Decoupled aqueous batteries using pH-decoupling electrolytes

Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, whic...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Chemistry Vol. 6; no. 7; pp. 505 - 517
Main Authors Zhu, Yun-hai, Cui, Yang-feng, Xie, Zi-long, Zhuang, Zhen-bang, Huang, Gang, Zhang, Xin-bo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed. Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte.
AbstractList Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.
Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.
Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed.Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte.
Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost, abundant resources and high safety. The output voltage of aqueous batteries is limited by the narrow stable voltage window of 1.23 V for water, which theoretically impedes further improvement of their energy density. However, the pH-decoupling electrolyte with an acidic catholyte and an alkaline anolyte has been verified to broaden the operating voltage window of the aqueous electrolyte to over 3 V, which goes beyond the voltage limitations of the aqueous batteries, making high-energy aqueous batteries possible. In this Review, we summarize the latest decoupled aqueous batteries based on pH-decoupling electrolytes from the perspective of ion-selective membranes, competitive redox couples and potential battery prototypes. The inherent defects and problems of these decoupled aqueous batteries are systematically analysed, and the critical scientific issues of this battery technology for future applications are discussed. Developing aqueous batteries with high voltages is possible with the use of pH-decoupling electrolytes with an acidic catholyte and an alkaline anolyte.
Author Zhu, Yun-hai
Xie, Zi-long
Huang, Gang
Zhuang, Zhen-bang
Cui, Yang-feng
Zhang, Xin-bo
Author_xml – sequence: 1
  givenname: Yun-hai
  orcidid: 0000-0002-2333-2740
  surname: Zhu
  fullname: Zhu, Yun-hai
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University
– sequence: 2
  givenname: Yang-feng
  surname: Cui
  fullname: Cui, Yang-feng
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, School of Materials Science and Engineering, Changchun University of Science and Technology
– sequence: 3
  givenname: Zi-long
  orcidid: 0000-0002-9937-6862
  surname: Xie
  fullname: Xie, Zi-long
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China
– sequence: 4
  givenname: Zhen-bang
  surname: Zhuang
  fullname: Zhuang, Zhen-bang
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University
– sequence: 5
  givenname: Gang
  orcidid: 0000-0003-2518-8145
  surname: Huang
  fullname: Huang, Gang
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
– sequence: 6
  givenname: Xin-bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin-bo
  email: xbzhang@ciac.ac.cn
  organization: State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37117314$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LwzAYx4NMnM59AQ9S8OKlmpfmpeBF5suEgRc9hzRNR0fX1CQ97NubrRvKDjvlCfz-Dz-e_xUYtbY1ANwg-IAgEY8-Q5TDFGKcQkhynpIzcIl3A6Fi9G8eg6n3KwghykmW8_wCjAlHiBOUXYKnF6Nt3zWmTNRPb2zvk0KFYFxtfNL7ul0m3TwtB2j7M43RwdlmE4y_BueVaryZ7t8J-H57_ZrN08Xn-8fseZFqwmlIS1IJyjVEFcqqUlGhBctxRjEzhGWFQqygDBewFFhBikSVC00RptESM1gaMgH3w97O2Sjpg1zXXpumUe3WWGIBeY6oYDiid0foyvaujXYSM8EygihDkbrdU32xNqXsXL1WbiMPd4mAGADtrPfOVFLXQYXatsGpupEIym0LcmhBxhbkrgVJYhQfRQ_bT4bIEPIRbpfG_WmfSP0CGWWW4A
CitedBy_id crossref_primary_10_1016_j_cej_2024_151629
crossref_primary_10_1016_j_joule_2023_05_024
crossref_primary_10_1016_j_materresbull_2024_112858
crossref_primary_10_1016_j_cej_2023_145503
crossref_primary_10_1002_adfm_202407313
crossref_primary_10_1038_s41560_024_01474_1
crossref_primary_10_1002_ange_202219076
crossref_primary_10_1002_anie_202410845
crossref_primary_10_1002_smll_202402325
crossref_primary_10_1002_smll_202312207
crossref_primary_10_1039_D4EE03385J
crossref_primary_10_1002_ange_202409322
crossref_primary_10_1002_ange_202423265
crossref_primary_10_1093_nsr_nwad235
crossref_primary_10_1002_advs_202306504
crossref_primary_10_1016_j_seta_2024_103926
crossref_primary_10_1016_j_cej_2023_144091
crossref_primary_10_1021_jacs_3c13963
crossref_primary_10_1002_ange_202213522
crossref_primary_10_1016_j_cej_2024_153815
crossref_primary_10_1002_anie_202400916
crossref_primary_10_1021_acs_nanolett_5c00533
crossref_primary_10_1016_j_jechem_2023_12_054
crossref_primary_10_1002_advs_202206888
crossref_primary_10_1002_smll_202406658
crossref_primary_10_1002_anie_202405168
crossref_primary_10_1007_s40820_023_01256_6
crossref_primary_10_1016_j_ccr_2024_215894
crossref_primary_10_1021_acs_nanolett_3c02904
crossref_primary_10_1002_anie_202409322
crossref_primary_10_1016_j_jechem_2024_10_003
crossref_primary_10_1002_tcr_202400142
crossref_primary_10_1002_ange_202405168
crossref_primary_10_1002_inf2_12620
crossref_primary_10_1002_smll_202411558
crossref_primary_10_1021_acsnano_2c07792
crossref_primary_10_1002_anie_202212695
crossref_primary_10_1002_anie_202419394
crossref_primary_10_1002_aenm_202401328
crossref_primary_10_1016_j_joule_2023_10_010
crossref_primary_10_1039_D4YA00279B
crossref_primary_10_1039_D3QI01582C
crossref_primary_10_1002_cssc_202400479
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1016_j_ensm_2023_102806
crossref_primary_10_1039_D2QI02629E
crossref_primary_10_1002_ange_202400916
crossref_primary_10_1002_aenm_202404032
crossref_primary_10_1002_adfm_202213966
crossref_primary_10_1021_acsenergylett_3c01802
crossref_primary_10_1016_j_jechem_2022_12_062
crossref_primary_10_1002_anie_202409071
crossref_primary_10_1002_smtd_202300832
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1002_eem2_12564
crossref_primary_10_1002_batt_202300074
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1002_anie_202503138
crossref_primary_10_1002_smll_202204757
crossref_primary_10_1016_j_ensm_2025_104088
crossref_primary_10_1038_s41467_024_47950_w
crossref_primary_10_1002_ange_202410845
crossref_primary_10_1016_j_cclet_2023_108337
crossref_primary_10_1002_ange_202212695
crossref_primary_10_1039_D4CP02704C
crossref_primary_10_1002_ange_202419394
crossref_primary_10_1002_adfm_202302637
crossref_primary_10_1016_j_jpowsour_2023_232818
crossref_primary_10_1039_D3EE03729K
crossref_primary_10_1002_aenm_202303740
crossref_primary_10_1002_adma_202307298
crossref_primary_10_1002_anie_202219076
crossref_primary_10_1002_ange_202503138
crossref_primary_10_1016_j_ensm_2024_103661
crossref_primary_10_1016_j_device_2024_100641
crossref_primary_10_1080_21663831_2023_2178860
crossref_primary_10_1002_ange_202409071
crossref_primary_10_1007_s11426_024_2133_1
crossref_primary_10_1016_j_ensm_2023_102873
crossref_primary_10_1016_j_est_2024_111658
crossref_primary_10_1016_j_cclet_2023_109143
crossref_primary_10_1002_anie_202423265
crossref_primary_10_1038_s41467_024_44855_6
crossref_primary_10_1002_anie_202213522
crossref_primary_10_1002_inf2_12601
crossref_primary_10_1016_j_coelec_2024_101633
crossref_primary_10_1002_batt_202400706
crossref_primary_10_1021_acsami_4c09788
crossref_primary_10_1039_D3EE03584K
crossref_primary_10_1016_j_esci_2024_100331
crossref_primary_10_1155_2024_2329261
crossref_primary_10_1016_j_est_2023_108467
crossref_primary_10_1002_smll_202305766
Cites_doi 10.1039/D1EE02021H
10.1126/science.aab3033
10.1039/D0CS01239D
10.1038/s41578-019-0142-z
10.1016/S0378-7753(99)00298-0
10.1038/s41565-020-0641-5
10.1021/ja3091438
10.1016/j.joule.2020.07.023
10.1038/nature18593
10.1149/2.0311609jes
10.1016/j.memsci.2019.02.009
10.1021/cr020730k
10.1002/adma.201604685
10.1002/aenm.202003419
10.1002/aenm.201301389
10.1038/451652a
10.1016/j.electacta.2011.08.027
10.1038/s41560-019-0336-z
10.1002/cssc.201601317
10.1038/s41560-020-0584-y
10.1038/s41563-018-0063-z
10.3390/molecules26092721
10.1002/anie.202012017
10.3390/batteries4040053
10.1039/C4EE00165F
10.1021/cr500232y
10.1007/BF01007946
10.1039/C5EE02315G
10.1021/acs.accounts.8b00070
10.1002/anie.201410823
10.1039/C5TA03335G
10.1016/j.ensm.2019.02.024
10.1038/ncomms4317
10.1126/science.abb9554
10.1002/aenm.201502054
10.1016/0378-7753(95)02243-0
10.1016/S0378-7753(99)00476-0
10.1149/1.1392456
10.1038/ncomms2139
10.1149/1.2129706
10.1038/nnano.2015.48
10.1016/j.mtener.2017.12.012
10.1016/0378-7753(94)01955-X
10.1038/nature11477
10.1002/aenm.201501449
10.1002/anie.201909324
10.1126/science.aab1595
10.1021/cr500003w
10.1016/j.nanoen.2014.07.002
10.1038/s41578-019-0165-5
10.1002/aenm.201903589
10.1021/acs.est.6b03448
10.1038/ncomms7362
10.1021/ja01629a026
10.1002/er.5707
10.1016/j.memsci.2018.03.051
10.1016/j.ensm.2020.01.032
10.1007/s10562-006-0067-1
10.1038/ncomms2812
10.1126/sciadv.aba4098
10.1039/C4TA04419C
10.1038/natrevmats.2016.103
10.1039/c3cc00064h
10.1021/acsenergylett.7b00168
10.1002/advs.201700691
10.1021/ja01926a005
10.1149/2.0721605jes
10.1016/j.joule.2021.05.019
10.1002/adma.202001106
10.1016/j.memsci.2016.09.033
10.1002/anie.201803664
10.1002/adma.201904524
10.1126/science.1223985
10.1002/adma.202001894
10.1016/j.carbon.2019.09.018
10.1039/C4CS00015C
10.1002/adma.202000074
10.1149/1.1837942
10.1016/j.chempr.2017.03.016
10.1002/aenm.201502164
10.1039/C0EE00029A
10.1038/s41560-019-0328-z
10.1016/j.joule.2017.07.001
10.1016/S0013-4686(00)00601-0
10.1021/acs.chemrev.1c00191
10.1038/s41563-020-0667-y
10.1021/acs.jpclett.8b02543
10.1021/ja01322a022
10.1039/D0TA10685B
10.1039/C7CS00180K
10.1126/science.260.5105.176
10.1002/aenm.201700544
10.1021/acs.chemrev.0c00170
10.1016/j.matt.2021.01.004
10.1038/ncomms14083
10.1038/nenergy.2016.71
10.1016/j.cej.2021.132718
ContentType Journal Article
Copyright Springer Nature Limited 2022
2022. Springer Nature Limited.
Springer Nature Limited 2022.
Copyright_xml – notice: Springer Nature Limited 2022
– notice: 2022. Springer Nature Limited.
– notice: Springer Nature Limited 2022.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41570-022-00397-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2397-3358
EndPage 517
ExternalDocumentID 37117314
10_1038_s41570_022_00397_3
Genre Journal Article
Review
GroupedDBID 0R~
88I
AAEEF
AARCD
AAWYQ
AAYZH
ABJCF
ABJNI
ABLJU
ABUWG
ACGFS
ADBBV
AFKRA
AFSHS
AGSTI
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
AZQEC
BENPR
BGLVJ
BKKNO
CCPQU
DWQXO
EBS
EJD
FSGXE
FZEXT
GNUQQ
HCIFZ
M2P
M7S
NNMJJ
O9-
ODYON
PTHSS
RNR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
NPM
3V.
7XB
8FE
8FG
8FK
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-d3f857c01f14fda58c86924526e364ba16b562b0d82a0518f98c5125371260de3
IEDL.DBID BENPR
ISSN 2397-3358
IngestDate Fri Jul 11 06:05:15 EDT 2025
Wed Jul 16 16:31:35 EDT 2025
Wed Feb 19 02:23:51 EST 2025
Tue Jul 01 04:11:21 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2022. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-d3f857c01f14fda58c86924526e364ba16b562b0d82a0518f98c5125371260de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2518-8145
0000-0002-5806-159X
0000-0002-9937-6862
0000-0002-2333-2740
PMID 37117314
PQID 2686431561
PQPubID 4669715
PageCount 13
ParticipantIDs proquest_miscellaneous_2807915862
proquest_journals_2686431561
pubmed_primary_37117314
crossref_citationtrail_10_1038_s41570_022_00397_3
crossref_primary_10_1038_s41570_022_00397_3
springer_journals_10_1038_s41570_022_00397_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Chemistry
PublicationTitleAbbrev Nat Rev Chem
PublicationTitleAlternate Nat Rev Chem
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Yu (CR30) 2019; 19
Luo, Abdu, Wessling (CR24) 2018; 555
Xu (CR92) 2019; 4
Hong (CR40) 2019; 58
Putois (CR36) 1995; 57
Chang (CR71) 2014; 2
Zhang, Zhao, Xia, Dai (CR84) 2015; 10
Xie, Liang, Lu (CR10) 2020; 19
Feng (CR33) 2016; 536
Lee (CR46) 2019; 31
Xie (CR93) 2021; 11
Wang (CR44) 2019; 155
Kim (CR4) 2014; 114
Wang, Chandrabose, Jian, Xing, Ji (CR15) 2016; 163
Tian (CR49) 2017; 8
Zhang, Lin (CR87) 2021; 5
Li, Dai (CR81) 2014; 43
Khor (CR70) 2018; 8
Qiao (CR52) 2017; 1
Lee, Ho, Van Zee, Murthy (CR57) 1999; 84
Wen (CR91) 2020; 44
Chao (CR17) 2020; 32
Ran (CR23) 2017; 522
Maja, Orecchia, Strano, Tosco, Vanni (CR56) 2000; 46
Hoobin, Cathro, Niere (CR77) 1989; 19
Pan (CR58) 2018; 5
Chao (CR6) 2020; 6
McEldrew, Goodwin, Kornyshev, Bazant (CR14) 2018; 9
Xu, Lu, Sun, Jiang, Duan (CR55) 2018; 51
Bai, Viswanathan, Bazant (CR72) 2015; 3
Cai (CR45) 2020; 27
Geng (CR85) 2016; 6
Xu (CR68) 2020; 59
Ji (CR37) 2014; 5
Zhao (CR95) 2022; 430
Sui, Ji (CR7) 2021; 121
Yip, Brogioli, Hamelers, Nijmeijer (CR20) 2016; 50
Kautek (CR78) 1999; 146
Ovshinsky, Fetcenko, Ross (CR35) 1993; 260
Xu (CR2) 2014; 114
Ding, Cai, Wen (CR31) 2021; 50
Liu, Wei, Nie, Sprenkle, Wang (CR47) 2016; 6
Winter, Brodd (CR64) 2004; 104
Zhao, Stalin, Zhao, Archer (CR28) 2020; 5
Fu (CR82) 2017; 29
Yamada, Wang, Ko, Watanabe, Yamada (CR9) 2019; 4
Yuan (CR61) 2011; 4
Gibson (CR66) 2016; 163
Tripathi, Su, Hwang (CR5) 2018; 47
Qian (CR42) 2015; 6
Logan, Elimelech (CR18) 2012; 488
Matter, Ozkan (CR88) 2006; 109
Lin (CR48) 2015; 349
Liu, Chi, Han, Liu (CR29) 2020; 10
Gurieff, Timchenko, Menictas (CR50) 2018; 4
Shen, Kordesch (CR63) 2000; 87
Singh (CR67) 2021; 9
Kordesh, Weissenbacher (CR34) 1994; 51
Wang (CR13) 2018; 17
Lin (CR86) 2021; 4
Suo (CR8) 2015; 350
Sun (CR59) 2021; 371
Donne, Lawrance, Swinkels (CR65) 1997; 144
Choi (CR41) 2020; 5
Sun, Liu, Cui (CR43) 2016; 1
Wang, Xie, Tang, Wang, Yan (CR39) 2018; 57
Li, Manthiram (CR89) 2014; 9
Goodenough, Park (CR60) 2013; 135
Li (CR80) 2013; 4
Noack, Roznyatovskaya, Herr, Fischer (CR69) 2015; 54
Chao, Qiao (CR62) 2020; 4
Fischer, Bingle (CR75) 1955; 77
Eustace (CR79) 1980; 127
Ma, Bao, Shi, Yan, Zhang (CR53) 2017; 2
Yu, Manthiram (CR90) 2017; 2
Gu, Gong, Yan, Yan (CR16) 2014; 7
Bray (CR73) 1910; 32
Pasta, Wessells, Huggins, Cui (CR3) 2012; 3
Jin, Li, Xiao (CR22) 2017; 10
Manthiram, Yu, Wang (CR27) 2017; 2
Bi (CR11) 2020; 32
Jones, Baeckström (CR74) 1934; 56
Liu (CR19) 2020; 15
Huang (CR54) 2017; 7
Lee, Choi, Feng, Park, Chen (CR83) 2014; 4
Küttinger, Loichet Torres, Meyer, Fischer, Tübke (CR76) 2021; 26
Gong (CR96) 2015; 8
Fleischmann (CR38) 2020; 120
Epsztein, Shaulsky, Qin, Elimelech (CR32) 2019; 580
Zhong (CR12) 2020; 5
Peng, Freunberger, Chen, Bruce (CR51) 2012; 337
Yang, Chen, Shen, Zhao, Shen (CR21) 2020; 32
Yuan (CR94) 2021; 14
Li, Weng, Li, Chan (CR97) 2011; 56
Li, Manthiram (CR25) 2016; 6
Chen, Guo, Xia, Wang (CR26) 2013; 49
Armand, Tarascon (CR1) 2008; 451
H Wen (397_CR91) 2020; 44
K Xu (397_CR2) 2014; 114
J Zhang (397_CR84) 2015; 10
PM Hoobin (397_CR77) 1989; 19
DJ Eustace (397_CR79) 1980; 127
L Zhang (397_CR87) 2021; 5
A Singh (397_CR67) 2021; 9
H Bi (397_CR11) 2020; 32
K Kordesh (397_CR34) 1994; 51
X Yu (397_CR90) 2017; 2
F Yu (397_CR30) 2019; 19
WK Lee (397_CR57) 1999; 84
J Ran (397_CR23) 2017; 522
G Jones (397_CR74) 1934; 56
Y Li (397_CR80) 2013; 4
W Xu (397_CR55) 2018; 51
Y Yamada (397_CR9) 2019; 4
JD Feng (397_CR33) 2016; 536
X Liu (397_CR19) 2020; 15
N Gurieff (397_CR50) 2018; 4
Z Jin (397_CR22) 2017; 10
K Xu (397_CR92) 2019; 4
X Wang (397_CR15) 2016; 163
BE Logan (397_CR18) 2012; 488
C Liu (397_CR29) 2020; 10
JB Goodenough (397_CR60) 2013; 135
D Chao (397_CR62) 2020; 4
JH Lee (397_CR46) 2019; 31
J Fu (397_CR82) 2017; 29
AM Tripathi (397_CR5) 2018; 47
P Bai (397_CR72) 2015; 3
H Kim (397_CR4) 2014; 114
Y Sun (397_CR43) 2016; 1
M Armand (397_CR1) 2008; 451
C Lin (397_CR86) 2021; 4
NY Yip (397_CR20) 2016; 50
Y Wang (397_CR44) 2019; 155
Z Cai (397_CR45) 2020; 27
S Fleischmann (397_CR38) 2020; 120
Z Peng (397_CR51) 2012; 337
L Chen (397_CR26) 2013; 49
M McEldrew (397_CR14) 2018; 9
J Pan (397_CR58) 2018; 5
M Yang (397_CR21) 2020; 32
Y Qiao (397_CR52) 2017; 1
T Luo (397_CR24) 2018; 555
D Geng (397_CR85) 2016; 6
L Suo (397_CR8) 2015; 350
J Fischer (397_CR75) 1955; 77
W Sun (397_CR59) 2021; 371
F Putois (397_CR36) 1995; 57
Y Sui (397_CR7) 2021; 121
SW Donne (397_CR65) 1997; 144
J Qian (397_CR42) 2015; 6
W Kautek (397_CR78) 1999; 146
JJ Hong (397_CR40) 2019; 58
Y Xu (397_CR68) 2020; 59
F Xie (397_CR93) 2021; 11
ZF Huang (397_CR54) 2017; 7
DU Lee (397_CR83) 2014; 4
PH Matter (397_CR88) 2006; 109
M Pasta (397_CR3) 2012; 3
Z Chang (397_CR71) 2014; 2
D Chao (397_CR6) 2020; 6
M Maja (397_CR56) 2000; 46
AJ Gibson (397_CR66) 2016; 163
A Khor (397_CR70) 2018; 8
D Chao (397_CR17) 2020; 32
T Liu (397_CR47) 2016; 6
L Li (397_CR25) 2016; 6
LX Yuan (397_CR61) 2011; 4
JL Ma (397_CR53) 2017; 2
H Li (397_CR97) 2011; 56
H Tian (397_CR49) 2017; 8
A Manthiram (397_CR27) 2017; 2
Q Zhao (397_CR28) 2020; 5
Y Li (397_CR81) 2014; 43
R Epsztein (397_CR32) 2019; 580
K Lin (397_CR48) 2015; 349
J Noack (397_CR69) 2015; 54
F Wang (397_CR13) 2018; 17
L Li (397_CR89) 2014; 9
WC Bray (397_CR73) 1910; 32
M Winter (397_CR64) 2004; 104
C Zhong (397_CR12) 2020; 5
M Küttinger (397_CR76) 2021; 26
Y Ding (397_CR31) 2021; 50
SR Ovshinsky (397_CR35) 1993; 260
C Choi (397_CR41) 2020; 5
Y Shen (397_CR63) 2000; 87
K Gong (397_CR96) 2015; 8
X Wang (397_CR39) 2018; 57
S Gu (397_CR16) 2014; 7
H Ji (397_CR37) 2014; 5
J Xie (397_CR10) 2020; 19
S Zhao (397_CR95) 2022; 430
L Yuan (397_CR94) 2021; 14
References_xml – volume: 14
  start-page: 5669
  year: 2021
  end-page: 5689
  ident: CR94
  article-title: Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02021H
– volume: 349
  start-page: 1529
  year: 2015
  end-page: 1532
  ident: CR48
  article-title: Alkaline quinone flow battery
  publication-title: Science
  doi: 10.1126/science.aab3033
– volume: 50
  start-page: 1495
  year: 2021
  end-page: 1511
  ident: CR31
  article-title: Electrochemical neutralization energy: from concept to devices
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01239D
– volume: 5
  start-page: 5
  year: 2020
  end-page: 19
  ident: CR41
  article-title: Achieving high energy density and high power density with pseudocapacitive materials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0142-z
– volume: 84
  start-page: 45
  year: 1999
  end-page: 51
  ident: CR57
  article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00298-0
– volume: 15
  start-page: 307
  year: 2020
  end-page: 312
  ident: CR19
  article-title: Power generation by reverse electrodialysis in a single-layer nanoporous membrane made from core–rim polycyclic aromatic hydrocarbons
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0641-5
– volume: 135
  start-page: 1167
  year: 2013
  end-page: 1176
  ident: CR60
  article-title: The Li-ion rechargeable battery: a perspective
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 4
  start-page: 1846
  year: 2020
  end-page: 1851
  ident: CR62
  article-title: Toward high-voltage aqueous batteries: super- or low-concentrated electrolyte?
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.023
– volume: 536
  start-page: 197
  year: 2016
  end-page: 200
  ident: CR33
  article-title: Single-layer MoS nanopores as nanopower generators
  publication-title: Nature
  doi: 10.1038/nature18593
– volume: 163
  start-page: 1853
  year: 2016
  end-page: 1858
  ident: CR15
  article-title: A 1.8 V aqueous supercapacitor with a bipolar assembly of ion-exchange membranes as the separator
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311609jes
– volume: 580
  start-page: 316
  year: 2019
  end-page: 326
  ident: CR32
  article-title: Activation behavior for ion permeation in ion-exchange membranes: role of ion dehydration in selective transport
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.02.009
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4270
  ident: CR64
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 29
  start-page: 1604685
  year: 2017
  ident: CR82
  article-title: Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 11
  start-page: 2003419
  year: 2021
  ident: CR93
  article-title: Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003419
– volume: 4
  start-page: 1301389
  year: 2014
  ident: CR83
  article-title: Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301389
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: CR1
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 56
  start-page: 9420
  year: 2011
  end-page: 9425
  ident: CR97
  article-title: Three electrolyte high voltage acid–alkaline hybrid rechargeable battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.027
– volume: 4
  start-page: 269
  year: 2019
  end-page: 280
  ident: CR9
  article-title: Advances and issues in developing salt-concentrated battery electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0336-z
– volume: 10
  start-page: 483
  year: 2017
  end-page: 488
  ident: CR22
  article-title: A hydrogen-evolving hybrid-electrolyte battery with electrochemical/photoelectrochemical charging from water oxidation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601317
– volume: 5
  start-page: 440
  year: 2020
  end-page: 449
  ident: CR12
  article-title: Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0584-y
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  ident: CR13
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 26
  start-page: 2721
  year: 2021
  ident: CR76
  article-title: Systematic study of quaternary ammonium cations for bromine sequestering application in high energy density electrolytes for hydrogen bromine redox flow batteries
  publication-title: Molecules
  doi: 10.3390/molecules26092721
– volume: 59
  start-page: 23593
  year: 2020
  end-page: 23597
  ident: CR68
  article-title: High-voltage rechargeable alkali–acid Zn–PbO hybrid battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012017
– volume: 4
  start-page: 53
  year: 2018
  ident: CR50
  article-title: Variable porous electrode compression for redox flow battery systems
  publication-title: Batteries
  doi: 10.3390/batteries4040053
– volume: 7
  start-page: 2986
  year: 2014
  end-page: 2998
  ident: CR16
  article-title: A multiple ion-exchange membrane design for redox flow batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00165F
– volume: 114
  start-page: 11788
  year: 2014
  end-page: 11827
  ident: CR4
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 19
  start-page: 943
  year: 1989
  end-page: 945
  ident: CR77
  article-title: Stability of zinc/bromine battery electrolytes
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01007946
– volume: 8
  start-page: 2941
  year: 2015
  end-page: 2945
  ident: CR96
  article-title: A zinc–iron redox-flow battery under $100 per kW h of system capital cost
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02315G
– volume: 51
  start-page: 1590
  year: 2018
  end-page: 1598
  ident: CR55
  article-title: Superwetting electrodes for gas-involving electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00070
– volume: 54
  start-page: 9776
  year: 2015
  end-page: 9809
  ident: CR69
  article-title: The chemistry of redox-flow batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410823
– volume: 3
  start-page: 14165
  year: 2015
  end-page: 14172
  ident: CR72
  article-title: A dual-mode rechargeable lithium–bromine/oxygen fuel cell
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03335G
– volume: 19
  start-page: 56
  year: 2019
  end-page: 61
  ident: CR30
  article-title: Aqueous alkaline–acid hybrid electrolyte for zinc-bromine battery with 3V voltage window
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.024
– volume: 5
  year: 2014
  ident: CR37
  article-title: Capacitance of carbon-based electrical double-layer capacitors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4317
– volume: 371
  start-page: 46
  year: 2021
  end-page: 51
  ident: CR59
  article-title: A rechargeable zinc-air battery based on zinc peroxide chemistry
  publication-title: Science
  doi: 10.1126/science.abb9554
– volume: 6
  start-page: 1502054
  year: 2016
  ident: CR25
  article-title: Long-life, high-voltage acidic Zn–air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502054
– volume: 57
  start-page: 67
  year: 1995
  end-page: 70
  ident: CR36
  article-title: Market for nickel-cadmium batteries
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(95)02243-0
– volume: 87
  start-page: 162
  year: 2000
  end-page: 166
  ident: CR63
  article-title: The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00476-0
– volume: 146
  start-page: 3211
  year: 1999
  end-page: 3216
  ident: CR78
  article-title: In situ investigations of bromine-storing complex formation in a zinc-flow battery at gold electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392456
– volume: 3
  year: 2012
  ident: CR3
  article-title: A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2139
– volume: 127
  start-page: 528
  year: 1980
  end-page: 532
  ident: CR79
  article-title: Bromine complexation in zinc-bromine circulating batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129706
– volume: 10
  start-page: 444
  year: 2015
  end-page: 452
  ident: CR84
  article-title: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 8
  start-page: 80
  year: 2018
  end-page: 108
  ident: CR70
  article-title: Review of zinc-based hybrid flow batteries: from fundamentals to applications
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.12.012
– volume: 51
  start-page: 61
  year: 1994
  end-page: 78
  ident: CR34
  article-title: Rechargeable alkaline manganese dioxide/zinc batteries
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)01955-X
– volume: 488
  start-page: 313
  year: 2012
  end-page: 319
  ident: CR18
  article-title: Membrane-based processes for sustainable power generation using water
  publication-title: Nature
  doi: 10.1038/nature11477
– volume: 6
  start-page: 1501449
  year: 2016
  ident: CR47
  article-title: A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501449
– volume: 58
  start-page: 15910
  year: 2019
  end-page: 15915
  ident: CR40
  article-title: A dual plating battery with the iodine/[ZnI (OH ) ] cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909324
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  ident: CR8
  article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  ident: CR2
  article-title: Electrolytes and interphases in Li-ion batteries and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 9
  start-page: 94
  year: 2014
  end-page: 100
  ident: CR89
  article-title: Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.002
– volume: 5
  start-page: 229
  year: 2020
  end-page: 252
  ident: CR28
  article-title: Designing solid-state electrolytes for safe, energy-dense batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0165-5
– volume: 10
  start-page: 1903589
  year: 2020
  ident: CR29
  article-title: A high energy density aqueous battery achieved by dual dissolution/deposition reactions separated in acid-alkaline electrolyte
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903589
– volume: 50
  start-page: 12072
  year: 2016
  end-page: 12094
  ident: CR20
  article-title: Salinity gradients for sustainable energy: primer, progress, and prospects
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03448
– volume: 6
  year: 2015
  ident: CR42
  article-title: High rate and stable cycling of lithium metal anode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
– volume: 77
  start-page: 6511
  year: 1955
  end-page: 6512
  ident: CR75
  article-title: The vapor pressure of bromine from 24 to 116°
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01629a026
– volume: 44
  start-page: 10652
  year: 2020
  end-page: 10661
  ident: CR91
  article-title: Ultrahigh voltage and energy density aluminum-air battery based on aqueous alkaline-acid hybrid electrolyte
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5707
– volume: 555
  start-page: 429
  year: 2018
  end-page: 454
  ident: CR24
  article-title: Selectivity of ion exchange membranes: a review
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.03.051
– volume: 27
  start-page: 205
  year: 2020
  end-page: 211
  ident: CR45
  article-title: Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.032
– volume: 109
  start-page: 115
  year: 2006
  end-page: 123
  ident: CR88
  article-title: Non-metal catalysts for dioxygen reduction in an acidic electrolyte
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-006-0067-1
– volume: 4
  year: 2013
  ident: CR80
  article-title: Advanced zinc-air batteries based on high-performance hybrid electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2812
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: CR6
  article-title: Roadmap for advanced aqueous batteries: from design of materials to applications
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 2
  start-page: 19444
  year: 2014
  end-page: 19450
  ident: CR71
  article-title: Rechargeable Li//Br battery: a promising platform for post lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04419C
– volume: 2
  start-page: 16103
  year: 2017
  ident: CR27
  article-title: Lithium battery chemistries enabled by solid-state electrolytes
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 49
  start-page: 2204
  year: 2013
  end-page: 2206
  ident: CR26
  article-title: High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc00064h
– volume: 2
  start-page: 1050
  year: 2017
  end-page: 1055
  ident: CR90
  article-title: A voltage-enhanced, low-cost aqueous iron–air battery enabled with a mediator-ion solid electrolyte
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00168
– volume: 5
  start-page: 1700691
  year: 2018
  ident: CR58
  article-title: Advanced architectures and relatives of air electrodes in Zn–air batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700691
– volume: 32
  start-page: 932
  year: 1910
  end-page: 938
  ident: CR73
  article-title: The hydrolysis of iodine and bromine
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01926a005
– volume: 163
  start-page: H305
  year: 2016
  ident: CR66
  article-title: Dynamic electrodeposition of manganese dioxide: temporal variation in the electrodeposition mechanism
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0721605jes
– volume: 5
  start-page: 1325
  year: 2021
  end-page: 1327
  ident: CR87
  article-title: Higher-voltage asymmetric-electrolyte metal-air batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.019
– volume: 32
  start-page: 2001106
  year: 2020
  ident: CR21
  article-title: A high-energy aqueous manganese–metal hydride hybrid battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001106
– volume: 522
  start-page: 267
  year: 2017
  end-page: 291
  ident: CR23
  article-title: Ion exchange membranes: new developments and applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.033
– volume: 57
  start-page: 11569
  year: 2018
  end-page: 11573
  ident: CR39
  article-title: Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803664
– volume: 31
  start-page: 1904524
  year: 2019
  ident: CR46
  article-title: High-energy efficiency membraneless flowless Zn–Br battery: utilizing the electrochemical–chemical growth of polybromides
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904524
– volume: 337
  start-page: 563
  year: 2012
  end-page: 566
  ident: CR51
  article-title: A reversible and higher-rate Li-O battery
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 32
  start-page: 2001894
  year: 2020
  ident: CR17
  article-title: Atomic engineering catalyzed MnO electrolysis kinetics for a hybrid aqueous battery with high power and energy density
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001894
– volume: 155
  start-page: 706
  year: 2019
  end-page: 726
  ident: CR44
  article-title: Biomass derived carbon as binder-free electrode materials for supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.018
– volume: 43
  start-page: 5257
  year: 2014
  end-page: 5275
  ident: CR81
  article-title: Recent advances in zinc–air batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 32
  start-page: 2000074
  year: 2020
  ident: CR11
  article-title: A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000074
– volume: 144
  start-page: 2949
  year: 1997
  end-page: 2953
  ident: CR65
  article-title: Redox processes at the manganese dioxide electrode: I. constant-current intermittent discharge
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837942
– volume: 2
  start-page: 525
  year: 2017
  end-page: 532
  ident: CR53
  article-title: Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.03.016
– volume: 6
  start-page: 1502164
  year: 2016
  ident: CR85
  article-title: From lithium-oxygen to lithium-air batteries: challenges and opportunities
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502164
– volume: 4
  start-page: 269
  year: 2011
  end-page: 284
  ident: CR61
  article-title: Development and challenges of LiFePO cathode material for lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00029A
– volume: 4
  start-page: 93
  year: 2019
  end-page: 94
  ident: CR92
  article-title: Diffusionless charge transfer
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0328-z
– volume: 1
  start-page: 359
  year: 2017
  end-page: 370
  ident: CR52
  article-title: Li-CO electrochemistry: a new strategy for CO fixation and energy storage
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.001
– volume: 46
  start-page: 423
  year: 2000
  end-page: 432
  ident: CR56
  article-title: Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00601-0
– volume: 121
  start-page: 6654
  year: 2021
  end-page: 6695
  ident: CR7
  article-title: Anticatalytic strategies to suppress water electrolysis in aqueous batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 19
  start-page: 1006
  year: 2020
  end-page: 1011
  ident: CR10
  article-title: Molecular crowding electrolytes for high-voltage aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0667-y
– volume: 9
  start-page: 5840
  year: 2018
  end-page: 5846
  ident: CR14
  article-title: Theory of the double layer in water-in-salt electrolytes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02543
– volume: 56
  start-page: 1524
  year: 1934
  end-page: 1528
  ident: CR74
  article-title: The standard potential of the bromine electrode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01322a022
– volume: 9
  start-page: 1500
  year: 2021
  end-page: 1506
  ident: CR67
  article-title: Towards a high MnO loading and gravimetric capacity from proton-coupled Mn /Mn reactions using a 3D free-standing conducting scaffold
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10685B
– volume: 47
  start-page: 736
  year: 2018
  end-page: 851
  ident: CR5
  article-title: In situ analytical techniques for battery interface analysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00180K
– volume: 260
  start-page: 176
  year: 1993
  end-page: 181
  ident: CR35
  article-title: A nickel metal hydride battery for electric vehicles
  publication-title: Science
  doi: 10.1126/science.260.5105.176
– volume: 7
  start-page: 1700544
  year: 2017
  ident: CR54
  article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700544
– volume: 120
  start-page: 6738
  year: 2020
  end-page: 6782
  ident: CR38
  article-title: Pseudocapacitance: from fundamental understanding to high power energy storage materials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00170
– volume: 4
  start-page: 1287
  year: 2021
  end-page: 1304
  ident: CR86
  article-title: High-voltage asymmetric metal–air batteries based on polymeric single-Zn -ion conductor
  publication-title: Matter
  doi: 10.1016/j.matt.2021.01.004
– volume: 8
  year: 2017
  ident: CR49
  article-title: High power rechargeable magnesium/iodine battery chemistry
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14083
– volume: 1
  start-page: 16071
  year: 2016
  ident: CR43
  article-title: Promises and challenges of nanomaterials for lithium-based rechargeable batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 430
  start-page: 132718
  year: 2022
  ident: CR95
  article-title: All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132718
– volume: 120
  start-page: 6738
  year: 2020
  ident: 397_CR38
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00170
– volume: 104
  start-page: 4245
  year: 2004
  ident: 397_CR64
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 6
  start-page: 1501449
  year: 2016
  ident: 397_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501449
– volume: 5
  start-page: 440
  year: 2020
  ident: 397_CR12
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0584-y
– volume: 6
  start-page: 1502054
  year: 2016
  ident: 397_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502054
– volume: 2
  start-page: 1050
  year: 2017
  ident: 397_CR90
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00168
– volume: 522
  start-page: 267
  year: 2017
  ident: 397_CR23
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2016.09.033
– volume: 32
  start-page: 2001106
  year: 2020
  ident: 397_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001106
– volume: 3
  year: 2012
  ident: 397_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2139
– volume: 47
  start-page: 736
  year: 2018
  ident: 397_CR5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00180K
– volume: 84
  start-page: 45
  year: 1999
  ident: 397_CR57
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00298-0
– volume: 4
  start-page: 269
  year: 2019
  ident: 397_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0336-z
– volume: 3
  start-page: 14165
  year: 2015
  ident: 397_CR72
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03335G
– volume: 4
  start-page: 1287
  year: 2021
  ident: 397_CR86
  publication-title: Matter
  doi: 10.1016/j.matt.2021.01.004
– volume: 11
  start-page: 2003419
  year: 2021
  ident: 397_CR93
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003419
– volume: 6
  start-page: eaba4098
  year: 2020
  ident: 397_CR6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 7
  start-page: 1700544
  year: 2017
  ident: 397_CR54
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700544
– volume: 9
  start-page: 94
  year: 2014
  ident: 397_CR89
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.07.002
– volume: 10
  start-page: 444
  year: 2015
  ident: 397_CR84
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.48
– volume: 10
  start-page: 483
  year: 2017
  ident: 397_CR22
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601317
– volume: 135
  start-page: 1167
  year: 2013
  ident: 397_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 50
  start-page: 1495
  year: 2021
  ident: 397_CR31
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01239D
– volume: 4
  start-page: 93
  year: 2019
  ident: 397_CR92
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0328-z
– volume: 114
  start-page: 11788
  year: 2014
  ident: 397_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– volume: 350
  start-page: 938
  year: 2015
  ident: 397_CR8
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 1
  start-page: 359
  year: 2017
  ident: 397_CR52
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.001
– volume: 163
  start-page: 1853
  year: 2016
  ident: 397_CR15
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0311609jes
– volume: 430
  start-page: 132718
  year: 2022
  ident: 397_CR95
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132718
– volume: 488
  start-page: 313
  year: 2012
  ident: 397_CR18
  publication-title: Nature
  doi: 10.1038/nature11477
– volume: 6
  year: 2015
  ident: 397_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7362
– volume: 2
  start-page: 16103
  year: 2017
  ident: 397_CR27
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.103
– volume: 2
  start-page: 525
  year: 2017
  ident: 397_CR53
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.03.016
– volume: 59
  start-page: 23593
  year: 2020
  ident: 397_CR68
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202012017
– volume: 109
  start-page: 115
  year: 2006
  ident: 397_CR88
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-006-0067-1
– volume: 5
  start-page: 1700691
  year: 2018
  ident: 397_CR58
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201700691
– volume: 29
  start-page: 1604685
  year: 2017
  ident: 397_CR82
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 4
  year: 2013
  ident: 397_CR80
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2812
– volume: 44
  start-page: 10652
  year: 2020
  ident: 397_CR91
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5707
– volume: 19
  start-page: 56
  year: 2019
  ident: 397_CR30
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.024
– volume: 4
  start-page: 1301389
  year: 2014
  ident: 397_CR83
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301389
– volume: 8
  start-page: 80
  year: 2018
  ident: 397_CR70
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2017.12.012
– volume: 31
  start-page: 1904524
  year: 2019
  ident: 397_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904524
– volume: 17
  start-page: 543
  year: 2018
  ident: 397_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 114
  start-page: 11503
  year: 2014
  ident: 397_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 163
  start-page: H305
  year: 2016
  ident: 397_CR66
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0721605jes
– volume: 57
  start-page: 67
  year: 1995
  ident: 397_CR36
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(95)02243-0
– volume: 121
  start-page: 6654
  year: 2021
  ident: 397_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00191
– volume: 580
  start-page: 316
  year: 2019
  ident: 397_CR32
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.02.009
– volume: 5
  start-page: 5
  year: 2020
  ident: 397_CR41
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0142-z
– volume: 260
  start-page: 176
  year: 1993
  ident: 397_CR35
  publication-title: Science
  doi: 10.1126/science.260.5105.176
– volume: 9
  start-page: 1500
  year: 2021
  ident: 397_CR67
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10685B
– volume: 7
  start-page: 2986
  year: 2014
  ident: 397_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00165F
– volume: 555
  start-page: 429
  year: 2018
  ident: 397_CR24
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.03.051
– volume: 5
  year: 2014
  ident: 397_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4317
– volume: 127
  start-page: 528
  year: 1980
  ident: 397_CR79
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2129706
– volume: 8
  year: 2017
  ident: 397_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14083
– volume: 54
  start-page: 9776
  year: 2015
  ident: 397_CR69
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410823
– volume: 43
  start-page: 5257
  year: 2014
  ident: 397_CR81
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 57
  start-page: 11569
  year: 2018
  ident: 397_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803664
– volume: 32
  start-page: 2001894
  year: 2020
  ident: 397_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001894
– volume: 32
  start-page: 2000074
  year: 2020
  ident: 397_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000074
– volume: 4
  start-page: 53
  year: 2018
  ident: 397_CR50
  publication-title: Batteries
  doi: 10.3390/batteries4040053
– volume: 349
  start-page: 1529
  year: 2015
  ident: 397_CR48
  publication-title: Science
  doi: 10.1126/science.aab3033
– volume: 4
  start-page: 269
  year: 2011
  ident: 397_CR61
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00029A
– volume: 5
  start-page: 1325
  year: 2021
  ident: 397_CR87
  publication-title: Joule
  doi: 10.1016/j.joule.2021.05.019
– volume: 56
  start-page: 1524
  year: 1934
  ident: 397_CR74
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01322a022
– volume: 10
  start-page: 1903589
  year: 2020
  ident: 397_CR29
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903589
– volume: 51
  start-page: 61
  year: 1994
  ident: 397_CR34
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)01955-X
– volume: 51
  start-page: 1590
  year: 2018
  ident: 397_CR55
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00070
– volume: 371
  start-page: 46
  year: 2021
  ident: 397_CR59
  publication-title: Science
  doi: 10.1126/science.abb9554
– volume: 19
  start-page: 1006
  year: 2020
  ident: 397_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0667-y
– volume: 6
  start-page: 1502164
  year: 2016
  ident: 397_CR85
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502164
– volume: 1
  start-page: 16071
  year: 2016
  ident: 397_CR43
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 155
  start-page: 706
  year: 2019
  ident: 397_CR44
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.09.018
– volume: 2
  start-page: 19444
  year: 2014
  ident: 397_CR71
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04419C
– volume: 8
  start-page: 2941
  year: 2015
  ident: 397_CR96
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02315G
– volume: 49
  start-page: 2204
  year: 2013
  ident: 397_CR26
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc00064h
– volume: 451
  start-page: 652
  year: 2008
  ident: 397_CR1
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 15
  start-page: 307
  year: 2020
  ident: 397_CR19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0641-5
– volume: 536
  start-page: 197
  year: 2016
  ident: 397_CR33
  publication-title: Nature
  doi: 10.1038/nature18593
– volume: 337
  start-page: 563
  year: 2012
  ident: 397_CR51
  publication-title: Science
  doi: 10.1126/science.1223985
– volume: 5
  start-page: 229
  year: 2020
  ident: 397_CR28
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0165-5
– volume: 56
  start-page: 9420
  year: 2011
  ident: 397_CR97
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.027
– volume: 27
  start-page: 205
  year: 2020
  ident: 397_CR45
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.032
– volume: 87
  start-page: 162
  year: 2000
  ident: 397_CR63
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00476-0
– volume: 26
  start-page: 2721
  year: 2021
  ident: 397_CR76
  publication-title: Molecules
  doi: 10.3390/molecules26092721
– volume: 50
  start-page: 12072
  year: 2016
  ident: 397_CR20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03448
– volume: 58
  start-page: 15910
  year: 2019
  ident: 397_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909324
– volume: 146
  start-page: 3211
  year: 1999
  ident: 397_CR78
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1392456
– volume: 32
  start-page: 932
  year: 1910
  ident: 397_CR73
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01926a005
– volume: 9
  start-page: 5840
  year: 2018
  ident: 397_CR14
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b02543
– volume: 144
  start-page: 2949
  year: 1997
  ident: 397_CR65
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837942
– volume: 77
  start-page: 6511
  year: 1955
  ident: 397_CR75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01629a026
– volume: 14
  start-page: 5669
  year: 2021
  ident: 397_CR94
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02021H
– volume: 4
  start-page: 1846
  year: 2020
  ident: 397_CR62
  publication-title: Joule
  doi: 10.1016/j.joule.2020.07.023
– volume: 46
  start-page: 423
  year: 2000
  ident: 397_CR56
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(00)00601-0
– volume: 19
  start-page: 943
  year: 1989
  ident: 397_CR77
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01007946
SSID ssj0001934979
Score 2.5009997
SecondaryResourceType review_article
Snippet Aqueous batteries have been considered as the most promising alternatives to the dominant lithium-based battery technologies because of their low cost,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 505
SubjectTerms 639/301/299/891
639/4077/4079/891
639/638/161/891
Analytical Chemistry
Anolytes
Aqueous electrolytes
Biochemistry
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Decoupling
Electrolytes
Inorganic Chemistry
Lithium
Lithium batteries
Organic Chemistry
Physical Chemistry
Rechargeable batteries
Review Article
Title Decoupled aqueous batteries using pH-decoupling electrolytes
URI https://link.springer.com/article/10.1038/s41570-022-00397-3
https://www.ncbi.nlm.nih.gov/pubmed/37117314
https://www.proquest.com/docview/2686431561
https://www.proquest.com/docview/2807915862
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED-cvvgiil_1Y1TwTYNN07QpCOLH5hAUEQe-hXy0voxa3Xzwv_fSZhsy3GNpmiZ3udz9cpc7gFNrlMkVZ0TlPCYu7oKIxGgiFOoCriKdaHc5-fEpHQyThzf-5g_cxj6scronNhu1_TDujPwiTgUqT0Qb9Kr-JK5qlPOu-hIaHVjDLVgg-Fq76T09v8xPWXKW5Fnub8tETFyMUWO5WiuIwdy9VJSwvxppwcxccJE2mqe_CRveZAyvWx5vwUpRbcPlHeLG73pU2FBhT4jfQ92kykTkG7pg9vewHhDbNnJPvt7N6Adtyx0Y9nuvtwPiKyEQwzI-IZaVgmcmoiVNSqu4MCLNnc80LViaaEVTjXaMjqyIFUqZKHNhUJNzllHEK7Zgu7BafVTFPoRGRZmO09hGVieZjTVXTLGiNCjMcalFAHRKDWl8mnBXrWIkG3c1E7KloEQKyoaCkgVwNvumbpNkLG19NCWy9AIzlnP2BnAye41L3fkvVOXIKF3inpxyxGAB7LXMmf0OZ0ozRpMAzqfcmnf-_1gOlo_lENbjZqW48NwjWJ18fRfHaIRMdBc6on_f9evtF93d2FE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAvEKLRAkOIHV-JXYEgghyrKlj1Mr9Wb8SHpZ7S7srqr-KX4jM3nsClX01mMUx0k-z3hmPC-Atyn6aL2WzFstGMVdMKNiYMajLNC-CCpQcvLxSTk-Uz_O9fkW_BlyYSisctgT2406zSKdke-J0qDwRGuDf57_YtQ1iryrQwuNjiwO66tLNNkWnw72cX3fCTH6dvp1zPquAizKSi9Zko3RVSx4w1WTvDbRlJb8j2UtSxU8LwPqBKFIRnikWNNYE1Eqallx1P1TLXHeO3BXSWmJo8zo--ZMx0plK9vn5hTS7C1QPlJnF7T4KAsW-flf-XdNqb3mkG3l3OghPOgV1PxLR1GPYKuePoaP-2ilruaTOuUeZ5qtFnloC3OinZ1T6PxFPh-z1A2iq767zuQKNdkncHYrCD2F7elsWj-HPPqiCqIUqUhBVUkE7aWXdRNx6xBNMBnwAQ0X-6Lk1Btj4lrnuDSuQ9Ahgq5F0MkM3q-fmXclOW4cvTuA7Hr2XLgNMWXwZn0bGYu8JX5KMDoqE2S5Rosvg2fd4qxfh3_KK8lVBh-G1dpM_v9veXHzt7yGe-PT4yN3dHByuAP3RUs1FBi8C9vL36v6Jao_y_Cqpbkcft42kf8Fv-wQ4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupled+aqueous+batteries+using+pH-decoupling+electrolytes&rft.jtitle=Nature+reviews.+Chemistry&rft.au=Zhu%2C+Yun-hai&rft.au=Cui%2C+Yang-feng&rft.au=Xie%2C+Zi-long&rft.au=Zhuang%2C+Zhen-bang&rft.date=2022-07-01&rft.issn=2397-3358&rft.eissn=2397-3358&rft.volume=6&rft.issue=7&rft.spage=505&rft.epage=517&rft_id=info:doi/10.1038%2Fs41570-022-00397-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41570_022_00397_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3358&client=summon