Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads

Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been re...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 40; no. 7; pp. 1075 - 1081
Main Authors Bankevich, Anton, Bzikadze, Andrey V., Kolmogorov, Mikhail, Antipov, Dmitry, Pevzner, Pavel A.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.07.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k -mer sizes and transforms it into a multiplex de Bruijn graph with varying k -mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes. A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads.
AbstractList Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.
Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k -mer sizes and transforms it into a multiplex de Bruijn graph with varying k -mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes. A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads.
Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.
Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly of a human genome that completely assembled six chromosomes.A multiplex de Bruijn graph algorithm allows high-accuracy genome assembly from long, high-fidelity reads.
Author Antipov, Dmitry
Pevzner, Pavel A.
Kolmogorov, Mikhail
Bankevich, Anton
Bzikadze, Andrey V.
Author_xml – sequence: 1
  givenname: Anton
  surname: Bankevich
  fullname: Bankevich, Anton
  email: abankevich@eng.ucsd.edu
  organization: Department of Computer Science and Engineering, University of California, San Diego
– sequence: 2
  givenname: Andrey V.
  orcidid: 0000-0002-7928-7950
  surname: Bzikadze
  fullname: Bzikadze, Andrey V.
  organization: Program in Bioinformatics and Systems Biology, University of California, San Diego
– sequence: 3
  givenname: Mikhail
  orcidid: 0000-0002-5489-9045
  surname: Kolmogorov
  fullname: Kolmogorov, Mikhail
  organization: Department of Biomolecular Engineering, University of California, Santa Cruz
– sequence: 4
  givenname: Dmitry
  surname: Antipov
  fullname: Antipov, Dmitry
  organization: Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, Saint Petersburg State University
– sequence: 5
  givenname: Pavel A.
  orcidid: 0000-0002-0418-165X
  surname: Pevzner
  fullname: Pevzner, Pavel A.
  email: ppevzner@ucsd.edu
  organization: Department of Computer Science and Engineering, University of California, San Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35228706$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS3Uiv7AC7BAltiwIOXaThxnCRU_lVrBonvLiW8yHjn2YCdS5-3xMAWkLrqyJX_f9dE9F-QkxICEvGFwxUCoj7lmjWor4LwCxjlU8gU5Z00tKyY7eVLucHhmjTwjFzlvAUDWUr4kZ6LhXLUgz8nPu9UvbufxgVqkn9PqtoFOyew2mWIwvUc6YYgzUpMzzr3f0zHFmfoYpg9046ZNNTqL3i17mtDY_IqcjsZnfP14XpL7r1_ur79Xtz--3Vx_uq0G0TZLNQz1YEdjmS1BbGuU6FrB1Fhzhq1qhQGFphuUlWqEgnTQd3XD-15yw4CJS_L-OHaX4q8V86Jnlwf03gSMa9ZcilrVbVEL-u4Juo1rCiVcoToAIcrgQr19pNZ-Rqt3yc0m7fXfVRWAH4EhxZwTjv8QBvrQhz72oUsf-k8f-iCpJ9LgFrO4GJZknH9eFUc1l3_ChOl_7Ges39AanQ8
CitedBy_id crossref_primary_10_1146_annurev_genom_101722_103045
crossref_primary_10_3390_sym14091911
crossref_primary_10_1101_gr_276917_122
crossref_primary_10_1038_s41576_024_00718_w
crossref_primary_10_1038_s41592_024_02269_8
crossref_primary_10_3390_life13081668
crossref_primary_10_1093_bioinformatics_btad124
crossref_primary_10_1038_s41592_023_01970_4
crossref_primary_10_1101_gr_276871_122
crossref_primary_10_1099_mgen_0_001244
crossref_primary_10_1038_s41588_024_01823_6
crossref_primary_10_1089_cmb_2023_0094
crossref_primary_10_1186_s13015_024_00259_1
crossref_primary_10_3934_mbe_2023266
crossref_primary_10_1093_gigascience_giad100
crossref_primary_10_1101_gr_279311_124
crossref_primary_10_1101_gr_278232_123
crossref_primary_10_1093_gigascience_giaf007
crossref_primary_10_1038_s41586_024_07808_z
crossref_primary_10_1016_j_celrep_2024_113699
crossref_primary_10_1016_j_gpb_2023_08_001
crossref_primary_10_1038_s41467_024_47349_7
crossref_primary_10_1038_s42003_024_07376_y
crossref_primary_10_1109_TCBB_2022_3229085
crossref_primary_10_1093_bioinformatics_btad218
crossref_primary_10_1038_s41467_022_33046_w
crossref_primary_10_1371_journal_pone_0294415
crossref_primary_10_1360_SSV_2023_0068
crossref_primary_10_1038_s41597_023_02658_2
crossref_primary_10_1038_s41592_022_01457_8
crossref_primary_10_1093_bioinformatics_btaf058
crossref_primary_10_1101_gr_279334_124
crossref_primary_10_1093_bioinformatics_btae226
crossref_primary_10_1093_bioinformatics_btad631
crossref_primary_10_7717_peerj_18050
crossref_primary_10_1038_s41588_024_01830_7
crossref_primary_10_1101_gr_276601_122
crossref_primary_10_1186_s13059_024_03414_4
crossref_primary_10_1186_s13015_023_00227_1
crossref_primary_10_1038_s41587_023_01662_6
Cites_doi 10.1093/bioinformatics/btw609
10.1186/1471-2105-13-S6-S1
10.1038/nbt.2280
10.1038/nbt.2023
10.1186/gb-2013-14-6-405
10.1101/gr.074492.107
10.1186/1748-7188-8-22
10.1147/rd.312.0249
10.1038/s41592-020-00971-x
10.1038/s41587-020-0582-4
10.1073/pnas.171285098
10.1101/gr.2395204
10.1101/gr.263566.120
10.1093/bioinformatics/btab004
10.1093/bioinformatics/bth408
10.1038/nmeth.4035
10.1038/s41587-019-0217-9
10.1093/bioinformatics/btw379
10.1093/g3journal/jkab083
10.1089/cmb.1995.2.291
10.1038/s41592-020-01056-5
10.1101/2021.05.26.445798
10.1016/j.ajhg.2021.06.006
10.1038/s41587-020-0711-0
10.1038/s41587-019-0072-8
10.1089/cmb.2012.0021
10.1093/bioinformatics/btv033
10.1007/978-3-642-12683-3_28
10.1038/s41592-019-0669-3
10.1093/bioinformatics/bty266
10.1038/nmeth.2474
10.1038/s41597-020-00743-4
10.1093/bioinformatics/bti1114
10.1145/362686.362692
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
DOI 10.1038/s41587-022-01220-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 1081
ExternalDocumentID 35228706
10_1038_s41587_022_01220_6
Genre Journal Article
GrantInformation_xml – fundername: Saint Petersburg State University (St. Petersburg State University)
  grantid: 73023672
  funderid: https://doi.org/10.13039/501100004285
– fundername: NSF | Directorate for Biological Sciences (BIO)
  grantid: 2032783; 2032783; 2032783
  funderid: https://doi.org/10.13039/100000076
– fundername: NSF | Directorate for Biological Sciences (BIO)
  grantid: 2032783
– fundername: Saint Petersburg State University (St. Petersburg State University)
  grantid: 73023672
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
ID FETCH-LOGICAL-c375t-cc4cdfad1d287d7a8397318f421e7873a08ea9c8d68f028790b9452bb62a1013
IEDL.DBID 7X7
ISSN 1087-0156
1546-1696
IngestDate Fri Jul 11 00:48:56 EDT 2025
Sat Aug 23 12:47:40 EDT 2025
Wed Feb 19 02:27:08 EST 2025
Tue Jul 01 04:10:03 EDT 2025
Thu Apr 24 22:54:04 EDT 2025
Fri Feb 21 02:39:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-cc4cdfad1d287d7a8397318f421e7873a08ea9c8d68f028790b9452bb62a1013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5489-9045
0000-0002-7928-7950
0000-0002-0418-165X
PMID 35228706
PQID 2690033452
PQPubID 47191
PageCount 7
ParticipantIDs proquest_miscellaneous_2634847028
proquest_journals_2690033452
pubmed_primary_35228706
crossref_primary_10_1038_s41587_022_01220_6
crossref_citationtrail_10_1038_s41587_022_01220_6
springer_journals_10_1038_s41587_022_01220_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2022
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References MikheenkoAPrjibelskiASavelievVAntipovDGurevichAVersatile genome assembly evaluation with QUAST-LGBioinformatics201834i142i1501:CAS:528:DC%2BC1MXpt1yru7w%3D10.1093/bioinformatics/bty266
CompeauPEPevznerPATeslerGHow to apply de Bruijn graphs to genome assemblyNat. Biotechnol.2011299879911:CAS:528:DC%2BC3MXhsVCnu7zL10.1038/nbt.2023
ChikhiRRizkGSpace-efficient and exact de Bruijn graph representation based on a Bloom filterAlgorithms Mol. Biol.2013810.1186/1748-7188-8-22
BzikadzeAVPevznerPAAutomated assembly of centromeres from ultra-long error-prone readsNat. Biotechnol.202038130913161:CAS:528:DC%2BB3cXhtlynu7nO10.1038/s41587-020-0582-4
KolmogorovMmetaFlye: scalable long-read metagenome assembly using repeat graphsNat. Methods202017110311101:CAS:528:DC%2BB3cXhvF2jtb7I10.1038/s41592-020-00971-x
KarpRMRabinMOEfficient randomized pattern-matching algorithmsIBM J. Res. Dev.19873124926010.1147/rd.312.0249
KolmogorovMYuanJLinYPevznerPAAssembly of long error-prone reads using repeat graphsNat. Biotechnol.2019375401:CAS:528:DC%2BC1MXosV2qsrs%3D10.1038/s41587-019-0072-8
ChinCPhased diploid genome assembly with single-molecule real-time sequencingNat. Methods201613105010541:CAS:528:DC%2BC28Xhs1ykur7K10.1038/nmeth.4035
RautiainenMMarschallTMBG: minimizer-based sparse de Bruijn graph constructionBioinformatics202137247624781:CAS:528:DC%2BB3MXisFantb3P10.1093/bioinformatics/btab004
NurkSHiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long readsGenome Res.202030129113051:CAS:528:DC%2BB3MXltl2isw%3D%3D10.1101/gr.263566.120
MyersEWThe fragment assembly string graphBioinformatics200521ii79ii851:CAS:528:DC%2BD2MXhtVyrtLjK16204131
ChengHHaplotype-resolved de novo assembly with phased assembly graphsNat. Methods2021181701751:CAS:528:DC%2BB3MXis1OntL0%3D10.1038/s41592-020-01056-5
IduryRMWatermanMSA new algorithm for DNA sequence assemblyJ. Comput. Biol.199522913061:CAS:528:DyaK2MXotFOmt7w%3D10.1089/cmb.1995.2.291
RuanJLiHFast and accurate long-read assembly with wtdbg2Nat. Methods2020171551581:CAS:528:DC%2BC1MXitlCht77E10.1038/s41592-019-0669-3
RobertsRJCarneiroMOSchatzMCThe advantages of SMRT sequencingGenome Biol.20131410.1186/gb-2013-14-6-405
BankevichASPAdes: a new genome assembly algorithm and its applications to single cell sequencingJ. Comput. Biol.2012194554771:CAS:528:DC%2BC38XmsFOmt7k%3D10.1089/cmb.2012.0021
GargSChromosome-scale, haplotype-resolved assembly of human genomesNat. Biotechnol.2021393093121:CAS:528:DC%2BB3cXisFSlt7fP10.1038/s41587-020-0711-0
Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical iterative de Bruijn graph de novo assembler. in Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science Vol. 6044, 426–440 (2010).
Mc Cartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021).
ChinCSNonhybrid, finished microbial genome assemblies from long-read SMRT sequencing dataNat. Methods2013105635691:CAS:528:DC%2BC3sXntVaks74%3D10.1038/nmeth.2474
HonTHighly accurate long-read HiFi sequencing data for five complex genomesSci. Data202071:CAS:528:DC%2BB3cXisVCmu7fN10.1038/s41597-020-00743-4
KorenSHybrid error correction and de novo assembly of single-molecule sequencing readsNat. Biotechnol.2012306937001:CAS:528:DC%2BC38XpsVWjsL4%3D10.1038/nbt.2280
WengerAMAccurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeNat. Biotechnol.201937115511621:CAS:528:DC%2BC1MXhsFKhtbjN10.1038/s41587-019-0217-9
BloomBHSpace/time tradeoffs in hash coding with allowable errorsCommun. ACM19701342242610.1145/362686.362692
MillerDETargeted long-read sequencing identifies missing disease-causing variationAm. J. Hum. Genet.2021108143614491:CAS:528:DC%2BB3MXhsVKksrfJ10.1016/j.ajhg.2021.06.006
LiDLiuCMLuoRSadakaneKLamTWMEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graphBioinformatics201531167416761:CAS:528:DC%2BC28XhtFyltL3N10.1093/bioinformatics/btv033
MinkinIPhamSMedvedevPTwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomesBioinformatics201733402440321:CAS:528:DC%2BC1cXitlWktr3J27659452
Nurk, S. et al. The complete sequence of a human genome. bioRxivhttps://doi.org/10.1101/2021.05.26.445798 (2021).
ZerbinoDRBirneyEVelvet: algorithms for de novo short read assembly using de Bruijn graphsGenome Res.2008188218291:CAS:528:DC%2BD1cXlslChsLg%3D10.1101/gr.074492.107
YeCMaZSCannonCHPopMYuDWExploiting sparseness in de novo genome assemblyBMC Bioinformatics20121310.1186/1471-2105-13-S6-S1
RobertsMHayesWHuntBRMountSMYorkeJAReducing storage requirements for biological sequence comparisonBioinformatics200420336333691:CAS:528:DC%2BD2cXhtVKqu7fL10.1093/bioinformatics/bth408
MikheenkoAValinGPrjibelskiASavelievVGurevichAIcarus: visualizer for de novo assembly evaluationBioinformatics201632332133231:CAS:528:DC%2BC2sXht1GnsbfK10.1093/bioinformatics/btw379
TvedteESComparison of long-read sequencing technologies in interrogating bacteria and fly genomesG3 (Bethesda)202111jkab0831:CAS:528:DC%2BB38Xhs1yht7rJ10.1093/g3journal/jkab083
PevznerPTangHTeslerGDe novo repeat classification and fragment assemblyGenome Res.200414178617961:CAS:528:DC%2BD2cXnsFGjsbc%3D10.1101/gr.2395204
PevznerPATangHWatermanMSAn Eulerian path approach to DNA fragment assemblyProc. Natl Acad. Sci. USA200198974897531:CAS:528:DC%2BD3MXmtlCmsrc%3D10.1073/pnas.171285098
M Rautiainen (1220_CR14) 2021; 37
DE Miller (1220_CR2) 2021; 108
P Pevzner (1220_CR11) 2004; 14
T Hon (1220_CR34) 2020; 7
RJ Roberts (1220_CR31) 2013; 14
PE Compeau (1220_CR4) 2011; 29
A Bankevich (1220_CR5) 2012; 19
S Nurk (1220_CR7) 2020; 30
M Roberts (1220_CR19) 2004; 20
AM Wenger (1220_CR3) 2019; 37
EW Myers (1220_CR9) 2005; 21
C Ye (1220_CR12) 2012; 13
RM Karp (1220_CR16) 1987; 31
R Chikhi (1220_CR20) 2013; 8
S Garg (1220_CR25) 2021; 39
1220_CR23
C Chin (1220_CR29) 2016; 13
S Koren (1220_CR30) 2012; 30
CS Chin (1220_CR28) 2013; 10
PA Pevzner (1220_CR27) 2001; 98
DR Zerbino (1220_CR6) 2008; 18
J Ruan (1220_CR32) 2020; 17
BH Bloom (1220_CR15) 1970; 13
M Kolmogorov (1220_CR13) 2020; 17
H Cheng (1220_CR8) 2021; 18
RM Idury (1220_CR26) 1995; 2
ES Tvedte (1220_CR35) 2021; 11
A Mikheenko (1220_CR33) 2016; 32
AV Bzikadze (1220_CR22) 2020; 38
1220_CR1
1220_CR18
D Li (1220_CR10) 2015; 31
M Kolmogorov (1220_CR17) 2019; 37
I Minkin (1220_CR21) 2017; 33
A Mikheenko (1220_CR24) 2018; 34
References_xml – reference: LiDLiuCMLuoRSadakaneKLamTWMEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graphBioinformatics201531167416761:CAS:528:DC%2BC28XhtFyltL3N10.1093/bioinformatics/btv033
– reference: ChengHHaplotype-resolved de novo assembly with phased assembly graphsNat. Methods2021181701751:CAS:528:DC%2BB3MXis1OntL0%3D10.1038/s41592-020-01056-5
– reference: YeCMaZSCannonCHPopMYuDWExploiting sparseness in de novo genome assemblyBMC Bioinformatics20121310.1186/1471-2105-13-S6-S1
– reference: BloomBHSpace/time tradeoffs in hash coding with allowable errorsCommun. ACM19701342242610.1145/362686.362692
– reference: IduryRMWatermanMSA new algorithm for DNA sequence assemblyJ. Comput. Biol.199522913061:CAS:528:DyaK2MXotFOmt7w%3D10.1089/cmb.1995.2.291
– reference: GargSChromosome-scale, haplotype-resolved assembly of human genomesNat. Biotechnol.2021393093121:CAS:528:DC%2BB3cXisFSlt7fP10.1038/s41587-020-0711-0
– reference: BzikadzeAVPevznerPAAutomated assembly of centromeres from ultra-long error-prone readsNat. Biotechnol.202038130913161:CAS:528:DC%2BB3cXhtlynu7nO10.1038/s41587-020-0582-4
– reference: KolmogorovMmetaFlye: scalable long-read metagenome assembly using repeat graphsNat. Methods202017110311101:CAS:528:DC%2BB3cXhvF2jtb7I10.1038/s41592-020-00971-x
– reference: CompeauPEPevznerPATeslerGHow to apply de Bruijn graphs to genome assemblyNat. Biotechnol.2011299879911:CAS:528:DC%2BC3MXhsVCnu7zL10.1038/nbt.2023
– reference: KolmogorovMYuanJLinYPevznerPAAssembly of long error-prone reads using repeat graphsNat. Biotechnol.2019375401:CAS:528:DC%2BC1MXosV2qsrs%3D10.1038/s41587-019-0072-8
– reference: ChinCSNonhybrid, finished microbial genome assemblies from long-read SMRT sequencing dataNat. Methods2013105635691:CAS:528:DC%2BC3sXntVaks74%3D10.1038/nmeth.2474
– reference: HonTHighly accurate long-read HiFi sequencing data for five complex genomesSci. Data202071:CAS:528:DC%2BB3cXisVCmu7fN10.1038/s41597-020-00743-4
– reference: MyersEWThe fragment assembly string graphBioinformatics200521ii79ii851:CAS:528:DC%2BD2MXhtVyrtLjK16204131
– reference: Nurk, S. et al. The complete sequence of a human genome. bioRxivhttps://doi.org/10.1101/2021.05.26.445798 (2021).
– reference: RuanJLiHFast and accurate long-read assembly with wtdbg2Nat. Methods2020171551581:CAS:528:DC%2BC1MXitlCht77E10.1038/s41592-019-0669-3
– reference: ChinCPhased diploid genome assembly with single-molecule real-time sequencingNat. Methods201613105010541:CAS:528:DC%2BC28Xhs1ykur7K10.1038/nmeth.4035
– reference: RautiainenMMarschallTMBG: minimizer-based sparse de Bruijn graph constructionBioinformatics202137247624781:CAS:528:DC%2BB3MXisFantb3P10.1093/bioinformatics/btab004
– reference: RobertsRJCarneiroMOSchatzMCThe advantages of SMRT sequencingGenome Biol.20131410.1186/gb-2013-14-6-405
– reference: NurkSHiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long readsGenome Res.202030129113051:CAS:528:DC%2BB3MXltl2isw%3D%3D10.1101/gr.263566.120
– reference: RobertsMHayesWHuntBRMountSMYorkeJAReducing storage requirements for biological sequence comparisonBioinformatics200420336333691:CAS:528:DC%2BD2cXhtVKqu7fL10.1093/bioinformatics/bth408
– reference: ChikhiRRizkGSpace-efficient and exact de Bruijn graph representation based on a Bloom filterAlgorithms Mol. Biol.2013810.1186/1748-7188-8-22
– reference: MikheenkoAPrjibelskiASavelievVAntipovDGurevichAVersatile genome assembly evaluation with QUAST-LGBioinformatics201834i142i1501:CAS:528:DC%2BC1MXpt1yru7w%3D10.1093/bioinformatics/bty266
– reference: ZerbinoDRBirneyEVelvet: algorithms for de novo short read assembly using de Bruijn graphsGenome Res.2008188218291:CAS:528:DC%2BD1cXlslChsLg%3D10.1101/gr.074492.107
– reference: KarpRMRabinMOEfficient randomized pattern-matching algorithmsIBM J. Res. Dev.19873124926010.1147/rd.312.0249
– reference: Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical iterative de Bruijn graph de novo assembler. in Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science Vol. 6044, 426–440 (2010).
– reference: Mc Cartney, A. M. et al. Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. Preprint at https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021).
– reference: PevznerPATangHWatermanMSAn Eulerian path approach to DNA fragment assemblyProc. Natl Acad. Sci. USA200198974897531:CAS:528:DC%2BD3MXmtlCmsrc%3D10.1073/pnas.171285098
– reference: MinkinIPhamSMedvedevPTwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many complete genomesBioinformatics201733402440321:CAS:528:DC%2BC1cXitlWktr3J27659452
– reference: MillerDETargeted long-read sequencing identifies missing disease-causing variationAm. J. Hum. Genet.2021108143614491:CAS:528:DC%2BB3MXhsVKksrfJ10.1016/j.ajhg.2021.06.006
– reference: WengerAMAccurate circular consensus long-read sequencing improves variant detection and assembly of a human genomeNat. Biotechnol.201937115511621:CAS:528:DC%2BC1MXhsFKhtbjN10.1038/s41587-019-0217-9
– reference: MikheenkoAValinGPrjibelskiASavelievVGurevichAIcarus: visualizer for de novo assembly evaluationBioinformatics201632332133231:CAS:528:DC%2BC2sXht1GnsbfK10.1093/bioinformatics/btw379
– reference: TvedteESComparison of long-read sequencing technologies in interrogating bacteria and fly genomesG3 (Bethesda)202111jkab0831:CAS:528:DC%2BB38Xhs1yht7rJ10.1093/g3journal/jkab083
– reference: BankevichASPAdes: a new genome assembly algorithm and its applications to single cell sequencingJ. Comput. Biol.2012194554771:CAS:528:DC%2BC38XmsFOmt7k%3D10.1089/cmb.2012.0021
– reference: PevznerPTangHTeslerGDe novo repeat classification and fragment assemblyGenome Res.200414178617961:CAS:528:DC%2BD2cXnsFGjsbc%3D10.1101/gr.2395204
– reference: KorenSHybrid error correction and de novo assembly of single-molecule sequencing readsNat. Biotechnol.2012306937001:CAS:528:DC%2BC38XpsVWjsL4%3D10.1038/nbt.2280
– volume: 33
  start-page: 4024
  year: 2017
  ident: 1220_CR21
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw609
– volume: 13
  year: 2012
  ident: 1220_CR12
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S6-S1
– volume: 30
  start-page: 693
  year: 2012
  ident: 1220_CR30
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2280
– volume: 29
  start-page: 987
  year: 2011
  ident: 1220_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2023
– volume: 14
  year: 2013
  ident: 1220_CR31
  publication-title: Genome Biol.
  doi: 10.1186/gb-2013-14-6-405
– volume: 18
  start-page: 821
  year: 2008
  ident: 1220_CR6
  publication-title: Genome Res.
  doi: 10.1101/gr.074492.107
– volume: 8
  year: 2013
  ident: 1220_CR20
  publication-title: Algorithms Mol. Biol.
  doi: 10.1186/1748-7188-8-22
– volume: 31
  start-page: 249
  year: 1987
  ident: 1220_CR16
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.312.0249
– volume: 17
  start-page: 1103
  year: 2020
  ident: 1220_CR13
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-00971-x
– volume: 38
  start-page: 1309
  year: 2020
  ident: 1220_CR22
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0582-4
– volume: 98
  start-page: 9748
  year: 2001
  ident: 1220_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.171285098
– ident: 1220_CR18
– volume: 14
  start-page: 1786
  year: 2004
  ident: 1220_CR11
  publication-title: Genome Res.
  doi: 10.1101/gr.2395204
– volume: 30
  start-page: 1291
  year: 2020
  ident: 1220_CR7
  publication-title: Genome Res.
  doi: 10.1101/gr.263566.120
– volume: 37
  start-page: 2476
  year: 2021
  ident: 1220_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab004
– volume: 20
  start-page: 3363
  year: 2004
  ident: 1220_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth408
– volume: 13
  start-page: 1050
  year: 2016
  ident: 1220_CR29
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4035
– volume: 37
  start-page: 1155
  year: 2019
  ident: 1220_CR3
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0217-9
– volume: 32
  start-page: 3321
  year: 2016
  ident: 1220_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw379
– volume: 11
  start-page: jkab083
  year: 2021
  ident: 1220_CR35
  publication-title: G3 (Bethesda)
  doi: 10.1093/g3journal/jkab083
– volume: 2
  start-page: 291
  year: 1995
  ident: 1220_CR26
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.1995.2.291
– volume: 18
  start-page: 170
  year: 2021
  ident: 1220_CR8
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01056-5
– ident: 1220_CR1
  doi: 10.1101/2021.05.26.445798
– volume: 108
  start-page: 1436
  year: 2021
  ident: 1220_CR2
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2021.06.006
– volume: 39
  start-page: 309
  year: 2021
  ident: 1220_CR25
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0711-0
– volume: 37
  start-page: 540
  year: 2019
  ident: 1220_CR17
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0072-8
– volume: 19
  start-page: 455
  year: 2012
  ident: 1220_CR5
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2012.0021
– volume: 31
  start-page: 1674
  year: 2015
  ident: 1220_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv033
– ident: 1220_CR23
  doi: 10.1007/978-3-642-12683-3_28
– volume: 17
  start-page: 155
  year: 2020
  ident: 1220_CR32
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0669-3
– volume: 34
  start-page: i142
  year: 2018
  ident: 1220_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty266
– volume: 10
  start-page: 563
  year: 2013
  ident: 1220_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2474
– volume: 7
  year: 2020
  ident: 1220_CR34
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00743-4
– volume: 21
  start-page: ii79
  year: 2005
  ident: 1220_CR9
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1114
– volume: 13
  start-page: 422
  year: 1970
  ident: 1220_CR15
  publication-title: Commun. ACM
  doi: 10.1145/362686.362692
SSID ssj0006466
Score 2.575128
Snippet Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k -mer sizes has remained...
Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes and large k-mer sizes has remained...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1075
SubjectTerms 631/114/2785/2302
631/61/212/2302
Accuracy
Agriculture
Algorithms
Assemblies
Assembly
Automation
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Chromosomes
Error reduction
Fidelity
Genomes
Graph theory
Graphs
Life Sciences
Multiplexing
Telomeres
Title Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads
URI https://link.springer.com/article/10.1038/s41587-022-01220-6
https://www.ncbi.nlm.nih.gov/pubmed/35228706
https://www.proquest.com/docview/2690033452
https://www.proquest.com/docview/2634847028
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS9xAEB6qUqkP0p7aRq1soW8aTLKbZPMknniVgocUhXsLm91Nqdzl1JxQ_3tnNnunIvqSQH5uZnYy3-7MfgPwU2SpEUrpUBuRhoKLKCwUx01kpMxUQYwjlG0xzM6uxO9ROvITbq1Pq5z_E92P2kw1zZEfJhnNuXGRJkc3tyFVjaLoqi-hsQQrRF1GKV35aDHgQm_rYpVxJCm9Ms38opmIy8MWHRcdTSgxIaEh1EvH9AptvoqUOgc0-AzrHjmy407VX-CDbXrwsasl-dCDtWfMgj1YPfcx8w24OPc5g_-ZsQx1-e-6YY6numXWrZxiRNQ6sQxxtJ1U4wdGa07YeNr8PWBEZxzWxIWFcJ0hwjTtJlwOTi9PzkJfRyHUPE9nodZCm1qZ2ODwyOQKMVGOplyLJLZor1xF0qpCS5PJGuFGXkRVgXKuqixRaLF8C5abaWO_AauKWhsESTUtqa0TqWo0X85xlCWLWOgqgHguw1J7jnEqdTEuXayby7KTe4lyL53cyyyA_cU9Nx3DxrtX785VU3pra8unvhHAj8VptBMKfqjGTu_pGi7QE-P3BfC1U-nidQRCKd4bwMFcx08Pf7st2--3ZQc-Ja5_UefbheXZ3b39jghmVu25bopbOfi1ByvHg35_iPv-6fDizyMdOes5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIig9IFgopBQwEpxo1MR2vM4BIQQsW9qtOCxSb5ZjOwi0zRayFeyP4j8yk8cWVNFbLzkkjuOMP3tmPC-A51JlXlrrYudlFkshkzi3Ai-J11rZnDKOkLfFkRp_lh-Ps-M1-N3HwpBbZb8nNhu1nzs6I9_jis7chMz469PvMVWNIutqX0KjhcVBWP5Ela1-tf8O5_cF56P307fjuKsqEDsxzBaxc9L50vrUo7LghxYlhCECu5Q8DYheYRMdbO60V7pE5jvMkyLHrxaF4hbxK7Dba3BdCpHTgtKjD6uNX7Wm0TTR5M2ZqS5GJxF6r0Y-SXc5-UFw0tj-5YMXhNsLhtmG343uwO1OUGVvWmTdhbVQDeBGW7pyOYDNvxIZDuDmpDPR34NPk85F8RfzgSF0vn6rWJMWu2ahCdRilBf2JDAU28NJMVsyCnFhs3n1ZZdR9uS4pNRbqB0wFGh9fR-mV0HgLViv5lV4CKzIS-dRJispgrfk2pa4WwiBSp3OU-mKCNKehsZ1Kc2pssbMNKZ1oU1Ld4N0Nw3djYrg5eqd0zahx6Wtd_qpMd3irs05FCN4tnqMy5JsLbYK8zNqIyQyfvy_CB60U7r6HMm8ZF6OYLef4_PO_z-W7cvH8hQ2xtPJoTncPzp4BLd4gzUC4g6sL36chccoPC2KJw1kGZgrXiJ_AJG1IuI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH4aQ0zjgKDACAwwEpxY1MR2EueAEGJUG2PTDkPqzXJsB4G6dJBO0D-N_473nKQDTey2Sw9tmrrP3_P7Xt4vgJcyz5w0xsbWySyWQiZxaQS-JE6p3JTUcYSyLY7yvc_y4zSbrsHvoRaG0iqHMzEc1G5u6Rn5mOf0zE3IjI_rPi3ieHfy9ux7TBOkKNI6jNPoIHLglz_RfWvf7O_iXr_ifPLh5P1e3E8YiK0oskVsrbSuNi516Di4wiBbKBDkteSpRyQLkyhvSqtcrmo0xEWZVCWuoKpybhDLAm97A24WIktJxYrpytdDQx_CpGmiKLMzy_t6nUSocYs2k97llBPByXv71yZeIrqXgrTB9k3uwp2etLJ3HcruwZpvRnCrG2O5HMHtv5oajmDjsA_X34fjwz5d8RdzniGMvn5rWGiR3TIfirYY9Yg99QwpvD-tZktG5S5sNm--7DDqpBzX1IYLPQWG5Na1D-DkOgT8ENabeeMfAavK2jrkZzVV89ZcmRpPDiHQwVNlKm0VQTrIUNu-vTlN2ZjpEGYXSndy1yh3HeSu8wher75z1jX3uPLq7WFrdK_orb6AZQQvVh-jilLcxTR-fk7XCIkkAP9fBFvdlq5-jvgvhZoj2Bn2-OLm_1_L46vX8hw2UDn0p_2jgyewyQPUCIfbsL74ce6fIo9aVM8CYhnoa9aQP0mxJw8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+de+Bruijn+graphs+enable+genome+assembly+from+long%2C+high-fidelity+reads&rft.jtitle=Nature+biotechnology&rft.au=Bankevich%2C+Anton&rft.au=Bzikadze%2C+Andrey+V&rft.au=Kolmogorov%2C+Mikhail&rft.au=Antipov%2C+Dmitry&rft.date=2022-07-01&rft.eissn=1546-1696&rft_id=info:doi/10.1038%2Fs41587-022-01220-6&rft_id=info%3Apmid%2F35228706&rft.externalDocID=35228706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon