.DBID | BENPR |
ISSN | 2397-3358 |
IngestDate | Fri Jul 11 06:05:15 EDT 2025 Wed Jul 16 16:31:35 EDT 2025 Wed Feb 19 02:23:51 EST 2025 Tue Jul 01 04:11:21 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2022. Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-d3f857c01f14fda58c86924526e364ba16b562b0d82a0518f98c5125371260de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2518-8145 0000-0002-5806-159X 0000-0002-9937-6862 0000-0002-2333-2740 |
PMID | 37117314 |
PQID | 2686431561 |
PQPubID | 4669715 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2807915862 proquest_journals_2686431561 pubmed_primary_37117314 crossref_citationtrail_10_1038_s41570_022_00397_3 crossref_primary_10_1038_s41570_022_00397_3 springer_journals_10_1038_s41570_022_00397_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Chemistry |
PublicationTitleAbbrev | Nat Rev Chem |
PublicationTitleAlternate | Nat Rev Chem |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Yu (CR30) 2019; 19 Luo, Abdu, Wessling (CR24) 2018; 555 Xu (CR92) 2019; 4 Hong (CR40) 2019; 58 Putois (CR36) 1995; 57 Chang (CR71) 2014; 2 Zhang, Zhao, Xia, Dai (CR84) 2015; 10 Xie, Liang, Lu (CR10) 2020; 19 Feng (CR33) 2016; 536 Lee (CR46) 2019; 31 Xie (CR93) 2021; 11 Wang (CR44) 2019; 155 Kim (CR4) 2014; 114 Wang, Chandrabose, Jian, Xing, Ji (CR15) 2016; 163 Tian (CR49) 2017; 8 Zhang, Lin (CR87) 2021; 5 Li, Dai (CR81) 2014; 43 Khor (CR70) 2018; 8 Qiao (CR52) 2017; 1 Lee, Ho, Van Zee, Murthy (CR57) 1999; 84 Wen (CR91) 2020; 44 Chao (CR17) 2020; 32 Ran (CR23) 2017; 522 Maja, Orecchia, Strano, Tosco, Vanni (CR56) 2000; 46 Hoobin, Cathro, Niere (CR77) 1989; 19 Pan (CR58) 2018; 5 Chao (CR6) 2020; 6 McEldrew, Goodwin, Kornyshev, Bazant (CR14) 2018; 9 Xu, Lu, Sun, Jiang, Duan (CR55) 2018; 51 Bai, Viswanathan, Bazant (CR72) 2015; 3 Cai (CR45) 2020; 27 Geng (CR85) 2016; 6 Xu (CR68) 2020; 59 Ji (CR37) 2014; 5 Zhao (CR95) 2022; 430 Sui, Ji (CR7) 2021; 121 Yip, Brogioli, Hamelers, Nijmeijer (CR20) 2016; 50 Kautek (CR78) 1999; 146 Ovshinsky, Fetcenko, Ross (CR35) 1993; 260 Xu (CR2) 2014; 114 Ding, Cai, Wen (CR31) 2021; 50 Liu, Wei, Nie, Sprenkle, Wang (CR47) 2016; 6 Winter, Brodd (CR64) 2004; 104 Zhao, Stalin, Zhao, Archer (CR28) 2020; 5 Fu (CR82) 2017; 29 Yamada, Wang, Ko, Watanabe, Yamada (CR9) 2019; 4 Yuan (CR61) 2011; 4 Gibson (CR66) 2016; 163 Tripathi, Su, Hwang (CR5) 2018; 47 Qian (CR42) 2015; 6 Logan, Elimelech (CR18) 2012; 488 Matter, Ozkan (CR88) 2006; 109 Lin (CR48) 2015; 349 Liu, Chi, Han, Liu (CR29) 2020; 10 Gurieff, Timchenko, Menictas (CR50) 2018; 4 Shen, Kordesch (CR63) 2000; 87 Singh (CR67) 2021; 9 Kordesh, Weissenbacher (CR34) 1994; 51 Wang (CR13) 2018; 17 Lin (CR86) 2021; 4 Suo (CR8) 2015; 350 Sun (CR59) 2021; 371 Donne, Lawrance, Swinkels (CR65) 1997; 144 Choi (CR41) 2020; 5 Sun, Liu, Cui (CR43) 2016; 1 Wang, Xie, Tang, Wang, Yan (CR39) 2018; 57 Li, Manthiram (CR89) 2014; 9 Goodenough, Park (CR60) 2013; 135 Li (CR80) 2013; 4 Noack, Roznyatovskaya, Herr, Fischer (CR69) 2015; 54 Chao, Qiao (CR62) 2020; 4 Fischer, Bingle (CR75) 1955; 77 Eustace (CR79) 1980; 127 Ma, Bao, Shi, Yan, Zhang (CR53) 2017; 2 Yu, Manthiram (CR90) 2017; 2 Gu, Gong, Yan, Yan (CR16) 2014; 7 Bray (CR73) 1910; 32 Pasta, Wessells, Huggins, Cui (CR3) 2012; 3 Jin, Li, Xiao (CR22) 2017; 10 Manthiram, Yu, Wang (CR27) 2017; 2 Bi (CR11) 2020; 32 Jones, Baeckström (CR74) 1934; 56 Liu (CR19) 2020; 15 Huang (CR54) 2017; 7 Lee, Choi, Feng, Park, Chen (CR83) 2014; 4 Küttinger, Loichet Torres, Meyer, Fischer, Tübke (CR76) 2021; 26 Gong (CR96) 2015; 8 Fleischmann (CR38) 2020; 120 Epsztein, Shaulsky, Qin, Elimelech (CR32) 2019; 580 Zhong (CR12) 2020; 5 Peng, Freunberger, Chen, Bruce (CR51) 2012; 337 Yang, Chen, Shen, Zhao, Shen (CR21) 2020; 32 Yuan (CR94) 2021; 14 Li, Weng, Li, Chan (CR97) 2011; 56 Li, Manthiram (CR25) 2016; 6 Chen, Guo, Xia, Wang (CR26) 2013; 49 Armand, Tarascon (CR1) 2008; 451 H Wen (397_CR91) 2020; 44 K Xu (397_CR2) 2014; 114 J Zhang (397_CR84) 2015; 10 PM Hoobin (397_CR77) 1989; 19 DJ Eustace (397_CR79) 1980; 127 L Zhang (397_CR87) 2021; 5 A Singh (397_CR67) 2021; 9 H Bi (397_CR11) 2020; 32 K Kordesh (397_CR34) 1994; 51 X Yu (397_CR90) 2017; 2 F Yu (397_CR30) 2019; 19 WK Lee (397_CR57) 1999; 84 J Ran (397_CR23) 2017; 522 G Jones (397_CR74) 1934; 56 Y Li (397_CR80) 2013; 4 W Xu (397_CR55) 2018; 51 Y Yamada (397_CR9) 2019; 4 JD Feng (397_CR33) 2016; 536 X Liu (397_CR19) 2020; 15 N Gurieff (397_CR50) 2018; 4 Z Jin (397_CR22) 2017; 10 K Xu (397_CR92) 2019; 4 X Wang (397_CR15) 2016; 163 BE Logan (397_CR18) 2012; 488 C Liu (397_CR29) 2020; 10 JB Goodenough (397_CR60) 2013; 135 D Chao (397_CR62) 2020; 4 JH Lee (397_CR46) 2019; 31 J Fu (397_CR82) 2017; 29 AM Tripathi (397_CR5) 2018; 47 P Bai (397_CR72) 2015; 3 H Kim (397_CR4) 2014; 114 Y Sun (397_CR43) 2016; 1 M Armand (397_CR1) 2008; 451 C Lin (397_CR86) 2021; 4 NY Yip (397_CR20) 2016; 50 Y Wang (397_CR44) 2019; 155 Z Cai (397_CR45) 2020; 27 S Fleischmann (397_CR38) 2020; 120 Z Peng (397_CR51) 2012; 337 L Chen (397_CR26) 2013; 49 M McEldrew (397_CR14) 2018; 9 J Pan (397_CR58) 2018; 5 M Yang (397_CR21) 2020; 32 Y Qiao (397_CR52) 2017; 1 T Luo (397_CR24) 2018; 555 D Geng (397_CR85) 2016; 6 L Suo (397_CR8) 2015; 350 J Fischer (397_CR75) 1955; 77 W Sun (397_CR59) 2021; 371 F Putois (397_CR36) 1995; 57 Y Sui (397_CR7) 2021; 121 SW Donne (397_CR65) 1997; 144 J Qian (397_CR42) 2015; 6 W Kautek (397_CR78) 1999; 146 JJ Hong (397_CR40) 2019; 58 Y Xu (397_CR68) 2020; 59 F Xie (397_CR93) 2021; 11 ZF Huang (397_CR54) 2017; 7 DU Lee (397_CR83) 2014; 4 PH Matter (397_CR88) 2006; 109 M Pasta (397_CR3) 2012; 3 Z Chang (397_CR71) 2014; 2 D Chao (397_CR6) 2020; 6 M Maja (397_CR56) 2000; 46 AJ Gibson (397_CR66) 2016; 163 A Khor (397_CR70) 2018; 8 D Chao (397_CR17) 2020; 32 T Liu (397_CR47) 2016; 6 L Li (397_CR25) 2016; 6 LX Yuan (397_CR61) 2011; 4 JL Ma (397_CR53) 2017; 2 H Li (397_CR97) 2011; 56 H Tian (397_CR49) 2017; 8 A Manthiram (397_CR27) 2017; 2 Q Zhao (397_CR28) 2020; 5 Y Li (397_CR81) 2014; 43 R Epsztein (397_CR32) 2019; 580 K Lin (397_CR48) 2015; 349 J Noack (397_CR69) 2015; 54 F Wang (397_CR13) 2018; 17 L Li (397_CR89) 2014; 9 WC Bray (397_CR73) 1910; 32 M Winter (397_CR64) 2004; 104 C Zhong (397_CR12) 2020; 5 M Küttinger (397_CR76) 2021; 26 Y Ding (397_CR31) 2021; 50 SR Ovshinsky (397_CR35) 1993; 260 C Choi (397_CR41) 2020; 5 Y Shen (397_CR63) 2000; 87 K Gong (397_CR96) 2015; 8 X Wang (397_CR39) 2018; 57 S Gu (397_CR16) 2014; 7 H Ji (397_CR37) 2014; 5 J Xie (397_CR10) 2020; 19 S Zhao (397_CR95) 2022; 430 L Yuan (397_CR94) 2021; 14 |
References_xml | – volume: 14 start-page: 5669 year: 2021 end-page: 5689 ident: CR94 article-title: Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02021H – volume: 349 start-page: 1529 year: 2015 end-page: 1532 ident: CR48 article-title: Alkaline quinone flow battery publication-title: Science doi: 10.1126/science.aab3033 – volume: 50 start-page: 1495 year: 2021 end-page: 1511 ident: CR31 article-title: Electrochemical neutralization energy: from concept to devices publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01239D – volume: 5 start-page: 5 year: 2020 end-page: 19 ident: CR41 article-title: Achieving high energy density and high power density with pseudocapacitive materials publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0142-z – volume: 84 start-page: 45 year: 1999 end-page: 51 ident: CR57 article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00298-0 – volume: 15 start-page: 307 year: 2020 end-page: 312 ident: CR19 article-title: Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0641-5 – volume: 135 start-page: 1167 year: 2013 end-page: 1176 ident: CR60 article-title: The Li-ion rechargeable battery: a perspective publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 4 start-page: 1846 year: 2020 end-page: 1851 ident: CR62 article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte? publication-title: Joule doi: 10.1016/j.joule.2020.07.023 – volume: 536 start-page: 197 year: 2016 end-page: 200 ident: CR33 article-title: Single-layer MoS nanopores as nanopower generators publication-title: Nature doi: 10.1038/nature18593 – volume: 163 start-page: 1853 year: 2016 end-page: 1858 ident: CR15 article-title: A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator publication-title: J. Electrochem. Soc. doi: 10.1149/2.0311609jes – volume: 580 start-page: 316 year: 2019 end-page: 326 ident: CR32 article-title: Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.02.009 – volume: 104 start-page: 4245 year: 2004 end-page: 4270 ident: CR64 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 29 start-page: 1604685 year: 2017 ident: CR82 article-title: Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – volume: 11 start-page: 2003419 year: 2021 ident: CR93 article-title: Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003419 – volume: 4 start-page: 1301389 year: 2014 ident: CR83 article-title: Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301389 – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: CR1 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 56 start-page: 9420 year: 2011 end-page: 9425 ident: CR97 article-title: Three electrolyte high voltage acid–alkaline hybrid rechargeable battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.027 – volume: 4 start-page: 269 year: 2019 end-page: 280 ident: CR9 article-title: Advances and issues in developing salt-concentrated battery electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-019-0336-z – volume: 10 start-page: 483 year: 2017 end-page: 488 ident: CR22 article-title: A hydrogen-evolving hybrid-electrolyte battery with electrochemical/photoelectrochemical charging from water oxidation publication-title: ChemSusChem doi: 10.1002/cssc.201601317 – volume: 5 start-page: 440 year: 2020 end-page: 449 ident: CR12 article-title: Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0584-y – volume: 17 start-page: 543 year: 2018 end-page: 549 ident: CR13 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 26 start-page: 2721 year: 2021 ident: CR76 article-title: Systematic study of quaternary ammonium cations for bromine sequestering application in high energy density electrolytes for hydrogen bromine redox flow batteries publication-title: Molecules doi: 10.3390/molecules26092721 – volume: 59 start-page: 23593 year: 2020 end-page: 23597 ident: CR68 article-title: High-voltage rechargeable alkali–acid Zn–PbO hybrid battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012017 – volume: 4 start-page: 53 year: 2018 ident: CR50 article-title: Variable porous electrode compression for redox flow battery systems publication-title: Batteries doi: 10.3390/batteries4040053 – volume: 7 start-page: 2986 year: 2014 end-page: 2998 ident: CR16 article-title: A multiple ion-exchange membrane design for redox flow batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00165F – volume: 114 start-page: 11788 year: 2014 end-page: 11827 ident: CR4 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 19 start-page: 943 year: 1989 end-page: 945 ident: CR77 article-title: Stability of zinc/bromine battery electrolytes publication-title: J. Appl. Electrochem. doi: 10.1007/BF01007946 – volume: 8 start-page: 2941 year: 2015 end-page: 2945 ident: CR96 article-title: A zinc–iron redox-flow battery under $100 per kW h of system capital cost publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02315G – volume: 51 start-page: 1590 year: 2018 end-page: 1598 ident: CR55 article-title: Superwetting electrodes for gas-involving electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00070 – volume: 54 start-page: 9776 year: 2015 end-page: 9809 ident: CR69 article-title: The chemistry of redox-flow batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410823 – volume: 3 start-page: 14165 year: 2015 end-page: 14172 ident: CR72 article-title: A dual-mode rechargeable lithium–bromine/oxygen fuel cell publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03335G – volume: 19 start-page: 56 year: 2019 end-page: 61 ident: CR30 article-title: Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.024 – volume: 5 year: 2014 ident: CR37 article-title: Capacitance of carbon-based electrical double-layer capacitors publication-title: Nat. Commun. doi: 10.1038/ncomms4317 – volume: 371 start-page: 46 year: 2021 end-page: 51 ident: CR59 article-title: A rechargeable zinc-air battery based on zinc peroxide chemistry publication-title: Science doi: 10.1126/science.abb9554 – volume: 6 start-page: 1502054 year: 2016 ident: CR25 article-title: Long-life, high-voltage acidic Zn–air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502054 – volume: 57 start-page: 67 year: 1995 end-page: 70 ident: CR36 article-title: Market for nickel-cadmium batteries publication-title: J. Power Sources doi: 10.1016/0378-7753(95)02243-0 – volume: 87 start-page: 162 year: 2000 end-page: 166 ident: CR63 article-title: The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00476-0 – volume: 146 start-page: 3211 year: 1999 end-page: 3216 ident: CR78 article-title: In situ investigations of bromine-storing complex formation in a zinc-flow battery at gold electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392456 – volume: 3 year: 2012 ident: CR3 article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage publication-title: Nat. Commun. doi: 10.1038/ncomms2139 – volume: 127 start-page: 528 year: 1980 end-page: 532 ident: CR79 article-title: Bromine complexation in zinc-bromine circulating batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129706 – volume: 10 start-page: 444 year: 2015 end-page: 452 ident: CR84 article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 8 start-page: 80 year: 2018 end-page: 108 ident: CR70 article-title: Review of zinc-based hybrid flow batteries: from fundamentals to applications publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.12.012 – volume: 51 start-page: 61 year: 1994 end-page: 78 ident: CR34 article-title: Rechargeable alkaline manganese dioxide/zinc batteries publication-title: J. Power Sources doi: 10.1016/0378-7753(94)01955-X – volume: 488 start-page: 313 year: 2012 end-page: 319 ident: CR18 article-title: Membrane-based processes for sustainable power generation using water publication-title: Nature doi: 10.1038/nature11477 – volume: 6 start-page: 1501449 year: 2016 ident: CR47 article-title: A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501449 – volume: 58 start-page: 15910 year: 2019 end-page: 15915 ident: CR40 article-title: A dual plating battery with the iodine/[ZnI (OH ) ] cathode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909324 – volume: 350 start-page: 938 year: 2015 end-page: 943 ident: CR8 article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries publication-title: Science doi: 10.1126/science.aab1595 – volume: 114 start-page: 11503 year: 2014 end-page: 11618 ident: CR2 article-title: Electrolytes and interphases in Li-ion batteries and beyond publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 9 start-page: 94 year: 2014 end-page: 100 ident: CR89 article-title: Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.002 – volume: 5 start-page: 229 year: 2020 end-page: 252 ident: CR28 article-title: Designing solid-state electrolytes for safe, energy-dense batteries publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 10 start-page: 1903589 year: 2020 ident: CR29 article-title: A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903589 – volume: 50 start-page: 12072 year: 2016 end-page: 12094 ident: CR20 article-title: Salinity gradients for sustainable energy: primer, progress, and prospects publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03448 – volume: 6 year: 2015 ident: CR42 article-title: High rate and stable cycling of lithium metal anode publication-title: Nat. Commun. doi: 10.1038/ncomms7362 – volume: 77 start-page: 6511 year: 1955 end-page: 6512 ident: CR75 article-title: The vapor pressure of bromine from 24 to 116° publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01629a026 – volume: 44 start-page: 10652 year: 2020 end-page: 10661 ident: CR91 article-title: Ultrahigh voltage and energy density aluminum-air battery based on aqueous alkaline-acid hybrid electrolyte publication-title: Int. J. Energy Res. doi: 10.1002/er.5707 – volume: 555 start-page: 429 year: 2018 end-page: 454 ident: CR24 article-title: Selectivity of ion exchange membranes: a review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.03.051 – volume: 27 start-page: 205 year: 2020 end-page: 211 ident: CR45 article-title: Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.032 – volume: 109 start-page: 115 year: 2006 end-page: 123 ident: CR88 article-title: Non-metal catalysts for dioxygen reduction in an acidic electrolyte publication-title: Catal. Lett. doi: 10.1007/s10562-006-0067-1 – volume: 4 year: 2013 ident: CR80 article-title: Advanced zinc-air batteries based on high-performance hybrid electrocatalysts publication-title: Nat. Commun. doi: 10.1038/ncomms2812 – volume: 6 start-page: eaba4098 year: 2020 ident: CR6 article-title: Roadmap for advanced aqueous batteries: from design of materials to applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 2 start-page: 19444 year: 2014 end-page: 19450 ident: CR71 article-title: Rechargeable Li//Br battery: a promising platform for post lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04419C – volume: 2 start-page: 16103 year: 2017 ident: CR27 article-title: Lithium battery chemistries enabled by solid-state electrolytes publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 49 start-page: 2204 year: 2013 end-page: 2206 ident: CR26 article-title: High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte publication-title: Chem. Commun. doi: 10.1039/c3cc00064h – volume: 2 start-page: 1050 year: 2017 end-page: 1055 ident: CR90 article-title: A voltage-enhanced, low-cost aqueous iron–air battery enabled with a mediator-ion solid electrolyte publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00168 – volume: 5 start-page: 1700691 year: 2018 ident: CR58 article-title: Advanced architectures and relatives of air electrodes in Zn–air batteries publication-title: Adv. Sci. doi: 10.1002/advs.201700691 – volume: 32 start-page: 932 year: 1910 end-page: 938 ident: CR73 article-title: The hydrolysis of iodine and bromine publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01926a005 – volume: 163 start-page: H305 year: 2016 ident: CR66 article-title: Dynamic electrodeposition of manganese dioxide: temporal variation in the electrodeposition mechanism publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721605jes – volume: 5 start-page: 1325 year: 2021 end-page: 1327 ident: CR87 article-title: Higher-voltage asymmetric-electrolyte metal-air batteries publication-title: Joule doi: 10.1016/j.joule.2021.05.019 – volume: 32 start-page: 2001106 year: 2020 ident: CR21 article-title: A high-energy aqueous manganese–metal hydride hybrid battery publication-title: Adv. Mater. doi: 10.1002/adma.202001106 – volume: 522 start-page: 267 year: 2017 end-page: 291 ident: CR23 article-title: Ion exchange membranes: new developments and applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.033 – volume: 57 start-page: 11569 year: 2018 end-page: 11573 ident: CR39 article-title: Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803664 – volume: 31 start-page: 1904524 year: 2019 ident: CR46 article-title: High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides publication-title: Adv. Mater. doi: 10.1002/adma.201904524 – volume: 337 start-page: 563 year: 2012 end-page: 566 ident: CR51 article-title: A reversible and higher-rate Li-O battery publication-title: Science doi: 10.1126/science.1223985 – volume: 32 start-page: 2001894 year: 2020 ident: CR17 article-title: Atomic engineering catalyzed MnO electrolysis kinetics for a hybrid aqueous battery with high power and energy density publication-title: Adv. Mater. doi: 10.1002/adma.202001894 – volume: 155 start-page: 706 year: 2019 end-page: 726 ident: CR44 article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2019.09.018 – volume: 43 start-page: 5257 year: 2014 end-page: 5275 ident: CR81 article-title: Recent advances in zinc–air batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 32 start-page: 2000074 year: 2020 ident: CR11 article-title: A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute publication-title: Adv. Mater. doi: 10.1002/adma.202000074 – volume: 144 start-page: 2949 year: 1997 end-page: 2953 ident: CR65 article-title: Redox processes at the manganese dioxide electrode: I. constant-current intermittent discharge publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837942 – volume: 2 start-page: 525 year: 2017 end-page: 532 ident: CR53 article-title: Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage publication-title: Chem doi: 10.1016/j.chempr.2017.03.016 – volume: 6 start-page: 1502164 year: 2016 ident: CR85 article-title: From lithium-oxygen to lithium-air batteries: challenges and opportunities publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502164 – volume: 4 start-page: 269 year: 2011 end-page: 284 ident: CR61 article-title: Development and challenges of LiFePO cathode material for lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00029A – volume: 4 start-page: 93 year: 2019 end-page: 94 ident: CR92 article-title: Diffusionless charge transfer publication-title: Nat. Energy doi: 10.1038/s41560-019-0328-z – volume: 1 start-page: 359 year: 2017 end-page: 370 ident: CR52 article-title: Li-CO electrochemistry: a new strategy for CO fixation and energy storage publication-title: Joule doi: 10.1016/j.joule.2017.07.001 – volume: 46 start-page: 423 year: 2000 end-page: 432 ident: CR56 article-title: Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00601-0 – volume: 121 start-page: 6654 year: 2021 end-page: 6695 ident: CR7 article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 19 start-page: 1006 year: 2020 end-page: 1011 ident: CR10 article-title: Molecular crowding electrolytes for high-voltage aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-020-0667-y – volume: 9 start-page: 5840 year: 2018 end-page: 5846 ident: CR14 article-title: Theory of the double layer in water-in-salt electrolytes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02543 – volume: 56 start-page: 1524 year: 1934 end-page: 1528 ident: CR74 article-title: The standard potential of the bromine electrode publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01322a022 – volume: 9 start-page: 1500 year: 2021 end-page: 1506 ident: CR67 article-title: Towards a high MnO loading and gravimetric capacity from proton-coupled Mn /Mn reactions using a 3D free-standing conducting scaffold publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10685B – volume: 47 start-page: 736 year: 2018 end-page: 851 ident: CR5 article-title: In situ analytical techniques for battery interface analysis publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00180K – volume: 260 start-page: 176 year: 1993 end-page: 181 ident: CR35 article-title: A nickel metal hydride battery for electric vehicles publication-title: Science doi: 10.1126/science.260.5105.176 – volume: 7 start-page: 1700544 year: 2017 ident: CR54 article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700544 – volume: 120 start-page: 6738 year: 2020 end-page: 6782 ident: CR38 article-title: Pseudocapacitance: from fundamental understanding to high power energy storage materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00170 – volume: 4 start-page: 1287 year: 2021 end-page: 1304 ident: CR86 article-title: High-voltage asymmetric metal–air batteries based on polymeric single-Zn -ion conductor publication-title: Matter doi: 10.1016/j.matt.2021.01.004 – volume: 8 year: 2017 ident: CR49 article-title: High power rechargeable magnesium/iodine battery chemistry publication-title: Nat. Commun. doi: 10.1038/ncomms14083 – volume: 1 start-page: 16071 year: 2016 ident: CR43 article-title: Promises and challenges of nanomaterials for lithium-based rechargeable batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 430 start-page: 132718 year: 2022 ident: CR95 article-title: All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132718 – volume: 120 start-page: 6738 year: 2020 ident: 397_CR38 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00170 – volume: 104 start-page: 4245 year: 2004 ident: 397_CR64 publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 6 start-page: 1501449 year: 2016 ident: 397_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501449 – volume: 5 start-page: 440 year: 2020 ident: 397_CR12 publication-title: Nat. Energy doi: 10.1038/s41560-020-0584-y – volume: 6 start-page: 1502054 year: 2016 ident: 397_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502054 – volume: 2 start-page: 1050 year: 2017 ident: 397_CR90 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00168 – volume: 522 start-page: 267 year: 2017 ident: 397_CR23 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.09.033 – volume: 32 start-page: 2001106 year: 2020 ident: 397_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.202001106 – volume: 3 year: 2012 ident: 397_CR3 publication-title: Nat. Commun. doi: 10.1038/ncomms2139 – volume: 47 start-page: 736 year: 2018 ident: 397_CR5 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00180K – volume: 84 start-page: 45 year: 1999 ident: 397_CR57 publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00298-0 – volume: 4 start-page: 269 year: 2019 ident: 397_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-019-0336-z – volume: 3 start-page: 14165 year: 2015 ident: 397_CR72 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03335G – volume: 4 start-page: 1287 year: 2021 ident: 397_CR86 publication-title: Matter doi: 10.1016/j.matt.2021.01.004 – volume: 11 start-page: 2003419 year: 2021 ident: 397_CR93 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003419 – volume: 6 start-page: eaba4098 year: 2020 ident: 397_CR6 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 7 start-page: 1700544 year: 2017 ident: 397_CR54 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700544 – volume: 9 start-page: 94 year: 2014 ident: 397_CR89 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.07.002 – volume: 10 start-page: 444 year: 2015 ident: 397_CR84 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.48 – volume: 10 start-page: 483 year: 2017 ident: 397_CR22 publication-title: ChemSusChem doi: 10.1002/cssc.201601317 – volume: 135 start-page: 1167 year: 2013 ident: 397_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 50 start-page: 1495 year: 2021 ident: 397_CR31 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01239D – volume: 4 start-page: 93 year: 2019 ident: 397_CR92 publication-title: Nat. Energy doi: 10.1038/s41560-019-0328-z – volume: 114 start-page: 11788 year: 2014 ident: 397_CR4 publication-title: Chem. Rev. doi: 10.1021/cr500232y – volume: 350 start-page: 938 year: 2015 ident: 397_CR8 publication-title: Science doi: 10.1126/science.aab1595 – volume: 1 start-page: 359 year: 2017 ident: 397_CR52 publication-title: Joule doi: 10.1016/j.joule.2017.07.001 – volume: 163 start-page: 1853 year: 2016 ident: 397_CR15 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0311609jes – volume: 430 start-page: 132718 year: 2022 ident: 397_CR95 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132718 – volume: 488 start-page: 313 year: 2012 ident: 397_CR18 publication-title: Nature doi: 10.1038/nature11477 – volume: 6 year: 2015 ident: 397_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms7362 – volume: 2 start-page: 16103 year: 2017 ident: 397_CR27 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.103 – volume: 2 start-page: 525 year: 2017 ident: 397_CR53 publication-title: Chem doi: 10.1016/j.chempr.2017.03.016 – volume: 59 start-page: 23593 year: 2020 ident: 397_CR68 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012017 – volume: 109 start-page: 115 year: 2006 ident: 397_CR88 publication-title: Catal. Lett. doi: 10.1007/s10562-006-0067-1 – volume: 5 start-page: 1700691 year: 2018 ident: 397_CR58 publication-title: Adv. Sci. doi: 10.1002/advs.201700691 – volume: 29 start-page: 1604685 year: 2017 ident: 397_CR82 publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – volume: 4 year: 2013 ident: 397_CR80 publication-title: Nat. Commun. doi: 10.1038/ncomms2812 – volume: 44 start-page: 10652 year: 2020 ident: 397_CR91 publication-title: Int. J. Energy Res. doi: 10.1002/er.5707 – volume: 19 start-page: 56 year: 2019 ident: 397_CR30 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.024 – volume: 4 start-page: 1301389 year: 2014 ident: 397_CR83 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301389 – volume: 8 start-page: 80 year: 2018 ident: 397_CR70 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2017.12.012 – volume: 31 start-page: 1904524 year: 2019 ident: 397_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201904524 – volume: 17 start-page: 543 year: 2018 ident: 397_CR13 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 114 start-page: 11503 year: 2014 ident: 397_CR2 publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 163 start-page: H305 year: 2016 ident: 397_CR66 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0721605jes – volume: 57 start-page: 67 year: 1995 ident: 397_CR36 publication-title: J. Power Sources doi: 10.1016/0378-7753(95)02243-0 – volume: 121 start-page: 6654 year: 2021 ident: 397_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00191 – volume: 580 start-page: 316 year: 2019 ident: 397_CR32 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.02.009 – volume: 5 start-page: 5 year: 2020 ident: 397_CR41 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0142-z – volume: 260 start-page: 176 year: 1993 ident: 397_CR35 publication-title: Science doi: 10.1126/science.260.5105.176 – volume: 9 start-page: 1500 year: 2021 ident: 397_CR67 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10685B – volume: 7 start-page: 2986 year: 2014 ident: 397_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00165F – volume: 555 start-page: 429 year: 2018 ident: 397_CR24 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.03.051 – volume: 5 year: 2014 ident: 397_CR37 publication-title: Nat. Commun. doi: 10.1038/ncomms4317 – volume: 127 start-page: 528 year: 1980 ident: 397_CR79 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2129706 – volume: 8 year: 2017 ident: 397_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms14083 – volume: 54 start-page: 9776 year: 2015 ident: 397_CR69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410823 – volume: 43 start-page: 5257 year: 2014 ident: 397_CR81 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 57 start-page: 11569 year: 2018 ident: 397_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803664 – volume: 32 start-page: 2001894 year: 2020 ident: 397_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.202001894 – volume: 32 start-page: 2000074 year: 2020 ident: 397_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202000074 – volume: 4 start-page: 53 year: 2018 ident: 397_CR50 publication-title: Batteries doi: 10.3390/batteries4040053 – volume: 349 start-page: 1529 year: 2015 ident: 397_CR48 publication-title: Science doi: 10.1126/science.aab3033 – volume: 4 start-page: 269 year: 2011 ident: 397_CR61 publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00029A – volume: 5 start-page: 1325 year: 2021 ident: 397_CR87 publication-title: Joule doi: 10.1016/j.joule.2021.05.019 – volume: 56 start-page: 1524 year: 1934 ident: 397_CR74 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01322a022 – volume: 10 start-page: 1903589 year: 2020 ident: 397_CR29 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903589 – volume: 51 start-page: 61 year: 1994 ident: 397_CR34 publication-title: J. Power Sources doi: 10.1016/0378-7753(94)01955-X – volume: 51 start-page: 1590 year: 2018 ident: 397_CR55 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00070 – volume: 371 start-page: 46 year: 2021 ident: 397_CR59 publication-title: Science doi: 10.1126/science.abb9554 – volume: 19 start-page: 1006 year: 2020 ident: 397_CR10 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0667-y – volume: 6 start-page: 1502164 year: 2016 ident: 397_CR85 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502164 – volume: 1 start-page: 16071 year: 2016 ident: 397_CR43 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 155 start-page: 706 year: 2019 ident: 397_CR44 publication-title: Carbon doi: 10.1016/j.carbon.2019.09.018 – volume: 2 start-page: 19444 year: 2014 ident: 397_CR71 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04419C – volume: 8 start-page: 2941 year: 2015 ident: 397_CR96 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02315G – volume: 49 start-page: 2204 year: 2013 ident: 397_CR26 publication-title: Chem. Commun. doi: 10.1039/c3cc00064h – volume: 451 start-page: 652 year: 2008 ident: 397_CR1 publication-title: Nature doi: 10.1038/451652a – volume: 15 start-page: 307 year: 2020 ident: 397_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0641-5 – volume: 536 start-page: 197 year: 2016 ident: 397_CR33 publication-title: Nature doi: 10.1038/nature18593 – volume: 337 start-page: 563 year: 2012 ident: 397_CR51 publication-title: Science doi: 10.1126/science.1223985 – volume: 5 start-page: 229 year: 2020 ident: 397_CR28 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 56 start-page: 9420 year: 2011 ident: 397_CR97 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.027 – volume: 27 start-page: 205 year: 2020 ident: 397_CR45 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.032 – volume: 87 start-page: 162 year: 2000 ident: 397_CR63 publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00476-0 – volume: 26 start-page: 2721 year: 2021 ident: 397_CR76 publication-title: Molecules doi: 10.3390/molecules26092721 – volume: 50 start-page: 12072 year: 2016 ident: 397_CR20 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03448 – volume: 58 start-page: 15910 year: 2019 ident: 397_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909324 – volume: 146 start-page: 3211 year: 1999 ident: 397_CR78 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1392456 – volume: 32 start-page: 932 year: 1910 ident: 397_CR73 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01926a005 – volume: 9 start-page: 5840 year: 2018 ident: 397_CR14 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02543 – volume: 144 start-page: 2949 year: 1997 ident: 397_CR65 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837942 – volume: 77 start-page: 6511 year: 1955 ident: 397_CR75 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01629a026 – volume: 14 start-page: 5669 year: 2021 ident: 397_CR94 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02021H – volume: 4 start-page: 1846 year: 2020 ident: 397_CR62 publication-title: Joule doi: 10.1016/j.joule.2020.07.023 – volume: 46 start-page: 423 year: 2000 ident: 397_CR56 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00601-0 – volume: 19 start-page: 943 year: 1989 ident: 397_CR77 publication-title: J. Appl. Electrochem. doi: 10.1007/BF01007946 |
SSID | ssj0001934979 |
Score | 2.5009997 |
SecondaryResourceType | review_article |
Snippet | Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 505 |
SubjectTerms | 639/301/299/891 639/4077/4079/891 639/638/161/891 Analytical Chemistry Anolytes Aqueous electrolytes Biochemistry Chemistry Chemistry and Materials Science Chemistry/Food Science Decoupling Electrolytes Inorganic Chemistry Lithium Lithium batteries Organic Chemistry Physical Chemistry Rechargeable batteries Review Article |
Title | Decoupled aqueous batteries using pH-decoupling electrolytes |
URI | https://link.springer.com/article/10.1038/s41570-022-00397-3 https://www.ncbi.nlm.nih.gov/pubmed/37117314 https://www.proquest.com/docview/2686431561 https://www.proquest.com/docview/2807915862 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-cvvgiil_1Y1TwTYNN07QpCOLH5hAUEQe-hXy0voxa3Xzwv_fSZhsy3GNpmiZ3udz9cpc7gFNrlMkVZ0TlPCYu7oKIxGgiFOoCriKdaHc5-fEpHQyThzf-5g_cxj6scronNhu1_TDujPwiTgUqT0Qb9Kr-JK5qlPOu-hIaHVjDLVgg-Fq76T09v8xPWXKW5Fnub8tETFyMUWO5WiuIwdy9VJSwvxppwcxccJE2mqe_CRveZAyvWx5vwUpRbcPlHeLG73pU2FBhT4jfQ92kykTkG7pg9vewHhDbNnJPvt7N6Adtyx0Y9nuvtwPiKyEQwzI-IZaVgmcmoiVNSqu4MCLNnc80LViaaEVTjXaMjqyIFUqZKHNhUJNzllHEK7Zgu7BafVTFPoRGRZmO09hGVieZjTVXTLGiNCjMcalFAHRKDWl8mnBXrWIkG3c1E7KloEQKyoaCkgVwNvumbpNkLG19NCWy9AIzlnP2BnAye41L3fkvVOXIKF3inpxyxGAB7LXMmf0OZ0ozRpMAzqfcmnf-_1gOlo_lENbjZqW48NwjWJ18fRfHaIRMdBc6on_f9evtF93d2FE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAvEKLRAkOIHV-JXYEgghyrKlj1Mr9Wb8SHpZ7S7srqr-KX4jM3nsClX01mMUx0k-z3hmPC-Atyn6aL2WzFstGMVdMKNiYMajLNC-CCpQcvLxSTk-Uz_O9fkW_BlyYSisctgT2406zSKdke-J0qDwRGuDf57_YtQ1iryrQwuNjiwO66tLNNkWnw72cX3fCTH6dvp1zPquAizKSi9Zko3RVSx4w1WTvDbRlJb8j2UtSxU8LwPqBKFIRnikWNNYE1Eqallx1P1TLXHeO3BXSWmJo8zo--ZMx0plK9vn5hTS7C1QPlJnF7T4KAsW-flf-XdNqb3mkG3l3OghPOgV1PxLR1GPYKuePoaP-2ilruaTOuUeZ5qtFnloC3OinZ1T6PxFPh-z1A2iq767zuQKNdkncHYrCD2F7elsWj-HPPqiCqIUqUhBVUkE7aWXdRNx6xBNMBnwAQ0X-6Lk1Btj4lrnuDSuQ9Ahgq5F0MkM3q-fmXclOW4cvTuA7Hr2XLgNMWXwZn0bGYu8JX5KMDoqE2S5Rosvg2fd4qxfh3_KK8lVBh-G1dpM_v9veXHzt7yGe-PT4yN3dHByuAP3RUs1FBi8C9vL36v6Jao_y_Cqpbkcft42kf8Fv-wQ4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupled+aqueous+batteries+using+pH-decoupling+electrolytes&rft.jtitle=Nature+reviews.+Chemistry&rft.au=Zhu%2C+Yun-hai&rft.au=Cui%2C+Yang-feng&rft.au=Xie%2C+Zi-long&rft.au=Zhuang%2C+Zhen-bang&rft.date=2022-07-01&rft.issn=2397-3358&rft.eissn=2397-3358&rft.volume=6&rft.issue=7&rft.spage=505&rft.epage=517&rft_id=info:doi/10.1038%2Fs41570-022-00397-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41570_022_00397_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3358&client=summon |