Functional diversity effects on productivity increase with age in a forest biodiversity experiment
Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in...
Saved in:
Published in | Nature ecology & evolution Vol. 5; no. 12; pp. 1594 - 1603 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.
In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity. |
---|---|
AbstractList | Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity. Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity. Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity. In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity. Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity. |
Author | Bongers, Franca J. Bruelheide, Helge Li, Shan von Oheimb, Goddert Cheng, Anpeng Bongers, Frans Ma, Keping Schmid, Bernhard Liu, Xiaojuan Li, Yin |
Author_xml | – sequence: 1 givenname: Franca J. orcidid: 0000-0001-9517-4932 surname: Bongers fullname: Bongers, Franca J. organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences – sequence: 2 givenname: Bernhard orcidid: 0000-0002-8430-3214 surname: Schmid fullname: Schmid, Bernhard organization: Department of Geography, Remote Sensing Laboratories, University of Zurich – sequence: 3 givenname: Helge orcidid: 0000-0003-3135-0356 surname: Bruelheide fullname: Bruelheide, Helge organization: Institute of Biology, Martin Luther University Halle-Wittenberg, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig – sequence: 4 givenname: Frans orcidid: 0000-0002-8431-6189 surname: Bongers fullname: Bongers, Frans organization: Forest Ecology and Forest Management Group, Wageningen University and Research – sequence: 5 givenname: Shan orcidid: 0000-0002-5294-2249 surname: Li fullname: Li, Shan organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences – sequence: 6 givenname: Goddert orcidid: 0000-0001-7408-425X surname: von Oheimb fullname: von Oheimb, Goddert organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of General Ecology and Environmental Protection, Technische Universität Dresden – sequence: 7 givenname: Yin surname: Li fullname: Li, Yin organization: Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University – sequence: 8 givenname: Anpeng surname: Cheng fullname: Cheng, Anpeng organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences – sequence: 9 givenname: Keping orcidid: 0000-0001-9112-5340 surname: Ma fullname: Ma, Keping email: kpma@ibcas.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences – sequence: 10 givenname: Xiaojuan orcidid: 0000-0002-9292-4432 surname: Liu fullname: Liu, Xiaojuan email: liuxiaojuan06@ibcas.ac.cn organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34737435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPHSEUhUljU636B7poSNy4GQsDDMPSmGqbmLhpk-4IAxeLmQevwGj99_J81hoXJiSQm-9czr3nI9qJKQJCnyg5oYSNXwqnQqiO9LQjVAy8Y-_QXs-U7Bjjv3ZevHfRYSk3hBAqpVDD8AHtMi6Z5Ezsoel8ibaGFM2MXbiFXEK9x-A92Fpwinidk1sacbuph2gzmAL4LtTf2FxDq2CDfcpQKp5CetHi7xpyWEGsB-i9N3OBw6d7H_08__rj7Ft3eXXx_ez0srNMitpZB2ogjnsivXWSMSKncQTLHQDjwjkvhBhG6SmZ6CTFJAmXblKmjW_aYfvoeNu3Wf6zNEN6FYqFeTYR0lJ0LxTv1diLoaFHr9CbtOS2g0YNRCqqpOCN-vxELdMKnF63eUy-1_-214B-C9icSsngnxFK9CYlvU1Jt5T0Y0qaNdH4SmRDNZsIajZhflvKttLS_onXkP_bfkP1AC0ZpzY |
CitedBy_id | crossref_primary_10_1016_j_fecs_2023_100097 crossref_primary_10_1016_j_foreco_2024_122058 crossref_primary_10_1016_j_scitotenv_2023_165959 crossref_primary_10_1111_jvs_13312 crossref_primary_10_1007_s11104_024_06540_x crossref_primary_10_1038_s41467_024_46355_z crossref_primary_10_1016_j_ecolind_2023_111329 crossref_primary_10_1111_nph_19889 crossref_primary_10_1016_j_rse_2024_114276 crossref_primary_10_1038_s41467_022_35189_2 crossref_primary_10_1038_s41598_024_72351_w crossref_primary_10_1007_s10113_023_02141_z crossref_primary_10_1016_j_ecolind_2022_109497 crossref_primary_10_1007_s11427_021_2052_5 crossref_primary_10_1111_1365_2745_13970 crossref_primary_10_1098_rstb_2021_0067 crossref_primary_10_1038_s41586_024_08407_8 crossref_primary_10_7554_eLife_100202 crossref_primary_10_1016_j_catena_2024_108331 crossref_primary_10_1038_s41559_024_02517_2 crossref_primary_10_3390_rs14071557 crossref_primary_10_1007_s10342_022_01498_w crossref_primary_10_1016_j_ecolind_2023_111301 crossref_primary_10_1093_aob_mcad058 crossref_primary_10_1111_nph_20210 crossref_primary_10_1002_advs_202201144 crossref_primary_10_1111_ele_14262 crossref_primary_10_1007_s10342_023_01580_x crossref_primary_10_1016_j_scitotenv_2022_156192 crossref_primary_10_1111_ecog_07414 crossref_primary_10_7554_eLife_100202_3 crossref_primary_10_1111_plb_13415 crossref_primary_10_1038_s41467_025_57354_z crossref_primary_10_3390_plants14030313 crossref_primary_10_1016_j_baae_2024_07_004 crossref_primary_10_1016_j_tree_2022_10_007 crossref_primary_10_1093_aob_mcae150 crossref_primary_10_1111_nph_19850 crossref_primary_10_1007_s00442_024_05550_x crossref_primary_10_1038_s41467_024_50423_9 crossref_primary_10_1111_nph_19216 crossref_primary_10_1016_j_foreco_2024_122446 crossref_primary_10_3390_f14030468 crossref_primary_10_1016_j_fcr_2023_109093 crossref_primary_10_2139_ssrn_4185824 crossref_primary_10_1016_j_foreco_2024_122448 crossref_primary_10_1016_j_agrformet_2022_109101 crossref_primary_10_1016_j_cub_2024_03_057 crossref_primary_10_1016_j_ecolind_2024_112083 crossref_primary_10_2478_bile_2024_0011 crossref_primary_10_1016_j_fecs_2024_100289 crossref_primary_10_1007_s10342_024_01736_3 crossref_primary_10_3389_ffgc_2023_1226514 crossref_primary_10_3390_f15060924 crossref_primary_10_1038_s41559_022_01831_x crossref_primary_10_1016_j_tree_2022_12_008 crossref_primary_10_1016_j_bse_2022_104451 crossref_primary_10_1016_j_scitotenv_2023_164047 crossref_primary_10_3389_fpls_2023_1301461 crossref_primary_10_1016_j_jenvman_2024_121397 crossref_primary_10_1016_j_ecolind_2024_112800 crossref_primary_10_1111_1365_2435_14524 crossref_primary_10_1016_j_fmre_2024_01_012 crossref_primary_10_1111_1365_2435_14415 crossref_primary_10_1007_s10750_023_05185_8 crossref_primary_10_1016_j_ecolind_2024_112450 crossref_primary_10_3389_fpls_2024_1372530 crossref_primary_10_3389_fevo_2022_891627 crossref_primary_10_1002_ecy_4057 crossref_primary_10_1111_1365_2745_14197 crossref_primary_10_1098_rstb_2021_0090 crossref_primary_10_1016_j_baae_2023_11_005 crossref_primary_10_1038_s41467_024_47348_8 crossref_primary_10_1016_j_fecs_2024_100187 crossref_primary_10_1126_science_abm6363 crossref_primary_10_1007_s11104_023_05874_2 crossref_primary_10_1016_j_foreco_2025_122529 crossref_primary_10_1111_oik_10872 crossref_primary_10_1186_s40168_023_01676_x crossref_primary_10_1038_s44185_023_00015_5 crossref_primary_10_1038_s41467_023_42136_2 crossref_primary_10_1002_ecy_3896 crossref_primary_10_1007_s11104_025_07310_z crossref_primary_10_1002_ecy_4220 crossref_primary_10_1016_j_catena_2023_107746 crossref_primary_10_1016_j_rse_2023_113530 crossref_primary_10_1016_j_envres_2023_117720 crossref_primary_10_1038_s41559_023_02049_1 crossref_primary_10_3390_land12091670 crossref_primary_10_1038_s41559_024_02631_1 crossref_primary_10_1016_j_ecolind_2022_109067 crossref_primary_10_1126_science_abn1406 crossref_primary_10_1016_j_tree_2022_11_009 crossref_primary_10_1016_j_soilbio_2022_108715 crossref_primary_10_1038_s41559_021_01575_0 crossref_primary_10_1111_1365_2745_14411 crossref_primary_10_1016_j_gecco_2024_e03323 crossref_primary_10_3389_fevo_2022_990835 crossref_primary_10_1111_plb_13611 crossref_primary_10_1016_j_foreco_2022_120722 crossref_primary_10_3390_f14112144 crossref_primary_10_1126_sciadv_abk1643 crossref_primary_10_1002_ppp3_10523 crossref_primary_10_1016_j_ecoleng_2023_106992 crossref_primary_10_1111_1365_2664_14588 crossref_primary_10_1038_s41467_023_36888_0 crossref_primary_10_1016_j_scitotenv_2024_175438 crossref_primary_10_1016_j_rsase_2023_100966 crossref_primary_10_1016_j_scitotenv_2022_160139 crossref_primary_10_1016_j_ecolind_2024_112282 crossref_primary_10_1016_j_fecs_2024_100246 crossref_primary_10_1111_1365_2745_14009 crossref_primary_10_1002_ece3_11364 crossref_primary_10_1002_eap_2969 crossref_primary_10_1016_j_foreco_2021_119941 crossref_primary_10_1007_s10021_022_00790_5 crossref_primary_10_1126_sciadv_adn4152 crossref_primary_10_1016_j_foreco_2023_121303 crossref_primary_10_1016_j_ecolind_2025_113276 crossref_primary_10_1016_j_foreco_2022_120271 |
Cites_doi | 10.1111/j.1469-8137.2008.02436.x 10.1126/science.aax0848 10.1111/1365-2664.13725 10.1371/journal.pone.0109211 10.1111/j.1469-8137.2010.03501.x 10.1038/s41559-020-01316-9 10.1007/s00442-016-3717-z 10.1038/s41467-018-05421-z 10.1016/bs.aecr.2019.06.001 10.1111/1365-2745.13464 10.1038/d41586-019-01026-8 10.1038/s41559-017-0132 10.1073/pnas.1710465114 10.1111/1365-2664.12874 10.1016/j.tree.2006.02.002 10.1093/jpe/rtw107 10.1016/j.baae.2021.02.003 10.1016/j.foreco.2017.08.002 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 10.1111/gcb.14792 10.1016/j.tree.2011.11.014 10.1111/j.1365-2745.2011.01944.x 10.1007/s00442-012-2589-0 10.1111/1365-2745.12346 10.1073/pnas.94.5.1857 10.1111/1365-2745.13190 10.1016/j.foreco.2006.05.012 10.1126/science.aat6405 10.1046/j.1365-2745.1998.00306.x 10.1371/journal.pone.0036760 10.1126/science.1217909 10.1111/1365-2745.12187 10.1111/geb.12962 10.1073/pnas.0704716104 10.1016/j.foreco.2013.03.046 10.1016/j.foreco.2016.06.032 10.1038/nature10282 10.1073/pnas.0709069104 10.1111/oik.07273 10.1111/1365-2745.12475 10.1111/1365-2664.12980 10.1890/08-2244.1 10.1007/978-3-642-19986-8_32 10.1111/plb.12250 10.1111/nph.17072 10.1111/1365-2745.12839 10.1038/s41559-018-0699-8 10.1111/nph.15263 10.1038/s41559-020-1127-4 10.1038/s41559-017-0325-1 10.1016/j.baae.2021.01.005 10.1002/ece3.5627 10.1111/1365-2745.12811 10.1111/ele.13400 10.1111/btp.12252 10.1098/rspb.2016.0536 10.1126/science.aba8232 10.1016/j.tree.2018.10.013 10.1002/ecy.1958 10.1111/conl.12829 10.1002/ece3.4043 10.1038/nature16489 10.1111/2041-210X.12126 10.1111/1365-2664.13308 10.1098/rspb.2018.1240 10.1038/s41559-020-01332-9 10.1111/ele.12600 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7X8 |
DOI | 10.1038/s41559-021-01564-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Ecology |
EISSN | 2397-334X |
EndPage | 1603 |
ExternalDocumentID | 34737435 10_1038_s41559_021_01564_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: University Research Priority Program Global Change and Biodiversity of the University of Zurich – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31870409 funderid: https://doi.org/10.13039/501100001809 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: 319936945/GRK2324; 319936945/GRK2324 funderid: https://doi.org/10.13039/501100001659 – fundername: Chinese Academy of Sciences President’s International Fellowship Initiative [PIFI] – fundername: CAS Interdisciplinary Innovation Team (JCTD-2018-06) – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (Youth Innovation Promotion Association CAS) grantid: 2019082 funderid: https://doi.org/10.13039/501100004739 – fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences [XDB31000000], the National Key Research and Development Program of China [2017YFA0605103] |
GroupedDBID | 0R~ 53G AAEEF AAHBH AARCD AAYZH ABJNI ABLJU ACBWK ACGFS ADBBV AEUYN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ATCPS AXYYD BBNVY BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P NNMJJ O9- ODYON PATMY PCBAR PYCSY RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PQGLB 8FE 8FH AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c375t-cde960d4f07fcd73307b88ec4dee345ddf555687f10b1b75b7047db9a015a15a3 |
IEDL.DBID | BENPR |
ISSN | 2397-334X |
IngestDate | Fri Jul 11 01:23:39 EDT 2025 Sat Aug 23 13:07:08 EDT 2025 Mon Jul 21 06:03:33 EDT 2025 Tue Jul 01 00:52:48 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-cde960d4f07fcd73307b88ec4dee345ddf555687f10b1b75b7047db9a015a15a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9517-4932 0000-0002-8431-6189 0000-0003-3135-0356 0000-0002-9292-4432 0000-0002-5294-2249 0000-0002-8430-3214 0000-0001-7408-425X 0000-0001-9112-5340 |
PMID | 34737435 |
PQID | 2607919754 |
PQPubID | 4669716 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2594298256 proquest_journals_2607919754 pubmed_primary_34737435 crossref_primary_10_1038_s41559_021_01564_3 crossref_citationtrail_10_1038_s41559_021_01564_3 springer_journals_10_1038_s41559_021_01564_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature ecology & evolution |
PublicationTitleAbbrev | Nat Ecol Evol |
PublicationTitleAlternate | Nat Ecol Evol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DiazSIncorporating plant functional diversity effects in ecosystem service assessmentsProc. Natl Acad. Sci. USA200710420684206891:CAS:528:DC%2BD1cXkt1ejsA%3D%3D18093933241006310.1073/pnas.0704716104 PistonNMultidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategiesJ. Ecol.20191072317232810.1111/1365-2745.13190 ZhangYChenHYHReichPBForest productivity increases with evenness, species richness and trait variation: a global meta-analysisJ. Ecol.201210074274910.1111/j.1365-2745.2011.01944.x R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). IsbellFHigh plant diversity is needed to maintain ecosystem servicesNature20114771992021:CAS:528:DC%2BC3MXhtFOlsL%2FO2183299410.1038/nature10282 TrogischSThe significance of tree–tree interactions for forest ecosystem functioningBasic Appl. Ecol.202155335210.1016/j.baae.2021.02.003 BaetenLIdentifying the tree species compositions that maximize ecosystem functioning in European forestsJ. Appl. Ecol.20195673374410.1111/1365-2664.13308 SchuldtABiodiversity across trophic levels drives multifunctionality in highly diverse forestsNat. Commun.2018930065285606810410.1038/s41467-018-05421-z SalisburyCLPotvinCDoes tree species composition affect productivity in a tropical planted forest?Biotropica20154755956810.1111/btp.12252 FineganBDoes functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypothesesJ. Ecol.201510319120110.1111/1365-2745.12346 McGillBJEnquistBJWeiherEWestobyMRebuilding community ecology from functional traitsTrends Ecol. Evol.2006211781851670108310.1016/j.tree.2006.02.002 TobnerCMFunctional identity is the main driver of diversity effects in young tree communitiesEcol. Lett.2016196386472707242810.1111/ele.12600 TilmanDLehmanCLThomsonKTPlant diversity and ecosystem productivity: theoretical considerationsProc. Natl Acad. Sci. USA199794185718611:CAS:528:DyaK2sXhslaqsr8%3D110386062000710.1073/pnas.94.5.1857 BruelheideHDesigning forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China.Methods Ecol. Evol.20145748910.1111/2041-210X.12126 ForresterDIBauhusJCowieALVanclayJKMixed-species plantations of Eucalyptus with nitrogen-fixing trees: a reviewFor. Ecol. Manag.200623321123010.1016/j.foreco.2006.05.012 HollKDBrancalionPHSTree planting is not a simple solutionScience20203685805811:CAS:528:DC%2BB3cXovFCqtr8%3D3238170410.1126/science.aba8232 KunzMNeighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual treesEcol. Lett.201922213021403162527910.1111/ele.13400 CheesmanAWPreeceNDvan OosterzeePErskinePDCernusakLAThe role of topography and plant functional traits in determining tropical reforestation successJ. Appl. Ecol.201855102910391:CAS:528:DC%2BC1cXisF2nsbY%3D10.1111/1365-2664.12980 FiedlerSPerringMPTietjenBIntegrating trait-based empirical and modeling research to improve ecological restorationEcol. Evol.201886369638029988431602414710.1002/ece3.4043 BrancalionPHSHollKDGuidance for successful tree planting initiativesJ. Appl. Ecol.2020572349236110.1111/1365-2664.13725 EisenhauerNA multitrophic perspective on biodiversity–ecosystem functioning researchAdv. Ecol. Res.20196115431908360694450410.1016/bs.aecr.2019.06.001 ChiangJMFunctional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forestOecologia20161828298402763219410.1007/s00442-016-3717-z ChenYDirected species loss reduces community productivity in a subtropical forest biodiversity experimentNat. Ecol. Evol.202045505593212332010.1038/s41559-020-1127-4 BruelheideHGlobal trait— environment relationships of plant communitiesNat. Ecol. Evol.20182190619173045543710.1038/s41559-018-0699-8 MayoralCvan BreugelMCerezoAHallJSSurvival and growth of five Neotropical timber species in monocultures and mixturesFor. Ecol. Manag.201740311110.1016/j.foreco.2017.08.002 KambachSHow do trees respond to species mixing in experimental compared to observational studies?Ecol. Evol.20199112541126531641470680237510.1002/ece3.5627 SchmidBBaruffolMWangZNiklausPAA guide to analyzing biodiversity experimentsJ. Plant Ecol.2017109111010.1093/jpe/rtw107 DiazSThe global spectrum of plant form and functionNature20165291671711:CAS:528:DC%2BC2MXitVyntbzK2670081110.1038/nature16489 LaughlinDCThe intrinsic dimensionality of plant traits and its relevance to community assemblyJ. Ecol.201410218619310.1111/1365-2745.12187 Van de PeerTVerheyenKPonetteQSetiawanNNMuysBOveryielding in young tree plantations is driven by local complementarity and selection effects related to shade toleranceJ. Ecol.20181061096110510.1111/1365-2745.12839 EichenbergDPurschkeORistokCWessjohannLBruelheideHTrade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolutionJ. Ecol.2015103166716791:CAS:528:DC%2BC2MXhslegtL3F10.1111/1365-2745.12475 Ruiz-JaenMPotvinCCan we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forestNew Phytol.20111899789872095830510.1111/j.1469-8137.2010.03501.x McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?New Phytol.20081787197391842290510.1111/j.1469-8137.2008.02436.x BarryKEThe future of complementarity: disentangling causes from consequencesTrends Ecol. Evol.2019341671803052796010.1016/j.tree.2018.10.013 MaLSpecies identity and composition effects on community productivity in a subtropical forestBasic Appl. Ecol.202155879710.1016/j.baae.2021.01.005 GrossmanJJCavender-BaresJHobbieSEReichPBMontgomeryRASpecies richness and traits predict overyielding in stem growth in an early-successional tree diversity experimentEcology201798260126142872790510.1002/ecy.1958 GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA201711411645116501:CAS:528:DC%2BC2sXhs1KhurjM29078344567691610.1073/pnas.1710465114 O’BrienMJA synthesis of tree functional traits related to drought-induced mortality in forests across climatic zonesJ. Appl. Ecol.2017541669168610.1111/1365-2664.12874 KroberWHeklauHBruelheideHLeaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traitsPlant Biol.2015173733831:STN:280:DC%2BC2MzitVKitg%3D%3D2544161410.1111/plb.12250 AllanEA comparison of the strength of biodiversity effects across multiple functionsOecologia20131732232372338604410.1007/s00442-012-2589-0 PoorterLBongersFLeaf traits are good predictors of plant performance across 53 rain forest speciesEcology200687173317431692232310.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 RoscherCUsing plant functional traits to explain diversity–productivity relationshipsPLoS ONE20127e367601:CAS:528:DC%2BC38XnvFaju7c%3D22623961335633310.1371/journal.pone.0036760 Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE9, e109211 (2014). LewisSLWheelerCEMitchardETAKochARestoring natural forests is the best way to remove atmospheric carbonNature201956825281:CAS:528:DC%2BC1MXoslGktbc%3D3094097210.1038/d41586-019-01026-8 GrimeJPBenefits of plant diversity to ecosystems: immediate, filter and founder effectsJ. Ecol.19988690291010.1046/j.1365-2745.1998.00306.x Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021). Martínez-GarzaCBongersFPoorterLAre functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?For. Ecol. Manag.2013303354510.1016/j.foreco.2013.03.046 Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011). Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995). LiuXTree species richness increases ecosystem carbon storage in subtropical forestsProc. R. Soc. B20182852018124030135164612589610.1098/rspb.2018.1240 ZhangJFuBStafford-smithMWangSZhaoWImprove forest restoration initiatives to meet Sustainable Development Goal 15.Nat. Ecol. Evol.2021510131:CAS:528:DC%2BB3MXht1CjsrzF3304687410.1038/s41559-020-01332-9 LaliberteELegendrePA distance-based framework for measuring functional diversity from multiple traitsEcology2010912993052038021910.1890/08-2244.1 van der PlasFPlant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioningNat. Ecol. Evol.20204160216113302059810.1038/s41559-020-01316-9 Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020). LuHMohrenGMJden OudenJGoudiabyVSterckFJOveryielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the NetherlandsFor. Ecol. Manag.201637632133210.1016/j.foreco.2016.06.032 StaplesTLDwyerJMEnglandJRMayfieldMMProductivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradientGlob. Ecol. Biogeogr.2019281417142910.1111/geb.12962 ViolleCThe return of the variance: intraspecific variability in community ecologyTrends Ecol. Evol.2012272442522224479710.1016/j.tree.2011.11.014 ReichPBImpacts of biodiversity loss escalate through time as redundancy fadesScience20123365895921:CAS:528:DC%2BC38Xmt1Gnsbk%3D2255625310.1126/science.1217909 AmmerCDiversity and forest productivity in a changing climateNew Phytol.201922150662990596010.1111/nph.15263 SchnabelFDrivers of productivity and its temporal stability in a tropical tree diversity experimentGlob. Change Biol.2019254 KE Barry (1564_CR28) 2019; 34 D Eichenberg (1564_CR67) 2015; 103 BJ Cardinale (1564_CR42) 2007; 104 C Ammer (1564_CR49) 2019; 221 SL Lewis (1564_CR6) 2019; 568 PB Reich (1564_CR45) 2012; 336 X Liu (1564_CR13) 2018; 285 B Finegan (1564_CR54) 2015; 103 M Kunz (1564_CR44) 2019; 22 CM Tobner (1564_CR14) 2016; 19 JM Chiang (1564_CR26) 2016; 182 H Lu (1564_CR37) 2016; 376 KD Holl (1564_CR5) 2020; 368 F van der Plas (1564_CR24) 2020; 4 PHS Brancalion (1564_CR50) 2020; 57 BW Griscom (1564_CR3) 2017; 114 L Ma (1564_CR18) 2021; 55 B Schmid (1564_CR70) 2017; 10 L Poorter (1564_CR48) 2006; 87 J Zhang (1564_CR4) 2021; 5 A Schuldt (1564_CR9) 2018; 9 C Martínez-Garza (1564_CR46) 2013; 303 T Jucker (1564_CR59) 2020; 108 W Krober (1564_CR68) 2015; 17 DI Forrester (1564_CR39) 2006; 233 S Fiedler (1564_CR62) 2018; 8 JJ Grossman (1564_CR52) 2017; 98 MJ O’Brien (1564_CR57) 2017; 54 1564_CR40 1564_CR1 S Luo (1564_CR36) 2020; 129 N McDowell (1564_CR56) 2008; 178 1564_CR7 T Van de Peer (1564_CR15) 2018; 106 H Bruelheide (1564_CR32) 2014; 5 F Isbell (1564_CR11) 2011; 477 Y Chen (1564_CR33) 2020; 4 N Piston (1564_CR55) 2019; 107 F Schnabel (1564_CR64) 2019; 25 M Toïgo (1564_CR38) 2018; 106 1564_CR19 JF Bastin (1564_CR2) 2019; 366 CL Salisbury (1564_CR31) 2015; 47 S Diaz (1564_CR21) 2016; 529 1564_CR58 C Mayoral (1564_CR47) 2017; 403 TL Staples (1564_CR16) 2019; 28 N Eisenhauer (1564_CR10) 2019; 61 D Tilman (1564_CR29) 1997; 94 BJ McGill (1564_CR60) 2006; 21 L Turnbull (1564_CR30) 2016; 283 DC Laughlin (1564_CR61) 2014; 102 Y Zhang (1564_CR63) 2012; 100 Y Huang (1564_CR12) 2018; 362 C Violle (1564_CR20) 2012; 27 JP Grime (1564_CR25) 1998; 86 E Laliberte (1564_CR34) 2010; 91 M Ruiz-Jaen (1564_CR51) 2011; 189 S Trogisch (1564_CR41) 2021; 55 S Diaz (1564_CR22) 2007; 104 C Roscher (1564_CR27) 2012; 7 1564_CR69 1564_CR66 1564_CR65 AW Cheesman (1564_CR17) 2018; 55 H Bruelheide (1564_CR23) 2018; 2 S Kambach (1564_CR53) 2019; 9 L Baeten (1564_CR8) 2019; 56 NR Guerrero-Ramírez (1564_CR43) 2017; 1 E Allan (1564_CR35) 2013; 173 34985644 - Sci China Life Sci. 2022 Mar;65(3):651-653 34737434 - Nat Ecol Evol. 2021 Dec;5(12):1572-1573 |
References_xml | – reference: TilmanDLehmanCLThomsonKTPlant diversity and ecosystem productivity: theoretical considerationsProc. Natl Acad. Sci. USA199794185718611:CAS:528:DyaK2sXhslaqsr8%3D110386062000710.1073/pnas.94.5.1857 – reference: HuangYImpacts of species richness on productivity in a large-scale subtropical forest experimentScience201836280831:CAS:528:DC%2BC1cXhvVehs7rO3028766010.1126/science.aat6405 – reference: StaplesTLDwyerJMEnglandJRMayfieldMMProductivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradientGlob. Ecol. Biogeogr.2019281417142910.1111/geb.12962 – reference: CheesmanAWPreeceNDvan OosterzeePErskinePDCernusakLAThe role of topography and plant functional traits in determining tropical reforestation successJ. Appl. Ecol.201855102910391:CAS:528:DC%2BC1cXisF2nsbY%3D10.1111/1365-2664.12980 – reference: Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol.1, 0132 (2017).. – reference: Guerrero-RamírezNRDiversity-dependent temporal divergence of ecosystem functioning in experimental ecosystemsNat. Ecol. Evol.201711639164228970481565938310.1038/s41559-017-0325-1 – reference: ZhangYChenHYHReichPBForest productivity increases with evenness, species richness and trait variation: a global meta-analysisJ. Ecol.201210074274910.1111/j.1365-2745.2011.01944.x – reference: SchmidBBaruffolMWangZNiklausPAA guide to analyzing biodiversity experimentsJ. Plant Ecol.2017109111010.1093/jpe/rtw107 – reference: BarryKEThe future of complementarity: disentangling causes from consequencesTrends Ecol. Evol.2019341671803052796010.1016/j.tree.2018.10.013 – reference: LewisSLWheelerCEMitchardETAKochARestoring natural forests is the best way to remove atmospheric carbonNature201956825281:CAS:528:DC%2BC1MXoslGktbc%3D3094097210.1038/d41586-019-01026-8 – reference: DiazSIncorporating plant functional diversity effects in ecosystem service assessmentsProc. Natl Acad. Sci. USA200710420684206891:CAS:528:DC%2BD1cXkt1ejsA%3D%3D18093933241006310.1073/pnas.0704716104 – reference: SchnabelFDrivers of productivity and its temporal stability in a tropical tree diversity experimentGlob. Change Biol.2019254257427210.1111/gcb.14792 – reference: CardinaleBJImpacts of plant diversity on biomass production increase through time because of species complementarityProc. Natl Acad. Sci. USA200710418123181281:CAS:528:DC%2BD2sXhsVejtLnO17991772208430710.1073/pnas.0709069104 – reference: Martínez-GarzaCBongersFPoorterLAre functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?For. Ecol. Manag.2013303354510.1016/j.foreco.2013.03.046 – reference: Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE9, e109211 (2014). – reference: IsbellFHigh plant diversity is needed to maintain ecosystem servicesNature20114771992021:CAS:528:DC%2BC3MXhtFOlsL%2FO2183299410.1038/nature10282 – reference: Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020). – reference: GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA201711411645116501:CAS:528:DC%2BC2sXhs1KhurjM29078344567691610.1073/pnas.1710465114 – reference: MayoralCvan BreugelMCerezoAHallJSSurvival and growth of five Neotropical timber species in monocultures and mixturesFor. Ecol. Manag.201740311110.1016/j.foreco.2017.08.002 – reference: BruelheideHDesigning forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China.Methods Ecol. Evol.20145748910.1111/2041-210X.12126 – reference: ZhangJFuBStafford-smithMWangSZhaoWImprove forest restoration initiatives to meet Sustainable Development Goal 15.Nat. Ecol. Evol.2021510131:CAS:528:DC%2BB3MXht1CjsrzF3304687410.1038/s41559-020-01332-9 – reference: R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). – reference: van der PlasFPlant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioningNat. Ecol. Evol.20204160216113302059810.1038/s41559-020-01316-9 – reference: ViolleCThe return of the variance: intraspecific variability in community ecologyTrends Ecol. Evol.2012272442522224479710.1016/j.tree.2011.11.014 – reference: ForresterDIBauhusJCowieALVanclayJKMixed-species plantations of Eucalyptus with nitrogen-fixing trees: a reviewFor. Ecol. Manag.200623321123010.1016/j.foreco.2006.05.012 – reference: EisenhauerNA multitrophic perspective on biodiversity–ecosystem functioning researchAdv. Ecol. Res.20196115431908360694450410.1016/bs.aecr.2019.06.001 – reference: BrancalionPHSHollKDGuidance for successful tree planting initiativesJ. Appl. Ecol.2020572349236110.1111/1365-2664.13725 – reference: SchuldtABiodiversity across trophic levels drives multifunctionality in highly diverse forestsNat. Commun.2018930065285606810410.1038/s41467-018-05421-z – reference: ToïgoMDifference in shade tolerance drives the mixture effect on oak productivityJ. Ecol.20181061073108210.1111/1365-2745.12811 – reference: BastinJFThe global tree restoration potentialScience2019366767910.1126/science.aax0848 – reference: KambachSHow do trees respond to species mixing in experimental compared to observational studies?Ecol. Evol.20199112541126531641470680237510.1002/ece3.5627 – reference: EichenbergDPurschkeORistokCWessjohannLBruelheideHTrade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolutionJ. Ecol.2015103166716791:CAS:528:DC%2BC2MXhslegtL3F10.1111/1365-2745.12475 – reference: DiazSThe global spectrum of plant form and functionNature20165291671711:CAS:528:DC%2BC2MXitVyntbzK2670081110.1038/nature16489 – reference: SalisburyCLPotvinCDoes tree species composition affect productivity in a tropical planted forest?Biotropica20154755956810.1111/btp.12252 – reference: Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995). – reference: TrogischSThe significance of tree–tree interactions for forest ecosystem functioningBasic Appl. Ecol.202155335210.1016/j.baae.2021.02.003 – reference: O’BrienMJA synthesis of tree functional traits related to drought-induced mortality in forests across climatic zonesJ. Appl. Ecol.2017541669168610.1111/1365-2664.12874 – reference: FineganBDoes functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypothesesJ. Ecol.201510319120110.1111/1365-2745.12346 – reference: BaetenLIdentifying the tree species compositions that maximize ecosystem functioning in European forestsJ. Appl. Ecol.20195673374410.1111/1365-2664.13308 – reference: LaliberteELegendrePA distance-based framework for measuring functional diversity from multiple traitsEcology2010912993052038021910.1890/08-2244.1 – reference: AmmerCDiversity and forest productivity in a changing climateNew Phytol.201922150662990596010.1111/nph.15263 – reference: JuckerTGood things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forestsJ. Ecol.20201082198221110.1111/1365-2745.13464 – reference: Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021). – reference: RoscherCUsing plant functional traits to explain diversity–productivity relationshipsPLoS ONE20127e367601:CAS:528:DC%2BC38XnvFaju7c%3D22623961335633310.1371/journal.pone.0036760 – reference: LuHMohrenGMJden OudenJGoudiabyVSterckFJOveryielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the NetherlandsFor. Ecol. Manag.201637632133210.1016/j.foreco.2016.06.032 – reference: LuoSCommunity-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlingsOikos202012979981010.1111/oik.07273 – reference: AllanEA comparison of the strength of biodiversity effects across multiple functionsOecologia20131732232372338604410.1007/s00442-012-2589-0 – reference: Van de PeerTVerheyenKPonetteQSetiawanNNMuysBOveryielding in young tree plantations is driven by local complementarity and selection effects related to shade toleranceJ. Ecol.20181061096110510.1111/1365-2745.12839 – reference: ChenYDirected species loss reduces community productivity in a subtropical forest biodiversity experimentNat. Ecol. Evol.202045505593212332010.1038/s41559-020-1127-4 – reference: HollKDBrancalionPHSTree planting is not a simple solutionScience20203685805811:CAS:528:DC%2BB3cXovFCqtr8%3D3238170410.1126/science.aba8232 – reference: BruelheideHGlobal trait— environment relationships of plant communitiesNat. Ecol. Evol.20182190619173045543710.1038/s41559-018-0699-8 – reference: McGillBJEnquistBJWeiherEWestobyMRebuilding community ecology from functional traitsTrends Ecol. Evol.2006211781851670108310.1016/j.tree.2006.02.002 – reference: KroberWHeklauHBruelheideHLeaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traitsPlant Biol.2015173733831:STN:280:DC%2BC2MzitVKitg%3D%3D2544161410.1111/plb.12250 – reference: LaughlinDCThe intrinsic dimensionality of plant traits and its relevance to community assemblyJ. Ecol.201410218619310.1111/1365-2745.12187 – reference: Ruiz-JaenMPotvinCCan we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forestNew Phytol.20111899789872095830510.1111/j.1469-8137.2010.03501.x – reference: McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?New Phytol.20081787197391842290510.1111/j.1469-8137.2008.02436.x – reference: ReichPBImpacts of biodiversity loss escalate through time as redundancy fadesScience20123365895921:CAS:528:DC%2BC38Xmt1Gnsbk%3D2255625310.1126/science.1217909 – reference: ChiangJMFunctional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forestOecologia20161828298402763219410.1007/s00442-016-3717-z – reference: PistonNMultidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategiesJ. Ecol.20191072317232810.1111/1365-2745.13190 – reference: GrossmanJJCavender-BaresJHobbieSEReichPBMontgomeryRASpecies richness and traits predict overyielding in stem growth in an early-successional tree diversity experimentEcology201798260126142872790510.1002/ecy.1958 – reference: Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019). – reference: Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011). – reference: KunzMNeighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual treesEcol. Lett.201922213021403162527910.1111/ele.13400 – reference: MaLSpecies identity and composition effects on community productivity in a subtropical forestBasic Appl. Ecol.202155879710.1016/j.baae.2021.01.005 – reference: TurnbullLIsbellFPurvesDWLoreauMHectorAUnderstanding the value of plant diversity for ecosystem functioning through niche theoryProc. R. Soc. B20162832016053627928043520413710.1098/rspb.2016.0536 – reference: PoorterLBongersFLeaf traits are good predictors of plant performance across 53 rain forest speciesEcology200687173317431692232310.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 – reference: GrimeJPBenefits of plant diversity to ecosystems: immediate, filter and founder effectsJ. Ecol.19988690291010.1046/j.1365-2745.1998.00306.x – reference: FiedlerSPerringMPTietjenBIntegrating trait-based empirical and modeling research to improve ecological restorationEcol. Evol.201886369638029988431602414710.1002/ece3.4043 – reference: LiuXTree species richness increases ecosystem carbon storage in subtropical forestsProc. R. Soc. B20182852018124030135164612589610.1098/rspb.2018.1240 – reference: TobnerCMFunctional identity is the main driver of diversity effects in young tree communitiesEcol. Lett.2016196386472707242810.1111/ele.12600 – volume: 178 start-page: 719 year: 2008 ident: 1564_CR56 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02436.x – volume: 366 start-page: 76 year: 2019 ident: 1564_CR2 publication-title: Science doi: 10.1126/science.aax0848 – volume: 57 start-page: 2349 year: 2020 ident: 1564_CR50 publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13725 – ident: 1564_CR66 doi: 10.1371/journal.pone.0109211 – volume: 189 start-page: 978 year: 2011 ident: 1564_CR51 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03501.x – volume: 4 start-page: 1602 year: 2020 ident: 1564_CR24 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-01316-9 – volume: 182 start-page: 829 year: 2016 ident: 1564_CR26 publication-title: Oecologia doi: 10.1007/s00442-016-3717-z – volume: 9 year: 2018 ident: 1564_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05421-z – volume: 61 start-page: 1 year: 2019 ident: 1564_CR10 publication-title: Adv. Ecol. Res. doi: 10.1016/bs.aecr.2019.06.001 – volume: 108 start-page: 2198 year: 2020 ident: 1564_CR59 publication-title: J. Ecol. doi: 10.1111/1365-2745.13464 – volume: 568 start-page: 25 year: 2019 ident: 1564_CR6 publication-title: Nature doi: 10.1038/d41586-019-01026-8 – ident: 1564_CR19 doi: 10.1038/s41559-017-0132 – ident: 1564_CR1 – volume: 114 start-page: 11645 year: 2017 ident: 1564_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1710465114 – volume: 54 start-page: 1669 year: 2017 ident: 1564_CR57 publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12874 – volume: 21 start-page: 178 year: 2006 ident: 1564_CR60 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2006.02.002 – volume: 10 start-page: 91 year: 2017 ident: 1564_CR70 publication-title: J. Plant Ecol. doi: 10.1093/jpe/rtw107 – volume: 55 start-page: 33 year: 2021 ident: 1564_CR41 publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2021.02.003 – volume: 403 start-page: 1 year: 2017 ident: 1564_CR47 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2017.08.002 – volume: 87 start-page: 1733 year: 2006 ident: 1564_CR48 publication-title: Ecology doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 – volume: 25 start-page: 4257 year: 2019 ident: 1564_CR64 publication-title: Glob. Change Biol. doi: 10.1111/gcb.14792 – volume: 27 start-page: 244 year: 2012 ident: 1564_CR20 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2011.11.014 – volume: 100 start-page: 742 year: 2012 ident: 1564_CR63 publication-title: J. Ecol. doi: 10.1111/j.1365-2745.2011.01944.x – volume: 173 start-page: 223 year: 2013 ident: 1564_CR35 publication-title: Oecologia doi: 10.1007/s00442-012-2589-0 – volume: 103 start-page: 191 year: 2015 ident: 1564_CR54 publication-title: J. Ecol. doi: 10.1111/1365-2745.12346 – volume: 94 start-page: 1857 year: 1997 ident: 1564_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.5.1857 – volume: 107 start-page: 2317 year: 2019 ident: 1564_CR55 publication-title: J. Ecol. doi: 10.1111/1365-2745.13190 – volume: 233 start-page: 211 year: 2006 ident: 1564_CR39 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2006.05.012 – volume: 362 start-page: 80 year: 2018 ident: 1564_CR12 publication-title: Science doi: 10.1126/science.aat6405 – volume: 86 start-page: 902 year: 1998 ident: 1564_CR25 publication-title: J. Ecol. doi: 10.1046/j.1365-2745.1998.00306.x – volume: 7 start-page: e36760 year: 2012 ident: 1564_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036760 – volume: 336 start-page: 589 year: 2012 ident: 1564_CR45 publication-title: Science doi: 10.1126/science.1217909 – volume: 102 start-page: 186 year: 2014 ident: 1564_CR61 publication-title: J. Ecol. doi: 10.1111/1365-2745.12187 – volume: 28 start-page: 1417 year: 2019 ident: 1564_CR16 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12962 – volume: 104 start-page: 20684 year: 2007 ident: 1564_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0704716104 – volume: 303 start-page: 35 year: 2013 ident: 1564_CR46 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2013.03.046 – volume: 376 start-page: 321 year: 2016 ident: 1564_CR37 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2016.06.032 – volume: 477 start-page: 199 year: 2011 ident: 1564_CR11 publication-title: Nature doi: 10.1038/nature10282 – volume: 104 start-page: 18123 year: 2007 ident: 1564_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709069104 – volume: 129 start-page: 799 year: 2020 ident: 1564_CR36 publication-title: Oikos doi: 10.1111/oik.07273 – volume: 103 start-page: 1667 year: 2015 ident: 1564_CR67 publication-title: J. Ecol. doi: 10.1111/1365-2745.12475 – volume: 55 start-page: 1029 year: 2018 ident: 1564_CR17 publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.12980 – volume: 91 start-page: 299 year: 2010 ident: 1564_CR34 publication-title: Ecology doi: 10.1890/08-2244.1 – ident: 1564_CR40 doi: 10.1007/978-3-642-19986-8_32 – volume: 17 start-page: 373 year: 2015 ident: 1564_CR68 publication-title: Plant Biol. doi: 10.1111/plb.12250 – ident: 1564_CR58 doi: 10.1111/nph.17072 – volume: 106 start-page: 1096 year: 2018 ident: 1564_CR15 publication-title: J. Ecol. doi: 10.1111/1365-2745.12839 – volume: 2 start-page: 1906 year: 2018 ident: 1564_CR23 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0699-8 – volume: 221 start-page: 50 year: 2019 ident: 1564_CR49 publication-title: New Phytol. doi: 10.1111/nph.15263 – volume: 4 start-page: 550 year: 2020 ident: 1564_CR33 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-1127-4 – volume: 1 start-page: 1639 year: 2017 ident: 1564_CR43 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0325-1 – volume: 55 start-page: 87 year: 2021 ident: 1564_CR18 publication-title: Basic Appl. Ecol. doi: 10.1016/j.baae.2021.01.005 – volume: 9 start-page: 11254 year: 2019 ident: 1564_CR53 publication-title: Ecol. Evol. doi: 10.1002/ece3.5627 – volume: 106 start-page: 1073 year: 2018 ident: 1564_CR38 publication-title: J. Ecol. doi: 10.1111/1365-2745.12811 – volume: 22 start-page: 2130 year: 2019 ident: 1564_CR44 publication-title: Ecol. Lett. doi: 10.1111/ele.13400 – volume: 47 start-page: 559 year: 2015 ident: 1564_CR31 publication-title: Biotropica doi: 10.1111/btp.12252 – volume: 283 start-page: 20160536 year: 2016 ident: 1564_CR30 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2016.0536 – volume: 368 start-page: 580 year: 2020 ident: 1564_CR5 publication-title: Science doi: 10.1126/science.aba8232 – volume: 34 start-page: 167 year: 2019 ident: 1564_CR28 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2018.10.013 – volume: 98 start-page: 2601 year: 2017 ident: 1564_CR52 publication-title: Ecology doi: 10.1002/ecy.1958 – ident: 1564_CR7 doi: 10.1111/conl.12829 – volume: 8 start-page: 6369 year: 2018 ident: 1564_CR62 publication-title: Ecol. Evol. doi: 10.1002/ece3.4043 – ident: 1564_CR69 – volume: 529 start-page: 167 year: 2016 ident: 1564_CR21 publication-title: Nature doi: 10.1038/nature16489 – volume: 5 start-page: 74 year: 2014 ident: 1564_CR32 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12126 – volume: 56 start-page: 733 year: 2019 ident: 1564_CR8 publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13308 – volume: 285 start-page: 20181240 year: 2018 ident: 1564_CR13 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2018.1240 – ident: 1564_CR65 – volume: 5 start-page: 10 year: 2021 ident: 1564_CR4 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-01332-9 – volume: 19 start-page: 638 year: 2016 ident: 1564_CR14 publication-title: Ecol. Lett. doi: 10.1111/ele.12600 – reference: 34737434 - Nat Ecol Evol. 2021 Dec;5(12):1572-1573 – reference: 34985644 - Sci China Life Sci. 2022 Mar;65(3):651-653 |
SSID | ssj0001775966 |
Score | 2.5638244 |
Snippet | Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1594 |
SubjectTerms | 631/158/2454 631/158/670 Biodiversity Biological and Physical Anthropology Biomedical and Life Sciences Carbon sequestration China Ecology Ecosystem Ecosystem services Environmental restoration Evolutionary Biology Experiments Forests Life Sciences Paleontology Plant communities Plant species Productivity Provisioning Restoration Trees Zoology |
Title | Functional diversity effects on productivity increase with age in a forest biodiversity experiment |
URI | https://link.springer.com/article/10.1038/s41559-021-01564-3 https://www.ncbi.nlm.nih.gov/pubmed/34737435 https://www.proquest.com/docview/2607919754 https://www.proquest.com/docview/2594298256 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgiil_VKRF807B2SZb0SVQ2huAQcbC3kjQpCNJOu_3_Xtq0U4aDPrVJGu6S3O8-cofQjSsdoGWsieU0JMxknGjDFFGwlxQ3GShz7r7zy3Q4mbHnOZ97g1vpwyqbM7E6qE2ROht5H3C3iKNYcHa_-CKuapTzrvoSGruoC0ewBOWr-ziavr6trSxCcAD0_rZMSGW_dBI0Ji4ywd0iZoT-lUgbMHPDRVpJnvEB2veQET_UPD5EOzY_QnoMAqm242HTxFZgH52Bixwv6lSuVW0I_JE7cFha7MyuGI4QeIMVBsAKc8D6o_g1RJvy_xjNxqP3pwnx9RJISgVfktRY0EcMy0KRpUZQ2L5aSpsyYy1l3AAjXL4xkUWhjrTgWoRMGB0rIISCh56gTl7k9gxhCYrhQA004AMGEGsIbUw0AIbr0CgpaYCihmZJ6pOJu5oWn0nl1KYyqemcAJ2Tis4J9Llt-yzqVBpbW_caViR-W5XJehEE6Lr9DBvCeTlUbosVtOExyFhQfIcBOq1Z2P6OMkEBMvEA3TU8XQ_-_1zOt8_lAu0N3Hqqglx6qLP8XtlLgCpLfeXX4w_PkOeK |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED-V8jBepk1jo6MbnjSeNosktuvkYZoGa9WuUCEEUt-MHTsSEkoKLUL7UvuMO-dPO4TWt0p5SmzndL7z_c4-3wF89qUDTJwY6gQLKLeZoMZyTTXqkhY2Q2fO33c-m_SGV_zXVExb8Ke5C-PDKps1sVyobZH6PfIjxN0yCRMp-PfZHfVVo_zpalNCoxKLsfv9iC7b_NvoJ87vYRQN-pcnQ1pXFaApk2JBU-sQtVueBTJLrUR_Xpo4dim3zjEuLJLrs3LJLAxMaKQwMuDSmkSj4dT4MBx3C7Y5Q1emDdvH_cn5xWpXR0qBDkR9Oydg8dHcW-yE-kgIf2uZU_bUAj6Dtc-OZEtLN3gFL2uISn5UMvUaWi5_A2aABrDaNyS2ieUgdTQIKXIyq1LHlrUoyE3uwejcEb_NS3DJwjdEEwTISAMxN8U_QyxLDOzC1UY4-RbaeZG7PSAxOqKRjgziEY6QrodtbBihgJnA6jhmHQgbnqm0Tl7ua2jcqvIQncWq4rNCPquSzwr7fFn2mVWpO9a27jZToWo1nquV0HXg0_IzKqA_VdG5Kx6wjUjQpqOj3evAu2oKl79jXDKEaKIDX5s5XQ3-f1rer6flAF4ML89O1eloMt6HncjLVhlg04X24v7BfUCYtDAfa9kkcL1pdfgL0eMlAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+diversity+effects+on+productivity+increase+with+age+in+a+forest+biodiversity+experiment&rft.jtitle=Nature+ecology+%26+evolution&rft.au=Bongers%2C+Franca+J&rft.au=Schmid%2C+Bernhard&rft.au=Bruelheide%2C+Helge&rft.au=Bongers%2C+Frans&rft.date=2021-12-01&rft.issn=2397-334X&rft.eissn=2397-334X&rft.volume=5&rft.issue=12&rft.spage=1594&rft_id=info:doi/10.1038%2Fs41559-021-01564-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-334X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-334X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-334X&client=summon |