Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads
Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been re...
Saved in:
Published in | Nature biotechnology Vol. 40; no. 7; pp. 1075 - 1081 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.07.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large
k
-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large
k
-mer sizes and transforms it into a multiplex de Bruijn graph with varying
k
-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.
A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads. |
---|---|
AbstractList | Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes. Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k -mer sizes and transforms it into a multiplex de Bruijn graph with varying k -mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes. A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads. Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes. Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads. |
Author | Antipov, Dmitry Pevzner, Pavel A. Kolmogorov, Mikhail Bankevich, Anton Bzikadze, Andrey V. |
Author_xml | – sequence: 1 givenname: Anton surname: Bankevich fullname: Bankevich, Anton email: abankevich@eng.ucsd.edu organization: Department of Computer Science and Engineering, University of California, San Diego – sequence: 2 givenname: Andrey V. orcidid: 0000-0002-7928-7950 surname: Bzikadze fullname: Bzikadze, Andrey V. organization: Program in Bioinformatics and Systems Biology, University of California, San Diego – sequence: 3 givenname: Mikhail orcidid: 0000-0002-5489-9045 surname: Kolmogorov fullname: Kolmogorov, Mikhail organization: Department of Biomolecular Engineering, University of California, Santa Cruz – sequence: 4 givenname: Dmitry surname: Antipov fullname: Antipov, Dmitry organization: Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, Saint Petersburg State University – sequence: 5 givenname: Pavel A. orcidid: 0000-0002-0418-165X surname: Pevzner fullname: Pevzner, Pavel A. email: ppevzner@ucsd.edu organization: Department of Computer Science and Engineering, University of California, San Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35228706$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS3Uiv7AC7BAltiwIOXaThxnCRU_lVrBonvLiW8yHjn2YCdS5-3xMAWkLrqyJX_f9dE9F-QkxICEvGFwxUCoj7lmjWor4LwCxjlU8gU5Z00tKyY7eVLucHhmjTwjFzlvAUDWUr4kZ6LhXLUgz8nPu9UvbufxgVqkn9PqtoFOyew2mWIwvUc6YYgzUpMzzr3f0zHFmfoYpg9046ZNNTqL3i17mtDY_IqcjsZnfP14XpL7r1_ur79Xtz--3Vx_uq0G0TZLNQz1YEdjmS1BbGuU6FrB1Fhzhq1qhQGFphuUlWqEgnTQd3XD-15yw4CJS_L-OHaX4q8V86Jnlwf03gSMa9ZcilrVbVEL-u4Juo1rCiVcoToAIcrgQr19pNZ-Rqt3yc0m7fXfVRWAH4EhxZwTjv8QBvrQhz72oUsf-k8f-iCpJ9LgFrO4GJZknH9eFUc1l3_ChOl_7Ges39AanQ8 |
CitedBy_id | crossref_primary_10_1146_annurev_genom_101722_103045 crossref_primary_10_3390_sym14091911 crossref_primary_10_1101_gr_276917_122 crossref_primary_10_1038_s41576_024_00718_w crossref_primary_10_1038_s41592_024_02269_8 crossref_primary_10_3390_life13081668 crossref_primary_10_1093_bioinformatics_btad124 crossref_primary_10_1038_s41592_023_01970_4 crossref_primary_10_1101_gr_276871_122 crossref_primary_10_1099_mgen_0_001244 crossref_primary_10_1038_s41588_024_01823_6 crossref_primary_10_1089_cmb_2023_0094 crossref_primary_10_1186_s13015_024_00259_1 crossref_primary_10_3934_mbe_2023266 crossref_primary_10_1093_gigascience_giad100 crossref_primary_10_1101_gr_279311_124 crossref_primary_10_1101_gr_278232_123 crossref_primary_10_1093_gigascience_giaf007 crossref_primary_10_1038_s41586_024_07808_z crossref_primary_10_1016_j_celrep_2024_113699 crossref_primary_10_1016_j_gpb_2023_08_001 crossref_primary_10_1038_s41467_024_47349_7 crossref_primary_10_1038_s42003_024_07376_y crossref_primary_10_1109_TCBB_2022_3229085 crossref_primary_10_1093_bioinformatics_btad218 crossref_primary_10_1038_s41467_022_33046_w crossref_primary_10_1371_journal_pone_0294415 crossref_primary_10_1360_SSV_2023_0068 crossref_primary_10_1038_s41597_023_02658_2 crossref_primary_10_1038_s41592_022_01457_8 crossref_primary_10_1093_bioinformatics_btaf058 crossref_primary_10_1101_gr_279334_124 crossref_primary_10_1093_bioinformatics_btae226 crossref_primary_10_1093_bioinformatics_btad631 crossref_primary_10_7717_peerj_18050 crossref_primary_10_1038_s41588_024_01830_7 crossref_primary_10_1101_gr_276601_122 crossref_primary_10_1186_s13059_024_03414_4 crossref_primary_10_1186_s13015_023_00227_1 crossref_primary_10_1038_s41587_023_01662_6 |
Cites_doi | 10.1093/bioinformatics/btw609 10.1186/1471-2105-13-S6-S1 10.1038/nbt.2280 10.1038/nbt.2023 10.1186/gb-2013-14-6-405 10.1101/gr.074492.107 10.1186/1748-7188-8-22 10.1147/rd.312.0249 10.1038/s41592-020-00971-x 10.1038/s41587-020-0582-4 10.1073/pnas.171285098 10.1101/gr.2395204 10.1101/gr.263566.120 10.1093/bioinformatics/btab004 10.1093/bioinformatics/bth408 10.1038/nmeth.4035 10.1038/s41587-019-0217-9 10.1093/bioinformatics/btw379 10.1093/g3journal/jkab083 10.1089/cmb.1995.2.291 10.1038/s41592-020-01056-5 10.1101/2021.05.26.445798 10.1016/j.ajhg.2021.06.006 10.1038/s41587-020-0711-0 10.1038/s41587-019-0072-8 10.1089/cmb.2012.0021 10.1093/bioinformatics/btv033 10.1007/978-3-642-12683-3_28 10.1038/s41592-019-0669-3 10.1093/bioinformatics/bty266 10.1038/nmeth.2474 10.1038/s41597-020-00743-4 10.1093/bioinformatics/bti1114 10.1145/362686.362692 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. |
DBID | AAYXX CITATION NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7X8 |
DOI | 10.1038/s41587-022-01220-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 1081 |
ExternalDocumentID | 35228706 10_1038_s41587_022_01220_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Saint Petersburg State University (St. Petersburg State University) grantid: 73023672 funderid: https://doi.org/10.13039/501100004285 – fundername: NSF | Directorate for Biological Sciences (BIO) grantid: 2032783; 2032783; 2032783 funderid: https://doi.org/10.13039/100000076 – fundername: NSF | Directorate for Biological Sciences (BIO) grantid: 2032783 – fundername: Saint Petersburg State University (St. Petersburg State University) grantid: 73023672 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c375t-cc4cdfad1d287d7a8397318f421e7873a08ea9c8d68f028790b9452bb62a1013 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Fri Jul 11 00:48:56 EDT 2025 Sat Aug 23 12:47:40 EDT 2025 Wed Feb 19 02:27:08 EST 2025 Tue Jul 01 04:10:03 EDT 2025 Thu Apr 24 22:54:04 EDT 2025 Fri Feb 21 02:39:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-cc4cdfad1d287d7a8397318f421e7873a08ea9c8d68f028790b9452bb62a1013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5489-9045 0000-0002-7928-7950 0000-0002-0418-165X |
PMID | 35228706 |
PQID | 2690033452 |
PQPubID | 47191 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2634847028 proquest_journals_2690033452 pubmed_primary_35228706 crossref_primary_10_1038_s41587_022_01220_6 crossref_citationtrail_10_1038_s41587_022_01220_6 springer_journals_10_1038_s41587_022_01220_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | MikheenkoAPrjibelskiASavelievVAntipovDGurevichAVersatile genome assembly evaluation with QUAST-LGBioinformatics201834i142i1501:CAS:528:DC%2BC1MXpt1yru7w%3D10.1093/bioinformatics/bty266 CompeauPEPevznerPATeslerGHow to apply de Bruijn graphs to genome assemblyNat. Biotechnol.2011299879911:CAS:528:DC%2BC3MXhsVCnu7zL10.1038/nbt.2023 ChikhiRRizkGSpace-efficient and exact de Bruijn graph representation based on a Bloom filterAlgorithms Mol. Biol.2013810.1186/1748-7188-8-22 BzikadzeAVPevznerPAAutomated assembly of centromeres from ultra-long error-prone readsNat. Biotechnol.202038130913161:CAS:528:DC%2BB3cXhtlynu7nO10.1038/s41587-020-0582-4 KolmogorovMmetaFlye: scalable long-read metagenome assembly using repeat graphsNat. Methods202017110311101:CAS:528:DC%2BB3cXhvF2jtb7I10.1038/s41592-020-00971-x KarpRMRabinMOEfficient randomized pattern-matching algorithmsIBM J. Res. Dev.19873124926010.1147/rd.312.0249 KolmogorovMYuanJLinYPevznerPAAssembly of long error-prone reads using repeat graphsNat. Biotechnol.2019375401:CAS:528:DC%2BC1MXosV2qsrs%3D10.1038/s41587-019-0072-8 ChinCPhased diploid genome assembly with single-molecule real-time sequencingNat. Methods201613105010541:CAS:528:DC%2BC28Xhs1ykur7K10.1038/nmeth.4035 RautiainenMMarschallTMBG: minimizer-based sparse de Bruijn graph constructionBioinformatics202137247624781:CAS:528:DC%2BB3MXisFantb3P10.1093/bioinformatics/btab004 NurkSHiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long readsGenome Res.202030129113051:CAS:528:DC%2BB3MXltl2isw%3D%3D10.1101/gr.263566.120 MyersEWThe fragment assembly string graphBioinformatics200521ii79ii851:CAS:528:DC%2BD2MXhtVyrtLjK16204131 ChengHHaplotype-resolved de novo assembly with phased assembly graphsNat. Methods2021181701751:CAS:528:DC%2BB3MXis1OntL0%3D10.1038/s41592-020-01056-5 IduryRMWatermanMSA new algorithm for DNA sequence assemblyJ. Comput. Biol.199522913061:CAS:528:DyaK2MXotFOmt7w%3D10.1089/cmb.1995.2.291 RuanJLiHFast and accurate long-read assembly with wtdbg2Nat. Methods2020171551581:CAS:528:DC%2BC1MXitlCht77E10.1038/s41592-019-0669-3 RobertsRJCarneiroMOSchatzMCThe advantages of SMRT sequencingGenome Biol.20131410.1186/gb-2013-14-6-405 BankevichASPAdes: a new genome assembly algorithm and its applications to single cell sequencingJ. Comput. Biol.2012194554771:CAS:528:DC%2BC38XmsFOmt7k%3D10.1089/cmb.2012.0021 GargSChromosome-scale, haplotype-resolved assembly of human genomesNat. Biotechnol.2021393093121:CAS:528:DC%2BB3cXisFSlt7fP10.1038/s41587-020-0711-0 Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical iterative de Bruijn graph de novo assembler. in Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science Vol. 6044, 426–440 (2010). Mc Cartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021). ChinCSNonhybrid, finished microbial genome assemblies from long-read SMRT sequencing dataNat. Methods2013105635691:CAS:528:DC%2BC3sXntVaks74%3D10.1038/nmeth.2474 HonTHighly accurate long-read HiFi sequencing data for five complex genomesSci. Data202071:CAS:528:DC%2BB3cXisVCmu7fN10.1038/s41597-020-00743-4 KorenSHybrid error correction and de novo assembly of single-molecule sequencing readsNat. Biotechnol.2012306937001:CAS:528:DC%2BC38XpsVWjsL4%3D10.1038/nbt.2280 WengerAMAccurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeNat. Biotechnol.201937115511621:CAS:528:DC%2BC1MXhsFKhtbjN10.1038/s41587-019-0217-9 BloomBHSpace/time tradeoffs in hash coding with allowable errorsCommun. ACM19701342242610.1145/362686.362692 MillerDETargeted long-read sequencing identifies missing disease-causing variationAm. J. Hum. Genet.2021108143614491:CAS:528:DC%2BB3MXhsVKksrfJ10.1016/j.ajhg.2021.06.006 LiDLiuCMLuoRSadakaneKLamTWMEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graphBioinformatics201531167416761:CAS:528:DC%2BC28XhtFyltL3N10.1093/bioinformatics/btv033 MinkinIPhamSMedvedevPTwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomesBioinformatics201733402440321:CAS:528:DC%2BC1cXitlWktr3J27659452 Nurk, S. et al. The complete sequence of a human genome. bioRxivhttps://doi.org/10.1101/2021.05.26.445798 (2021). ZerbinoDRBirneyEVelvet: algorithms for de novo short read assembly using de Bruijn graphsGenome Res.2008188218291:CAS:528:DC%2BD1cXlslChsLg%3D10.1101/gr.074492.107 YeCMaZSCannonCHPopMYuDWExploiting sparseness in de novo genome assemblyBMC Bioinformatics20121310.1186/1471-2105-13-S6-S1 RobertsMHayesWHuntBRMountSMYorkeJAReducing storage requirements for biological sequence comparisonBioinformatics200420336333691:CAS:528:DC%2BD2cXhtVKqu7fL10.1093/bioinformatics/bth408 MikheenkoAValinGPrjibelskiASavelievVGurevichAIcarus: visualizer for de novo assembly evaluationBioinformatics201632332133231:CAS:528:DC%2BC2sXht1GnsbfK10.1093/bioinformatics/btw379 TvedteESComparison of long-read sequencing technologies in interrogating bacteria and fly genomesG3 (Bethesda)202111jkab0831:CAS:528:DC%2BB38Xhs1yht7rJ10.1093/g3journal/jkab083 PevznerPTangHTeslerGDe novo repeat classification and fragment assemblyGenome Res.200414178617961:CAS:528:DC%2BD2cXnsFGjsbc%3D10.1101/gr.2395204 PevznerPATangHWatermanMSAn Eulerian path approach to DNA fragment assemblyProc. Natl Acad. Sci. USA200198974897531:CAS:528:DC%2BD3MXmtlCmsrc%3D10.1073/pnas.171285098 M Rautiainen (1220_CR14) 2021; 37 DE Miller (1220_CR2) 2021; 108 P Pevzner (1220_CR11) 2004; 14 T Hon (1220_CR34) 2020; 7 RJ Roberts (1220_CR31) 2013; 14 PE Compeau (1220_CR4) 2011; 29 A Bankevich (1220_CR5) 2012; 19 S Nurk (1220_CR7) 2020; 30 M Roberts (1220_CR19) 2004; 20 AM Wenger (1220_CR3) 2019; 37 EW Myers (1220_CR9) 2005; 21 C Ye (1220_CR12) 2012; 13 RM Karp (1220_CR16) 1987; 31 R Chikhi (1220_CR20) 2013; 8 S Garg (1220_CR25) 2021; 39 1220_CR23 C Chin (1220_CR29) 2016; 13 S Koren (1220_CR30) 2012; 30 CS Chin (1220_CR28) 2013; 10 PA Pevzner (1220_CR27) 2001; 98 DR Zerbino (1220_CR6) 2008; 18 J Ruan (1220_CR32) 2020; 17 BH Bloom (1220_CR15) 1970; 13 M Kolmogorov (1220_CR13) 2020; 17 H Cheng (1220_CR8) 2021; 18 RM Idury (1220_CR26) 1995; 2 ES Tvedte (1220_CR35) 2021; 11 A Mikheenko (1220_CR33) 2016; 32 AV Bzikadze (1220_CR22) 2020; 38 1220_CR1 1220_CR18 D Li (1220_CR10) 2015; 31 M Kolmogorov (1220_CR17) 2019; 37 I Minkin (1220_CR21) 2017; 33 A Mikheenko (1220_CR24) 2018; 34 |
References_xml | – reference: LiDLiuCMLuoRSadakaneKLamTWMEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graphBioinformatics201531167416761:CAS:528:DC%2BC28XhtFyltL3N10.1093/bioinformatics/btv033 – reference: ChengHHaplotype-resolved de novo assembly with phased assembly graphsNat. Methods2021181701751:CAS:528:DC%2BB3MXis1OntL0%3D10.1038/s41592-020-01056-5 – reference: YeCMaZSCannonCHPopMYuDWExploiting sparseness in de novo genome assemblyBMC Bioinformatics20121310.1186/1471-2105-13-S6-S1 – reference: BloomBHSpace/time tradeoffs in hash coding with allowable errorsCommun. ACM19701342242610.1145/362686.362692 – reference: IduryRMWatermanMSA new algorithm for DNA sequence assemblyJ. Comput. Biol.199522913061:CAS:528:DyaK2MXotFOmt7w%3D10.1089/cmb.1995.2.291 – reference: GargSChromosome-scale, haplotype-resolved assembly of human genomesNat. Biotechnol.2021393093121:CAS:528:DC%2BB3cXisFSlt7fP10.1038/s41587-020-0711-0 – reference: BzikadzeAVPevznerPAAutomated assembly of centromeres from ultra-long error-prone readsNat. Biotechnol.202038130913161:CAS:528:DC%2BB3cXhtlynu7nO10.1038/s41587-020-0582-4 – reference: KolmogorovMmetaFlye: scalable long-read metagenome assembly using repeat graphsNat. Methods202017110311101:CAS:528:DC%2BB3cXhvF2jtb7I10.1038/s41592-020-00971-x – reference: CompeauPEPevznerPATeslerGHow to apply de Bruijn graphs to genome assemblyNat. Biotechnol.2011299879911:CAS:528:DC%2BC3MXhsVCnu7zL10.1038/nbt.2023 – reference: KolmogorovMYuanJLinYPevznerPAAssembly of long error-prone reads using repeat graphsNat. Biotechnol.2019375401:CAS:528:DC%2BC1MXosV2qsrs%3D10.1038/s41587-019-0072-8 – reference: ChinCSNonhybrid, finished microbial genome assemblies from long-read SMRT sequencing dataNat. Methods2013105635691:CAS:528:DC%2BC3sXntVaks74%3D10.1038/nmeth.2474 – reference: HonTHighly accurate long-read HiFi sequencing data for five complex genomesSci. Data202071:CAS:528:DC%2BB3cXisVCmu7fN10.1038/s41597-020-00743-4 – reference: MyersEWThe fragment assembly string graphBioinformatics200521ii79ii851:CAS:528:DC%2BD2MXhtVyrtLjK16204131 – reference: Nurk, S. et al. The complete sequence of a human genome. bioRxivhttps://doi.org/10.1101/2021.05.26.445798 (2021). – reference: RuanJLiHFast and accurate long-read assembly with wtdbg2Nat. Methods2020171551581:CAS:528:DC%2BC1MXitlCht77E10.1038/s41592-019-0669-3 – reference: ChinCPhased diploid genome assembly with single-molecule real-time sequencingNat. Methods201613105010541:CAS:528:DC%2BC28Xhs1ykur7K10.1038/nmeth.4035 – reference: RautiainenMMarschallTMBG: minimizer-based sparse de Bruijn graph constructionBioinformatics202137247624781:CAS:528:DC%2BB3MXisFantb3P10.1093/bioinformatics/btab004 – reference: RobertsRJCarneiroMOSchatzMCThe advantages of SMRT sequencingGenome Biol.20131410.1186/gb-2013-14-6-405 – reference: NurkSHiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long readsGenome Res.202030129113051:CAS:528:DC%2BB3MXltl2isw%3D%3D10.1101/gr.263566.120 – reference: RobertsMHayesWHuntBRMountSMYorkeJAReducing storage requirements for biological sequence comparisonBioinformatics200420336333691:CAS:528:DC%2BD2cXhtVKqu7fL10.1093/bioinformatics/bth408 – reference: ChikhiRRizkGSpace-efficient and exact de Bruijn graph representation based on a Bloom filterAlgorithms Mol. Biol.2013810.1186/1748-7188-8-22 – reference: MikheenkoAPrjibelskiASavelievVAntipovDGurevichAVersatile genome assembly evaluation with QUAST-LGBioinformatics201834i142i1501:CAS:528:DC%2BC1MXpt1yru7w%3D10.1093/bioinformatics/bty266 – reference: ZerbinoDRBirneyEVelvet: algorithms for de novo short read assembly using de Bruijn graphsGenome Res.2008188218291:CAS:528:DC%2BD1cXlslChsLg%3D10.1101/gr.074492.107 – reference: KarpRMRabinMOEfficient randomized pattern-matching algorithmsIBM J. Res. Dev.19873124926010.1147/rd.312.0249 – reference: Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical iterative de Bruijn graph de novo assembler. in Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science Vol. 6044, 426–440 (2010). – reference: Mc Cartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021). – reference: PevznerPATangHWatermanMSAn Eulerian path approach to DNA fragment assemblyProc. Natl Acad. Sci. USA200198974897531:CAS:528:DC%2BD3MXmtlCmsrc%3D10.1073/pnas.171285098 – reference: MinkinIPhamSMedvedevPTwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomesBioinformatics201733402440321:CAS:528:DC%2BC1cXitlWktr3J27659452 – reference: MillerDETargeted long-read sequencing identifies missing disease-causing variationAm. J. Hum. Genet.2021108143614491:CAS:528:DC%2BB3MXhsVKksrfJ10.1016/j.ajhg.2021.06.006 – reference: WengerAMAccurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeNat. Biotechnol.201937115511621:CAS:528:DC%2BC1MXhsFKhtbjN10.1038/s41587-019-0217-9 – reference: MikheenkoAValinGPrjibelskiASavelievVGurevichAIcarus: visualizer for de novo assembly evaluationBioinformatics201632332133231:CAS:528:DC%2BC2sXht1GnsbfK10.1093/bioinformatics/btw379 – reference: TvedteESComparison of long-read sequencing technologies in interrogating bacteria and fly genomesG3 (Bethesda)202111jkab0831:CAS:528:DC%2BB38Xhs1yht7rJ10.1093/g3journal/jkab083 – reference: BankevichASPAdes: a new genome assembly algorithm and its applications to single cell sequencingJ. Comput. Biol.2012194554771:CAS:528:DC%2BC38XmsFOmt7k%3D10.1089/cmb.2012.0021 – reference: PevznerPTangHTeslerGDe novo repeat classification and fragment assemblyGenome Res.200414178617961:CAS:528:DC%2BD2cXnsFGjsbc%3D10.1101/gr.2395204 – reference: KorenSHybrid error correction and de novo assembly of single-molecule sequencing readsNat. Biotechnol.2012306937001:CAS:528:DC%2BC38XpsVWjsL4%3D10.1038/nbt.2280 – volume: 33 start-page: 4024 year: 2017 ident: 1220_CR21 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw609 – volume: 13 year: 2012 ident: 1220_CR12 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S6-S1 – volume: 30 start-page: 693 year: 2012 ident: 1220_CR30 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2280 – volume: 29 start-page: 987 year: 2011 ident: 1220_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2023 – volume: 14 year: 2013 ident: 1220_CR31 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-6-405 – volume: 18 start-page: 821 year: 2008 ident: 1220_CR6 publication-title: Genome Res. doi: 10.1101/gr.074492.107 – volume: 8 year: 2013 ident: 1220_CR20 publication-title: Algorithms Mol. Biol. doi: 10.1186/1748-7188-8-22 – volume: 31 start-page: 249 year: 1987 ident: 1220_CR16 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.312.0249 – volume: 17 start-page: 1103 year: 2020 ident: 1220_CR13 publication-title: Nat. Methods doi: 10.1038/s41592-020-00971-x – volume: 38 start-page: 1309 year: 2020 ident: 1220_CR22 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0582-4 – volume: 98 start-page: 9748 year: 2001 ident: 1220_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.171285098 – ident: 1220_CR18 – volume: 14 start-page: 1786 year: 2004 ident: 1220_CR11 publication-title: Genome Res. doi: 10.1101/gr.2395204 – volume: 30 start-page: 1291 year: 2020 ident: 1220_CR7 publication-title: Genome Res. doi: 10.1101/gr.263566.120 – volume: 37 start-page: 2476 year: 2021 ident: 1220_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab004 – volume: 20 start-page: 3363 year: 2004 ident: 1220_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth408 – volume: 13 start-page: 1050 year: 2016 ident: 1220_CR29 publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – volume: 37 start-page: 1155 year: 2019 ident: 1220_CR3 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0217-9 – volume: 32 start-page: 3321 year: 2016 ident: 1220_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw379 – volume: 11 start-page: jkab083 year: 2021 ident: 1220_CR35 publication-title: G3 (Bethesda) doi: 10.1093/g3journal/jkab083 – volume: 2 start-page: 291 year: 1995 ident: 1220_CR26 publication-title: J. Comput. Biol. doi: 10.1089/cmb.1995.2.291 – volume: 18 start-page: 170 year: 2021 ident: 1220_CR8 publication-title: Nat. Methods doi: 10.1038/s41592-020-01056-5 – ident: 1220_CR1 doi: 10.1101/2021.05.26.445798 – volume: 108 start-page: 1436 year: 2021 ident: 1220_CR2 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2021.06.006 – volume: 39 start-page: 309 year: 2021 ident: 1220_CR25 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0711-0 – volume: 37 start-page: 540 year: 2019 ident: 1220_CR17 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 19 start-page: 455 year: 2012 ident: 1220_CR5 publication-title: J. Comput. Biol. doi: 10.1089/cmb.2012.0021 – volume: 31 start-page: 1674 year: 2015 ident: 1220_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – ident: 1220_CR23 doi: 10.1007/978-3-642-12683-3_28 – volume: 17 start-page: 155 year: 2020 ident: 1220_CR32 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 34 start-page: i142 year: 2018 ident: 1220_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty266 – volume: 10 start-page: 563 year: 2013 ident: 1220_CR28 publication-title: Nat. Methods doi: 10.1038/nmeth.2474 – volume: 7 year: 2020 ident: 1220_CR34 publication-title: Sci. Data doi: 10.1038/s41597-020-00743-4 – volume: 21 start-page: ii79 year: 2005 ident: 1220_CR9 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1114 – volume: 13 start-page: 422 year: 1970 ident: 1220_CR15 publication-title: Commun. ACM doi: 10.1145/362686.362692 |
SSID | ssj0006466 |
Score | 2.575128 |
Snippet | Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large
k
-mer sizes has remained... Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1075 |
SubjectTerms | 631/114/2785/2302 631/61/212/2302 Accuracy Agriculture Algorithms Assemblies Assembly Automation Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Chromosomes Error reduction Fidelity Genomes Graph theory Graphs Life Sciences Multiplexing Telomeres |
Title | Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads |
URI | https://link.springer.com/article/10.1038/s41587-022-01220-6 https://www.ncbi.nlm.nih.gov/pubmed/35228706 https://www.proquest.com/docview/2690033452 https://www.proquest.com/docview/2634847028 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB6qUqkP0p7aRq1soW8aTLKbZPMknniVgocUhXsLm91Nqdzl1JxQ_3tnNnunIvqSQH5uZnYy3-7MfgPwU2SpEUrpUBuRhoKLKCwUx01kpMxUQYwjlG0xzM6uxO9ROvITbq1Pq5z_E92P2kw1zZEfJhnNuXGRJkc3tyFVjaLoqi-hsQQrRF1GKV35aDHgQm_rYpVxJCm9Ms38opmIy8MWHRcdTSgxIaEh1EvH9AptvoqUOgc0-AzrHjmy407VX-CDbXrwsasl-dCDtWfMgj1YPfcx8w24OPc5g_-ZsQx1-e-6YY6numXWrZxiRNQ6sQxxtJ1U4wdGa07YeNr8PWBEZxzWxIWFcJ0hwjTtJlwOTi9PzkJfRyHUPE9nodZCm1qZ2ODwyOQKMVGOplyLJLZor1xF0qpCS5PJGuFGXkRVgXKuqixRaLF8C5abaWO_AauKWhsESTUtqa0TqWo0X85xlCWLWOgqgHguw1J7jnEqdTEuXayby7KTe4lyL53cyyyA_cU9Nx3DxrtX785VU3pra8unvhHAj8VptBMKfqjGTu_pGi7QE-P3BfC1U-nidQRCKd4bwMFcx08Pf7st2--3ZQc-Ja5_UefbheXZ3b39jghmVu25bopbOfi1ByvHg35_iPv-6fDizyMdOes5 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIig9IFgopBQwEpxo1MR2vM4BIQQsW9qtOCxSb5ZjOwi0zRayFeyP4j8yk8cWVNFbLzkkjuOMP3tmPC-A51JlXlrrYudlFkshkzi3Ai-J11rZnDKOkLfFkRp_lh-Ps-M1-N3HwpBbZb8nNhu1nzs6I9_jis7chMz469PvMVWNIutqX0KjhcVBWP5Ela1-tf8O5_cF56P307fjuKsqEDsxzBaxc9L50vrUo7LghxYlhCECu5Q8DYheYRMdbO60V7pE5jvMkyLHrxaF4hbxK7Dba3BdCpHTgtKjD6uNX7Wm0TTR5M2ZqS5GJxF6r0Y-SXc5-UFw0tj-5YMXhNsLhtmG343uwO1OUGVvWmTdhbVQDeBGW7pyOYDNvxIZDuDmpDPR34NPk85F8RfzgSF0vn6rWJMWu2ahCdRilBf2JDAU28NJMVsyCnFhs3n1ZZdR9uS4pNRbqB0wFGh9fR-mV0HgLViv5lV4CKzIS-dRJispgrfk2pa4WwiBSp3OU-mKCNKehsZ1Kc2pssbMNKZ1oU1Ld4N0Nw3djYrg5eqd0zahx6Wtd_qpMd3irs05FCN4tnqMy5JsLbYK8zNqIyQyfvy_CB60U7r6HMm8ZF6OYLef4_PO_z-W7cvH8hQ2xtPJoTncPzp4BLd4gzUC4g6sL36chccoPC2KJw1kGZgrXiJ_AJG1IuI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4aQ0zjgKDACAwwEpxY1MR2EueAEGJUG2PTDkPqzXJsB4G6dJBO0D-N_473nKQDTey2Sw9tmrrP3_P7Xt4vgJcyz5w0xsbWySyWQiZxaQS-JE6p3JTUcYSyLY7yvc_y4zSbrsHvoRaG0iqHMzEc1G5u6Rn5mOf0zE3IjI_rPi3ieHfy9ux7TBOkKNI6jNPoIHLglz_RfWvf7O_iXr_ifPLh5P1e3E8YiK0oskVsrbSuNi516Di4wiBbKBDkteSpRyQLkyhvSqtcrmo0xEWZVCWuoKpybhDLAm97A24WIktJxYrpytdDQx_CpGmiKLMzy_t6nUSocYs2k97llBPByXv71yZeIrqXgrTB9k3uwp2etLJ3HcruwZpvRnCrG2O5HMHtv5oajmDjsA_X34fjwz5d8RdzniGMvn5rWGiR3TIfirYY9Yg99QwpvD-tZktG5S5sNm--7DDqpBzX1IYLPQWG5Na1D-DkOgT8ENabeeMfAavK2jrkZzVV89ZcmRpPDiHQwVNlKm0VQTrIUNu-vTlN2ZjpEGYXSndy1yh3HeSu8wher75z1jX3uPLq7WFrdK_orb6AZQQvVh-jilLcxTR-fk7XCIkkAP9fBFvdlq5-jvgvhZoj2Bn2-OLm_1_L46vX8hw2UDn0p_2jgyewyQPUCIfbsL74ce6fIo9aVM8CYhnoa9aQP0mxJw8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+de+Bruijn+graphs+enable+genome+assembly+from+long%2C+high-fidelity+reads&rft.jtitle=Nature+biotechnology&rft.au=Bankevich%2C+Anton&rft.au=Bzikadze%2C+Andrey+V&rft.au=Kolmogorov%2C+Mikhail&rft.au=Antipov%2C+Dmitry&rft.date=2022-07-01&rft.eissn=1546-1696&rft_id=info:doi/10.1038%2Fs41587-022-01220-6&rft_id=info%3Apmid%2F35228706&rft.externalDocID=35228706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |