MnO2-coated graphitic petals for supercapacitor electrodes
Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma c...
Saved in:
Published in | Journal of power sources Vol. 227; pp. 254 - 259 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g−1 is obtained at a scan rate of 2 mV s−1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g−1 are 28 Wh kg−1 and 25 kW kg−1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors.
[Display omitted]
► Buckypaper modified by graphitic petals to enhance area and chemical functionality. ► MnO2 coated on the carbon structure by a simple, solution-based method. ► Exceptional functional performance: 580 F g−1 (MnO2 mass basis), 44 Wh kg−1, 25 kW kg−1. ► Less than 10% degradation after 1000 CV cycles. |
---|---|
AbstractList | Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g−1 is obtained at a scan rate of 2 mV s−1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g−1 are 28 Wh kg−1 and 25 kW kg−1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors.
[Display omitted]
► Buckypaper modified by graphitic petals to enhance area and chemical functionality. ► MnO2 coated on the carbon structure by a simple, solution-based method. ► Exceptional functional performance: 580 F g−1 (MnO2 mass basis), 44 Wh kg−1, 25 kW kg−1. ► Less than 10% degradation after 1000 CV cycles. Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power density, and long cycle life for flexible supercapacitor applications. Vertical nanoscale graphitic petals were prepared by microwave plasma chemical vapor deposition on commercial carbon nanotube substrates and subsequently coated with a thin layer of MnO2. The graphitic petal/carbon nanotube architecture without any binder provides an efficient scaffold for maximizing the electrochemical performance of MnO2. A specific capacitance (based on the mass of MnO2) of 580 F g-1 is obtained at a scan rate of 2 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The energy density and power density at 50 A g-1 are 28 Wh kg-1 and 25 kW kg-1, respectively. In addition, the composite electrode shows excellent long-term cyclic stability (less than 10% decrease in specific capacitance after 1000 cycles) while maintaining a small internal resistance. Parallel density functional studies were performed to investigate the stability and electronic structure of the MnO2/graphene interface. Taken together, the work indicates the MnO2/graphitic petal/carbon nanotube composite is a promising electrode material for high-performance supercapacitors. |
Author | Hembram, K.P.S.S. Xiong, Guoping Reifenberger, R.G. Fisher, Timothy S. |
Author_xml | – sequence: 1 givenname: Guoping surname: Xiong fullname: Xiong, Guoping organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA – sequence: 2 givenname: K.P.S.S. surname: Hembram fullname: Hembram, K.P.S.S. organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA – sequence: 3 givenname: R.G. surname: Reifenberger fullname: Reifenberger, R.G. organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA – sequence: 4 givenname: Timothy S. surname: Fisher fullname: Fisher, Timothy S. email: tsfisher@purdue.edu organization: Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27112579$$DView record in Pascal Francis |
BookMark | eNqFkE1LxDAQhoOs4K76F2QvgpfWTLJtWvGgiF-geNFzSJOJZuk2Nckq_nsju168eBpmeN4Z5pmRyeAHJOQIaAkU6tNluRz9Z_TrUDIKrAQo6YLukCk0ghdMVNWETCkXTSFExffILMYlpRRA0Ck5exyeWKG9Smjmr0GNby45PR8xqT7OrQ_zuB4xaDUq7VJusUedgjcYD8iuzRAebus-ebm5fr66Kx6ebu-vLh8KzUWVCm0a1i14VXddU7e8VbxWDTBjsLN5BrStODXGCEorxlvRWrC2rpuGabAdb_g-OdnsHYN_X2NMcuWixr5XA_p1lMAX7UJwyiGjx1tURa16G9SgXZRjcCsVviQTAKwSbebON5wOPsaAVubnVHJ-SEG5XgKVP2rlUv6qlT9qJYDManO8_hP_vfBv8GITxOzrw2GQUTscNBoXslZpvPtvxTdHUpnM |
CODEN | JPSODZ |
CitedBy_id | crossref_primary_10_1016_j_est_2022_106315 crossref_primary_10_1016_j_jpowsour_2014_07_093 crossref_primary_10_1002_advs_201600003 crossref_primary_10_1016_j_jelechem_2018_01_021 crossref_primary_10_1039_C3NR04495E crossref_primary_10_1002_ente_201402055 crossref_primary_10_1016_j_mseb_2014_12_028 crossref_primary_10_1016_j_mtcomm_2022_104657 crossref_primary_10_1088_0957_4484_26_30_304002 crossref_primary_10_1016_j_apsusc_2015_05_116 crossref_primary_10_1016_j_electacta_2017_07_009 crossref_primary_10_1016_j_jpowsour_2014_01_066 crossref_primary_10_1016_j_matchemphys_2013_10_024 crossref_primary_10_1039_C4RA02934H crossref_primary_10_1155_2020_6642236 crossref_primary_10_1002_pssa_201532131 crossref_primary_10_1039_C4RA11127C crossref_primary_10_1002_asia_202000324 crossref_primary_10_1149_2_0291505jss crossref_primary_10_1016_j_jssc_2016_02_049 crossref_primary_10_1039_C5RA05376E crossref_primary_10_1016_j_electacta_2015_09_024 crossref_primary_10_1016_j_jpowsour_2015_06_051 crossref_primary_10_1016_j_electacta_2016_11_116 crossref_primary_10_1038_s41467_018_03112_3 crossref_primary_10_1149_2_1241702jes crossref_primary_10_1016_j_electacta_2019_02_031 crossref_primary_10_1039_C5CP04203H crossref_primary_10_1007_s10854_020_03373_z crossref_primary_10_1016_j_jallcom_2016_10_007 crossref_primary_10_1016_j_jpowsour_2021_229639 crossref_primary_10_1016_j_jpowsour_2013_03_106 crossref_primary_10_1021_acsomega_2c07350 crossref_primary_10_1016_j_apsusc_2016_05_005 crossref_primary_10_1016_j_jpowsour_2014_09_015 crossref_primary_10_1021_acsnano_7b03431 crossref_primary_10_1002_adfm_201600879 crossref_primary_10_1039_C5RA00028A crossref_primary_10_1088_0957_4484_26_7_075402 crossref_primary_10_1039_C4NR06609J crossref_primary_10_1039_D2RA05603H crossref_primary_10_1016_j_electacta_2014_11_127 crossref_primary_10_1016_j_jelechem_2019_113344 crossref_primary_10_1002_aenm_202000181 crossref_primary_10_1021_acs_iecr_8b03387 crossref_primary_10_1007_s11696_022_02124_0 crossref_primary_10_1016_j_carbon_2016_12_025 crossref_primary_10_1039_C6RA15736J crossref_primary_10_1088_0957_4484_27_3_032001 crossref_primary_10_1002_celc_202001364 crossref_primary_10_1016_j_jallcom_2014_08_018 crossref_primary_10_1039_C5TA03955J crossref_primary_10_1002_aic_16482 crossref_primary_10_1039_C5TC00645G crossref_primary_10_1039_c4cp01141d crossref_primary_10_1002_celc_201900601 crossref_primary_10_1039_C7DT03815A crossref_primary_10_3389_fenrg_2015_00039 crossref_primary_10_1016_j_ssi_2013_10_003 crossref_primary_10_1002_ente_201600395 crossref_primary_10_1016_j_microrel_2013_11_005 crossref_primary_10_1016_j_jpowsour_2015_05_115 crossref_primary_10_1016_j_est_2022_105212 crossref_primary_10_1039_C6CP07259C crossref_primary_10_1134_S0020168521050113 crossref_primary_10_1039_C5TA03546E crossref_primary_10_1039_C3TA15402E crossref_primary_10_1016_j_electacta_2017_03_028 crossref_primary_10_1016_j_rechem_2024_101997 crossref_primary_10_1016_j_coldregions_2015_10_016 crossref_primary_10_1016_j_surfcoat_2016_10_038 crossref_primary_10_1002_aenm_201700678 crossref_primary_10_1002_aenm_201802388 crossref_primary_10_1039_C7TA02045G crossref_primary_10_1016_j_materresbull_2015_06_017 crossref_primary_10_1016_j_jmat_2020_03_008 crossref_primary_10_1016_j_est_2020_101575 crossref_primary_10_1016_j_ijhydene_2014_05_118 crossref_primary_10_1002_adfm_201902564 crossref_primary_10_1016_j_flatc_2021_100306 crossref_primary_10_1016_j_materresbull_2015_12_005 crossref_primary_10_1039_c3ce42491j crossref_primary_10_1016_j_jpowsour_2014_04_132 crossref_primary_10_1016_j_electacta_2018_05_164 crossref_primary_10_1016_j_carbon_2021_01_155 crossref_primary_10_1016_j_electacta_2013_09_058 crossref_primary_10_1021_acsami_5b04463 crossref_primary_10_1021_acsomega_0c06150 crossref_primary_10_1021_cm504519m crossref_primary_10_1021_acssuschemeng_6b00092 crossref_primary_10_1039_C5RA08486E crossref_primary_10_1039_D2NJ00589A crossref_primary_10_1016_j_surfin_2017_04_011 crossref_primary_10_1149_2_1431702jes crossref_primary_10_1039_C9CP02614B crossref_primary_10_1016_j_matchemphys_2020_123786 crossref_primary_10_1039_D1RA05810J crossref_primary_10_1016_j_matpr_2016_04_060 crossref_primary_10_1002_elan_201300238 crossref_primary_10_1002_pssb_201600804 crossref_primary_10_1007_s11664_019_07064_2 crossref_primary_10_1039_c3ta12780j crossref_primary_10_1039_C4RA16646A crossref_primary_10_1007_s11581_019_03254_4 crossref_primary_10_1039_C5TA05441A crossref_primary_10_1039_C5RA16923B crossref_primary_10_1016_j_est_2022_105701 crossref_primary_10_1021_acsaem_8b00981 crossref_primary_10_1002_slct_201702780 crossref_primary_10_1002_chem_201903244 crossref_primary_10_1021_acsnano_5b03732 crossref_primary_10_1039_C4RA16092D crossref_primary_10_1039_C6RA13628A crossref_primary_10_1038_s41598_019_44778_z crossref_primary_10_1016_j_electacta_2016_12_007 crossref_primary_10_1039_c3cp52126e crossref_primary_10_1002_eem2_12094 crossref_primary_10_1007_s10854_019_02672_4 crossref_primary_10_1016_j_jallcom_2015_08_063 crossref_primary_10_1021_nn505658u crossref_primary_10_1039_C5TA03221K crossref_primary_10_1016_j_jpowsour_2019_05_053 crossref_primary_10_1016_j_energy_2015_12_013 crossref_primary_10_1007_s10854_017_7775_8 crossref_primary_10_1021_acsami_6b08082 crossref_primary_10_1021_acsami_5b00806 crossref_primary_10_1016_j_jelechem_2017_01_063 crossref_primary_10_1039_C4RA14442B crossref_primary_10_1039_C4RA01515K crossref_primary_10_1002_aenm_201300515 crossref_primary_10_1016_j_jcis_2019_01_053 crossref_primary_10_1016_j_jpowsour_2019_226795 crossref_primary_10_1016_j_jpowsour_2013_08_038 crossref_primary_10_1039_C6RA28580E crossref_primary_10_1039_C4TA06138A crossref_primary_10_1039_c3ce41517a crossref_primary_10_1016_j_jpowsour_2014_09_001 crossref_primary_10_1002_adma_201705850 crossref_primary_10_1016_j_ensm_2018_07_019 crossref_primary_10_1021_acsami_6b06156 crossref_primary_10_1007_s10853_013_7583_3 crossref_primary_10_1016_j_jpowsour_2013_07_115 crossref_primary_10_1002_cssc_201600024 crossref_primary_10_1016_j_materresbull_2014_08_032 crossref_primary_10_1016_j_nanoen_2017_05_050 crossref_primary_10_1115_1_4027547 crossref_primary_10_1007_s41918_021_00094_7 crossref_primary_10_1016_j_carbon_2020_10_025 crossref_primary_10_1016_j_electacta_2021_138826 crossref_primary_10_1021_acssuschemeng_5b00305 crossref_primary_10_1039_C7RA00126F crossref_primary_10_1002_adem_201800004 crossref_primary_10_1039_C5RA01604E crossref_primary_10_1016_j_electacta_2017_08_087 crossref_primary_10_1016_j_jssc_2014_03_043 crossref_primary_10_1016_j_jelechem_2014_02_011 crossref_primary_10_1039_C4CS00352G crossref_primary_10_1021_am406032y crossref_primary_10_1016_j_mseb_2023_116581 crossref_primary_10_1039_C4RA14063J crossref_primary_10_1039_C5RA00309A crossref_primary_10_1149_2_0231505jes crossref_primary_10_1016_j_jallcom_2015_01_240 crossref_primary_10_1039_C3CP53488J crossref_primary_10_1002_adfm_202006030 crossref_primary_10_1002_slct_201801950 crossref_primary_10_1016_j_electacta_2022_140101 crossref_primary_10_1016_j_matlet_2015_09_003 crossref_primary_10_1016_j_jallcom_2017_06_215 crossref_primary_10_1016_j_jpowsour_2015_12_056 crossref_primary_10_1007_s11051_020_04819_5 crossref_primary_10_1016_j_jssc_2017_09_004 crossref_primary_10_1016_j_electacta_2016_11_028 crossref_primary_10_1016_j_jelechem_2019_113366 crossref_primary_10_1016_j_matlet_2016_08_077 crossref_primary_10_1039_C7RA10681E crossref_primary_10_20964_2016_12_42 crossref_primary_10_1016_j_est_2023_108544 crossref_primary_10_1016_j_ceramint_2017_05_224 crossref_primary_10_1016_j_mssp_2014_06_036 crossref_primary_10_1016_j_matpr_2022_01_407 crossref_primary_10_1002_ente_201600475 |
Cites_doi | 10.1021/nl200225j 10.1016/0013-4686(67)80035-5 10.1103/PhysRevB.13.5188 10.1016/S0927-0256(03)00104-6 10.1103/PhysRevB.40.3616 10.1016/j.jpowsour.2009.06.004 10.1021/nl101723g 10.1016/j.elecom.2011.03.040 10.1038/nmat2297 10.1016/j.elecom.2011.01.023 10.1021/nl2013828 10.1016/j.elecom.2011.04.013 10.1016/j.electacta.2011.05.090 10.1103/PhysRevB.41.7892 10.1038/nnano.2011.13 10.1021/cm049649j 10.1021/ic051715b 10.1021/nl800925j 10.1016/j.elecom.2008.08.051 10.1002/chem.200390024 10.1016/0022-4596(81)90323-6 10.1021/nn100592d 10.1021/jp7108785 10.1149/1.3099325 10.1021/nl102661q 10.1126/science.1194372 10.1103/PhysRevLett.77.3865 10.1016/j.elecom.2008.11.005 10.1149/1.2050077 10.1016/j.jpowsour.2008.11.133 10.1016/j.elecom.2006.05.018 10.1016/j.elecom.2010.10.029 10.1006/jssc.1998.8128 10.1016/j.diamond.2012.05.002 10.1021/nl104205s 10.1002/smll.200700139 10.1021/nn100681d 10.1088/0957-4484/20/39/395202 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST C1K SOI |
DOI | 10.1016/j.jpowsour.2012.11.040 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2755 |
EndPage | 259 |
ExternalDocumentID | 27112579 10_1016_j_jpowsour_2012_11_040 S0378775312017144 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ IQODW 7ST C1K SOI |
ID | FETCH-LOGICAL-c375t-cd82b4356bb86939a36a812ddebf6bb109530ddd700523979f1ff66882c1fb383 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Fri Jul 11 15:55:23 EDT 2025 Wed Apr 02 07:13:29 EDT 2025 Tue Jul 01 04:22:51 EDT 2025 Thu Apr 24 23:04:43 EDT 2025 Fri Feb 23 02:31:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Manganese dioxide Electrodes Supercapacitor Carbon nanotubes Graphitic petals Power density Aqueous electrolyte Parallel Electrode material Coatings Composite material Electrochemical characteristic Thin film High performance Energy density Electrolytic capacitor Binders Chemical vapor deposition Long term Coated material Manganese oxides Electronic structure Graphene High energy Specific capacity Plasma deposition |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-cd82b4356bb86939a36a812ddebf6bb109530ddd700523979f1ff66882c1fb383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1349473031 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1349473031 pascalfrancis_primary_27112579 crossref_citationtrail_10_1016_j_jpowsour_2012_11_040 crossref_primary_10_1016_j_jpowsour_2012_11_040 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2012_11_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of power sources |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Perdew, Burke, Ernzerhof (bib33) 1996; 77 Hung, Chen, Whang (bib25) 2009; 12 Wang, Li (bib30) 2003; 9 Yan, Khoo, Sumboja, Lee (bib11) 2010; 4 Monkhorst, Pack (bib36) 1976; 13 Simon, Gogotsi (bib1) 2008; 7 Kokalj (bib40) 2003; 28 Bao, Zang, Li (bib9) 2011; 11 Yoo, Balakrishnan, Huang, Meunier, Sumpter, Srivastava, Conway, Reddy, Yu, Vajtai, Ajayan (bib22) 2011; 11 Methfessel, Paxton (bib35) 1989; 40 Jin, Zhou, Zhang, Chen (bib37) 2007; 3 Xiong, Hembram, Zakharov, Reifenberger, Fisher (bib26) 2012; 27–28 Conway (bib2) 1999 Hou, Cheng, Hobson, Liu (bib12) 2010; 10 Era, Takehara, Yoshizawa (bib38) 1967; 12 Shah, Zhang, Talapatra (bib39) 2009; 20 Zheng, Cygan, Jow (bib4) 1995; 142 Li, Chang, Hu (bib5) 2010; 12 Zhang, Cao, Wang, Yang, Shi, Gu (bib15) 2008; 8 Meng, Liu, Fan (bib17) 2009; 11 Nam, Lee, Yang, Cho, Yoon, Kim (bib14) 2009; 188 Cheng, Zhao, Song, Li, Ma, Chen, Shen (bib29) 2006; 45 Chou, Wang, Chew, Liu, Dou (bib16) 2008; 10 Toupin, Brousse, Belanger (bib7) 2004; 16 Devaraj, Munichandraiah (bib27) 2008; 112 Vanderbilt (bib34) 1990; 41 Li, Wang, Zhao, Ding, Guan (bib3) 2011; 13 Lee, Kim, Chen, Hammond, Horn (bib13) 2010; 4 Miller, Outlaw, Holloway (bib23) 2010; 329 Lee, Goodenough (bib28) 1999; 144 Zhao, Tian, Zhu, Tian, Wang, Kang, Outlaw (bib24) 2009; 194 . S. Baroni, A. Dal Corso, S. de Gironcoli, P. Gianozzi Le, Ervin, Qiu, Fuchs, Lee (bib20) 2011; 13 Liu, Yu, Neff, Zhamu, Jang (bib21) 2010; 10 Xie, Li, Lai, Lu, Zhang, Liu, Zhou, Huang (bib6) 2011; 13 Yuan, Zhang (bib19) 2006; 8 Lang, Hirata, Fujita, Chen (bib10) 2011; 6 Yu, Hu, Vosgueritchian, Wang, Xie, McDonough, Cui, Cui, Bao (bib8) 2011; 11 Hunter (bib31) 1981; 39 Chen, Hsu, Lin, Lin, Horng, Chen, Chen (bib18) 2011; 56 Kokalj (10.1016/j.jpowsour.2012.11.040_bib40) 2003; 28 Yuan (10.1016/j.jpowsour.2012.11.040_bib19) 2006; 8 Perdew (10.1016/j.jpowsour.2012.11.040_bib33) 1996; 77 Li (10.1016/j.jpowsour.2012.11.040_bib5) 2010; 12 Nam (10.1016/j.jpowsour.2012.11.040_bib14) 2009; 188 Yu (10.1016/j.jpowsour.2012.11.040_bib8) 2011; 11 Era (10.1016/j.jpowsour.2012.11.040_bib38) 1967; 12 Lang (10.1016/j.jpowsour.2012.11.040_bib10) 2011; 6 Toupin (10.1016/j.jpowsour.2012.11.040_bib7) 2004; 16 Conway (10.1016/j.jpowsour.2012.11.040_bib2) 1999 Yoo (10.1016/j.jpowsour.2012.11.040_bib22) 2011; 11 Hung (10.1016/j.jpowsour.2012.11.040_bib25) 2009; 12 Chen (10.1016/j.jpowsour.2012.11.040_bib18) 2011; 56 Xiong (10.1016/j.jpowsour.2012.11.040_bib26) 2012; 27–28 Li (10.1016/j.jpowsour.2012.11.040_bib3) 2011; 13 Wang (10.1016/j.jpowsour.2012.11.040_bib30) 2003; 9 Liu (10.1016/j.jpowsour.2012.11.040_bib21) 2010; 10 Yan (10.1016/j.jpowsour.2012.11.040_bib11) 2010; 4 Hunter (10.1016/j.jpowsour.2012.11.040_bib31) 1981; 39 Shah (10.1016/j.jpowsour.2012.11.040_bib39) 2009; 20 Zhang (10.1016/j.jpowsour.2012.11.040_bib15) 2008; 8 Meng (10.1016/j.jpowsour.2012.11.040_bib17) 2009; 11 10.1016/j.jpowsour.2012.11.040_bib32 Vanderbilt (10.1016/j.jpowsour.2012.11.040_bib34) 1990; 41 Xie (10.1016/j.jpowsour.2012.11.040_bib6) 2011; 13 Zhao (10.1016/j.jpowsour.2012.11.040_bib24) 2009; 194 Zheng (10.1016/j.jpowsour.2012.11.040_bib4) 1995; 142 Bao (10.1016/j.jpowsour.2012.11.040_bib9) 2011; 11 Cheng (10.1016/j.jpowsour.2012.11.040_bib29) 2006; 45 Simon (10.1016/j.jpowsour.2012.11.040_bib1) 2008; 7 Le (10.1016/j.jpowsour.2012.11.040_bib20) 2011; 13 Chou (10.1016/j.jpowsour.2012.11.040_bib16) 2008; 10 Jin (10.1016/j.jpowsour.2012.11.040_bib37) 2007; 3 Lee (10.1016/j.jpowsour.2012.11.040_bib13) 2010; 4 Lee (10.1016/j.jpowsour.2012.11.040_bib28) 1999; 144 Hou (10.1016/j.jpowsour.2012.11.040_bib12) 2010; 10 Methfessel (10.1016/j.jpowsour.2012.11.040_bib35) 1989; 40 Monkhorst (10.1016/j.jpowsour.2012.11.040_bib36) 1976; 13 Devaraj (10.1016/j.jpowsour.2012.11.040_bib27) 2008; 112 Miller (10.1016/j.jpowsour.2012.11.040_bib23) 2010; 329 |
References_xml | – volume: 4 start-page: 4247 year: 2010 end-page: 4255 ident: bib11 publication-title: ACS Nano – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib33 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 300 year: 2003 end-page: 306 ident: bib30 publication-title: Chem. Eur. J. – volume: 4 start-page: 3889 year: 2010 end-page: 3896 ident: bib13 publication-title: ACS Nano – volume: 142 start-page: 2699 year: 1995 end-page: 2703 ident: bib4 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 186 year: 2009 end-page: 189 ident: bib17 publication-title: Electrochem. Commun. – volume: 40 start-page: 3616 year: 1989 end-page: 3621 ident: bib35 publication-title: Phys. Rev. B – volume: 6 start-page: 232 year: 2011 end-page: 236 ident: bib10 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1513 year: 2007 end-page: 1517 ident: bib37 publication-title: Small – volume: 12 start-page: K41 year: 2009 end-page: 44 ident: bib25 publication-title: Electrochem. Solid State Lett. – volume: 144 start-page: 220 year: 1999 end-page: 223 ident: bib28 publication-title: J. Solid State Chem. – volume: 27–28 start-page: 1 year: 2012 end-page: 9 ident: bib26 publication-title: Diam. Relat. Mater. – volume: 10 start-page: 2727 year: 2010 end-page: 2733 ident: bib12 publication-title: Nano Lett. – volume: 10 start-page: 1724 year: 2008 end-page: 1727 ident: bib16 publication-title: Electrochem. Commun. – volume: 45 start-page: 2038 year: 2006 end-page: 2044 ident: bib29 publication-title: Inorg. Chem. – volume: 41 start-page: 7892 year: 1990 end-page: 7895 ident: bib34 publication-title: Phys. Rev. B – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: bib36 publication-title: Phys. Rev. B – volume: 10 start-page: 4863 year: 2010 end-page: 4868 ident: bib21 publication-title: Nano Lett. – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: bib1 publication-title: Nat. Mater. – volume: 20 start-page: 395202 year: 2009 ident: bib39 publication-title: Nanotechnology – volume: 11 start-page: 1423 year: 2011 end-page: 1427 ident: bib22 publication-title: Nano Lett. – volume: 11 start-page: 1215 year: 2011 end-page: 1220 ident: bib9 publication-title: Nano Lett. – volume: 194 start-page: 1208 year: 2009 end-page: 1212 ident: bib24 publication-title: J. Power Sources – volume: 28 start-page: 155 year: 2003 end-page: 168 ident: bib40 publication-title: Comp. Mater. Sci. – volume: 13 start-page: 657 year: 2011 end-page: 660 ident: bib6 publication-title: Electrochem. Commun. – year: 1999 ident: bib2 – volume: 112 start-page: 4406 year: 2008 end-page: 4417 ident: bib27 publication-title: J. Phys. Chem. C – volume: 13 start-page: 698 year: 2011 end-page: 700 ident: bib3 publication-title: Electrochem. Commun. – volume: 329 start-page: 1637 year: 2010 end-page: 1639 ident: bib23 publication-title: Science – volume: 12 start-page: 1800 year: 2010 end-page: 1803 ident: bib5 publication-title: Electrochem. Commun. – reference: . – volume: 16 start-page: 3184 year: 2004 end-page: 3190 ident: bib7 publication-title: Chem. Mater. – volume: 12 start-page: 1199 year: 1967 end-page: 1212 ident: bib38 publication-title: Electrochim. Acta – volume: 13 start-page: 355 year: 2011 end-page: 358 ident: bib20 publication-title: Electrochem. Commun. – volume: 188 start-page: 323 year: 2009 end-page: 331 ident: bib14 publication-title: J. Power Sources – reference: S. Baroni, A. Dal Corso, S. de Gironcoli, P. Gianozzi, – volume: 11 start-page: 2905 year: 2011 end-page: 2911 ident: bib8 publication-title: Nano Lett. – volume: 8 start-page: 1173 year: 2006 end-page: 1178 ident: bib19 publication-title: Electrochem. Comm. – volume: 39 start-page: 142 year: 1981 end-page: 147 ident: bib31 publication-title: J. Solid State Chem. – volume: 56 start-page: 7124 year: 2011 end-page: 7130 ident: bib18 publication-title: Electrochim. Acta – volume: 8 start-page: 2664 year: 2008 end-page: 2668 ident: bib15 publication-title: Nano Lett. – volume: 11 start-page: 1423 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib22 publication-title: Nano Lett. doi: 10.1021/nl200225j – volume: 12 start-page: 1199 year: 1967 ident: 10.1016/j.jpowsour.2012.11.040_bib38 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(67)80035-5 – volume: 13 start-page: 5188 year: 1976 ident: 10.1016/j.jpowsour.2012.11.040_bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 28 start-page: 155 year: 2003 ident: 10.1016/j.jpowsour.2012.11.040_bib40 publication-title: Comp. Mater. Sci. doi: 10.1016/S0927-0256(03)00104-6 – volume: 40 start-page: 3616 year: 1989 ident: 10.1016/j.jpowsour.2012.11.040_bib35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 194 start-page: 1208 year: 2009 ident: 10.1016/j.jpowsour.2012.11.040_bib24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.004 – volume: 10 start-page: 2727 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib12 publication-title: Nano Lett. doi: 10.1021/nl101723g – volume: 13 start-page: 657 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib6 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.03.040 – volume: 7 start-page: 845 year: 2008 ident: 10.1016/j.jpowsour.2012.11.040_bib1 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 13 start-page: 355 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib20 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.01.023 – volume: 11 start-page: 2905 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib8 publication-title: Nano Lett. doi: 10.1021/nl2013828 – volume: 13 start-page: 698 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib3 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.04.013 – volume: 56 start-page: 7124 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib18 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.05.090 – volume: 41 start-page: 7892 year: 1990 ident: 10.1016/j.jpowsour.2012.11.040_bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.7892 – volume: 6 start-page: 232 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib10 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.13 – volume: 16 start-page: 3184 year: 2004 ident: 10.1016/j.jpowsour.2012.11.040_bib7 publication-title: Chem. Mater. doi: 10.1021/cm049649j – volume: 45 start-page: 2038 year: 2006 ident: 10.1016/j.jpowsour.2012.11.040_bib29 publication-title: Inorg. Chem. doi: 10.1021/ic051715b – volume: 8 start-page: 2664 year: 2008 ident: 10.1016/j.jpowsour.2012.11.040_bib15 publication-title: Nano Lett. doi: 10.1021/nl800925j – volume: 10 start-page: 1724 year: 2008 ident: 10.1016/j.jpowsour.2012.11.040_bib16 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.08.051 – volume: 9 start-page: 300 year: 2003 ident: 10.1016/j.jpowsour.2012.11.040_bib30 publication-title: Chem. Eur. J. doi: 10.1002/chem.200390024 – volume: 39 start-page: 142 year: 1981 ident: 10.1016/j.jpowsour.2012.11.040_bib31 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(81)90323-6 – volume: 4 start-page: 4247 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib11 publication-title: ACS Nano doi: 10.1021/nn100592d – volume: 112 start-page: 4406 year: 2008 ident: 10.1016/j.jpowsour.2012.11.040_bib27 publication-title: J. Phys. Chem. C doi: 10.1021/jp7108785 – volume: 12 start-page: K41 year: 2009 ident: 10.1016/j.jpowsour.2012.11.040_bib25 publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.3099325 – volume: 10 start-page: 4863 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib21 publication-title: Nano Lett. doi: 10.1021/nl102661q – ident: 10.1016/j.jpowsour.2012.11.040_bib32 – volume: 329 start-page: 1637 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib23 publication-title: Science doi: 10.1126/science.1194372 – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jpowsour.2012.11.040_bib33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – year: 1999 ident: 10.1016/j.jpowsour.2012.11.040_bib2 – volume: 11 start-page: 186 year: 2009 ident: 10.1016/j.jpowsour.2012.11.040_bib17 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.11.005 – volume: 142 start-page: 2699 year: 1995 ident: 10.1016/j.jpowsour.2012.11.040_bib4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2050077 – volume: 188 start-page: 323 year: 2009 ident: 10.1016/j.jpowsour.2012.11.040_bib14 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.11.133 – volume: 8 start-page: 1173 year: 2006 ident: 10.1016/j.jpowsour.2012.11.040_bib19 publication-title: Electrochem. Comm. doi: 10.1016/j.elecom.2006.05.018 – volume: 12 start-page: 1800 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib5 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.10.029 – volume: 144 start-page: 220 year: 1999 ident: 10.1016/j.jpowsour.2012.11.040_bib28 publication-title: J. Solid State Chem. doi: 10.1006/jssc.1998.8128 – volume: 27–28 start-page: 1 year: 2012 ident: 10.1016/j.jpowsour.2012.11.040_bib26 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2012.05.002 – volume: 11 start-page: 1215 year: 2011 ident: 10.1016/j.jpowsour.2012.11.040_bib9 publication-title: Nano Lett. doi: 10.1021/nl104205s – volume: 3 start-page: 1513 year: 2007 ident: 10.1016/j.jpowsour.2012.11.040_bib37 publication-title: Small doi: 10.1002/smll.200700139 – volume: 4 start-page: 3889 year: 2010 ident: 10.1016/j.jpowsour.2012.11.040_bib13 publication-title: ACS Nano doi: 10.1021/nn100681d – volume: 20 start-page: 395202 year: 2009 ident: 10.1016/j.jpowsour.2012.11.040_bib39 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/39/395202 |
SSID | ssj0001170 |
Score | 2.510587 |
Snippet | Hybrid manganese dioxide/graphitic petal structures grown on carbon nanotube substrates are shown to achieve high specific capacitance, energy density, power... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 254 |
SubjectTerms | Applied sciences Capacitors. Resistors. Filters Carbon nanotubes Electrical engineering. Electrical power engineering Electrodes Exact sciences and technology Graphitic petals Manganese dioxide Materials Supercapacitor Various equipment and components |
Title | MnO2-coated graphitic petals for supercapacitor electrodes |
URI | https://dx.doi.org/10.1016/j.jpowsour.2012.11.040 https://www.proquest.com/docview/1349473031 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXhQRn1gfZQWv23ZfycZbKZaqWA9a6C3ktdAiu0u3xZu_3Ul2t1oUevAaNiQ7mcx8k0y-QegWljzkPR270hMQoCiFXUp87WosSaA5IVpats8xHk3Cx2k0baBB_RbGpFVWtr-06dZaVy3dSprdfDbrvvYCUDZA255vq3gbTtAwJEbLO5_faR6msoq9SYBoyXz945XwvDPPsw9zSG5SvPyOYfM0hyB_O6j9nBcgtqSsd_HLdFt_NDxEBxWQdPrlXI9QQ6fHaO8HveAJuntOX3xXZgAnlWOZqU2qmwM4GXTOAbTqFKtcLyT4Swkbe-FUNXGULk7RZHj_Nhi5Va0EVwYkWrpSxb4A6IOFiDENKA8wB98Nxksk0OYZWrmeUorYc2BKaOIlCcaAr6WXCAhTz1AzzVJ9jpyQUwCxyhMYYjPOo9gnHg0DTIkItK-TFopqATFZEYmbehbvrM4Ym7NasMwIFqIMBoJtoe66X15SaWztQWv5sw2lYGDvt_ZtbyzYekj4GwB1hLbQTb2CDLaUuSfhqc5WBTOMjSFYvsC7-McELtGub0tnmCyfK9RcLlb6GgDMUrSthrbRTv_haTT-Ak-78T4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6l6YEihFooangEI8HRSbx2drNIHBA0CuXRQ4PEbbsvS0SVY8WJEBf-FH-Q2Y0dQK3EoeJqae31N7Mz3-zOzgDso8gT2bG9UEcKAxRjaMgZsaGlmsVWMma1r_Z5RQfXyY-b7k0NHqu7MC6tsrT9c5vurXX5pF2i2c5vb9u_OjEqG7LtiPgu3kmZWXlu7-8wbiuOzk5RyAeE9L8PTwZh2Vog1DHrTkNtekQhU6BK9SiPuYypRFeHa12l-CxyVdg6xhjmt00542mUppQiHdVRqjCqw_d-gI8JmgvXNqH18JxX4lq5-KMLDM_c9F5cSx61Rvn4zu3Ku5wy0nLlQ92uy7894kouC5RTOm-w8Zev8A6w_xlWS-YaHM_B-QI1m63B8ot6hutweJn9JKEeI381gS-F7XLrAiTmqOQB0uOgmOV2otFBa7Qkk6BswmNs8RWu3wXBDahn48x-gyCRHFmziRTFYFDKbo-wiCcx5UzFlti0Ad0KIKHLyuWugcYfUaWojUQFrHDAYlgjENgGtBfj8nntjjdH8Ap_8UoLBTqYN8c2Xwls8Un8G2SRjDdgr5KgwDXsDmZkZsezQrgSkQma2jja_I8J7MLSYHh5IS7Ors634BPxfTtcitE21KeTmd1B9jRVTa-tAfx-7-XxBHPKLHE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MnO2-coated+graphitic+petals+for+supercapacitor+electrodes&rft.jtitle=Journal+of+power+sources&rft.au=Xiong%2C+Guoping&rft.au=Hembram%2C+K.P.S.S.&rft.au=Reifenberger%2C+R.G.&rft.au=Fisher%2C+Timothy+S.&rft.date=2013-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=227&rft.spage=254&rft.epage=259&rft_id=info:doi/10.1016%2Fj.jpowsour.2012.11.040&rft.externalDocID=S0378775312017144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |