Functional diversity effects on productivity increase with age in a forest biodiversity experiment

Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in...

Full description

Saved in:
Bibliographic Details
Published inNature ecology & evolution Vol. 5; no. 12; pp. 1594 - 1603
Main Authors Bongers, Franca J., Schmid, Bernhard, Bruelheide, Helge, Bongers, Frans, Li, Shan, von Oheimb, Goddert, Li, Yin, Cheng, Anpeng, Ma, Keping, Liu, Xiaojuan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity. In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity.
AbstractList Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.
Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity.
Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity. In a long-running forest biodiversity experiment in China, the authors ask which measures of tree functional trait diversity impact productivity as forests develop. While productivity increased with community-weighted mean trait values early on, after 7 years productivity was significantly increased in plots with higher functional diversity.
Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition impacts the provisioning of these services as forests develop is sparsely studied. We used 10-year data from 478 plots with 191,200 trees in a forest biodiversity experiment in subtropical China to assess the relationship between community productivity and community-weighted mean (CWM) or functional diversity (FD) values of 38 functional traits. We found that effects of FD values on productivity became larger than effects of CWM values after 7 years of forest development and that the FD values also became more reliable predictors of productivity than the CWM values. In contrast to CWM, FD values consistently increased productivity across ten different species-pool subsets. Our results imply that to promote productivity in the long term it is imperative for forest restoration projects to plant multispecies communities with large functional diversity.
Author Bongers, Franca J.
Bruelheide, Helge
Li, Shan
von Oheimb, Goddert
Cheng, Anpeng
Bongers, Frans
Ma, Keping
Schmid, Bernhard
Liu, Xiaojuan
Li, Yin
Author_xml – sequence: 1
  givenname: Franca J.
  orcidid: 0000-0001-9517-4932
  surname: Bongers
  fullname: Bongers, Franca J.
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences
– sequence: 2
  givenname: Bernhard
  orcidid: 0000-0002-8430-3214
  surname: Schmid
  fullname: Schmid, Bernhard
  organization: Department of Geography, Remote Sensing Laboratories, University of Zurich
– sequence: 3
  givenname: Helge
  orcidid: 0000-0003-3135-0356
  surname: Bruelheide
  fullname: Bruelheide, Helge
  organization: Institute of Biology, Martin Luther University Halle-Wittenberg, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
– sequence: 4
  givenname: Frans
  orcidid: 0000-0002-8431-6189
  surname: Bongers
  fullname: Bongers, Frans
  organization: Forest Ecology and Forest Management Group, Wageningen University and Research
– sequence: 5
  givenname: Shan
  orcidid: 0000-0002-5294-2249
  surname: Li
  fullname: Li, Shan
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences
– sequence: 6
  givenname: Goddert
  orcidid: 0000-0001-7408-425X
  surname: von Oheimb
  fullname: von Oheimb, Goddert
  organization: German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Institute of General Ecology and Environmental Protection, Technische Universität Dresden
– sequence: 7
  givenname: Yin
  surname: Li
  fullname: Li, Yin
  organization: Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University
– sequence: 8
  givenname: Anpeng
  surname: Cheng
  fullname: Cheng, Anpeng
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences
– sequence: 9
  givenname: Keping
  orcidid: 0000-0001-9112-5340
  surname: Ma
  fullname: Ma, Keping
  email: kpma@ibcas.ac.cn
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, College of Life Sciences, University of Chinese Academy of Sciences
– sequence: 10
  givenname: Xiaojuan
  orcidid: 0000-0002-9292-4432
  surname: Liu
  fullname: Liu, Xiaojuan
  email: liuxiaojuan06@ibcas.ac.cn
  organization: State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34737435$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPHSEUhUljU636B7poSNy4GQsDDMPSmGqbmLhpk-4IAxeLmQevwGj99_J81hoXJiSQm-9czr3nI9qJKQJCnyg5oYSNXwqnQqiO9LQjVAy8Y-_QXs-U7Bjjv3ZevHfRYSk3hBAqpVDD8AHtMi6Z5Ezsoel8ibaGFM2MXbiFXEK9x-A92Fpwinidk1sacbuph2gzmAL4LtTf2FxDq2CDfcpQKp5CetHi7xpyWEGsB-i9N3OBw6d7H_08__rj7Ft3eXXx_ez0srNMitpZB2ogjnsivXWSMSKncQTLHQDjwjkvhBhG6SmZ6CTFJAmXblKmjW_aYfvoeNu3Wf6zNEN6FYqFeTYR0lJ0LxTv1diLoaFHr9CbtOS2g0YNRCqqpOCN-vxELdMKnF63eUy-1_-214B-C9icSsngnxFK9CYlvU1Jt5T0Y0qaNdH4SmRDNZsIajZhflvKttLS_onXkP_bfkP1AC0ZpzY
CitedBy_id crossref_primary_10_1016_j_fecs_2023_100097
crossref_primary_10_1016_j_foreco_2024_122058
crossref_primary_10_1016_j_scitotenv_2023_165959
crossref_primary_10_1111_jvs_13312
crossref_primary_10_1007_s11104_024_06540_x
crossref_primary_10_1038_s41467_024_46355_z
crossref_primary_10_1016_j_ecolind_2023_111329
crossref_primary_10_1111_nph_19889
crossref_primary_10_1016_j_rse_2024_114276
crossref_primary_10_1038_s41467_022_35189_2
crossref_primary_10_1038_s41598_024_72351_w
crossref_primary_10_1007_s10113_023_02141_z
crossref_primary_10_1016_j_ecolind_2022_109497
crossref_primary_10_1007_s11427_021_2052_5
crossref_primary_10_1111_1365_2745_13970
crossref_primary_10_1098_rstb_2021_0067
crossref_primary_10_1038_s41586_024_08407_8
crossref_primary_10_7554_eLife_100202
crossref_primary_10_1016_j_catena_2024_108331
crossref_primary_10_1038_s41559_024_02517_2
crossref_primary_10_3390_rs14071557
crossref_primary_10_1007_s10342_022_01498_w
crossref_primary_10_1016_j_ecolind_2023_111301
crossref_primary_10_1093_aob_mcad058
crossref_primary_10_1111_nph_20210
crossref_primary_10_1002_advs_202201144
crossref_primary_10_1111_ele_14262
crossref_primary_10_1007_s10342_023_01580_x
crossref_primary_10_1016_j_scitotenv_2022_156192
crossref_primary_10_1111_ecog_07414
crossref_primary_10_7554_eLife_100202_3
crossref_primary_10_1111_plb_13415
crossref_primary_10_1038_s41467_025_57354_z
crossref_primary_10_3390_plants14030313
crossref_primary_10_1016_j_baae_2024_07_004
crossref_primary_10_1016_j_tree_2022_10_007
crossref_primary_10_1093_aob_mcae150
crossref_primary_10_1111_nph_19850
crossref_primary_10_1007_s00442_024_05550_x
crossref_primary_10_1038_s41467_024_50423_9
crossref_primary_10_1111_nph_19216
crossref_primary_10_1016_j_foreco_2024_122446
crossref_primary_10_3390_f14030468
crossref_primary_10_1016_j_fcr_2023_109093
crossref_primary_10_2139_ssrn_4185824
crossref_primary_10_1016_j_foreco_2024_122448
crossref_primary_10_1016_j_agrformet_2022_109101
crossref_primary_10_1016_j_cub_2024_03_057
crossref_primary_10_1016_j_ecolind_2024_112083
crossref_primary_10_2478_bile_2024_0011
crossref_primary_10_1016_j_fecs_2024_100289
crossref_primary_10_1007_s10342_024_01736_3
crossref_primary_10_3389_ffgc_2023_1226514
crossref_primary_10_3390_f15060924
crossref_primary_10_1038_s41559_022_01831_x
crossref_primary_10_1016_j_tree_2022_12_008
crossref_primary_10_1016_j_bse_2022_104451
crossref_primary_10_1016_j_scitotenv_2023_164047
crossref_primary_10_3389_fpls_2023_1301461
crossref_primary_10_1016_j_jenvman_2024_121397
crossref_primary_10_1016_j_ecolind_2024_112800
crossref_primary_10_1111_1365_2435_14524
crossref_primary_10_1016_j_fmre_2024_01_012
crossref_primary_10_1111_1365_2435_14415
crossref_primary_10_1007_s10750_023_05185_8
crossref_primary_10_1016_j_ecolind_2024_112450
crossref_primary_10_3389_fpls_2024_1372530
crossref_primary_10_3389_fevo_2022_891627
crossref_primary_10_1002_ecy_4057
crossref_primary_10_1111_1365_2745_14197
crossref_primary_10_1098_rstb_2021_0090
crossref_primary_10_1016_j_baae_2023_11_005
crossref_primary_10_1038_s41467_024_47348_8
crossref_primary_10_1016_j_fecs_2024_100187
crossref_primary_10_1126_science_abm6363
crossref_primary_10_1007_s11104_023_05874_2
crossref_primary_10_1016_j_foreco_2025_122529
crossref_primary_10_1111_oik_10872
crossref_primary_10_1186_s40168_023_01676_x
crossref_primary_10_1038_s44185_023_00015_5
crossref_primary_10_1038_s41467_023_42136_2
crossref_primary_10_1002_ecy_3896
crossref_primary_10_1007_s11104_025_07310_z
crossref_primary_10_1002_ecy_4220
crossref_primary_10_1016_j_catena_2023_107746
crossref_primary_10_1016_j_rse_2023_113530
crossref_primary_10_1016_j_envres_2023_117720
crossref_primary_10_1038_s41559_023_02049_1
crossref_primary_10_3390_land12091670
crossref_primary_10_1038_s41559_024_02631_1
crossref_primary_10_1016_j_ecolind_2022_109067
crossref_primary_10_1126_science_abn1406
crossref_primary_10_1016_j_tree_2022_11_009
crossref_primary_10_1016_j_soilbio_2022_108715
crossref_primary_10_1038_s41559_021_01575_0
crossref_primary_10_1111_1365_2745_14411
crossref_primary_10_1016_j_gecco_2024_e03323
crossref_primary_10_3389_fevo_2022_990835
crossref_primary_10_1111_plb_13611
crossref_primary_10_1016_j_foreco_2022_120722
crossref_primary_10_3390_f14112144
crossref_primary_10_1126_sciadv_abk1643
crossref_primary_10_1002_ppp3_10523
crossref_primary_10_1016_j_ecoleng_2023_106992
crossref_primary_10_1111_1365_2664_14588
crossref_primary_10_1038_s41467_023_36888_0
crossref_primary_10_1016_j_scitotenv_2024_175438
crossref_primary_10_1016_j_rsase_2023_100966
crossref_primary_10_1016_j_scitotenv_2022_160139
crossref_primary_10_1016_j_ecolind_2024_112282
crossref_primary_10_1016_j_fecs_2024_100246
crossref_primary_10_1111_1365_2745_14009
crossref_primary_10_1002_ece3_11364
crossref_primary_10_1002_eap_2969
crossref_primary_10_1016_j_foreco_2021_119941
crossref_primary_10_1007_s10021_022_00790_5
crossref_primary_10_1126_sciadv_adn4152
crossref_primary_10_1016_j_foreco_2023_121303
crossref_primary_10_1016_j_ecolind_2025_113276
crossref_primary_10_1016_j_foreco_2022_120271
Cites_doi 10.1111/j.1469-8137.2008.02436.x
10.1126/science.aax0848
10.1111/1365-2664.13725
10.1371/journal.pone.0109211
10.1111/j.1469-8137.2010.03501.x
10.1038/s41559-020-01316-9
10.1007/s00442-016-3717-z
10.1038/s41467-018-05421-z
10.1016/bs.aecr.2019.06.001
10.1111/1365-2745.13464
10.1038/d41586-019-01026-8
10.1038/s41559-017-0132
10.1073/pnas.1710465114
10.1111/1365-2664.12874
10.1016/j.tree.2006.02.002
10.1093/jpe/rtw107
10.1016/j.baae.2021.02.003
10.1016/j.foreco.2017.08.002
10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
10.1111/gcb.14792
10.1016/j.tree.2011.11.014
10.1111/j.1365-2745.2011.01944.x
10.1007/s00442-012-2589-0
10.1111/1365-2745.12346
10.1073/pnas.94.5.1857
10.1111/1365-2745.13190
10.1016/j.foreco.2006.05.012
10.1126/science.aat6405
10.1046/j.1365-2745.1998.00306.x
10.1371/journal.pone.0036760
10.1126/science.1217909
10.1111/1365-2745.12187
10.1111/geb.12962
10.1073/pnas.0704716104
10.1016/j.foreco.2013.03.046
10.1016/j.foreco.2016.06.032
10.1038/nature10282
10.1073/pnas.0709069104
10.1111/oik.07273
10.1111/1365-2745.12475
10.1111/1365-2664.12980
10.1890/08-2244.1
10.1007/978-3-642-19986-8_32
10.1111/plb.12250
10.1111/nph.17072
10.1111/1365-2745.12839
10.1038/s41559-018-0699-8
10.1111/nph.15263
10.1038/s41559-020-1127-4
10.1038/s41559-017-0325-1
10.1016/j.baae.2021.01.005
10.1002/ece3.5627
10.1111/1365-2745.12811
10.1111/ele.13400
10.1111/btp.12252
10.1098/rspb.2016.0536
10.1126/science.aba8232
10.1016/j.tree.2018.10.013
10.1002/ecy.1958
10.1111/conl.12829
10.1002/ece3.4043
10.1038/nature16489
10.1111/2041-210X.12126
10.1111/1365-2664.13308
10.1098/rspb.2018.1240
10.1038/s41559-020-01332-9
10.1111/ele.12600
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
DOI 10.1038/s41559-021-01564-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Ecology
EISSN 2397-334X
EndPage 1603
ExternalDocumentID 34737435
10_1038_s41559_021_01564_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: University Research Priority Program Global Change and Biodiversity of the University of Zurich
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31870409
  funderid: https://doi.org/10.13039/501100001809
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 319936945/GRK2324; 319936945/GRK2324
  funderid: https://doi.org/10.13039/501100001659
– fundername: Chinese Academy of Sciences President’s International Fellowship Initiative [PIFI]
– fundername: CAS Interdisciplinary Innovation Team (JCTD-2018-06)
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences (Youth Innovation Promotion Association CAS)
  grantid: 2019082
  funderid: https://doi.org/10.13039/501100004739
– fundername: the Strategic Priority Research Program of the Chinese Academy of Sciences [XDB31000000], the National Key Research and Development Program of China [2017YFA0605103]
GroupedDBID 0R~
53G
AAEEF
AAHBH
AARCD
AAYZH
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ATCPS
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
NNMJJ
O9-
ODYON
PATMY
PCBAR
PYCSY
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PQGLB
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c375t-cde960d4f07fcd73307b88ec4dee345ddf555687f10b1b75b7047db9a015a15a3
IEDL.DBID BENPR
ISSN 2397-334X
IngestDate Fri Jul 11 01:23:39 EDT 2025
Sat Aug 23 13:07:08 EDT 2025
Mon Jul 21 06:03:33 EDT 2025
Tue Jul 01 00:52:48 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-cde960d4f07fcd73307b88ec4dee345ddf555687f10b1b75b7047db9a015a15a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9517-4932
0000-0002-8431-6189
0000-0003-3135-0356
0000-0002-9292-4432
0000-0002-5294-2249
0000-0002-8430-3214
0000-0001-7408-425X
0000-0001-9112-5340
PMID 34737435
PQID 2607919754
PQPubID 4669716
PageCount 10
ParticipantIDs proquest_miscellaneous_2594298256
proquest_journals_2607919754
pubmed_primary_34737435
crossref_primary_10_1038_s41559_021_01564_3
crossref_citationtrail_10_1038_s41559_021_01564_3
springer_journals_10_1038_s41559_021_01564_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature ecology & evolution
PublicationTitleAbbrev Nat Ecol Evol
PublicationTitleAlternate Nat Ecol Evol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DiazSIncorporating plant functional diversity effects in ecosystem service assessmentsProc. Natl Acad. Sci. USA200710420684206891:CAS:528:DC%2BD1cXkt1ejsA%3D%3D18093933241006310.1073/pnas.0704716104
PistonNMultidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategiesJ. Ecol.20191072317232810.1111/1365-2745.13190
ZhangYChenHYHReichPBForest productivity increases with evenness, species richness and trait variation: a global meta-analysisJ. Ecol.201210074274910.1111/j.1365-2745.2011.01944.x
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
IsbellFHigh plant diversity is needed to maintain ecosystem servicesNature20114771992021:CAS:528:DC%2BC3MXhtFOlsL%2FO2183299410.1038/nature10282
TrogischSThe significance of tree–tree interactions for forest ecosystem functioningBasic Appl. Ecol.202155335210.1016/j.baae.2021.02.003
BaetenLIdentifying the tree species compositions that maximize ecosystem functioning in European forestsJ. Appl. Ecol.20195673374410.1111/1365-2664.13308
SchuldtABiodiversity across trophic levels drives multifunctionality in highly diverse forestsNat. Commun.2018930065285606810410.1038/s41467-018-05421-z
SalisburyCLPotvinCDoes tree species composition affect productivity in a tropical planted forest?Biotropica20154755956810.1111/btp.12252
FineganBDoes functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypothesesJ. Ecol.201510319120110.1111/1365-2745.12346
McGillBJEnquistBJWeiherEWestobyMRebuilding community ecology from functional traitsTrends Ecol. Evol.2006211781851670108310.1016/j.tree.2006.02.002
TobnerCMFunctional identity is the main driver of diversity effects in young tree communitiesEcol. Lett.2016196386472707242810.1111/ele.12600
TilmanDLehmanCLThomsonKTPlant diversity and ecosystem productivity: theoretical considerationsProc. Natl Acad. Sci. USA199794185718611:CAS:528:DyaK2sXhslaqsr8%3D110386062000710.1073/pnas.94.5.1857
BruelheideHDesigning forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China.Methods Ecol. Evol.20145748910.1111/2041-210X.12126
ForresterDIBauhusJCowieALVanclayJKMixed-species plantations of Eucalyptus with nitrogen-fixing trees: a reviewFor. Ecol. Manag.200623321123010.1016/j.foreco.2006.05.012
HollKDBrancalionPHSTree planting is not a simple solutionScience20203685805811:CAS:528:DC%2BB3cXovFCqtr8%3D3238170410.1126/science.aba8232
KunzMNeighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual treesEcol. Lett.201922213021403162527910.1111/ele.13400
CheesmanAWPreeceNDvan OosterzeePErskinePDCernusakLAThe role of topography and plant functional traits in determining tropical reforestation successJ. Appl. Ecol.201855102910391:CAS:528:DC%2BC1cXisF2nsbY%3D10.1111/1365-2664.12980
FiedlerSPerringMPTietjenBIntegrating trait-based empirical and modeling research to improve ecological restorationEcol. Evol.201886369638029988431602414710.1002/ece3.4043
BrancalionPHSHollKDGuidance for successful tree planting initiativesJ. Appl. Ecol.2020572349236110.1111/1365-2664.13725
EisenhauerNA multitrophic perspective on biodiversity–ecosystem functioning researchAdv. Ecol. Res.20196115431908360694450410.1016/bs.aecr.2019.06.001
ChiangJMFunctional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forestOecologia20161828298402763219410.1007/s00442-016-3717-z
ChenYDirected species loss reduces community productivity in a subtropical forest biodiversity experimentNat. Ecol. Evol.202045505593212332010.1038/s41559-020-1127-4
BruelheideHGlobal trait— environment relationships of plant communitiesNat. Ecol. Evol.20182190619173045543710.1038/s41559-018-0699-8
MayoralCvan BreugelMCerezoAHallJSSurvival and growth of five Neotropical timber species in monocultures and mixturesFor. Ecol. Manag.201740311110.1016/j.foreco.2017.08.002
KambachSHow do trees respond to species mixing in experimental compared to observational studies?Ecol. Evol.20199112541126531641470680237510.1002/ece3.5627
SchmidBBaruffolMWangZNiklausPAA guide to analyzing biodiversity experimentsJ. Plant Ecol.2017109111010.1093/jpe/rtw107
DiazSThe global spectrum of plant form and functionNature20165291671711:CAS:528:DC%2BC2MXitVyntbzK2670081110.1038/nature16489
LaughlinDCThe intrinsic dimensionality of plant traits and its relevance to community assemblyJ. Ecol.201410218619310.1111/1365-2745.12187
Van de PeerTVerheyenKPonetteQSetiawanNNMuysBOveryielding in young tree plantations is driven by local complementarity and selection effects related to shade toleranceJ. Ecol.20181061096110510.1111/1365-2745.12839
EichenbergDPurschkeORistokCWessjohannLBruelheideHTrade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolutionJ. Ecol.2015103166716791:CAS:528:DC%2BC2MXhslegtL3F10.1111/1365-2745.12475
Ruiz-JaenMPotvinCCan we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forestNew Phytol.20111899789872095830510.1111/j.1469-8137.2010.03501.x
McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?New Phytol.20081787197391842290510.1111/j.1469-8137.2008.02436.x
BarryKEThe future of complementarity: disentangling causes from consequencesTrends Ecol. Evol.2019341671803052796010.1016/j.tree.2018.10.013
MaLSpecies identity and composition effects on community productivity in a subtropical forestBasic Appl. Ecol.202155879710.1016/j.baae.2021.01.005
GrossmanJJCavender-BaresJHobbieSEReichPBMontgomeryRASpecies richness and traits predict overyielding in stem growth in an early-successional tree diversity experimentEcology201798260126142872790510.1002/ecy.1958
GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA201711411645116501:CAS:528:DC%2BC2sXhs1KhurjM29078344567691610.1073/pnas.1710465114
O’BrienMJA synthesis of tree functional traits related to drought-induced mortality in forests across climatic zonesJ. Appl. Ecol.2017541669168610.1111/1365-2664.12874
KroberWHeklauHBruelheideHLeaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traitsPlant Biol.2015173733831:STN:280:DC%2BC2MzitVKitg%3D%3D2544161410.1111/plb.12250
AllanEA comparison of the strength of biodiversity effects across multiple functionsOecologia20131732232372338604410.1007/s00442-012-2589-0
PoorterLBongersFLeaf traits are good predictors of plant performance across 53 rain forest speciesEcology200687173317431692232310.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
RoscherCUsing plant functional traits to explain diversity–productivity relationshipsPLoS ONE20127e367601:CAS:528:DC%2BC38XnvFaju7c%3D22623961335633310.1371/journal.pone.0036760
Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE9, e109211 (2014).
LewisSLWheelerCEMitchardETAKochARestoring natural forests is the best way to remove atmospheric carbonNature201956825281:CAS:528:DC%2BC1MXoslGktbc%3D3094097210.1038/d41586-019-01026-8
GrimeJPBenefits of plant diversity to ecosystems: immediate, filter and founder effectsJ. Ecol.19988690291010.1046/j.1365-2745.1998.00306.x
Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).
Martínez-GarzaCBongersFPoorterLAre functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?For. Ecol. Manag.2013303354510.1016/j.foreco.2013.03.046
Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).
Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).
LiuXTree species richness increases ecosystem carbon storage in subtropical forestsProc. R. Soc. B20182852018124030135164612589610.1098/rspb.2018.1240
ZhangJFuBStafford-smithMWangSZhaoWImprove forest restoration initiatives to meet Sustainable Development Goal 15.Nat. Ecol. Evol.2021510131:CAS:528:DC%2BB3MXht1CjsrzF3304687410.1038/s41559-020-01332-9
LaliberteELegendrePA distance-based framework for measuring functional diversity from multiple traitsEcology2010912993052038021910.1890/08-2244.1
van der PlasFPlant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioningNat. Ecol. Evol.20204160216113302059810.1038/s41559-020-01316-9
Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).
LuHMohrenGMJden OudenJGoudiabyVSterckFJOveryielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the NetherlandsFor. Ecol. Manag.201637632133210.1016/j.foreco.2016.06.032
StaplesTLDwyerJMEnglandJRMayfieldMMProductivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradientGlob. Ecol. Biogeogr.2019281417142910.1111/geb.12962
ViolleCThe return of the variance: intraspecific variability in community ecologyTrends Ecol. Evol.2012272442522224479710.1016/j.tree.2011.11.014
ReichPBImpacts of biodiversity loss escalate through time as redundancy fadesScience20123365895921:CAS:528:DC%2BC38Xmt1Gnsbk%3D2255625310.1126/science.1217909
AmmerCDiversity and forest productivity in a changing climateNew Phytol.201922150662990596010.1111/nph.15263
SchnabelFDrivers of productivity and its temporal stability in a tropical tree diversity experimentGlob. Change Biol.2019254
KE Barry (1564_CR28) 2019; 34
D Eichenberg (1564_CR67) 2015; 103
BJ Cardinale (1564_CR42) 2007; 104
C Ammer (1564_CR49) 2019; 221
SL Lewis (1564_CR6) 2019; 568
PB Reich (1564_CR45) 2012; 336
X Liu (1564_CR13) 2018; 285
B Finegan (1564_CR54) 2015; 103
M Kunz (1564_CR44) 2019; 22
CM Tobner (1564_CR14) 2016; 19
JM Chiang (1564_CR26) 2016; 182
H Lu (1564_CR37) 2016; 376
KD Holl (1564_CR5) 2020; 368
F van der Plas (1564_CR24) 2020; 4
PHS Brancalion (1564_CR50) 2020; 57
BW Griscom (1564_CR3) 2017; 114
L Ma (1564_CR18) 2021; 55
B Schmid (1564_CR70) 2017; 10
L Poorter (1564_CR48) 2006; 87
J Zhang (1564_CR4) 2021; 5
A Schuldt (1564_CR9) 2018; 9
C Martínez-Garza (1564_CR46) 2013; 303
T Jucker (1564_CR59) 2020; 108
W Krober (1564_CR68) 2015; 17
DI Forrester (1564_CR39) 2006; 233
S Fiedler (1564_CR62) 2018; 8
JJ Grossman (1564_CR52) 2017; 98
MJ O’Brien (1564_CR57) 2017; 54
1564_CR40
1564_CR1
S Luo (1564_CR36) 2020; 129
N McDowell (1564_CR56) 2008; 178
1564_CR7
T Van de Peer (1564_CR15) 2018; 106
H Bruelheide (1564_CR32) 2014; 5
F Isbell (1564_CR11) 2011; 477
Y Chen (1564_CR33) 2020; 4
N Piston (1564_CR55) 2019; 107
F Schnabel (1564_CR64) 2019; 25
M Toïgo (1564_CR38) 2018; 106
1564_CR19
JF Bastin (1564_CR2) 2019; 366
CL Salisbury (1564_CR31) 2015; 47
S Diaz (1564_CR21) 2016; 529
1564_CR58
C Mayoral (1564_CR47) 2017; 403
TL Staples (1564_CR16) 2019; 28
N Eisenhauer (1564_CR10) 2019; 61
D Tilman (1564_CR29) 1997; 94
BJ McGill (1564_CR60) 2006; 21
L Turnbull (1564_CR30) 2016; 283
DC Laughlin (1564_CR61) 2014; 102
Y Zhang (1564_CR63) 2012; 100
Y Huang (1564_CR12) 2018; 362
C Violle (1564_CR20) 2012; 27
JP Grime (1564_CR25) 1998; 86
E Laliberte (1564_CR34) 2010; 91
M Ruiz-Jaen (1564_CR51) 2011; 189
S Trogisch (1564_CR41) 2021; 55
S Diaz (1564_CR22) 2007; 104
C Roscher (1564_CR27) 2012; 7
1564_CR69
1564_CR66
1564_CR65
AW Cheesman (1564_CR17) 2018; 55
H Bruelheide (1564_CR23) 2018; 2
S Kambach (1564_CR53) 2019; 9
L Baeten (1564_CR8) 2019; 56
NR Guerrero-Ramírez (1564_CR43) 2017; 1
E Allan (1564_CR35) 2013; 173
34985644 - Sci China Life Sci. 2022 Mar;65(3):651-653
34737434 - Nat Ecol Evol. 2021 Dec;5(12):1572-1573
References_xml – reference: TilmanDLehmanCLThomsonKTPlant diversity and ecosystem productivity: theoretical considerationsProc. Natl Acad. Sci. USA199794185718611:CAS:528:DyaK2sXhslaqsr8%3D110386062000710.1073/pnas.94.5.1857
– reference: HuangYImpacts of species richness on productivity in a large-scale subtropical forest experimentScience201836280831:CAS:528:DC%2BC1cXhvVehs7rO3028766010.1126/science.aat6405
– reference: StaplesTLDwyerJMEnglandJRMayfieldMMProductivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradientGlob. Ecol. Biogeogr.2019281417142910.1111/geb.12962
– reference: CheesmanAWPreeceNDvan OosterzeePErskinePDCernusakLAThe role of topography and plant functional traits in determining tropical reforestation successJ. Appl. Ecol.201855102910391:CAS:528:DC%2BC1cXisF2nsbY%3D10.1111/1365-2664.12980
– reference: Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol.1, 0132 (2017)..
– reference: Guerrero-RamírezNRDiversity-dependent temporal divergence of ecosystem functioning in experimental ecosystemsNat. Ecol. Evol.201711639164228970481565938310.1038/s41559-017-0325-1
– reference: ZhangYChenHYHReichPBForest productivity increases with evenness, species richness and trait variation: a global meta-analysisJ. Ecol.201210074274910.1111/j.1365-2745.2011.01944.x
– reference: SchmidBBaruffolMWangZNiklausPAA guide to analyzing biodiversity experimentsJ. Plant Ecol.2017109111010.1093/jpe/rtw107
– reference: BarryKEThe future of complementarity: disentangling causes from consequencesTrends Ecol. Evol.2019341671803052796010.1016/j.tree.2018.10.013
– reference: LewisSLWheelerCEMitchardETAKochARestoring natural forests is the best way to remove atmospheric carbonNature201956825281:CAS:528:DC%2BC1MXoslGktbc%3D3094097210.1038/d41586-019-01026-8
– reference: DiazSIncorporating plant functional diversity effects in ecosystem service assessmentsProc. Natl Acad. Sci. USA200710420684206891:CAS:528:DC%2BD1cXkt1ejsA%3D%3D18093933241006310.1073/pnas.0704716104
– reference: SchnabelFDrivers of productivity and its temporal stability in a tropical tree diversity experimentGlob. Change Biol.2019254257427210.1111/gcb.14792
– reference: CardinaleBJImpacts of plant diversity on biomass production increase through time because of species complementarityProc. Natl Acad. Sci. USA200710418123181281:CAS:528:DC%2BD2sXhsVejtLnO17991772208430710.1073/pnas.0709069104
– reference: Martínez-GarzaCBongersFPoorterLAre functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures?For. Ecol. Manag.2013303354510.1016/j.foreco.2013.03.046
– reference: Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE9, e109211 (2014).
– reference: IsbellFHigh plant diversity is needed to maintain ecosystem servicesNature20114771992021:CAS:528:DC%2BC3MXhtFOlsL%2FO2183299410.1038/nature10282
– reference: Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).
– reference: GriscomBWNatural climate solutionsProc. Natl Acad. Sci. USA201711411645116501:CAS:528:DC%2BC2sXhs1KhurjM29078344567691610.1073/pnas.1710465114
– reference: MayoralCvan BreugelMCerezoAHallJSSurvival and growth of five Neotropical timber species in monocultures and mixturesFor. Ecol. Manag.201740311110.1016/j.foreco.2017.08.002
– reference: BruelheideHDesigning forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China.Methods Ecol. Evol.20145748910.1111/2041-210X.12126
– reference: ZhangJFuBStafford-smithMWangSZhaoWImprove forest restoration initiatives to meet Sustainable Development Goal 15.Nat. Ecol. Evol.2021510131:CAS:528:DC%2BB3MXht1CjsrzF3304687410.1038/s41559-020-01332-9
– reference: R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
– reference: van der PlasFPlant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioningNat. Ecol. Evol.20204160216113302059810.1038/s41559-020-01316-9
– reference: ViolleCThe return of the variance: intraspecific variability in community ecologyTrends Ecol. Evol.2012272442522224479710.1016/j.tree.2011.11.014
– reference: ForresterDIBauhusJCowieALVanclayJKMixed-species plantations of Eucalyptus with nitrogen-fixing trees: a reviewFor. Ecol. Manag.200623321123010.1016/j.foreco.2006.05.012
– reference: EisenhauerNA multitrophic perspective on biodiversity–ecosystem functioning researchAdv. Ecol. Res.20196115431908360694450410.1016/bs.aecr.2019.06.001
– reference: BrancalionPHSHollKDGuidance for successful tree planting initiativesJ. Appl. Ecol.2020572349236110.1111/1365-2664.13725
– reference: SchuldtABiodiversity across trophic levels drives multifunctionality in highly diverse forestsNat. Commun.2018930065285606810410.1038/s41467-018-05421-z
– reference: ToïgoMDifference in shade tolerance drives the mixture effect on oak productivityJ. Ecol.20181061073108210.1111/1365-2745.12811
– reference: BastinJFThe global tree restoration potentialScience2019366767910.1126/science.aax0848
– reference: KambachSHow do trees respond to species mixing in experimental compared to observational studies?Ecol. Evol.20199112541126531641470680237510.1002/ece3.5627
– reference: EichenbergDPurschkeORistokCWessjohannLBruelheideHTrade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolutionJ. Ecol.2015103166716791:CAS:528:DC%2BC2MXhslegtL3F10.1111/1365-2745.12475
– reference: DiazSThe global spectrum of plant form and functionNature20165291671711:CAS:528:DC%2BC2MXitVyntbzK2670081110.1038/nature16489
– reference: SalisburyCLPotvinCDoes tree species composition affect productivity in a tropical planted forest?Biotropica20154755956810.1111/btp.12252
– reference: Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).
– reference: TrogischSThe significance of tree–tree interactions for forest ecosystem functioningBasic Appl. Ecol.202155335210.1016/j.baae.2021.02.003
– reference: O’BrienMJA synthesis of tree functional traits related to drought-induced mortality in forests across climatic zonesJ. Appl. Ecol.2017541669168610.1111/1365-2664.12874
– reference: FineganBDoes functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypothesesJ. Ecol.201510319120110.1111/1365-2745.12346
– reference: BaetenLIdentifying the tree species compositions that maximize ecosystem functioning in European forestsJ. Appl. Ecol.20195673374410.1111/1365-2664.13308
– reference: LaliberteELegendrePA distance-based framework for measuring functional diversity from multiple traitsEcology2010912993052038021910.1890/08-2244.1
– reference: AmmerCDiversity and forest productivity in a changing climateNew Phytol.201922150662990596010.1111/nph.15263
– reference: JuckerTGood things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forestsJ. Ecol.20201082198221110.1111/1365-2745.13464
– reference: Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).
– reference: RoscherCUsing plant functional traits to explain diversity–productivity relationshipsPLoS ONE20127e367601:CAS:528:DC%2BC38XnvFaju7c%3D22623961335633310.1371/journal.pone.0036760
– reference: LuHMohrenGMJden OudenJGoudiabyVSterckFJOveryielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the NetherlandsFor. Ecol. Manag.201637632133210.1016/j.foreco.2016.06.032
– reference: LuoSCommunity-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlingsOikos202012979981010.1111/oik.07273
– reference: AllanEA comparison of the strength of biodiversity effects across multiple functionsOecologia20131732232372338604410.1007/s00442-012-2589-0
– reference: Van de PeerTVerheyenKPonetteQSetiawanNNMuysBOveryielding in young tree plantations is driven by local complementarity and selection effects related to shade toleranceJ. Ecol.20181061096110510.1111/1365-2745.12839
– reference: ChenYDirected species loss reduces community productivity in a subtropical forest biodiversity experimentNat. Ecol. Evol.202045505593212332010.1038/s41559-020-1127-4
– reference: HollKDBrancalionPHSTree planting is not a simple solutionScience20203685805811:CAS:528:DC%2BB3cXovFCqtr8%3D3238170410.1126/science.aba8232
– reference: BruelheideHGlobal trait— environment relationships of plant communitiesNat. Ecol. Evol.20182190619173045543710.1038/s41559-018-0699-8
– reference: McGillBJEnquistBJWeiherEWestobyMRebuilding community ecology from functional traitsTrends Ecol. Evol.2006211781851670108310.1016/j.tree.2006.02.002
– reference: KroberWHeklauHBruelheideHLeaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traitsPlant Biol.2015173733831:STN:280:DC%2BC2MzitVKitg%3D%3D2544161410.1111/plb.12250
– reference: LaughlinDCThe intrinsic dimensionality of plant traits and its relevance to community assemblyJ. Ecol.201410218619310.1111/1365-2745.12187
– reference: Ruiz-JaenMPotvinCCan we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forestNew Phytol.20111899789872095830510.1111/j.1469-8137.2010.03501.x
– reference: McDowellNMechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought?New Phytol.20081787197391842290510.1111/j.1469-8137.2008.02436.x
– reference: ReichPBImpacts of biodiversity loss escalate through time as redundancy fadesScience20123365895921:CAS:528:DC%2BC38Xmt1Gnsbk%3D2255625310.1126/science.1217909
– reference: ChiangJMFunctional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forestOecologia20161828298402763219410.1007/s00442-016-3717-z
– reference: PistonNMultidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategiesJ. Ecol.20191072317232810.1111/1365-2745.13190
– reference: GrossmanJJCavender-BaresJHobbieSEReichPBMontgomeryRASpecies richness and traits predict overyielding in stem growth in an early-successional tree diversity experimentEcology201798260126142872790510.1002/ecy.1958
– reference: Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).
– reference: Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).
– reference: KunzMNeighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual treesEcol. Lett.201922213021403162527910.1111/ele.13400
– reference: MaLSpecies identity and composition effects on community productivity in a subtropical forestBasic Appl. Ecol.202155879710.1016/j.baae.2021.01.005
– reference: TurnbullLIsbellFPurvesDWLoreauMHectorAUnderstanding the value of plant diversity for ecosystem functioning through niche theoryProc. R. Soc. B20162832016053627928043520413710.1098/rspb.2016.0536
– reference: PoorterLBongersFLeaf traits are good predictors of plant performance across 53 rain forest speciesEcology200687173317431692232310.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
– reference: GrimeJPBenefits of plant diversity to ecosystems: immediate, filter and founder effectsJ. Ecol.19988690291010.1046/j.1365-2745.1998.00306.x
– reference: FiedlerSPerringMPTietjenBIntegrating trait-based empirical and modeling research to improve ecological restorationEcol. Evol.201886369638029988431602414710.1002/ece3.4043
– reference: LiuXTree species richness increases ecosystem carbon storage in subtropical forestsProc. R. Soc. B20182852018124030135164612589610.1098/rspb.2018.1240
– reference: TobnerCMFunctional identity is the main driver of diversity effects in young tree communitiesEcol. Lett.2016196386472707242810.1111/ele.12600
– volume: 178
  start-page: 719
  year: 2008
  ident: 1564_CR56
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02436.x
– volume: 366
  start-page: 76
  year: 2019
  ident: 1564_CR2
  publication-title: Science
  doi: 10.1126/science.aax0848
– volume: 57
  start-page: 2349
  year: 2020
  ident: 1564_CR50
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13725
– ident: 1564_CR66
  doi: 10.1371/journal.pone.0109211
– volume: 189
  start-page: 978
  year: 2011
  ident: 1564_CR51
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03501.x
– volume: 4
  start-page: 1602
  year: 2020
  ident: 1564_CR24
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-01316-9
– volume: 182
  start-page: 829
  year: 2016
  ident: 1564_CR26
  publication-title: Oecologia
  doi: 10.1007/s00442-016-3717-z
– volume: 9
  year: 2018
  ident: 1564_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05421-z
– volume: 61
  start-page: 1
  year: 2019
  ident: 1564_CR10
  publication-title: Adv. Ecol. Res.
  doi: 10.1016/bs.aecr.2019.06.001
– volume: 108
  start-page: 2198
  year: 2020
  ident: 1564_CR59
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13464
– volume: 568
  start-page: 25
  year: 2019
  ident: 1564_CR6
  publication-title: Nature
  doi: 10.1038/d41586-019-01026-8
– ident: 1564_CR19
  doi: 10.1038/s41559-017-0132
– ident: 1564_CR1
– volume: 114
  start-page: 11645
  year: 2017
  ident: 1564_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1710465114
– volume: 54
  start-page: 1669
  year: 2017
  ident: 1564_CR57
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12874
– volume: 21
  start-page: 178
  year: 2006
  ident: 1564_CR60
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2006.02.002
– volume: 10
  start-page: 91
  year: 2017
  ident: 1564_CR70
  publication-title: J. Plant Ecol.
  doi: 10.1093/jpe/rtw107
– volume: 55
  start-page: 33
  year: 2021
  ident: 1564_CR41
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2021.02.003
– volume: 403
  start-page: 1
  year: 2017
  ident: 1564_CR47
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.08.002
– volume: 87
  start-page: 1733
  year: 2006
  ident: 1564_CR48
  publication-title: Ecology
  doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
– volume: 25
  start-page: 4257
  year: 2019
  ident: 1564_CR64
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14792
– volume: 27
  start-page: 244
  year: 2012
  ident: 1564_CR20
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2011.11.014
– volume: 100
  start-page: 742
  year: 2012
  ident: 1564_CR63
  publication-title: J. Ecol.
  doi: 10.1111/j.1365-2745.2011.01944.x
– volume: 173
  start-page: 223
  year: 2013
  ident: 1564_CR35
  publication-title: Oecologia
  doi: 10.1007/s00442-012-2589-0
– volume: 103
  start-page: 191
  year: 2015
  ident: 1564_CR54
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12346
– volume: 94
  start-page: 1857
  year: 1997
  ident: 1564_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.5.1857
– volume: 107
  start-page: 2317
  year: 2019
  ident: 1564_CR55
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13190
– volume: 233
  start-page: 211
  year: 2006
  ident: 1564_CR39
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2006.05.012
– volume: 362
  start-page: 80
  year: 2018
  ident: 1564_CR12
  publication-title: Science
  doi: 10.1126/science.aat6405
– volume: 86
  start-page: 902
  year: 1998
  ident: 1564_CR25
  publication-title: J. Ecol.
  doi: 10.1046/j.1365-2745.1998.00306.x
– volume: 7
  start-page: e36760
  year: 2012
  ident: 1564_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036760
– volume: 336
  start-page: 589
  year: 2012
  ident: 1564_CR45
  publication-title: Science
  doi: 10.1126/science.1217909
– volume: 102
  start-page: 186
  year: 2014
  ident: 1564_CR61
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12187
– volume: 28
  start-page: 1417
  year: 2019
  ident: 1564_CR16
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12962
– volume: 104
  start-page: 20684
  year: 2007
  ident: 1564_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0704716104
– volume: 303
  start-page: 35
  year: 2013
  ident: 1564_CR46
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2013.03.046
– volume: 376
  start-page: 321
  year: 2016
  ident: 1564_CR37
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.06.032
– volume: 477
  start-page: 199
  year: 2011
  ident: 1564_CR11
  publication-title: Nature
  doi: 10.1038/nature10282
– volume: 104
  start-page: 18123
  year: 2007
  ident: 1564_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0709069104
– volume: 129
  start-page: 799
  year: 2020
  ident: 1564_CR36
  publication-title: Oikos
  doi: 10.1111/oik.07273
– volume: 103
  start-page: 1667
  year: 2015
  ident: 1564_CR67
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12475
– volume: 55
  start-page: 1029
  year: 2018
  ident: 1564_CR17
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.12980
– volume: 91
  start-page: 299
  year: 2010
  ident: 1564_CR34
  publication-title: Ecology
  doi: 10.1890/08-2244.1
– ident: 1564_CR40
  doi: 10.1007/978-3-642-19986-8_32
– volume: 17
  start-page: 373
  year: 2015
  ident: 1564_CR68
  publication-title: Plant Biol.
  doi: 10.1111/plb.12250
– ident: 1564_CR58
  doi: 10.1111/nph.17072
– volume: 106
  start-page: 1096
  year: 2018
  ident: 1564_CR15
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12839
– volume: 2
  start-page: 1906
  year: 2018
  ident: 1564_CR23
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0699-8
– volume: 221
  start-page: 50
  year: 2019
  ident: 1564_CR49
  publication-title: New Phytol.
  doi: 10.1111/nph.15263
– volume: 4
  start-page: 550
  year: 2020
  ident: 1564_CR33
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-1127-4
– volume: 1
  start-page: 1639
  year: 2017
  ident: 1564_CR43
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0325-1
– volume: 55
  start-page: 87
  year: 2021
  ident: 1564_CR18
  publication-title: Basic Appl. Ecol.
  doi: 10.1016/j.baae.2021.01.005
– volume: 9
  start-page: 11254
  year: 2019
  ident: 1564_CR53
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.5627
– volume: 106
  start-page: 1073
  year: 2018
  ident: 1564_CR38
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.12811
– volume: 22
  start-page: 2130
  year: 2019
  ident: 1564_CR44
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13400
– volume: 47
  start-page: 559
  year: 2015
  ident: 1564_CR31
  publication-title: Biotropica
  doi: 10.1111/btp.12252
– volume: 283
  start-page: 20160536
  year: 2016
  ident: 1564_CR30
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2016.0536
– volume: 368
  start-page: 580
  year: 2020
  ident: 1564_CR5
  publication-title: Science
  doi: 10.1126/science.aba8232
– volume: 34
  start-page: 167
  year: 2019
  ident: 1564_CR28
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2018.10.013
– volume: 98
  start-page: 2601
  year: 2017
  ident: 1564_CR52
  publication-title: Ecology
  doi: 10.1002/ecy.1958
– ident: 1564_CR7
  doi: 10.1111/conl.12829
– volume: 8
  start-page: 6369
  year: 2018
  ident: 1564_CR62
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.4043
– ident: 1564_CR69
– volume: 529
  start-page: 167
  year: 2016
  ident: 1564_CR21
  publication-title: Nature
  doi: 10.1038/nature16489
– volume: 5
  start-page: 74
  year: 2014
  ident: 1564_CR32
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12126
– volume: 56
  start-page: 733
  year: 2019
  ident: 1564_CR8
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13308
– volume: 285
  start-page: 20181240
  year: 2018
  ident: 1564_CR13
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2018.1240
– ident: 1564_CR65
– volume: 5
  start-page: 10
  year: 2021
  ident: 1564_CR4
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-01332-9
– volume: 19
  start-page: 638
  year: 2016
  ident: 1564_CR14
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12600
– reference: 34737434 - Nat Ecol Evol. 2021 Dec;5(12):1572-1573
– reference: 34985644 - Sci China Life Sci. 2022 Mar;65(3):651-653
SSID ssj0001775966
Score 2.5638244
Snippet Forest restoration increases global forest area and ecosystem services such as primary productivity and carbon storage. How tree species functional composition...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1594
SubjectTerms 631/158/2454
631/158/670
Biodiversity
Biological and Physical Anthropology
Biomedical and Life Sciences
Carbon sequestration
China
Ecology
Ecosystem
Ecosystem services
Environmental restoration
Evolutionary Biology
Experiments
Forests
Life Sciences
Paleontology
Plant communities
Plant species
Productivity
Provisioning
Restoration
Trees
Zoology
Title Functional diversity effects on productivity increase with age in a forest biodiversity experiment
URI https://link.springer.com/article/10.1038/s41559-021-01564-3
https://www.ncbi.nlm.nih.gov/pubmed/34737435
https://www.proquest.com/docview/2607919754
https://www.proquest.com/docview/2594298256
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgiil_VKRF807B2SZb0SVQ2huAQcbC3kjQpCNJOu_3_Xtq0U4aDPrVJGu6S3O8-cofQjSsdoGWsieU0JMxknGjDFFGwlxQ3GShz7r7zy3Q4mbHnOZ97g1vpwyqbM7E6qE2ROht5H3C3iKNYcHa_-CKuapTzrvoSGruoC0ewBOWr-ziavr6trSxCcAD0_rZMSGW_dBI0Ji4ywd0iZoT-lUgbMHPDRVpJnvEB2veQET_UPD5EOzY_QnoMAqm242HTxFZgH52Bixwv6lSuVW0I_JE7cFha7MyuGI4QeIMVBsAKc8D6o_g1RJvy_xjNxqP3pwnx9RJISgVfktRY0EcMy0KRpUZQ2L5aSpsyYy1l3AAjXL4xkUWhjrTgWoRMGB0rIISCh56gTl7k9gxhCYrhQA004AMGEGsIbUw0AIbr0CgpaYCihmZJ6pOJu5oWn0nl1KYyqemcAJ2Tis4J9Llt-yzqVBpbW_caViR-W5XJehEE6Lr9DBvCeTlUbosVtOExyFhQfIcBOq1Z2P6OMkEBMvEA3TU8XQ_-_1zOt8_lAu0N3Hqqglx6qLP8XtlLgCpLfeXX4w_PkOeK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fT9swED-V8jBepk1jo6MbnjSeNosktuvkYZoGa9WuUCEEUt-MHTsSEkoKLUL7UvuMO-dPO4TWt0p5SmzndL7z_c4-3wF89qUDTJwY6gQLKLeZoMZyTTXqkhY2Q2fO33c-m_SGV_zXVExb8Ke5C-PDKps1sVyobZH6PfIjxN0yCRMp-PfZHfVVo_zpalNCoxKLsfv9iC7b_NvoJ87vYRQN-pcnQ1pXFaApk2JBU-sQtVueBTJLrUR_Xpo4dim3zjEuLJLrs3LJLAxMaKQwMuDSmkSj4dT4MBx3C7Y5Q1emDdvH_cn5xWpXR0qBDkR9Oydg8dHcW-yE-kgIf2uZU_bUAj6Dtc-OZEtLN3gFL2uISn5UMvUaWi5_A2aABrDaNyS2ieUgdTQIKXIyq1LHlrUoyE3uwejcEb_NS3DJwjdEEwTISAMxN8U_QyxLDOzC1UY4-RbaeZG7PSAxOqKRjgziEY6QrodtbBihgJnA6jhmHQgbnqm0Tl7ua2jcqvIQncWq4rNCPquSzwr7fFn2mVWpO9a27jZToWo1nquV0HXg0_IzKqA_VdG5Kx6wjUjQpqOj3evAu2oKl79jXDKEaKIDX5s5XQ3-f1rer6flAF4ML89O1eloMt6HncjLVhlg04X24v7BfUCYtDAfa9kkcL1pdfgL0eMlAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+diversity+effects+on+productivity+increase+with+age+in+a+forest+biodiversity+experiment&rft.jtitle=Nature+ecology+%26+evolution&rft.au=Bongers%2C+Franca+J&rft.au=Schmid%2C+Bernhard&rft.au=Bruelheide%2C+Helge&rft.au=Bongers%2C+Frans&rft.date=2021-12-01&rft.issn=2397-334X&rft.eissn=2397-334X&rft.volume=5&rft.issue=12&rft.spage=1594&rft_id=info:doi/10.1038%2Fs41559-021-01564-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-334X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-334X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-334X&client=summon