MnO2-coated graphitic petals for supercapacitor electrodes

Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma c...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 227; pp. 254 - 259
Main Authors Xiong, Guoping, Hembram, K.P.S.S., Reifenberger, R.G., Fisher, Timothy S.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g−1 is obtained at a scan rate of 2 mV s−1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g−1 are 28 Wh kg−1 and 25 kW kg−1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors. [Display omitted] ► Buckypaper modified by graphitic petals to enhance area and chemical functionality. ► MnO2 coated on the carbon structure by a simple, solution-based method. ► Exceptional functional performance: 580 F g−1 (MnO2 mass basis), 44 Wh kg−1, 25 kW kg−1. ► Less than 10% degradation after 1000 CV cycles.
AbstractList Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g−1 is obtained at a scan rate of 2 mV s−1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g−1 are 28 Wh kg−1 and 25 kW kg−1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors. [Display omitted] ► Buckypaper modified by graphitic petals to enhance area and chemical functionality. ► MnO2 coated on the carbon structure by a simple, solution-based method. ► Exceptional functional performance: 580 F g−1 (MnO2 mass basis), 44 Wh kg−1, 25 kW kg−1. ► Less than 10% degradation after 1000 CV cycles.
Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g-1 is obtained at a scan rate of 2 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g-1 are 28 Wh kg-1 and 25 kW kg-1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors.
Author Hembram, K.P.S.S.
Xiong, Guoping
Reifenberger, R.G.
Fisher, Timothy S.
Author_xml – sequence: 1
  givenname: Guoping
  surname: Xiong
  fullname: Xiong, Guoping
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: K.P.S.S.
  surname: Hembram
  fullname: Hembram, K.P.S.S.
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
– sequence: 3
  givenname: R.G.
  surname: Reifenberger
  fullname: Reifenberger, R.G.
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
– sequence: 4
  givenname: Timothy S.
  surname: Fisher
  fullname: Fisher, Timothy S.
  email: tsfisher@purdue.edu
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27112579$$DView record in Pascal Francis
BookMark eNqFkE1LxDAQhoOs4K76F2QvgpfWTLJtWvGgiF-geNFzSJOJZuk2Nckq_nsju168eBpmeN4Z5pmRyeAHJOQIaAkU6tNluRz9Z_TrUDIKrAQo6YLukCk0ghdMVNWETCkXTSFExffILMYlpRRA0Ck5exyeWKG9Smjmr0GNby45PR8xqT7OrQ_zuB4xaDUq7VJusUedgjcYD8iuzRAebus-ebm5fr66Kx6ebu-vLh8KzUWVCm0a1i14VXddU7e8VbxWDTBjsLN5BrStODXGCEorxlvRWrC2rpuGabAdb_g-OdnsHYN_X2NMcuWixr5XA_p1lMAX7UJwyiGjx1tURa16G9SgXZRjcCsVviQTAKwSbebON5wOPsaAVubnVHJ-SEG5XgKVP2rlUv6qlT9qJYDManO8_hP_vfBv8GITxOzrw2GQUTscNBoXslZpvPtvxTdHUpnM
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_est_2022_106315
crossref_primary_10_1016_j_jpowsour_2014_07_093
crossref_primary_10_1002_advs_201600003
crossref_primary_10_1016_j_jelechem_2018_01_021
crossref_primary_10_1039_C3NR04495E
crossref_primary_10_1002_ente_201402055
crossref_primary_10_1016_j_mseb_2014_12_028
crossref_primary_10_1016_j_mtcomm_2022_104657
crossref_primary_10_1088_0957_4484_26_30_304002
crossref_primary_10_1016_j_apsusc_2015_05_116
crossref_primary_10_1016_j_electacta_2017_07_009
crossref_primary_10_1016_j_jpowsour_2014_01_066
crossref_primary_10_1016_j_matchemphys_2013_10_024
crossref_primary_10_1039_C4RA02934H
crossref_primary_10_1155_2020_6642236
crossref_primary_10_1002_pssa_201532131
crossref_primary_10_1039_C4RA11127C
crossref_primary_10_1002_asia_202000324
crossref_primary_10_1149_2_0291505jss
crossref_primary_10_1016_j_jssc_2016_02_049
crossref_primary_10_1039_C5RA05376E
crossref_primary_10_1016_j_electacta_2015_09_024
crossref_primary_10_1016_j_jpowsour_2015_06_051
crossref_primary_10_1016_j_electacta_2016_11_116
crossref_primary_10_1038_s41467_018_03112_3
crossref_primary_10_1149_2_1241702jes
crossref_primary_10_1016_j_electacta_2019_02_031
crossref_primary_10_1039_C5CP04203H
crossref_primary_10_1007_s10854_020_03373_z
crossref_primary_10_1016_j_jallcom_2016_10_007
crossref_primary_10_1016_j_jpowsour_2021_229639
crossref_primary_10_1016_j_jpowsour_2013_03_106
crossref_primary_10_1021_acsomega_2c07350
crossref_primary_10_1016_j_apsusc_2016_05_005
crossref_primary_10_1016_j_jpowsour_2014_09_015
crossref_primary_10_1021_acsnano_7b03431
crossref_primary_10_1002_adfm_201600879
crossref_primary_10_1039_C5RA00028A
crossref_primary_10_1088_0957_4484_26_7_075402
crossref_primary_10_1039_C4NR06609J
crossref_primary_10_1039_D2RA05603H
crossref_primary_10_1016_j_electacta_2014_11_127
crossref_primary_10_1016_j_jelechem_2019_113344
crossref_primary_10_1002_aenm_202000181
crossref_primary_10_1021_acs_iecr_8b03387
crossref_primary_10_1007_s11696_022_02124_0
crossref_primary_10_1016_j_carbon_2016_12_025
crossref_primary_10_1039_C6RA15736J
crossref_primary_10_1088_0957_4484_27_3_032001
crossref_primary_10_1002_celc_202001364
crossref_primary_10_1016_j_jallcom_2014_08_018
crossref_primary_10_1039_C5TA03955J
crossref_primary_10_1002_aic_16482
crossref_primary_10_1039_C5TC00645G
crossref_primary_10_1039_c4cp01141d
crossref_primary_10_1002_celc_201900601
crossref_primary_10_1039_C7DT03815A
crossref_primary_10_3389_fenrg_2015_00039
crossref_primary_10_1016_j_ssi_2013_10_003
crossref_primary_10_1002_ente_201600395
crossref_primary_10_1016_j_microrel_2013_11_005
crossref_primary_10_1016_j_jpowsour_2015_05_115
crossref_primary_10_1016_j_est_2022_105212
crossref_primary_10_1039_C6CP07259C
crossref_primary_10_1134_S0020168521050113
crossref_primary_10_1039_C5TA03546E
crossref_primary_10_1039_C3TA15402E
crossref_primary_10_1016_j_electacta_2017_03_028
crossref_primary_10_1016_j_rechem_2024_101997
crossref_primary_10_1016_j_coldregions_2015_10_016
crossref_primary_10_1016_j_surfcoat_2016_10_038
crossref_primary_10_1002_aenm_201700678
crossref_primary_10_1002_aenm_201802388
crossref_primary_10_1039_C7TA02045G
crossref_primary_10_1016_j_materresbull_2015_06_017
crossref_primary_10_1016_j_jmat_2020_03_008
crossref_primary_10_1016_j_est_2020_101575
crossref_primary_10_1016_j_ijhydene_2014_05_118
crossref_primary_10_1002_adfm_201902564
crossref_primary_10_1016_j_flatc_2021_100306
crossref_primary_10_1016_j_materresbull_2015_12_005
crossref_primary_10_1039_c3ce42491j
crossref_primary_10_1016_j_jpowsour_2014_04_132
crossref_primary_10_1016_j_electacta_2018_05_164
crossref_primary_10_1016_j_carbon_2021_01_155
crossref_primary_10_1016_j_electacta_2013_09_058
crossref_primary_10_1021_acsami_5b04463
crossref_primary_10_1021_acsomega_0c06150
crossref_primary_10_1021_cm504519m
crossref_primary_10_1021_acssuschemeng_6b00092
crossref_primary_10_1039_C5RA08486E
crossref_primary_10_1039_D2NJ00589A
crossref_primary_10_1016_j_surfin_2017_04_011
crossref_primary_10_1149_2_1431702jes
crossref_primary_10_1039_C9CP02614B
crossref_primary_10_1016_j_matchemphys_2020_123786
crossref_primary_10_1039_D1RA05810J
crossref_primary_10_1016_j_matpr_2016_04_060
crossref_primary_10_1002_elan_201300238
crossref_primary_10_1002_pssb_201600804
crossref_primary_10_1007_s11664_019_07064_2
crossref_primary_10_1039_c3ta12780j
crossref_primary_10_1039_C4RA16646A
crossref_primary_10_1007_s11581_019_03254_4
crossref_primary_10_1039_C5TA05441A
crossref_primary_10_1039_C5RA16923B
crossref_primary_10_1016_j_est_2022_105701
crossref_primary_10_1021_acsaem_8b00981
crossref_primary_10_1002_slct_201702780
crossref_primary_10_1002_chem_201903244
crossref_primary_10_1021_acsnano_5b03732
crossref_primary_10_1039_C4RA16092D
crossref_primary_10_1039_C6RA13628A
crossref_primary_10_1038_s41598_019_44778_z
crossref_primary_10_1016_j_electacta_2016_12_007
crossref_primary_10_1039_c3cp52126e
crossref_primary_10_1002_eem2_12094
crossref_primary_10_1007_s10854_019_02672_4
crossref_primary_10_1016_j_jallcom_2015_08_063
crossref_primary_10_1021_nn505658u
crossref_primary_10_1039_C5TA03221K
crossref_primary_10_1016_j_jpowsour_2019_05_053
crossref_primary_10_1016_j_energy_2015_12_013
crossref_primary_10_1007_s10854_017_7775_8
crossref_primary_10_1021_acsami_6b08082
crossref_primary_10_1021_acsami_5b00806
crossref_primary_10_1016_j_jelechem_2017_01_063
crossref_primary_10_1039_C4RA14442B
crossref_primary_10_1039_C4RA01515K
crossref_primary_10_1002_aenm_201300515
crossref_primary_10_1016_j_jcis_2019_01_053
crossref_primary_10_1016_j_jpowsour_2019_226795
crossref_primary_10_1016_j_jpowsour_2013_08_038
crossref_primary_10_1039_C6RA28580E
crossref_primary_10_1039_C4TA06138A
crossref_primary_10_1039_c3ce41517a
crossref_primary_10_1016_j_jpowsour_2014_09_001
crossref_primary_10_1002_adma_201705850
crossref_primary_10_1016_j_ensm_2018_07_019
crossref_primary_10_1021_acsami_6b06156
crossref_primary_10_1007_s10853_013_7583_3
crossref_primary_10_1016_j_jpowsour_2013_07_115
crossref_primary_10_1002_cssc_201600024
crossref_primary_10_1016_j_materresbull_2014_08_032
crossref_primary_10_1016_j_nanoen_2017_05_050
crossref_primary_10_1115_1_4027547
crossref_primary_10_1007_s41918_021_00094_7
crossref_primary_10_1016_j_carbon_2020_10_025
crossref_primary_10_1016_j_electacta_2021_138826
crossref_primary_10_1021_acssuschemeng_5b00305
crossref_primary_10_1039_C7RA00126F
crossref_primary_10_1002_adem_201800004
crossref_primary_10_1039_C5RA01604E
crossref_primary_10_1016_j_electacta_2017_08_087
crossref_primary_10_1016_j_jssc_2014_03_043
crossref_primary_10_1016_j_jelechem_2014_02_011
crossref_primary_10_1039_C4CS00352G
crossref_primary_10_1021_am406032y
crossref_primary_10_1016_j_mseb_2023_116581
crossref_primary_10_1039_C4RA14063J
crossref_primary_10_1039_C5RA00309A
crossref_primary_10_1149_2_0231505jes
crossref_primary_10_1016_j_jallcom_2015_01_240
crossref_primary_10_1039_C3CP53488J
crossref_primary_10_1002_adfm_202006030
crossref_primary_10_1002_slct_201801950
crossref_primary_10_1016_j_electacta_2022_140101
crossref_primary_10_1016_j_matlet_2015_09_003
crossref_primary_10_1016_j_jallcom_2017_06_215
crossref_primary_10_1016_j_jpowsour_2015_12_056
crossref_primary_10_1007_s11051_020_04819_5
crossref_primary_10_1016_j_jssc_2017_09_004
crossref_primary_10_1016_j_electacta_2016_11_028
crossref_primary_10_1016_j_jelechem_2019_113366
crossref_primary_10_1016_j_matlet_2016_08_077
crossref_primary_10_1039_C7RA10681E
crossref_primary_10_20964_2016_12_42
crossref_primary_10_1016_j_est_2023_108544
crossref_primary_10_1016_j_ceramint_2017_05_224
crossref_primary_10_1016_j_mssp_2014_06_036
crossref_primary_10_1016_j_matpr_2022_01_407
crossref_primary_10_1002_ente_201600475
Cites_doi 10.1021/nl200225j
10.1016/0013-4686(67)80035-5
10.1103/PhysRevB.13.5188
10.1016/S0927-0256(03)00104-6
10.1103/PhysRevB.40.3616
10.1016/j.jpowsour.2009.06.004
10.1021/nl101723g
10.1016/j.elecom.2011.03.040
10.1038/nmat2297
10.1016/j.elecom.2011.01.023
10.1021/nl2013828
10.1016/j.elecom.2011.04.013
10.1016/j.electacta.2011.05.090
10.1103/PhysRevB.41.7892
10.1038/nnano.2011.13
10.1021/cm049649j
10.1021/ic051715b
10.1021/nl800925j
10.1016/j.elecom.2008.08.051
10.1002/chem.200390024
10.1016/0022-4596(81)90323-6
10.1021/nn100592d
10.1021/jp7108785
10.1149/1.3099325
10.1021/nl102661q
10.1126/science.1194372
10.1103/PhysRevLett.77.3865
10.1016/j.elecom.2008.11.005
10.1149/1.2050077
10.1016/j.jpowsour.2008.11.133
10.1016/j.elecom.2006.05.018
10.1016/j.elecom.2010.10.029
10.1006/jssc.1998.8128
10.1016/j.diamond.2012.05.002
10.1021/nl104205s
10.1002/smll.200700139
10.1021/nn100681d
10.1088/0957-4484/20/39/395202
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
DOI 10.1016/j.jpowsour.2012.11.040
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 259
ExternalDocumentID 27112579
10_1016_j_jpowsour_2012_11_040
S0378775312017144
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
IQODW
7ST
C1K
SOI
ID FETCH-LOGICAL-c375t-cd82b4356bb86939a36a812ddebf6bb109530ddd700523979f1ff66882c1fb383
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Fri Jul 11 15:55:23 EDT 2025
Wed Apr 02 07:13:29 EDT 2025
Tue Jul 01 04:22:51 EDT 2025
Thu Apr 24 23:04:43 EDT 2025
Fri Feb 23 02:31:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Manganese dioxide
Electrodes
Supercapacitor
Carbon nanotubes
Graphitic petals
Power density
Aqueous electrolyte
Parallel
Electrode material
Coatings
Composite material
Electrochemical characteristic
Thin film
High performance
Energy density
Electrolytic capacitor
Binders
Chemical vapor deposition
Long term
Coated material
Manganese oxides
Electronic structure
Graphene
High energy
Specific capacity
Plasma deposition
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-cd82b4356bb86939a36a812ddebf6bb109530ddd700523979f1ff66882c1fb383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1349473031
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_1349473031
pascalfrancis_primary_27112579
crossref_citationtrail_10_1016_j_jpowsour_2012_11_040
crossref_primary_10_1016_j_jpowsour_2012_11_040
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_11_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Perdew, Burke, Ernzerhof (bib33) 1996; 77
Hung, Chen, Whang (bib25) 2009; 12
Wang, Li (bib30) 2003; 9
Yan, Khoo, Sumboja, Lee (bib11) 2010; 4
Monkhorst, Pack (bib36) 1976; 13
Simon, Gogotsi (bib1) 2008; 7
Kokalj (bib40) 2003; 28
Bao, Zang, Li (bib9) 2011; 11
Yoo, Balakrishnan, Huang, Meunier, Sumpter, Srivastava, Conway, Reddy, Yu, Vajtai, Ajayan (bib22) 2011; 11
Methfessel, Paxton (bib35) 1989; 40
Jin, Zhou, Zhang, Chen (bib37) 2007; 3
Xiong, Hembram, Zakharov, Reifenberger, Fisher (bib26) 2012; 27–28
Conway (bib2) 1999
Hou, Cheng, Hobson, Liu (bib12) 2010; 10
Era, Takehara, Yoshizawa (bib38) 1967; 12
Shah, Zhang, Talapatra (bib39) 2009; 20
Zheng, Cygan, Jow (bib4) 1995; 142
Li, Chang, Hu (bib5) 2010; 12
Zhang, Cao, Wang, Yang, Shi, Gu (bib15) 2008; 8
Meng, Liu, Fan (bib17) 2009; 11
Nam, Lee, Yang, Cho, Yoon, Kim (bib14) 2009; 188
Cheng, Zhao, Song, Li, Ma, Chen, Shen (bib29) 2006; 45
Chou, Wang, Chew, Liu, Dou (bib16) 2008; 10
Toupin, Brousse, Belanger (bib7) 2004; 16
Devaraj, Munichandraiah (bib27) 2008; 112
Vanderbilt (bib34) 1990; 41
Li, Wang, Zhao, Ding, Guan (bib3) 2011; 13
Lee, Kim, Chen, Hammond, Horn (bib13) 2010; 4
Miller, Outlaw, Holloway (bib23) 2010; 329
Lee, Goodenough (bib28) 1999; 144
Zhao, Tian, Zhu, Tian, Wang, Kang, Outlaw (bib24) 2009; 194
.
S. Baroni, A. Dal Corso, S. de Gironcoli, P. Gianozzi
Le, Ervin, Qiu, Fuchs, Lee (bib20) 2011; 13
Liu, Yu, Neff, Zhamu, Jang (bib21) 2010; 10
Xie, Li, Lai, Lu, Zhang, Liu, Zhou, Huang (bib6) 2011; 13
Yuan, Zhang (bib19) 2006; 8
Lang, Hirata, Fujita, Chen (bib10) 2011; 6
Yu, Hu, Vosgueritchian, Wang, Xie, McDonough, Cui, Cui, Bao (bib8) 2011; 11
Hunter (bib31) 1981; 39
Chen, Hsu, Lin, Lin, Horng, Chen, Chen (bib18) 2011; 56
Kokalj (10.1016/j.jpowsour.2012.11.040_bib40) 2003; 28
Yuan (10.1016/j.jpowsour.2012.11.040_bib19) 2006; 8
Perdew (10.1016/j.jpowsour.2012.11.040_bib33) 1996; 77
Li (10.1016/j.jpowsour.2012.11.040_bib5) 2010; 12
Nam (10.1016/j.jpowsour.2012.11.040_bib14) 2009; 188
Yu (10.1016/j.jpowsour.2012.11.040_bib8) 2011; 11
Era (10.1016/j.jpowsour.2012.11.040_bib38) 1967; 12
Lang (10.1016/j.jpowsour.2012.11.040_bib10) 2011; 6
Toupin (10.1016/j.jpowsour.2012.11.040_bib7) 2004; 16
Conway (10.1016/j.jpowsour.2012.11.040_bib2) 1999
Yoo (10.1016/j.jpowsour.2012.11.040_bib22) 2011; 11
Hung (10.1016/j.jpowsour.2012.11.040_bib25) 2009; 12
Chen (10.1016/j.jpowsour.2012.11.040_bib18) 2011; 56
Xiong (10.1016/j.jpowsour.2012.11.040_bib26) 2012; 27–28
Li (10.1016/j.jpowsour.2012.11.040_bib3) 2011; 13
Wang (10.1016/j.jpowsour.2012.11.040_bib30) 2003; 9
Liu (10.1016/j.jpowsour.2012.11.040_bib21) 2010; 10
Yan (10.1016/j.jpowsour.2012.11.040_bib11) 2010; 4
Hunter (10.1016/j.jpowsour.2012.11.040_bib31) 1981; 39
Shah (10.1016/j.jpowsour.2012.11.040_bib39) 2009; 20
Zhang (10.1016/j.jpowsour.2012.11.040_bib15) 2008; 8
Meng (10.1016/j.jpowsour.2012.11.040_bib17) 2009; 11
10.1016/j.jpowsour.2012.11.040_bib32
Vanderbilt (10.1016/j.jpowsour.2012.11.040_bib34) 1990; 41
Xie (10.1016/j.jpowsour.2012.11.040_bib6) 2011; 13
Zhao (10.1016/j.jpowsour.2012.11.040_bib24) 2009; 194
Zheng (10.1016/j.jpowsour.2012.11.040_bib4) 1995; 142
Bao (10.1016/j.jpowsour.2012.11.040_bib9) 2011; 11
Cheng (10.1016/j.jpowsour.2012.11.040_bib29) 2006; 45
Simon (10.1016/j.jpowsour.2012.11.040_bib1) 2008; 7
Le (10.1016/j.jpowsour.2012.11.040_bib20) 2011; 13
Chou (10.1016/j.jpowsour.2012.11.040_bib16) 2008; 10
Jin (10.1016/j.jpowsour.2012.11.040_bib37) 2007; 3
Lee (10.1016/j.jpowsour.2012.11.040_bib13) 2010; 4
Lee (10.1016/j.jpowsour.2012.11.040_bib28) 1999; 144
Hou (10.1016/j.jpowsour.2012.11.040_bib12) 2010; 10
Methfessel (10.1016/j.jpowsour.2012.11.040_bib35) 1989; 40
Monkhorst (10.1016/j.jpowsour.2012.11.040_bib36) 1976; 13
Devaraj (10.1016/j.jpowsour.2012.11.040_bib27) 2008; 112
Miller (10.1016/j.jpowsour.2012.11.040_bib23) 2010; 329
References_xml – volume: 4
  start-page: 4247
  year: 2010
  end-page: 4255
  ident: bib11
  publication-title: ACS Nano
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib33
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 300
  year: 2003
  end-page: 306
  ident: bib30
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 3889
  year: 2010
  end-page: 3896
  ident: bib13
  publication-title: ACS Nano
– volume: 142
  start-page: 2699
  year: 1995
  end-page: 2703
  ident: bib4
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 186
  year: 2009
  end-page: 189
  ident: bib17
  publication-title: Electrochem. Commun.
– volume: 40
  start-page: 3616
  year: 1989
  end-page: 3621
  ident: bib35
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 232
  year: 2011
  end-page: 236
  ident: bib10
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1513
  year: 2007
  end-page: 1517
  ident: bib37
  publication-title: Small
– volume: 12
  start-page: K41
  year: 2009
  end-page: 44
  ident: bib25
  publication-title: Electrochem. Solid State Lett.
– volume: 144
  start-page: 220
  year: 1999
  end-page: 223
  ident: bib28
  publication-title: J. Solid State Chem.
– volume: 27–28
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib26
  publication-title: Diam. Relat. Mater.
– volume: 10
  start-page: 2727
  year: 2010
  end-page: 2733
  ident: bib12
  publication-title: Nano Lett.
– volume: 10
  start-page: 1724
  year: 2008
  end-page: 1727
  ident: bib16
  publication-title: Electrochem. Commun.
– volume: 45
  start-page: 2038
  year: 2006
  end-page: 2044
  ident: bib29
  publication-title: Inorg. Chem.
– volume: 41
  start-page: 7892
  year: 1990
  end-page: 7895
  ident: bib34
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: bib36
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 4863
  year: 2010
  end-page: 4868
  ident: bib21
  publication-title: Nano Lett.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: bib1
  publication-title: Nat. Mater.
– volume: 20
  start-page: 395202
  year: 2009
  ident: bib39
  publication-title: Nanotechnology
– volume: 11
  start-page: 1423
  year: 2011
  end-page: 1427
  ident: bib22
  publication-title: Nano Lett.
– volume: 11
  start-page: 1215
  year: 2011
  end-page: 1220
  ident: bib9
  publication-title: Nano Lett.
– volume: 194
  start-page: 1208
  year: 2009
  end-page: 1212
  ident: bib24
  publication-title: J. Power Sources
– volume: 28
  start-page: 155
  year: 2003
  end-page: 168
  ident: bib40
  publication-title: Comp. Mater. Sci.
– volume: 13
  start-page: 657
  year: 2011
  end-page: 660
  ident: bib6
  publication-title: Electrochem. Commun.
– year: 1999
  ident: bib2
– volume: 112
  start-page: 4406
  year: 2008
  end-page: 4417
  ident: bib27
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 698
  year: 2011
  end-page: 700
  ident: bib3
  publication-title: Electrochem. Commun.
– volume: 329
  start-page: 1637
  year: 2010
  end-page: 1639
  ident: bib23
  publication-title: Science
– volume: 12
  start-page: 1800
  year: 2010
  end-page: 1803
  ident: bib5
  publication-title: Electrochem. Commun.
– reference: .
– volume: 16
  start-page: 3184
  year: 2004
  end-page: 3190
  ident: bib7
  publication-title: Chem. Mater.
– volume: 12
  start-page: 1199
  year: 1967
  end-page: 1212
  ident: bib38
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 355
  year: 2011
  end-page: 358
  ident: bib20
  publication-title: Electrochem. Commun.
– volume: 188
  start-page: 323
  year: 2009
  end-page: 331
  ident: bib14
  publication-title: J. Power Sources
– reference: S. Baroni, A. Dal Corso, S. de Gironcoli, P. Gianozzi,
– volume: 11
  start-page: 2905
  year: 2011
  end-page: 2911
  ident: bib8
  publication-title: Nano Lett.
– volume: 8
  start-page: 1173
  year: 2006
  end-page: 1178
  ident: bib19
  publication-title: Electrochem. Comm.
– volume: 39
  start-page: 142
  year: 1981
  end-page: 147
  ident: bib31
  publication-title: J. Solid State Chem.
– volume: 56
  start-page: 7124
  year: 2011
  end-page: 7130
  ident: bib18
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 2664
  year: 2008
  end-page: 2668
  ident: bib15
  publication-title: Nano Lett.
– volume: 11
  start-page: 1423
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib22
  publication-title: Nano Lett.
  doi: 10.1021/nl200225j
– volume: 12
  start-page: 1199
  year: 1967
  ident: 10.1016/j.jpowsour.2012.11.040_bib38
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(67)80035-5
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.jpowsour.2012.11.040_bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 28
  start-page: 155
  year: 2003
  ident: 10.1016/j.jpowsour.2012.11.040_bib40
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/S0927-0256(03)00104-6
– volume: 40
  start-page: 3616
  year: 1989
  ident: 10.1016/j.jpowsour.2012.11.040_bib35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 194
  start-page: 1208
  year: 2009
  ident: 10.1016/j.jpowsour.2012.11.040_bib24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.004
– volume: 10
  start-page: 2727
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib12
  publication-title: Nano Lett.
  doi: 10.1021/nl101723g
– volume: 13
  start-page: 657
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib6
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.03.040
– volume: 7
  start-page: 845
  year: 2008
  ident: 10.1016/j.jpowsour.2012.11.040_bib1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 13
  start-page: 355
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib20
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.01.023
– volume: 11
  start-page: 2905
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib8
  publication-title: Nano Lett.
  doi: 10.1021/nl2013828
– volume: 13
  start-page: 698
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib3
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.04.013
– volume: 56
  start-page: 7124
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib18
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.05.090
– volume: 41
  start-page: 7892
  year: 1990
  ident: 10.1016/j.jpowsour.2012.11.040_bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.7892
– volume: 6
  start-page: 232
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib10
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.13
– volume: 16
  start-page: 3184
  year: 2004
  ident: 10.1016/j.jpowsour.2012.11.040_bib7
  publication-title: Chem. Mater.
  doi: 10.1021/cm049649j
– volume: 45
  start-page: 2038
  year: 2006
  ident: 10.1016/j.jpowsour.2012.11.040_bib29
  publication-title: Inorg. Chem.
  doi: 10.1021/ic051715b
– volume: 8
  start-page: 2664
  year: 2008
  ident: 10.1016/j.jpowsour.2012.11.040_bib15
  publication-title: Nano Lett.
  doi: 10.1021/nl800925j
– volume: 10
  start-page: 1724
  year: 2008
  ident: 10.1016/j.jpowsour.2012.11.040_bib16
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.08.051
– volume: 9
  start-page: 300
  year: 2003
  ident: 10.1016/j.jpowsour.2012.11.040_bib30
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.200390024
– volume: 39
  start-page: 142
  year: 1981
  ident: 10.1016/j.jpowsour.2012.11.040_bib31
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(81)90323-6
– volume: 4
  start-page: 4247
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib11
  publication-title: ACS Nano
  doi: 10.1021/nn100592d
– volume: 112
  start-page: 4406
  year: 2008
  ident: 10.1016/j.jpowsour.2012.11.040_bib27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp7108785
– volume: 12
  start-page: K41
  year: 2009
  ident: 10.1016/j.jpowsour.2012.11.040_bib25
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.3099325
– volume: 10
  start-page: 4863
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib21
  publication-title: Nano Lett.
  doi: 10.1021/nl102661q
– ident: 10.1016/j.jpowsour.2012.11.040_bib32
– volume: 329
  start-page: 1637
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib23
  publication-title: Science
  doi: 10.1126/science.1194372
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jpowsour.2012.11.040_bib33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– year: 1999
  ident: 10.1016/j.jpowsour.2012.11.040_bib2
– volume: 11
  start-page: 186
  year: 2009
  ident: 10.1016/j.jpowsour.2012.11.040_bib17
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.11.005
– volume: 142
  start-page: 2699
  year: 1995
  ident: 10.1016/j.jpowsour.2012.11.040_bib4
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2050077
– volume: 188
  start-page: 323
  year: 2009
  ident: 10.1016/j.jpowsour.2012.11.040_bib14
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.11.133
– volume: 8
  start-page: 1173
  year: 2006
  ident: 10.1016/j.jpowsour.2012.11.040_bib19
  publication-title: Electrochem. Comm.
  doi: 10.1016/j.elecom.2006.05.018
– volume: 12
  start-page: 1800
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib5
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.10.029
– volume: 144
  start-page: 220
  year: 1999
  ident: 10.1016/j.jpowsour.2012.11.040_bib28
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1998.8128
– volume: 27–28
  start-page: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2012.11.040_bib26
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2012.05.002
– volume: 11
  start-page: 1215
  year: 2011
  ident: 10.1016/j.jpowsour.2012.11.040_bib9
  publication-title: Nano Lett.
  doi: 10.1021/nl104205s
– volume: 3
  start-page: 1513
  year: 2007
  ident: 10.1016/j.jpowsour.2012.11.040_bib37
  publication-title: Small
  doi: 10.1002/smll.200700139
– volume: 4
  start-page: 3889
  year: 2010
  ident: 10.1016/j.jpowsour.2012.11.040_bib13
  publication-title: ACS Nano
  doi: 10.1021/nn100681d
– volume: 20
  start-page: 395202
  year: 2009
  ident: 10.1016/j.jpowsour.2012.11.040_bib39
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/39/395202
SSID ssj0001170
Score 2.510587
Snippet Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 254
SubjectTerms Applied sciences
Capacitors. Resistors. Filters
Carbon nanotubes
Electrical engineering. Electrical power engineering
Electrodes
Exact sciences and technology
Graphitic petals
Manganese dioxide
Materials
Supercapacitor
Various equipment and components
Title MnO2-coated graphitic petals for supercapacitor electrodes
URI https://dx.doi.org/10.1016/j.jpowsour.2012.11.040
https://www.proquest.com/docview/1349473031
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXhQRn1gfZQWv23ZfycZbKZaqWA9a6C3ktdAiu0u3xZu_3Ul2t1oUevAaNiQ7mcx8k0y-QegWljzkPR270hMQoCiFXUp87WosSaA5IVpats8xHk3Cx2k0baBB_RbGpFVWtr-06dZaVy3dSprdfDbrvvYCUDZA255vq3gbTtAwJEbLO5_faR6msoq9SYBoyXz945XwvDPPsw9zSG5SvPyOYfM0hyB_O6j9nBcgtqSsd_HLdFt_NDxEBxWQdPrlXI9QQ6fHaO8HveAJuntOX3xXZgAnlWOZqU2qmwM4GXTOAbTqFKtcLyT4Swkbe-FUNXGULk7RZHj_Nhi5Va0EVwYkWrpSxb4A6IOFiDENKA8wB98Nxksk0OYZWrmeUorYc2BKaOIlCcaAr6WXCAhTz1AzzVJ9jpyQUwCxyhMYYjPOo9gnHg0DTIkItK-TFopqATFZEYmbehbvrM4Ym7NasMwIFqIMBoJtoe66X15SaWztQWv5sw2lYGDvt_ZtbyzYekj4GwB1hLbQTb2CDLaUuSfhqc5WBTOMjSFYvsC7-McELtGub0tnmCyfK9RcLlb6GgDMUrSthrbRTv_haTT-Ak-78T4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l6YEihFooangEI8HRSbx2drNIHBA0CuXRQ4PEbbsvS0SVY8WJEBf-FH-Q2Y0dQK3EoeJqae31N7Mz3-zOzgDso8gT2bG9UEcKAxRjaMgZsaGlmsVWMma1r_Z5RQfXyY-b7k0NHqu7MC6tsrT9c5vurXX5pF2i2c5vb9u_OjEqG7LtiPgu3kmZWXlu7-8wbiuOzk5RyAeE9L8PTwZh2Vog1DHrTkNtekQhU6BK9SiPuYypRFeHa12l-CxyVdg6xhjmt00542mUppQiHdVRqjCqw_d-gI8JmgvXNqH18JxX4lq5-KMLDM_c9F5cSx61Rvn4zu3Ku5wy0nLlQ92uy7894kouC5RTOm-w8Zev8A6w_xlWS-YaHM_B-QI1m63B8ot6hutweJn9JKEeI381gS-F7XLrAiTmqOQB0uOgmOV2otFBa7Qkk6BswmNs8RWu3wXBDahn48x-gyCRHFmziRTFYFDKbo-wiCcx5UzFlti0Ad0KIKHLyuWugcYfUaWojUQFrHDAYlgjENgGtBfj8nntjjdH8Ap_8UoLBTqYN8c2Xwls8Un8G2SRjDdgr5KgwDXsDmZkZsezQrgSkQma2jja_I8J7MLSYHh5IS7Ors634BPxfTtcitE21KeTmd1B9jRVTa-tAfx-7-XxBHPKLHE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnO2-coated+graphitic+petals+for+supercapacitor+electrodes&rft.jtitle=Journal+of+power+sources&rft.au=Xiong%2C+Guoping&rft.au=Hembram%2C+K.P.S.S.&rft.au=Reifenberger%2C+R.G.&rft.au=Fisher%2C+Timothy+S.&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=227&rft.spage=254&rft.epage=259&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.11.040&rft.externalDocID=S0378775312017144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon