Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing

Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precu...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular medicine (Berlin, Germany) Vol. 100; no. 4; pp. 485 - 498
Main Authors Wan, Gui, Chen, Yangyang, Chen, Jing, Yan, Chengqi, Wang, Cheng, Li, Wenqing, Mao, Renqun, Machens, Hans-Günther, Yang, Xiaofan, Chen, Zhenbing
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
AbstractList Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Author Wan, Gui
Machens, Hans-Günther
Li, Wenqing
Chen, Yangyang
Wang, Cheng
Yan, Chengqi
Mao, Renqun
Yang, Xiaofan
Chen, Jing
Chen, Zhenbing
Author_xml – sequence: 1
  givenname: Gui
  orcidid: 0000-0002-2425-0050
  surname: Wan
  fullname: Wan, Gui
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 2
  givenname: Yangyang
  surname: Chen
  fullname: Chen, Yangyang
  organization: Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 3
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 4
  givenname: Chengqi
  surname: Yan
  fullname: Yan, Chengqi
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 5
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 6
  givenname: Wenqing
  surname: Li
  fullname: Li, Wenqing
  organization: Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital
– sequence: 7
  givenname: Renqun
  surname: Mao
  fullname: Mao, Renqun
  organization: Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital
– sequence: 8
  givenname: Hans-Günther
  surname: Machens
  fullname: Machens, Hans-Günther
  organization: Department of Plastic and Hand Surgery, Technical University of Munich
– sequence: 9
  givenname: Xiaofan
  orcidid: 0000-0002-0997-0973
  surname: Yang
  fullname: Yang, Xiaofan
  email: xiaofanyang23@163.com
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 10
  givenname: Zhenbing
  orcidid: 0000-0003-2828-866X
  surname: Chen
  fullname: Chen, Zhenbing
  email: zbchen@hust.edu.cn
  organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34997250$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJSTZp_kAPRdBLLm71tZbVWwlNWwgUSnsWsjz2KnglVx-EpX--cjahkEMOYsTwvMO8856jEx88IPSWkg-UEPkxEUKJagij65Osoa_QhgpeP0KQE7QhSrQNk7Q9Q-cp3VVcbpU4RWdcKCXZlmzQ358wldlkFzwOIwY_hLyD2ZkZLzFM4F0OEVuYZzwWb1cu4aFE5ye8OywQp_lgYe_MJ-zhHldtNAuU7CzOJk6QE3YeD870sPbuQ_ED3oGZ64A36PVo5gSXj_UC_b758uv6W3P74-v368-3jeVymxurFOG97aUxlnac25GOjPKOm9roZaeGTnay-hcwmgEEU4PoW97TjhjTKcUv0NVxbnX0p0DKeu_Sasl4CCVp1tKOsZZJWdH3z9C7UKKv21VKVEbQ7Uq9e6RKv4dBL9HtTTzop7NWoDsCNoaUIozauvxw5ByNmzUlek1QHxPUNT39kKCmVcqeSZ-mvyjiR1Fa1mQg_l_7BdU_382vSQ
CitedBy_id crossref_primary_10_1155_2023_2523245
crossref_primary_10_1016_j_biopha_2023_116035
crossref_primary_10_1016_j_heliyon_2024_e39251
crossref_primary_10_1007_s00210_023_02808_8
crossref_primary_10_1111_bph_70002
crossref_primary_10_1186_s11658_025_00702_0
crossref_primary_10_2174_1566524023666230911141402
crossref_primary_10_1016_j_mtbio_2024_101330
crossref_primary_10_1042_CS20230853
crossref_primary_10_1177_1721727X231151526
crossref_primary_10_1186_s12951_023_02119_3
crossref_primary_10_1007_s00109_022_02251_x
crossref_primary_10_1016_j_biopha_2024_117072
crossref_primary_10_2147_IJN_S480901
crossref_primary_10_1021_acsbiomaterials_4c00692
crossref_primary_10_1021_acsbiomaterials_4c00470
crossref_primary_10_1111_1753_0407_13372
crossref_primary_10_1016_j_mtbio_2025_101652
Cites_doi 10.1177/1479164112444639
10.1016/j.yjmcc.2011.04.007
10.1038/s41573-020-0088-2
10.1089/ars.2008.2121
10.1016/j.atherosclerosis.2010.02.022
10.1002/stem.745
10.1016/j.peptides.2018.05.008
10.1038/s12276-018-0177-z
10.1139/cjpp-2018-0743
10.1152/ajpendo.00696.2013
10.3390/cells9040876
10.1056/NEJMra2022774
10.1016/j.yexcr.2018.03.012
10.1097/prs.0000000000006502
10.2337/db18-1178
10.1016/j.jconrel.2016.07.043
10.12659/msm.881383
10.1016/j.lfs.2017.05.021
10.3390/cells10092338
10.1186/s13287-021-02185-0
10.1002/stem.2300
10.1038/s41580-020-0230-3
10.1002/cbin.10833
10.1002/sctm.20-0309
10.1089/scd.2017.0114
10.1161/01.CIR.0000137969.87365.05
10.2174/0929867324666171012110244
10.1186/s13287-021-02324-7
10.3892/mmr.2019.10831
10.1126/scitranslmed.3009337
10.18632/aging.202257
10.1128/mmbr.00043-14
10.1155/2017/3831750
10.1186/s13287-019-1152-x
10.1155/2018/9847015
10.1172/jci137556
10.3390/antiox10050727
10.1186/s13287-021-02592-3
10.1161/ATVBAHA.109.191635
10.1182/blood-2007-03-078709
10.1016/j.mam.2019.09.007
10.1038/s41580-020-00314-w
10.1007/978-1-61779-943-3_13
10.1155/2012/471823
10.1016/j.jaad.2015.08.070
10.1007/s00592-020-01551-3
10.2337/db13-0894
10.1074/jbc.M308197200
10.21037/cdt-20-536
10.1111/jcmm.16111
10.1016/j.addr.2018.09.010
10.1182/blood.2019000510
10.2337/db13-0941
10.1177/1479164117719058
10.1007/s10456-013-9350-0
10.1038/nm1075
10.1677/joe-08-0036
10.1002/jcp.28771
10.1155/2018/9045976
10.1016/j.cell.2016.08.055
10.1016/j.yjmcc.2011.03.008
10.1155/2016/2029854
10.5966/sctm.2015-0227
10.1042/BSR20171459
10.3892/ijmm.2020.4664
10.1126/science.275.5302.964
10.3892/mmr.2011.644
10.1002/cyto.a.22596
10.1007/s00125-019-4959-1
10.1016/j.ydbio.2021.05.010
10.1159/000430132
10.1097/HJH.0000000000001983
10.1016/j.bcmd.2013.11.004
10.1186/1475-2840-8-56
10.1186/s13287-020-01687-7
10.1016/j.arr.2020.101139
10.1002/cbin.10288
10.1016/j.jcyt.2019.09.002
10.1111/j.1582-4934.2011.01301.x
10.1038/s41419-021-04136-2
10.1007/s13770-021-00366-9
10.2337/db12-1621
10.1038/nrendo.2016.15
10.1038/s41467-021-23448-7
10.1016/j.gene.2018.07.072
10.3390/ijms18071419
10.3892/mmr.2017.7707
10.1007/s00277-011-1300-6
10.1186/1756-8722-4-24
10.3727/105221613x13776146743307
10.1016/j.mcp.2020.101527
10.1186/s13287-018-1060-5
10.1007/s10456-020-09732-y
10.1002/cbin.11070
10.1089/wound.2012.0398
10.3390/ijms22126375
10.1111/wrr.12708
10.1096/fj.201800248RR
10.1016/j.bios.2019.03.010
10.1002/term.2684
10.1007/s12020-015-0688-5
10.1161/circresaha.120.316851
10.1177/1534734617706636
10.1080/15287394.2018.1440185
10.3892/ijmm.2018.3727
10.1152/physrev.00045.2011
10.1016/j.jdiacomp.2013.04.007
10.1007/s00109-013-1002-8
10.1016/b978-0-12-407694-5.00002-x
10.4252/wjsc.v13.i8.971
10.1186/s12967-017-1280-y
10.3727/096368912X658007
10.1007/s12015-011-9332-9
10.1152/ajpendo.00001.2011
10.1016/j.bbrc.2015.02.050
10.1038/srep43057
10.1093/eurheartj/ehq254
10.1088/1758-5090/7/4/045010
10.1111/wrr.12253
10.1038/s41581-020-0278-5
10.1016/j.tcm.2004.10.001
10.2337/db19-0829
10.1111/jcmm.13434
10.21037/atm-21-2459
10.1186/s13287-020-01958-3
10.1111/1440-1681.12227
10.1161/01.ATV.0000156401.04325.8f
10.2337/db13-0483
10.1016/j.yjmcc.2012.04.003
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00109-021-02172-1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest One Academic Middle East (New)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1440
EndPage 498
ExternalDocumentID 34997250
10_1007_s00109_021_02172_1
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.55
.86
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
X7M
YLTOR
Z45
Z7R
Z7U
Z7W
Z7Z
Z82
Z83
Z87
Z8M
Z8O
Z8Q
Z8T
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-c9903bcb7aac1833cf1f21383aaacb789d87871724efade429d4b63b180aa8993
IEDL.DBID U2A
ISSN 0946-2716
1432-1440
IngestDate Mon Aug 18 12:41:22 EDT 2025
Sat Aug 23 14:29:23 EDT 2025
Thu Apr 03 07:07:35 EDT 2025
Tue Jul 01 02:55:39 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hyperglycemia
Wound healing
Diabetes
EPCs
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-c9903bcb7aac1833cf1f21383aaacb789d87871724efade429d4b63b180aa8993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2828-866X
0000-0002-0997-0973
0000-0002-2425-0050
PMID 34997250
PQID 2642624157
PQPubID 48876
PageCount 14
ParticipantIDs proquest_miscellaneous_2618226277
proquest_journals_2642624157
pubmed_primary_34997250
crossref_citationtrail_10_1007_s00109_021_02172_1
crossref_primary_10_1007_s00109_021_02172_1
springer_journals_10_1007_s00109_021_02172_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: New York
PublicationTitle Journal of molecular medicine (Berlin, Germany)
PublicationTitleAbbrev J Mol Med
PublicationTitleAlternate J Mol Med (Berl)
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MirHAAliRMushtaqUKhandayFAStructure-functional implications of longevity protein p66Shc in health and diseaseAgeing Res Rev2020631:CAS:528:DC%2BB3cXhvVSlsL7O3279550410.1016/j.arr.2020.101139
LiWDuDWangHLiuYLaiXJiangFChenDZhangYZongJLiYSilent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathwayInt J Clin Exp Pathol2015822742287260457354440044
EidSSasKMAbcouwerSFFeldmanELGardnerTWPennathurSFortPENew insights into the mechanisms of diabetic complications: role of lipids and lipid metabolismDiabetologia2019621539154931346658667981410.1007/s00125-019-4959-1
ChenQShenZMaoYLiQLiuYMeiMQiuFWangMInhibition of microRNA-34a mediates protection of thymosin beta 4 in endothelial progenitor cells against advanced glycation endproducts by targeting B-cell lymphoma 2Can J Physiol Pharmacol2019979459511:CAS:528:DC%2BC1MXhsFGjt7bE3139759910.1139/cjpp-2018-0743
MizushimaNLevineBAutophagy in human diseasesN Engl J Med2020383156415761:CAS:528:DC%2BB3cXitFWmsbvM3305328510.1056/NEJMra2022774
UmpierrezGKorytkowskiMDiabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemiaNat Rev Endocrinol2016122222321:CAS:528:DC%2BC28Xjt1ymtL0%3D2689326210.1038/nrendo.2016.15
ZhuYHoshiRChenSYiJDuanCGalianoRDZhangHFAmeerGASustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetesJ Control Release20162381141221:CAS:528:DC%2BC28Xht1GltrfF2747376610.1016/j.jconrel.2016.07.043
LuoYFWanXXZhaoLLGuoZShenRTZengPYWangLHYuanJJYangWJYueCMicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-junAging (Albany NY)2020131186121110.18632/aging.202257
WangKDaiXHeJYanXYangCFanXSunSChenJXuJDengZEndothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cellsDiabetes2020691779179232404351751947410.2337/db19-0829
Diaz Del MoralSBarrenaSMunoz-ChapuliRCarmonaREmbryonic circulating endothelial progenitor cellsAngiogenesis2020235315413261336110.1007/s10456-020-09732-y
BenincasaJCde Freitas FilhoLHCarneiroGDSielskiMSGiorgioSWerneckCCVicenteCPHyperbaric oxygen affects endothelial progenitor cells proliferation in vitroCell Biol Int2019431361461:CAS:528:DC%2BC1MXhvVeksrc%3D3036221210.1002/cbin.11070
PetrelliADi FenzaRCarvelloMGattiFSecchiAFiorinaPStrategies to reverse endothelial progenitor cell dysfunction in diabetesExp Diabetes Res2012201222474422329620210.1155/2012/471823
LewisDMAbaciHEXuYGerechtSEndothelial progenitor cell recruitment in a microfluidic vascular modelBiofabrication201572669359910.1088/1758-5090/7/4/045010
LinRZMoreno-LunaRMunoz-HernandezRLiDJaminetSCGreeneAKMelero-MartinJMHuman white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potentialAngiogenesis2013167357441:CAS:528:DC%2BC3sXhsVOgsrbP23636611376291610.1007/s10456-013-9350-0
AbdelgawadMEDesterkeCUzanGNaserianSSingle-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markersStem Cell Res Ther2021121451:CAS:528:DC%2BB3MXntVOgsr4%3D33627177790565610.1186/s13287-021-02185-0
ChengSMChangSJTsaiTNWuCHLinWSLinWYChengCCDifferential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophagesGene Expr20131615241:CAS:528:DC%2BC2cXltFKhu7Y%3D24397208875026310.3727/105221613x13776146743307
KienstraKAHirschiKKVascular progenitor cell mobilizationMethods Mol Biol20129041551641:CAS:528:DC%2BC38XhvVClsbjI2289093010.1007/978-1-61779-943-3_13
Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38
LiYZhiKHanSLiXLiMLianWZhangHZhangXTUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signalingStem Cell Res Ther2020114411:CAS:528:DC%2BB3cXitFSgtrrO33059750755875210.1186/s13287-020-01958-3
ChopraHHungMKKwongDLZhangCFPowEHNInsights into endothelial progenitor cells: origin, classification, potentials, and prospectsStem Cells Int2018201898470151:CAS:528:DC%2BC1MXitleltLnK30581475627649010.1155/2018/9847015
KimJHKimKAShinYJKimHMajidABaeONMethylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cellsJ Toxicol Environ Health A2018812662771:CAS:528:DC%2BC1cXjtlygtLo%3D2947378810.1080/15287394.2018.1440185
AlexandruNFrunzãSWeissEBãdilãEGeorgescuAMechanisms of vascular defects in diabetes mellitus2017SwitzerlandSpringer International Publishing AG
GaoJWangYLiWZhangJCheYCuiXSunBZhaoGLoss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cellsGene2018678171:CAS:528:DC%2BC1cXhsVGit77K3006393710.1016/j.gene.2018.07.072
UrbichCDimmelerSEndothelial progenitor cells functional characterizationTrends Cardiovasc Med2004143183221:CAS:528:DC%2BD2cXhtVOntLnL1559610910.1016/j.tcm.2004.10.001
RuggeriAPaviglianitiAVoltFKenzeyCRafiiHRochaVGluckmanEEndothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantationCurr Med Chem201825453545441:CAS:528:DC%2BC1cXisF2hu7fM2902250410.2174/0929867324666171012110244
ProustRPonsenACRouffiacVSchenowitzCMontespanFSer-Le RouxKDe LeeuwFLaplace-BuilhéCMauduitPCarosellaEDCord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse modelStem Cell Res Ther2020111721:CAS:528:DC%2BB3cXptVGktbc%3D32381102720673410.1186/s13287-020-01687-7
WenYChenRZhuCQiaoHLiuYJiHMiaoJChenLLiuXYangYMiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting ApelinPeptides201810558651:CAS:528:DC%2BC1cXhtVais7%2FK2980058810.1016/j.peptides.2018.05.008
SunkariVGLindFBotusanIRKashifALiuZJYla-HerttualaSBrismarKVelazquezOCatrinaSBHyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic miceWound Repair Regen201523981032553261910.1111/wrr.12253
CeradiniDJKulkarniARCallaghanMJTepperOMBastidasNKleinmanMECaplaJMGalianoRDLevineJPGurtnerGCProgenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1Nat Med2004108588641:CAS:528:DC%2BD2cXmtFWrtr0%3D1523559710.1038/nm1075
Gurevich DB, David DT, Sundararaman A, Patel J (2021) Endothelial heterogeneity in development and wound healing. Cells 10. https://doi.org/10.3390/cells10092338
IshiharaJIshiharaAStarkeRDPeghaireCRSmithKEMcKinnonTAJTabataYSasakiKWhiteMJVFukunagaKThe heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healingBlood2019133255925691:CAS:528:DC%2BC1MXhsVyrsrrN30975637656659310.1182/blood.2019000510
HanXTaoYDengYYuJSunYJiangGMetformin accelerates wound healing in type 2 diabetic db/db miceMol Med Rep201716869186981:CAS:528:DC%2BC1cXhtl2rs7bO28990070577994710.3892/mmr.2017.7707
KangHMaXLiuJFanYDengXHigh glucose-induced endothelial progenitor cell dysfunctionDiab Vasc Dis Res2017143813941:CAS:528:DC%2BC1cXhvVCrs7c%3D2871831810.1177/1479164117719058
ChruewkamlowNPruekprasertKPhutthakunphithakPAcharayothinOPrapassaroTHongkuKHahtapornsawanSPuangpunngamNChinsakchaiKWongwanitCNovel culture media enhances mononuclear cells from patients with chronic limb-threatening ischemia to increase vasculogenesis and anti-inflammatory effectStem Cell Res Ther2021125201:CAS:528:DC%2BB38Xjt1Klur4%3D34583768847988510.1186/s13287-021-02592-3
AlbieroMPoncinaNTjwaMCiciliotSMenegazzoLCeolottoGVigili de KreutzenbergSMouraRGiorgioMPelicciPDiabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1Diabetes201463135313651:CAS:528:DC%2BC2cXls1Oisbc%3D2427098310.2337/db13-0894
WangCMaoCLouYXuJWangQZhangZTangQZhangXXuHFengYMonotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healingJ Cell Mol Med201822158316001:CAS:528:DC%2BC1cXjsVyksb8%3D2927830910.1111/jcmm.13434
LiJHLiYHuangDYaoMRole of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regenerationTissue Eng Regen Med2021187477581:CAS:528:DC%2BB3MXitVSkt7bP3444906410.1007/s13770-021-00366-9
CalissiGLamEWLinkWTherapeutic strategies targeting FOXO transcription factorsNat Rev Drug Discov20212021381:CAS:528:DC%2BB3cXit12ktLvO3317318910.1038/s41573-020-0088-2
JiangCLiRXiuCMaXHuHWeiLTangYTaoMZhaoJUpregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitusStem Cell Res Ther2021122641:CAS:528:DC%2BB3MXhtlOmsbbE33941256809172010.1186/s13287-021-02324-7
YangYZhouYWangYWeiXWuLWangTMaAExendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axisActa Diabetol202057131513261:CAS:528:DC%2BB3cXhtF2ju77F3255653210.1007/s00592-020-01551-3
YoderMCIs endothelium the origin of endothelial progenitor cells?Arterioscler Thromb Vasc Biol201030109411031:CAS:528:DC%2BC3cXmt1alsbg%3D2045316910.1161/ATVBAHA.109.191635
RoseJAErzurumSAsosinghKBiology and flow cytometry of proangiogenic hematopoietic progenitors cellsCytometry A2015875191:CAS:528:DC%2BC2cXitFGrsr7I2541803010.1002/cyto.a.22596
Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071419
ChongMSNgWKChanJKConcise review: endothelial progenitor cells in regenerative medicine: applications and challengesStem Cells Transl Med201655305381:CAS:528:DC%2BC2sXhtVyht70%3D26956207479874010.5966/sctm.2015-0227
ReschTPircherAKählerCMPratschkeJHilbeWEndothelial progenitor cells: current issues on chara
E Zuccolo (2172_CR63) 2018; 27
S Diaz Del Moral (2172_CR29) 2020; 23
YW Kwon (2172_CR50) 2017; 7
X Han (2172_CR99) 2017; 16
G Eelen (2172_CR7) 2020; 127
RK Ambasta (2172_CR83) 2017; 15
2172_CR13
R Proust (2172_CR26) 2020; 11
Y Zhu (2172_CR54) 2019; 27
Z Yang (2172_CR78) 2010; 211
T Asahara (2172_CR23) 1997; 275
R Tanaka (2172_CR126) 2014; 23
N Krankel (2172_CR130) 2005; 25
JD Luo (2172_CR131) 2004; 110
H Jin (2172_CR110) 2018; 50
MS Chong (2172_CR34) 2016; 5
C Wang (2172_CR92) 2018; 22
A Zeke (2172_CR67) 2016; 80
S Kadam (2172_CR91) 2018; 12
JT Liu (2172_CR120) 2017; 2017
A Ruggeri (2172_CR18) 2018; 25
Z Kong (2172_CR36) 2020; 10
JC Benincasa (2172_CR98) 2019; 43
Q Xu (2172_CR112) 2014; 41
VG Sunkari (2172_CR4) 2015; 23
S Balaji (2172_CR60) 2013; 2
G Calissi (2172_CR69) 2021; 20
H Kang (2172_CR61) 2017; 14
XR Wang (2172_CR90) 2011; 300
Y Wen (2172_CR105) 2018; 105
KA Kienstra (2172_CR31) 2012; 904
C Jiang (2172_CR73) 2021; 12
2172_CR38
JA Rose (2172_CR51) 2015; 87
SM Kwon (2172_CR43) 2011; 51
SM Cheng (2172_CR44) 2013; 16
R Tanaka (2172_CR127) 2021; 10
ME Abdelgawad (2172_CR39) 2021; 12
RZ Lin (2172_CR33) 2013; 16
Y Yang (2172_CR94) 2020; 57
P Chen (2172_CR107) 2019; 234
X Song (2172_CR114) 2017; 41
S Meng (2172_CR65) 2012; 53
RY Wang (2172_CR117) 2018; 42
L Tie (2172_CR89) 2014; 306
Y Li (2172_CR37) 2020; 11
F Liu (2172_CR64) 2014; 63
H Chopra (2172_CR28) 2018; 2018
N Mizushima (2172_CR108) 2020; 383
Y Yao (2172_CR95) 2019; 68
X Dai (2172_CR71) 2011; 15
E Pelosi (2172_CR46) 2014; 52
M Hassanpour (2172_CR109) 2018; 9
MC Yoder (2172_CR32) 2010; 30
B Hibbert (2172_CR118) 2014; 63
MC Yoder (2172_CR49) 2013; 91
J Zhang (2172_CR81) 2013; 10
DJ Ceradini (2172_CR58) 2004; 10
M Razazian (2172_CR41) 2021; 13
DM Lewis (2172_CR17) 2015; 7
R Tanaka (2172_CR20) 2013; 62
J Bo (2172_CR87) 2016; 2016
2172_CR121
2172_CR52
A Piatkowski (2172_CR45) 2013; 306
CH Tsai (2172_CR48) 2021; 12
N Alexandru (2172_CR35) 2017
2172_CR5
Q Chen (2172_CR106) 2019; 97
CV Desouza (2172_CR124) 2013; 27
W Zhang (2172_CR77) 2008; 197
2172_CR8
W Cao (2172_CR19) 2017; 181
Y Zhu (2172_CR97) 2016; 238
JB Cole (2172_CR9) 2020; 16
G Li (2172_CR55) 2021; 12
M Ye (2172_CR66) 2015; 36
J Ye (2172_CR101) 2017; 16
J Gao (2172_CR96) 2018; 678
R Di Micco (2172_CR113) 2021; 22
YF Luo (2172_CR103) 2020; 13
C Urbich (2172_CR24) 2004; 14
Y Aso (2172_CR111) 2015; 50
C Liu (2172_CR123) 2020; 145
J Ishihara (2172_CR14) 2019; 133
Q Hu (2172_CR62) 2019; 37
J Cheng (2172_CR104) 2020; 46
W Li (2172_CR70) 2015; 8
JH Kim (2172_CR88) 2018; 81
H Sies (2172_CR82) 2020; 21
MA Smolle (2172_CR100) 2019; 70
JB Aquino (2172_CR42) 2021; 477
K Bachelier (2172_CR27) 2020; 21
MC Deregibus (2172_CR80) 2007; 110
JH Li (2172_CR53) 2021; 18
2172_CR74
T Thum (2172_CR2) 2011; 32
H Wu (2172_CR119) 2018; 2018
ZJ Liu (2172_CR57) 2008; 10
K Kaushik (2172_CR22) 2019; 21
T Kanayasu-Toyoda (2172_CR79) 2016; 34
J Gao (2172_CR102) 2018; 366
J Fan (2172_CR3) 2021; 25
K Kasuno (2172_CR59) 2004; 279
N Chruewkamlow (2172_CR40) 2021; 12
Y Shi (2172_CR122) 2018; 32
D Srivastava (2172_CR128) 2016; 166
AL George (2172_CR6) 2011; 4
C Cao (2172_CR72) 2012; 5
AP Veith (2172_CR16) 2019; 146
HA Mir (2172_CR85) 2020; 63
2172_CR84
G Umpierrez (2172_CR10) 2016; 12
2172_CR1
T Resch (2172_CR30) 2012; 8
T Asahara (2172_CR47) 2011; 29
Q Yuan (2172_CR116) 2015; 458
Y Yang (2172_CR93) 2020; 51
S Eid (2172_CR11) 2019; 62
JM Forbes (2172_CR12) 2013; 93
S Hamed (2172_CR129) 2009; 8
S Ren (2172_CR15) 2019; 10
JE Gunton (2172_CR56) 2020; 130
J Qian (2172_CR25) 2021; 9
PH Huang (2172_CR115) 2011; 51
K Wang (2172_CR21) 2020; 69
M Albiero (2172_CR68) 2014; 63
C Jiraritthamrong (2172_CR76) 2012; 91
A Petrelli (2172_CR125) 2012; 2012
Q Yuan (2172_CR75) 2014; 38
L Ramachandra Bhat (2172_CR86) 2019; 133
References_xml – reference: VeithAPHendersonKSpencerASligarADBakerABTherapeutic strategies for enhancing angiogenesis in wound healingAdv Drug Deliv Rev2019146971251:CAS:528:DC%2BC1cXhvVGisbvF3026774210.1016/j.addr.2018.09.010
– reference: BachelierKBergholzCFriedrichEBDifferentiation potential and functional properties of a CD34CD133+ subpopulation of endothelial progenitor cellsMol Med Rep2020215015071:CAS:528:DC%2BB3cXjt1CqsL0%3D3174640710.3892/mmr.2019.10831
– reference: ChongMSNgWKChanJKConcise review: endothelial progenitor cells in regenerative medicine: applications and challengesStem Cells Transl Med201655305381:CAS:528:DC%2BC2sXhtVyht70%3D26956207479874010.5966/sctm.2015-0227
– reference: KadamSKanitkarMDixitKDeshpandeRSeshadriVKaleVCurcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivoJ Tissue Eng Regen Med201812159416071:CAS:528:DC%2BC1cXht1Ohu77I2970275310.1002/term.2684
– reference: AquinoJBSierraRMontaldoLADiverse cellular origins of adult blood vascular endothelial cellsDev Biol20214771171321:CAS:528:DC%2BB3MXhtlajsrbP3404873410.1016/j.ydbio.2021.05.010
– reference: Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6: 265sr266. https://doi.org/10.1126/scitranslmed.3009337
– reference: ChenPZhongJYeJHeYLiangZChengYZhengJChenHChenCmiR-324-5p protects against oxidative stress-induced endothelial progenitor cell injury by targeting Mtfr1J Cell Physiol201923422082220921:CAS:528:DC%2BC1MXovFGqt7k%3D3106604410.1002/jcp.28771
– reference: UmpierrezGKorytkowskiMDiabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemiaNat Rev Endocrinol2016122222321:CAS:528:DC%2BC28Xjt1ymtL0%3D2689326210.1038/nrendo.2016.15
– reference: AbdelgawadMEDesterkeCUzanGNaserianSSingle-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markersStem Cell Res Ther2021121451:CAS:528:DC%2BB3MXntVOgsr4%3D33627177790565610.1186/s13287-021-02185-0
– reference: YangYZhouYWangYWeiXWuLWangTMaAExendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axisActa Diabetol202057131513261:CAS:528:DC%2BB3cXhtF2ju77F3255653210.1007/s00592-020-01551-3
– reference: HuangPHChenJSTsaiHYChenYHLinFYLeuHBWuTCLinSJChenJWGlobular adiponectin improves high glucose-suppressed endothelial progenitor cell function through endothelial nitric oxide synthase dependent mechanismsJ Mol Cell Cardiol2011511091191:CAS:528:DC%2BC3MXmslyisro%3D2143996810.1016/j.yjmcc.2011.03.008
– reference: EidSSasKMAbcouwerSFFeldmanELGardnerTWPennathurSFortPENew insights into the mechanisms of diabetic complications: role of lipids and lipid metabolismDiabetologia2019621539154931346658667981410.1007/s00125-019-4959-1
– reference: IshiharaJIshiharaAStarkeRDPeghaireCRSmithKEMcKinnonTAJTabataYSasakiKWhiteMJVFukunagaKThe heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healingBlood2019133255925691:CAS:528:DC%2BC1MXhsVyrsrrN30975637656659310.1182/blood.2019000510
– reference: Di MiccoRKrizhanovskyVBakerDd'Adda di FagagnaFCellular senescence in ageing: from mechanisms to therapeutic opportunitiesNat Rev Mol Cell Biol20212275951:CAS:528:DC%2BB3cXis1Wkur7I3332861410.1038/s41580-020-00314-w
– reference: ColeJBFlorezJCGenetics of diabetes mellitus and diabetes complicationsNat Rev Nephrol2020163773903239886810.1038/s41581-020-0278-5
– reference: KwonSMLeeYKYokoyamaAJungSYMasudaHKawamotoALeeYMAsaharaTDifferential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularizationJ Mol Cell Cardiol2011513083171:CAS:528:DC%2BC3MXpvFWqs7w%3D2155794710.1016/j.yjmcc.2011.04.007
– reference: RenSChenJDuscherDLiuYGuoGKangYXiongHZhanPWangYWangCMicrovesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathwaysStem Cell Res Ther201910471:CAS:528:DC%2BC1MXhs1WjsrnK30704535635742110.1186/s13287-019-1152-x
– reference: ThumTSchmitterKFleissnerFWiebkingVDietrichBWidderJDJazbutyteVHahnerSErtlGBauersachsJImpairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humansEur Heart J201132127512861:CAS:528:DC%2BC3MXmt1yms7Y%3D2092636310.1093/eurheartj/ehq254
– reference: ProustRPonsenACRouffiacVSchenowitzCMontespanFSer-Le RouxKDe LeeuwFLaplace-BuilhéCMauduitPCarosellaEDCord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse modelStem Cell Res Ther2020111721:CAS:528:DC%2BB3cXptVGktbc%3D32381102720673410.1186/s13287-020-01687-7
– reference: HassanpourMRezabakhshAPezeshkianMRahbarghaziRNouriMDistinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cellsStem Cell Res Ther2018930530409213622565810.1186/s13287-018-1060-5
– reference: YaoYLiYSongQHuCXieWXuCChenQWangQKAngiogenic factor AGGF1-primed endothelial progenitor cells repair vascular defect in diabetic miceDiabetes201968163516481:CAS:528:DC%2BB3cXnt1GnsQ%3D%3D31092480690548810.2337/db18-1178
– reference: Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38
– reference: YoderMCEndothelial progenitor cell: a blood cell by many other names may serve similar functionsJ Mol Med (Berl)20139128529510.1007/s00109-013-1002-8
– reference: LiYZhiKHanSLiXLiMLianWZhangHZhangXTUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signalingStem Cell Res Ther2020114411:CAS:528:DC%2BB3cXitFSgtrrO33059750755875210.1186/s13287-020-01958-3
– reference: GeorgeALBangalore-PrakashPRajoriaSSurianoRShanmugamAMittelmanATiwariRKEndothelial progenitor cell biology in disease and tissue regenerationJ Hematol Oncol201142421609465312365310.1186/1756-8722-4-24
– reference: GaoJWangYLiWZhangJCheYCuiXSunBZhaoGLoss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cellsGene2018678171:CAS:528:DC%2BC1cXhsVGit77K3006393710.1016/j.gene.2018.07.072
– reference: WenYChenRZhuCQiaoHLiuYJiHMiaoJChenLLiuXYangYMiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting ApelinPeptides201810558651:CAS:528:DC%2BC1cXhtVais7%2FK2980058810.1016/j.peptides.2018.05.008
– reference: ChruewkamlowNPruekprasertKPhutthakunphithakPAcharayothinOPrapassaroTHongkuKHahtapornsawanSPuangpunngamNChinsakchaiKWongwanitCNovel culture media enhances mononuclear cells from patients with chronic limb-threatening ischemia to increase vasculogenesis and anti-inflammatory effectStem Cell Res Ther2021125201:CAS:528:DC%2BB38Xjt1Klur4%3D34583768847988510.1186/s13287-021-02592-3
– reference: LiGKoCNLiDYangCWangWYangGJDi PrimoCWongVKWXiangYLinLA small molecule HIF-1alpha stabilizer that accelerates diabetic wound healingNat Commun20211233631:CAS:528:DC%2BB3MXhsVOqtrzP34099651818491110.1038/s41467-021-23448-7
– reference: RazazianMKhosraviMBahiraiiSUzanGShamdaniSNaserianSDifferences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cellsWorld J Stem Cells20211397198434567420842293210.4252/wjsc.v13.i8.971
– reference: TieLChenLYChenDDXieHHChannonKMChenAFGTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1Am J Physiol Endocrinol Metab2014306E112011311:CAS:528:DC%2BC2cXptVCitLY%3D2464424210.1152/ajpendo.00696.2013
– reference: KaushikKDasAEndothelial progenitor cell therapy for chronic wound tissue regenerationCytotherapy201921113711501:CAS:528:DC%2BC1MXitVClur%2FF3166848710.1016/j.jcyt.2019.09.002
– reference: QianJShenQYanCXYinHCaoXLinZHCaiYFLiuHAtorvastatin improves bone marrow endothelial progenitor cell function from patients with immune-related hemocytopeniaAnn Transl Med2021911421:CAS:528:DC%2BB3MXitVKksr3I34430583835068810.21037/atm-21-2459
– reference: RoseJAErzurumSAsosinghKBiology and flow cytometry of proangiogenic hematopoietic progenitors cellsCytometry A2015875191:CAS:528:DC%2BC2cXitFGrsr7I2541803010.1002/cyto.a.22596
– reference: WangRYLiuLHLiuHWuKFAnJWangQLiuYBaiLJQiBMQiBLNrf2 protects against diabetic dysfunction of endothelial progenitor cells via regulating cell senescenceInt J Mol Med201842132713401:CAS:528:DC%2BC1MXhvFCku7w%3D29901179608976010.3892/ijmm.2018.3727
– reference: ZuccoloEDi BuduoCLodolaFOrecchioniSScarpellinoGKhederDAPolettoVGuerraGBertoliniFBalduiniAStromal cell-derived factor-1α promotes endothelial colony-forming cell migration through the Ca(2+)-dependent activation of the extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/AKT pathwaysStem Cells Dev20182723341:CAS:528:DC%2BC1cXkvFegsg%3D%3D2912181710.1089/scd.2017.0114
– reference: LiWDuDWangHLiuYLaiXJiangFChenDZhangYZongJLiYSilent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathwayInt J Clin Exp Pathol2015822742287260457354440044
– reference: ReschTPircherAKählerCMPratschkeJHilbeWEndothelial progenitor cells: current issues on characterization and challenging clinical applicationsStem Cell Rev Rep201289269391:CAS:528:DC%2BC38XhtFKlsLjO2209542910.1007/s12015-011-9332-9
– reference: EelenGTrepsLLiXCarmelietPBasic and therapeutic aspects of angiogenesis updatedCirc Res20201273103291:CAS:528:DC%2BB3cXhtlSkt7vP3283356910.1161/circresaha.120.316851
– reference: ZhuYHoshiRChenSYiJDuanCGalianoRDZhangHFAmeerGASustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetesJ Control Release20162381141221:CAS:528:DC%2BC28Xht1GltrfF2747376610.1016/j.jconrel.2016.07.043
– reference: Gurevich DB, David DT, Sundararaman A, Patel J (2021) Endothelial heterogeneity in development and wound healing. Cells 10. https://doi.org/10.3390/cells10092338
– reference: PelosiECastelliGTestaUEndothelial progenitorsBlood Cells Mol Dis2014521861942433258310.1016/j.bcmd.2013.11.004
– reference: ZekeAMishevaMReményiABogoyevitchMAJNK signaling: regulation and functions based on complex protein-protein partnershipsMicrobiol Mol Biol Rev2016807938351:CAS:528:DC%2BC1cXnt1Kqsbk%3D27466283498167610.1128/mmbr.00043-14
– reference: AsaharaTKawamotoAMasudaHConcise review: circulating endothelial progenitor cells for vascular medicineStem Cells201129165016551:CAS:528:DC%2BC3MXhs1ejsLbK2194864910.1002/stem.745
– reference: GaoJZhaoGLiWZhangJCheYSongMGaoSZengBWangYMiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucoseExp Cell Res201836655621:CAS:528:DC%2BC1cXltVyltbc%3D2954509110.1016/j.yexcr.2018.03.012
– reference: LiuCZhuJHaiBZhangWWangHLengHXuYSongCSingle intraosseous injection of simvastatin promotes endothelial progenitor cell mobilization, neovascularization, and wound healing in diabetic ratsPlast Reconstr Surg20201454334431:CAS:528:DC%2BB3cXhs1Kis7c%3D3198563710.1097/prs.0000000000006502
– reference: DaiXTanYCaiSXiongXWangLYeQYanXMaKCaiLThe role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cellsJ Cell Mol Med201115129913091:CAS:528:DC%2BC3MXnvFelsr0%3D21418513437333010.1111/j.1582-4934.2011.01301.x
– reference: TanakaRVaynrubMMasudaHItoRKoboriMMiyasakaMMizunoHWarrenSMAsaharaTQuality-control culture system restores diabetic endothelial progenitor cell vasculogenesis and accelerates wound closureDiabetes201362320732171:CAS:528:DC%2BC3sXhtl2jtLrM23670975374935710.2337/db12-1621
– reference: HibbertBLavoieJRMaXSeibertTRaizmanJESimardTChenYXStewartDO'BrienERGlycogen synthase kinase-3β inhibition augments diabetic endothelial progenitor cell abundance and functionality via cathepsin B: a novel therapeutic opportunity for arterial repairDiabetes201463141014211:CAS:528:DC%2BC2cXls1OitrY%3D2429671410.2337/db13-0941
– reference: PetrelliADi FenzaRCarvelloMGattiFSecchiAFiorinaPStrategies to reverse endothelial progenitor cell dysfunction in diabetesExp Diabetes Res2012201222474422329620210.1155/2012/471823
– reference: ZhuYWangYJiaYXuJChaiYRoxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic ratsWound Repair Regen2019273243343081706510.1111/wrr.12708
– reference: WuHChenZChenJZXieJXuBResveratrol improves tube formation in AGE-induced late endothelial progenitor cells by suppressing syndecan-4 sheddingOxid Med Cell Longev2018201890459761:CAS:528:DC%2BC1MXht1GnurjI29849922591412210.1155/2018/9045976
– reference: SmolleMAPrinzFCalinGAPichlerMCurrent concepts of non-coding RNA regulation of immune checkpoints in cancerMol Aspects Med2019701171263158225910.1016/j.mam.2019.09.007
– reference: SrivastavaDDeWittNIn vivo cellular reprogramming: the next generationCell2016166138613961:CAS:528:DC%2BC28XhsFSltL3O27610565623400710.1016/j.cell.2016.08.055
– reference: DeregibusMCCantaluppiVCalogeroRLo IaconoMTettaCBianconeLBrunoSBussolatiBCamussiGEndothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNABlood2007110244024481:CAS:528:DC%2BD2sXhtFCnsbrJ10.1182/blood-2007-03-078709
– reference: LuoJDWangYYFuWLWuJChenAFGene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic miceCirculation2004110248424931:CAS:528:DC%2BD2cXosVSls7k%3D1526282910.1161/01.CIR.0000137969.87365.05
– reference: KienstraKAHirschiKKVascular progenitor cell mobilizationMethods Mol Biol20129041551641:CAS:528:DC%2BC38XhvVClsbjI2289093010.1007/978-1-61779-943-3_13
– reference: SiesHJonesDPReactive oxygen species (ROS) as pleiotropic physiological signalling agentsNat Rev Mol Cell Biol2020213633831:CAS:528:DC%2BB3cXlvFKhtrY%3D3223126310.1038/s41580-020-0230-3
– reference: HamedSBrennerBAharonADaoudDRoguinANitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitusCardiovasc Diabetol20098561:CAS:528:DC%2BD1MXhsVSju7zK19878539277375910.1186/1475-2840-8-56
– reference: KangHMaXLiuJFanYDengXHigh glucose-induced endothelial progenitor cell dysfunctionDiab Vasc Dis Res2017143813941:CAS:528:DC%2BC1cXhvVCrs7c%3D2871831810.1177/1479164117719058
– reference: SunkariVGLindFBotusanIRKashifALiuZJYla-HerttualaSBrismarKVelazquezOCatrinaSBHyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic miceWound Repair Regen201523981032553261910.1111/wrr.12253
– reference: Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071419
– reference: Diaz Del MoralSBarrenaSMunoz-ChapuliRCarmonaREmbryonic circulating endothelial progenitor cellsAngiogenesis2020235315413261336110.1007/s10456-020-09732-y
– reference: LuoYFWanXXZhaoLLGuoZShenRTZengPYWangLHYuanJJYangWJYueCMicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-junAging (Albany NY)2020131186121110.18632/aging.202257
– reference: Xiao-Yun X, Zhao-Hui M, Ke C, Hong-Hui H, Yan-Hong X (2011) Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit 17:Br35–41. https://doi.org/10.12659/msm.881383
– reference: LiuFChenDDSunXXieHHYuanHJiaWChenAFHydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetesDiabetes201463176317781:CAS:528:DC%2BC2cXnt1Khtb4%3D24487028399495810.2337/db13-0483
– reference: ChengSMChangSJTsaiTNWuCHLinWSLinWYChengCCDifferential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophagesGene Expr20131615241:CAS:528:DC%2BC2cXltFKhu7Y%3D24397208875026310.3727/105221613x13776146743307
– reference: BenincasaJCde Freitas FilhoLHCarneiroGDSielskiMSGiorgioSWerneckCCVicenteCPHyperbaric oxygen affects endothelial progenitor cells proliferation in vitroCell Biol Int2019431361461:CAS:528:DC%2BC1MXhvVeksrc%3D3036221210.1002/cbin.11070
– reference: AmbastaRKKohliHKumarPMultiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorderJ Transl Med2017151851:CAS:528:DC%2BC1cXitVOgtbzI28859673558020410.1186/s12967-017-1280-y
– reference: KongZChenMJiangJZhuJLiuYA new method of culturing rat bone marrow endothelial progenitor cells in vitroCardiovasc Diagn Ther2020101270127933224751766694010.21037/cdt-20-536
– reference: ShiYLvXLiuYLiBLiuMYanMLiuYLiQZhangXHeSElevating ATP-binding cassette transporter G1 improves re-endothelialization function of endothelial progenitor cells via Lyn/Akt/eNOS in diabetic miceFaseb j201832652565361:CAS:528:DC%2BC1MXjslSiu7c%3D3049598710.1096/fj.201800248RR
– reference: GuntonJEHypoxia-inducible factors and diabetesJ Clin Invest2020130506350731:CAS:528:DC%2BB3cXitF2qs7bM32809974752447710.1172/jci137556
– reference: JiangCLiRXiuCMaXHuHWeiLTangYTaoMZhaoJUpregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitusStem Cell Res Ther2021122641:CAS:528:DC%2BB3MXhtlOmsbbE33941256809172010.1186/s13287-021-02324-7
– reference: ChopraHHungMKKwongDLZhangCFPowEHNInsights into endothelial progenitor cells: origin, classification, potentials, and prospectsStem Cells Int2018201898470151:CAS:528:DC%2BC1MXitleltLnK30581475627649010.1155/2018/9847015
– reference: YangZvon BallmoosMWFaesslerDVoelzmannJOrtmannJDiehmNKalka-MollWBaumgartnerIDi SantoSKalkaCParacrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cellsAtherosclerosis20102111031091:CAS:528:DC%2BC3cXos1yit7w%3D2022769310.1016/j.atherosclerosis.2010.02.022
– reference: Ramachandra BhatLVedanthamSKrishnanUMRayappanJBBMethylglyoxal - an emerging biomarker for diabetes mellitus diagnosis and its detection methodsBiosens Bioelectron20191331071241:CAS:528:DC%2BC1MXlvFSjsb8%3D3092162710.1016/j.bios.2019.03.010
– reference: BalajiSKingACrombleholmeTMKeswaniSGThe role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healingAdv Wound Care (New Rochelle)2013228329510.1089/wound.2012.0398
– reference: JinHZhangZWangCTangQWangJBaiXWangQNisarMTianNWangQMelatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic miceExp Mol Med2018501151:CAS:528:DC%2BC1cXit12lurfL30559383603009410.1038/s12276-018-0177-z
– reference: ChengJHuWZhengFWuYLiMhsa_circ_0058092 protects against hyperglycemia-induced endothelial progenitor cell damage via miR-217/FOXO3Int J Mol Med202046114611541:CAS:528:DC%2BB3cXitVGhtLbP32705235738709210.3892/ijmm.2020.4664
– reference: SongXYangBQiuFJiaMFuGHigh glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathwayCell Biol Int201741114611591:CAS:528:DC%2BC2sXhsFWjt7%2FJ2878615210.1002/cbin.10833
– reference: Kanayasu-ToyodaTTanakaTKikuchiYUchidaEMatsuyamaAYamaguchiTCell-surface MMP-9 protein is a novel functional marker to identify and separate proangiogenic cells from early endothelial progenitor cells derived from CD133(+) CellsStem Cells201634125112621:CAS:528:DC%2BC28Xnt1Kmt7Y%3D2682479810.1002/stem.2300
– reference: KimJHKimKAShinYJKimHMajidABaeONMethylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cellsJ Toxicol Environ Health A2018812662771:CAS:528:DC%2BC1cXjtlygtLo%3D2947378810.1080/15287394.2018.1440185
– reference: LiuZJVelazquezOCHyperoxia, endothelial progenitor cell mobilization, and diabetic wound healingAntioxid Redox Signal200810186918821:CAS:528:DC%2BD1cXhtVymsbvN18627349263821310.1089/ars.2008.2121
– reference: CaoWCuiJLiSZhangDGuoYLiQLuanYLiuXCrocetin restores diabetic endothelial progenitor cell dysfunction by enhancing NO bioavailability via regulation of PI3K/AKT-eNOS and ROS pathwaysLife Sci20171819161:CAS:528:DC%2BC2sXhtVShsrbK2852886210.1016/j.lfs.2017.05.021
– reference: TsaiCHChenCJGongCLLiuSCChenPCHuangCCHuSLWangSWTangCHCXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progressionCell Death Dis2021128461:CAS:528:DC%2BB38Xislagsbg%3D34518512843794110.1038/s41419-021-04136-2
– reference: FanJLiuHWangJZengJTanYWangYYuXLiWWangPYangZProcyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2J Cell Mol Med2021256526651:CAS:528:DC%2BB3MXhsl2gtL4%3D3321588310.1111/jcmm.16111
– reference: PiatkowskiAGriebGSimonsDBernhagenJvan der HulstRREndothelial progenitor cells–potential new avenues to improve neoangiogenesis and reendothelializationInt Rev Cell Mol Biol201330643811:CAS:528:DC%2BC3sXhvFaltbfK2401652310.1016/b978-0-12-407694-5.00002-x
– reference: ChenQShenZMaoYLiQLiuYMeiMQiuFWangMInhibition of microRNA-34a mediates protection of thymosin beta 4 in endothelial progenitor cells against advanced glycation endproducts by targeting B-cell lymphoma 2Can J Physiol Pharmacol2019979459511:CAS:528:DC%2BC1MXhsFGjt7bE3139759910.1139/cjpp-2018-0743
– reference: DesouzaCVDoes drug therapy reverse endothelial progenitor cell dysfunction in diabetes?.J Diabetes Complications2013275195252380976510.1016/j.jdiacomp.2013.04.007
– reference: LiJHLiYHuangDYaoMRole of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regenerationTissue Eng Regen Med2021187477581:CAS:528:DC%2BB3MXitVSkt7bP3444906410.1007/s13770-021-00366-9
– reference: HuQKeXZhangTChenYHuangQDengBXieSWangJNieRHydrogen sulfide improves vascular repair by promoting endothelial nitric oxide synthase-dependent mobilization of endothelial progenitor cellsJ Hypertens2019379729841:CAS:528:DC%2BC1MXlvFaqtbo%3D3048945310.1097/HJH.0000000000001983
– reference: MizushimaNLevineBAutophagy in human diseasesN Engl J Med2020383156415761:CAS:528:DC%2BB3cXitFWmsbvM3305328510.1056/NEJMra2022774
– reference: KwonYWHeoSCLeeTWParkGTYoonJWJangIHKimSCKoHCRyuYKangHN-acetylated proline-glycine-proline accelerates cutaneous wound healing and neovascularization by human endothelial progenitor cellsSci Rep20177430571:CAS:528:DC%2BC2sXjsVGjt7s%3D28230162532235610.1038/srep43057
– reference: UrbichCDimmelerSEndothelial progenitor cells functional characterizationTrends Cardiovasc Med2004143183221:CAS:528:DC%2BD2cXhtVOntLnL1559610910.1016/j.tcm.2004.10.001
– reference: Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S (2021) Diabetic complications and oxidative stress: a 20-year voyage back in time and back to the future. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10050727
– reference: AsaharaTMuroharaTSullivanASilverMvan der ZeeRLiTWitzenbichlerBSchattemanGIsnerJMIsolation of putative progenitor endothelial cells for angiogenesisScience19972759649671:CAS:528:DyaK2sXht1Clu7k%3D902007610.1126/science.275.5302.964
– reference: LinRZMoreno-LunaRMunoz-HernandezRLiDJaminetSCGreeneAKMelero-MartinJMHuman white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potentialAngiogenesis2013167357441:CAS:528:DC%2BC3sXhsVOgsrbP23636611376291610.1007/s10456-013-9350-0
– reference: ZhangJZhangXLiHCuiXGuanXTangKJinCChengMHyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actionsDiab Vasc Dis Res20131049561:CAS:528:DC%2BC2cXhslCnsLvJ2256122910.1177/1479164112444639
– reference: JiraritthamrongCKheolamaiPY UP, Chayosumrit M, Supokawej A, Manochantr S, Tantrawatpan C, Sritanaudomchai H, Issaragrisil S, In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditionsAnn Hematol2012913113201:CAS:528:DC%2BC38XitFGmu78%3D2182261810.1007/s00277-011-1300-6
– reference: CalissiGLamEWLinkWTherapeutic strategies targeting FOXO transcription factorsNat Rev Drug Discov20212021381:CAS:528:DC%2BB3cXit12ktLvO3317318910.1038/s41573-020-0088-2
– reference: WangCMaoCLouYXuJWangQZhangZTangQZhangXXuHFengYMonotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healingJ Cell Mol Med201822158316001:CAS:528:DC%2BC1cXjsVyksb8%3D2927830910.1111/jcmm.13434
– reference: CeradiniDJKulkarniARCallaghanMJTepperOMBastidasNKleinmanMECaplaJMGalianoRDLevineJPGurtnerGCProgenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1Nat Med2004108588641:CAS:528:DC%2BD2cXmtFWrtr0%3D1523559710.1038/nm1075
– reference: KrankelNAdamsVLinkeAGielenSErbsSLenkKSchulerGHambrechtRHyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cellsArterioscler Thromb Vasc Biol2005256987031:CAS:528:DC%2BD2MXitlOmsLY%3D1566202210.1161/01.ATV.0000156401.04325.8f
– reference: RuggeriAPaviglianitiAVoltFKenzeyCRafiiHRochaVGluckmanEEndothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantationCurr Med Chem201825453545441:CAS:528:DC%2BC1cXisF2hu7fM2902250410.2174/0929867324666171012110244
– reference: YeMLiDYangJXieJYuFMaYZhuXZhaoJLvZMicroRNA-130a Targets MAP3K12 to modulate diabetic endothelial progenitor cell functionCell Physiol Biochem2015367127261:CAS:528:DC%2BC2MXptFagur0%3D2599901710.1159/000430132
– reference: YuanQBaiYPShiRZLiuSYChenXMChenLLiYJHuCPRegulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent mannerCell Biol Int201438101310221:CAS:528:DC%2BC2cXht1Kisr7F2476431310.1002/cbin.10288
– reference: ForbesJMCooperMEMechanisms of diabetic complicationsPhysiol Rev2013931371881:CAS:528:DC%2BC3sXhvFKns7w%3D2330390810.1152/physrev.00045.2011
– reference: LiuJTChenHYChenWCManKMChenYHRed yeast rice protects circulating bone marrow-derived proangiogenic cells against high-glucose-induced senescence and oxidative stress: the role of heme oxygenase-1Oxid Med Cell Longev2017201738317501:CAS:528:DC%2BC1cXhvVKjs7fP28555162543885510.1155/2017/3831750
– reference: Terriaca S, Fiorelli E, Scioli MG, Fabbri G, Storti G, Cervelli V, Orlandi A (2021) Endothelial progenitor cell-derived extracellular vesicles: potential therapeutic application in tissue repair and regeneration. Int J Mol Sci 22. https://doi.org/10.3390/ijms22126375
– reference: LewisDMAbaciHEXuYGerechtSEndothelial progenitor cell recruitment in a microfluidic vascular modelBiofabrication201572669359910.1088/1758-5090/7/4/045010
– reference: WangKDaiXHeJYanXYangCFanXSunSChenJXuJDengZEndothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cellsDiabetes2020691779179232404351751947410.2337/db19-0829
– reference: KasunoKTakabuchiSFukudaKKizaka-KondohSYodoiJAdachiTSemenzaGLHirotaKNitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signalingJ Biol Chem2004279255025581:CAS:528:DC%2BD2cXkslOkug%3D%3D1460015310.1074/jbc.M308197200
– reference: YeJKangYSunXNiPWuMLuSMicroRNA-155 Inhibition promoted wound healing in diabetic ratsInt J Low Extrem Wounds20171674841:CAS:528:DC%2BC1cXhvVCqsrg%3D2868273210.1177/1534734617706636
– reference: MengSCaoJTZhangBZhouQShenCXWangCQDownregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1J Mol Cell Cardiol20125364721:CAS:528:DC%2BC38XntFansb4%3D2252525610.1016/j.yjmcc.2012.04.003
– reference: MirHAAliRMushtaqUKhandayFAStructure-functional implications of longevity protein p66Shc in health and diseaseAgeing Res Rev2020631:CAS:528:DC%2BB3cXhvVSlsL7O3279550410.1016/j.arr.2020.101139
– reference: YangYZhouYWangYWeiXWangTMaAExendin-4 regulates endoplasmic reticulum stress to protect endothelial progenitor cells from high-glucose damageMol Cell Probes2020511:CAS:528:DC%2BB3cXjsVOksr0%3D3199630910.1016/j.mcp.2020.101527
– reference: AlbieroMPoncinaNTjwaMCiciliotSMenegazzoLCeolottoGVigili de KreutzenbergSMouraRGiorgioMPelicciPDiabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1Diabetes201463135313651:CAS:528:DC%2BC2cXls1Oisbc%3D2427098310.2337/db13-0894
– reference: ZhangWWangXHChenSFZhangGPLuNHuRMJinHMBiphasic response of endothelial progenitor cell proliferation induced by high glucose and its relationship with reactive oxygen speciesJ Endocrinol20081974634701:CAS:528:DC%2BD1cXntVCgsr8%3D1849281210.1677/joe-08-0036
– reference: TanakaRMasudaHKatoSImagawaKKanabuchiKNakashioyaCYoshibaFFukuiTItoRKoboriMAutologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcerCell Transplant2014231671792310745010.3727/096368912X658007
– reference: CaoCZhangHGongLHeYZhangNHigh glucose conditions suppress the function of bone marrow-derived endothelial progenitor cells via inhibition of the eNOS-caveolin-1 complexMol Med Rep201253413461:CAS:528:DC%2BC38XkvFelsw%3D%3D2202034310.3892/mmr.2011.644
– reference: Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol 74:607–625; quiz 625–606. https://doi.org/10.1016/j.jaad.2015.08.070
– reference: AsoYJojimaTIijimaTSuzukiKTerasawaTFukushimaMMomobayashiAHaraKTakebayashiKKasaiKSitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34+CXCR4+ cells in patients with type 2 diabetesEndocrine2015506596641:CAS:528:DC%2BC2MXht1aktb%2FL2620903810.1007/s12020-015-0688-5
– reference: BoJXieSGuoYZhangCGuanYLiCLuJMengQHMethylglyoxal impairs insulin secretion of pancreatic beta-cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKsJ Diabetes Res2016201620298541:CAS:528:DC%2BC1cXlvFSlurs%3D2677954010.1155/2016/2029854
– reference: HanXTaoYDengYYuJSunYJiangGMetformin accelerates wound healing in type 2 diabetic db/db miceMol Med Rep201716869186981:CAS:528:DC%2BC1cXhtl2rs7bO28990070577994710.3892/mmr.2017.7707
– reference: YoderMCIs endothelium the origin of endothelial progenitor cells?Arterioscler Thromb Vasc Biol201030109411031:CAS:528:DC%2BC3cXmt1alsbg%3D2045316910.1161/ATVBAHA.109.191635
– reference: XuQMengSLiuBLiMQLiYFangLLiYGMicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3Clin Exp Pharmacol Physiol2014413513571:CAS:528:DC%2BC2cXmsFahurw%3D2475034910.1111/1440-1681.12227
– reference: AlexandruNFrunzãSWeissEBãdilãEGeorgescuAMechanisms of vascular defects in diabetes mellitus2017SwitzerlandSpringer International Publishing AG
– reference: WangXRZhangMWChenDDZhangYChenAFAMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetesAm J Physiol Endocrinol Metab2011300E113511451:CAS:528:DC%2BC3MXot1Cns7s%3D21427411311859710.1152/ajpendo.00001.2011
– reference: YuanQHuCPGongZCBaiYPLiuSYLiYJJiangJLAccelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginineBiochem Biophys Res Commun20154588698761:CAS:528:DC%2BC2MXjtlWjsb0%3D2570178210.1016/j.bbrc.2015.02.050
– reference: Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA (2020) Human peripheral blood-derived endothelial colony-forming cells are highly similar to mature vascular endothelial cells yet demonstrate a transitional transcriptomic signature. Cells 9. https://doi.org/10.3390/cells9040876
– reference: TanakaRIto-HiranoRFujimuraSAritaKHagiwaraHMitaTItohMKawajiHOgawaTWatadaHEx vivo conditioning of peripheral blood mononuclear cells of diabetic patients promotes vasculogenic wound healingStem Cells Transl Med20211089590933599112813334310.1002/sctm.20-0309
– volume: 10
  start-page: 49
  year: 2013
  ident: 2172_CR81
  publication-title: Diab Vasc Dis Res
  doi: 10.1177/1479164112444639
– volume: 51
  start-page: 308
  year: 2011
  ident: 2172_CR43
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2011.04.007
– volume: 20
  start-page: 21
  year: 2021
  ident: 2172_CR69
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/s41573-020-0088-2
– volume: 10
  start-page: 1869
  year: 2008
  ident: 2172_CR57
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2008.2121
– volume: 211
  start-page: 103
  year: 2010
  ident: 2172_CR78
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2010.02.022
– volume: 29
  start-page: 1650
  year: 2011
  ident: 2172_CR47
  publication-title: Stem Cells
  doi: 10.1002/stem.745
– volume: 105
  start-page: 58
  year: 2018
  ident: 2172_CR105
  publication-title: Peptides
  doi: 10.1016/j.peptides.2018.05.008
– volume: 50
  start-page: 1
  year: 2018
  ident: 2172_CR110
  publication-title: Exp Mol Med
  doi: 10.1038/s12276-018-0177-z
– volume: 97
  start-page: 945
  year: 2019
  ident: 2172_CR106
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/cjpp-2018-0743
– volume: 306
  start-page: E1120
  year: 2014
  ident: 2172_CR89
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00696.2013
– ident: 2172_CR38
  doi: 10.3390/cells9040876
– volume: 383
  start-page: 1564
  year: 2020
  ident: 2172_CR108
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra2022774
– volume: 366
  start-page: 55
  year: 2018
  ident: 2172_CR102
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2018.03.012
– volume: 145
  start-page: 433
  year: 2020
  ident: 2172_CR123
  publication-title: Plast Reconstr Surg
  doi: 10.1097/prs.0000000000006502
– volume: 68
  start-page: 1635
  year: 2019
  ident: 2172_CR95
  publication-title: Diabetes
  doi: 10.2337/db18-1178
– volume: 238
  start-page: 114
  year: 2016
  ident: 2172_CR97
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2016.07.043
– ident: 2172_CR74
  doi: 10.12659/msm.881383
– volume: 181
  start-page: 9
  year: 2017
  ident: 2172_CR19
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2017.05.021
– ident: 2172_CR8
  doi: 10.3390/cells10092338
– volume: 12
  start-page: 145
  year: 2021
  ident: 2172_CR39
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02185-0
– volume: 34
  start-page: 1251
  year: 2016
  ident: 2172_CR79
  publication-title: Stem Cells
  doi: 10.1002/stem.2300
– volume: 21
  start-page: 363
  year: 2020
  ident: 2172_CR82
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-0230-3
– volume: 41
  start-page: 1146
  year: 2017
  ident: 2172_CR114
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.10833
– volume: 10
  start-page: 895
  year: 2021
  ident: 2172_CR127
  publication-title: Stem Cells Transl Med
  doi: 10.1002/sctm.20-0309
– volume: 27
  start-page: 23
  year: 2018
  ident: 2172_CR63
  publication-title: Stem Cells Dev
  doi: 10.1089/scd.2017.0114
– volume: 110
  start-page: 2484
  year: 2004
  ident: 2172_CR131
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000137969.87365.05
– volume: 25
  start-page: 4535
  year: 2018
  ident: 2172_CR18
  publication-title: Curr Med Chem
  doi: 10.2174/0929867324666171012110244
– volume: 12
  start-page: 264
  year: 2021
  ident: 2172_CR73
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02324-7
– volume: 21
  start-page: 501
  year: 2020
  ident: 2172_CR27
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2019.10831
– ident: 2172_CR5
  doi: 10.1126/scitranslmed.3009337
– volume: 13
  start-page: 1186
  year: 2020
  ident: 2172_CR103
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.202257
– volume: 80
  start-page: 793
  year: 2016
  ident: 2172_CR67
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/mmbr.00043-14
– volume: 2017
  start-page: 3831750
  year: 2017
  ident: 2172_CR120
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2017/3831750
– volume: 10
  start-page: 47
  year: 2019
  ident: 2172_CR15
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-019-1152-x
– volume: 2018
  start-page: 9847015
  year: 2018
  ident: 2172_CR28
  publication-title: Stem Cells Int
  doi: 10.1155/2018/9847015
– volume: 130
  start-page: 5063
  year: 2020
  ident: 2172_CR56
  publication-title: J Clin Invest
  doi: 10.1172/jci137556
– ident: 2172_CR84
  doi: 10.3390/antiox10050727
– volume: 12
  start-page: 520
  year: 2021
  ident: 2172_CR40
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02592-3
– volume: 30
  start-page: 1094
  year: 2010
  ident: 2172_CR32
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.109.191635
– volume: 110
  start-page: 2440
  year: 2007
  ident: 2172_CR80
  publication-title: Blood
  doi: 10.1182/blood-2007-03-078709
– volume: 70
  start-page: 117
  year: 2019
  ident: 2172_CR100
  publication-title: Mol Aspects Med
  doi: 10.1016/j.mam.2019.09.007
– volume: 22
  start-page: 75
  year: 2021
  ident: 2172_CR113
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-00314-w
– volume: 904
  start-page: 155
  year: 2012
  ident: 2172_CR31
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-61779-943-3_13
– volume: 2012
  year: 2012
  ident: 2172_CR125
  publication-title: Exp Diabetes Res
  doi: 10.1155/2012/471823
– ident: 2172_CR13
  doi: 10.1016/j.jaad.2015.08.070
– volume: 57
  start-page: 1315
  year: 2020
  ident: 2172_CR94
  publication-title: Acta Diabetol
  doi: 10.1007/s00592-020-01551-3
– volume: 63
  start-page: 1353
  year: 2014
  ident: 2172_CR68
  publication-title: Diabetes
  doi: 10.2337/db13-0894
– volume: 279
  start-page: 2550
  year: 2004
  ident: 2172_CR59
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M308197200
– volume: 10
  start-page: 1270
  year: 2020
  ident: 2172_CR36
  publication-title: Cardiovasc Diagn Ther
  doi: 10.21037/cdt-20-536
– volume: 25
  start-page: 652
  year: 2021
  ident: 2172_CR3
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.16111
– volume: 146
  start-page: 97
  year: 2019
  ident: 2172_CR16
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.09.010
– volume: 133
  start-page: 2559
  year: 2019
  ident: 2172_CR14
  publication-title: Blood
  doi: 10.1182/blood.2019000510
– volume: 63
  start-page: 1410
  year: 2014
  ident: 2172_CR118
  publication-title: Diabetes
  doi: 10.2337/db13-0941
– volume: 14
  start-page: 381
  year: 2017
  ident: 2172_CR61
  publication-title: Diab Vasc Dis Res
  doi: 10.1177/1479164117719058
– volume: 16
  start-page: 735
  year: 2013
  ident: 2172_CR33
  publication-title: Angiogenesis
  doi: 10.1007/s10456-013-9350-0
– volume: 10
  start-page: 858
  year: 2004
  ident: 2172_CR58
  publication-title: Nat Med
  doi: 10.1038/nm1075
– volume: 197
  start-page: 463
  year: 2008
  ident: 2172_CR77
  publication-title: J Endocrinol
  doi: 10.1677/joe-08-0036
– volume: 234
  start-page: 22082
  year: 2019
  ident: 2172_CR107
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28771
– volume: 2018
  start-page: 9045976
  year: 2018
  ident: 2172_CR119
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2018/9045976
– volume: 166
  start-page: 1386
  year: 2016
  ident: 2172_CR128
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.055
– volume: 51
  start-page: 109
  year: 2011
  ident: 2172_CR115
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2011.03.008
– volume: 2016
  start-page: 2029854
  year: 2016
  ident: 2172_CR87
  publication-title: J Diabetes Res
  doi: 10.1155/2016/2029854
– volume: 5
  start-page: 530
  year: 2016
  ident: 2172_CR34
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2015-0227
– ident: 2172_CR121
  doi: 10.1042/BSR20171459
– volume-title: Mechanisms of vascular defects in diabetes mellitus
  year: 2017
  ident: 2172_CR35
– volume: 46
  start-page: 1146
  year: 2020
  ident: 2172_CR104
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2020.4664
– volume: 275
  start-page: 964
  year: 1997
  ident: 2172_CR23
  publication-title: Science
  doi: 10.1126/science.275.5302.964
– volume: 5
  start-page: 341
  year: 2012
  ident: 2172_CR72
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2011.644
– volume: 87
  start-page: 5
  year: 2015
  ident: 2172_CR51
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.22596
– volume: 62
  start-page: 1539
  year: 2019
  ident: 2172_CR11
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4959-1
– volume: 477
  start-page: 117
  year: 2021
  ident: 2172_CR42
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2021.05.010
– volume: 36
  start-page: 712
  year: 2015
  ident: 2172_CR66
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000430132
– volume: 37
  start-page: 972
  year: 2019
  ident: 2172_CR62
  publication-title: J Hypertens
  doi: 10.1097/HJH.0000000000001983
– volume: 52
  start-page: 186
  year: 2014
  ident: 2172_CR46
  publication-title: Blood Cells Mol Dis
  doi: 10.1016/j.bcmd.2013.11.004
– volume: 8
  start-page: 56
  year: 2009
  ident: 2172_CR129
  publication-title: Cardiovasc Diabetol
  doi: 10.1186/1475-2840-8-56
– volume: 11
  start-page: 172
  year: 2020
  ident: 2172_CR26
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-01687-7
– volume: 8
  start-page: 2274
  year: 2015
  ident: 2172_CR70
  publication-title: Int J Clin Exp Pathol
– volume: 63
  year: 2020
  ident: 2172_CR85
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2020.101139
– volume: 38
  start-page: 1013
  year: 2014
  ident: 2172_CR75
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.10288
– volume: 21
  start-page: 1137
  year: 2019
  ident: 2172_CR22
  publication-title: Cytotherapy
  doi: 10.1016/j.jcyt.2019.09.002
– volume: 15
  start-page: 1299
  year: 2011
  ident: 2172_CR71
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2011.01301.x
– volume: 12
  start-page: 846
  year: 2021
  ident: 2172_CR48
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-021-04136-2
– volume: 18
  start-page: 747
  year: 2021
  ident: 2172_CR53
  publication-title: Tissue Eng Regen Med
  doi: 10.1007/s13770-021-00366-9
– volume: 62
  start-page: 3207
  year: 2013
  ident: 2172_CR20
  publication-title: Diabetes
  doi: 10.2337/db12-1621
– volume: 12
  start-page: 222
  year: 2016
  ident: 2172_CR10
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2016.15
– volume: 12
  start-page: 3363
  year: 2021
  ident: 2172_CR55
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-23448-7
– volume: 678
  start-page: 1
  year: 2018
  ident: 2172_CR96
  publication-title: Gene
  doi: 10.1016/j.gene.2018.07.072
– ident: 2172_CR52
  doi: 10.3390/ijms18071419
– volume: 16
  start-page: 8691
  year: 2017
  ident: 2172_CR99
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2017.7707
– volume: 91
  start-page: 311
  year: 2012
  ident: 2172_CR76
  publication-title: Ann Hematol
  doi: 10.1007/s00277-011-1300-6
– volume: 4
  start-page: 24
  year: 2011
  ident: 2172_CR6
  publication-title: J Hematol Oncol
  doi: 10.1186/1756-8722-4-24
– volume: 16
  start-page: 15
  year: 2013
  ident: 2172_CR44
  publication-title: Gene Expr
  doi: 10.3727/105221613x13776146743307
– volume: 51
  year: 2020
  ident: 2172_CR93
  publication-title: Mol Cell Probes
  doi: 10.1016/j.mcp.2020.101527
– volume: 9
  start-page: 305
  year: 2018
  ident: 2172_CR109
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1060-5
– volume: 23
  start-page: 531
  year: 2020
  ident: 2172_CR29
  publication-title: Angiogenesis
  doi: 10.1007/s10456-020-09732-y
– volume: 43
  start-page: 136
  year: 2019
  ident: 2172_CR98
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.11070
– volume: 2
  start-page: 283
  year: 2013
  ident: 2172_CR60
  publication-title: Adv Wound Care (New Rochelle)
  doi: 10.1089/wound.2012.0398
– ident: 2172_CR1
  doi: 10.3390/ijms22126375
– volume: 27
  start-page: 324
  year: 2019
  ident: 2172_CR54
  publication-title: Wound Repair Regen
  doi: 10.1111/wrr.12708
– volume: 32
  start-page: 6525
  year: 2018
  ident: 2172_CR122
  publication-title: Faseb j
  doi: 10.1096/fj.201800248RR
– volume: 133
  start-page: 107
  year: 2019
  ident: 2172_CR86
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2019.03.010
– volume: 12
  start-page: 1594
  year: 2018
  ident: 2172_CR91
  publication-title: J Tissue Eng Regen Med
  doi: 10.1002/term.2684
– volume: 50
  start-page: 659
  year: 2015
  ident: 2172_CR111
  publication-title: Endocrine
  doi: 10.1007/s12020-015-0688-5
– volume: 127
  start-page: 310
  year: 2020
  ident: 2172_CR7
  publication-title: Circ Res
  doi: 10.1161/circresaha.120.316851
– volume: 16
  start-page: 74
  year: 2017
  ident: 2172_CR101
  publication-title: Int J Low Extrem Wounds
  doi: 10.1177/1534734617706636
– volume: 81
  start-page: 266
  year: 2018
  ident: 2172_CR88
  publication-title: J Toxicol Environ Health A
  doi: 10.1080/15287394.2018.1440185
– volume: 42
  start-page: 1327
  year: 2018
  ident: 2172_CR117
  publication-title: Int J Mol Med
  doi: 10.3892/ijmm.2018.3727
– volume: 93
  start-page: 137
  year: 2013
  ident: 2172_CR12
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00045.2011
– volume: 27
  start-page: 519
  year: 2013
  ident: 2172_CR124
  publication-title: J Diabetes Complications
  doi: 10.1016/j.jdiacomp.2013.04.007
– volume: 91
  start-page: 285
  year: 2013
  ident: 2172_CR49
  publication-title: J Mol Med (Berl)
  doi: 10.1007/s00109-013-1002-8
– volume: 306
  start-page: 43
  year: 2013
  ident: 2172_CR45
  publication-title: Int Rev Cell Mol Biol
  doi: 10.1016/b978-0-12-407694-5.00002-x
– volume: 13
  start-page: 971
  year: 2021
  ident: 2172_CR41
  publication-title: World J Stem Cells
  doi: 10.4252/wjsc.v13.i8.971
– volume: 15
  start-page: 185
  year: 2017
  ident: 2172_CR83
  publication-title: J Transl Med
  doi: 10.1186/s12967-017-1280-y
– volume: 23
  start-page: 167
  year: 2014
  ident: 2172_CR126
  publication-title: Cell Transplant
  doi: 10.3727/096368912X658007
– volume: 8
  start-page: 926
  year: 2012
  ident: 2172_CR30
  publication-title: Stem Cell Rev Rep
  doi: 10.1007/s12015-011-9332-9
– volume: 300
  start-page: E1135
  year: 2011
  ident: 2172_CR90
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00001.2011
– volume: 458
  start-page: 869
  year: 2015
  ident: 2172_CR116
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2015.02.050
– volume: 7
  start-page: 43057
  year: 2017
  ident: 2172_CR50
  publication-title: Sci Rep
  doi: 10.1038/srep43057
– volume: 32
  start-page: 1275
  year: 2011
  ident: 2172_CR2
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehq254
– volume: 7
  year: 2015
  ident: 2172_CR17
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/4/045010
– volume: 23
  start-page: 98
  year: 2015
  ident: 2172_CR4
  publication-title: Wound Repair Regen
  doi: 10.1111/wrr.12253
– volume: 16
  start-page: 377
  year: 2020
  ident: 2172_CR9
  publication-title: Nat Rev Nephrol
  doi: 10.1038/s41581-020-0278-5
– volume: 14
  start-page: 318
  year: 2004
  ident: 2172_CR24
  publication-title: Trends Cardiovasc Med
  doi: 10.1016/j.tcm.2004.10.001
– volume: 69
  start-page: 1779
  year: 2020
  ident: 2172_CR21
  publication-title: Diabetes
  doi: 10.2337/db19-0829
– volume: 22
  start-page: 1583
  year: 2018
  ident: 2172_CR92
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13434
– volume: 9
  start-page: 1142
  year: 2021
  ident: 2172_CR25
  publication-title: Ann Transl Med
  doi: 10.21037/atm-21-2459
– volume: 11
  start-page: 441
  year: 2020
  ident: 2172_CR37
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-020-01958-3
– volume: 41
  start-page: 351
  year: 2014
  ident: 2172_CR112
  publication-title: Clin Exp Pharmacol Physiol
  doi: 10.1111/1440-1681.12227
– volume: 25
  start-page: 698
  year: 2005
  ident: 2172_CR130
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000156401.04325.8f
– volume: 63
  start-page: 1763
  year: 2014
  ident: 2172_CR64
  publication-title: Diabetes
  doi: 10.2337/db13-0483
– volume: 53
  start-page: 64
  year: 2012
  ident: 2172_CR65
  publication-title: J Mol Cell Cardiol
  doi: 10.1016/j.yjmcc.2012.04.003
SSID ssj0017594
Score 2.4809237
SecondaryResourceType review_article
Snippet Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms Biomedical and Life Sciences
Biomedicine
Diabetes
Diabetes mellitus
Endothelial cells
Human Genetics
Hyperglycemia
Internal Medicine
Molecular Medicine
Molecular modelling
Progenitor cells
Review
Stem cells
Therapeutic targets
Tissue engineering
Wound healing
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-QLyIb9cXEbxpsG2yTetFRBQR9CAu7K0kaarC2q67KyL-eWfStKuIXts0DflmMu8MIYeRNVpxzpmWEWdCqoSpJI1ZoYSQNrRA0ujQv72Lr3vipt_te4fb2KdVNmeiO6jzyqCP_AQEdxSjuJFnw1eGXaMwuupbaMySeby6DKla9luDCySja4QIFkzMIjAMfNGMK51zMSGGCQquRxMLfwqmX9rmr0ipE0BXy2TJa470vIZ6hczYcpUs3PrY-Br5vK_bysNG06qgtsyxuGoA9EUxCcsi744oOuopCjNHb7SuUqRPYI2OHgcfxr48q1MKqjb9VphF63TxMX0uae2rhWfv2I-Jop4JE6yT3tXlw8U1860VmOGyO2EGhBDXRkulDDA1N0VYRCFYqwoeaJmkeQKcDPsibKFyC0IrFzrmOkwCBVimfIPMlVVptwi1SoeFyUU3iFLAukgx7SM1wsQBT41JOyRs9jUz_t5xbH8xyNobkx0WGeCQOSyysEOO2m-G9a0b_47ebeDKPAeOsym9dMhB-xp4B_dZlbZ6wzFgXcEoCWM2a5jb33GBJcXdoEOOG9ynk_-9lu3_17JDFiOsn3CpP7tkbjJ6s3ug1Uz0viPdL6IC8sc
  priority: 102
  providerName: ProQuest
Title Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing
URI https://link.springer.com/article/10.1007/s00109-021-02172-1
https://www.ncbi.nlm.nih.gov/pubmed/34997250
https://www.proquest.com/docview/2642624157
https://www.proquest.com/docview/2618226277
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8APFFPL9u_Vhy4NtdYNukTXtvq6wninKIC-tTSdL0Ttjryu6KiP_8zaQfengKPhXSaVrml-nMZGYyAIehs0YLIbhRoeBS6YTrJI15oaVULnC4pGlD_-IyPh3Ks1E0qovCZk22exOS9H_qttjNR3E4pRT4rkocfZ7lCH13SuQahv02dqAi3_4Q_ZaYh-gO1KUy_5_jX3X0ysZ8FR_1audkHdZqe5H1K4A_wYIrN2Dloo6Ib8LTVdVMHtnLJgVzZU4lVWNcVYxSrxxJ7JTR9jwjFeZXGatqE9lv9EGnv8aP1v251d8ZGtjsRTkWq5LEZ-y2ZNUOLY49UBcmRtYlTrAFw5PB9fEprxsqcCtUNOcWVY8w1iitLYqysEVQhAH6qBoHjErSPEH5Rb5IV-jcoarKpYmFCZKeRgRTsQ1L5aR0n4E5bYLC5jLqhSkiXKSU7JFaaeOeSK1NOxA0fM1sfdo4Nb0YZ-05yR6LDHHIPBZZ0IGv7TN31Vkb71LvN3BltdzNMjTvwpiMEtWBL-1tlBjisy7d5J5o0KdCKoU0OxXM7euEpELiqNeBbw3uz5O__S27HyPfg9WQqih8AtA-LM2n9-4AbZu56cKiGqkuLPd_3JwP8Ho0uPx51fUL_C9tVvOj
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKtFeUEtfS2lxpfbUWk1sb5xUqqqKh5bCcqhA2ltqO05BWrJ0dxFC_Cd-Y2ecB1QIblwdx3E8n-fhmfEAfBDeWSOl5FYLyZU2KTdplvDSKKV97BHSdKA_3E8Gh-rnqD9agKs2F4bCKlueGBh1MXF0Rv4FBbdISNzo76d_OVWNIu9qW0KjhsWuvzhHk232bWcT6ftRiO2tg40Bb6oKcCd1f84d8l9pndXGOMSzdGVcihgNNYMNVqdZkSKIUa4rX5rCI78ulE2kjdPI4G_Q5UvI8h-h4I3I2NOjzsBDSRwKL6LFlHCBhkiTpBNS9YIPilNARKgJxeP_BeEt7faWZzYIvO2nsNxoquxHDa1nsOCrFVgaNr7453D5qy5jj4Rlk5L5qqBkrjHimVHQlydeMWXkGGAkPAO-WZ0VyY7Q-p3-GV84f3JsvjJU7dmNRDBWh6fP2HHF6rNhbDun-k-M9Foc4AUcPsiiv4TFalL518C8sXHpCtWPRIbYKjMKM8mcckkkM-eyHsTtuuauueecym2M8-6G5kCLHOmQB1rkcQ8-de-c1rd83Nt7rSVX3uz4WX6Nzx687x7jXqV1NpWfnFEftOawl8Y-r2oyd5-TilKY-1EPPrd0vx787rms3j-XdXg8OBju5Xs7-7tv4Img3I0QdrQGi_PpmX-LGtXcvgswZvD7offNPxr2MEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIyG-GFHUE9Sa6JM23Lbd7a4JMSpc-JALIZLwtrbdrpIce3B3hBD-M_86Z7ofaIi88drtdrudX-ejM9MBeCu8s0ZKya0WkittUm7SLOGlUUr7yCOk6UB_f5RsH6nd4_h4AX63uTAUVtnyxMCoi4mjM_J1FNwiIXGj18smLOJgc_jp7JxTBSnytLblNGqI7PmrSzTfZhs7m0jrd0IMt75_3eZNhQHupI7n3CEvltZZbYxDbEtXRqWI0Ggz2GB1mhUpAhplvPKlKTzy7kLZRNooHRj8JbqICdn_oiarqAeLX7ZGB4edD0PHoQwj2k8JF2iWNCk7IXEveKQ4hUeEClE8-lcs3tJ1b_lpg_gbPoKHjd7KPtdAW4YFXz2Gpf3GM_8Erg_rovZIZjYpma8KSu0aI7oZhYB54hxTRm4CRqI0oJ3VOZLsF9rC05_jK-dPT8xHhoo--ystjNXB6jN2UrH6pBjbLqkaFCMtFwdYgaN7Wfan0KsmlX8OzBsbla5Q8UBkiLQyo6CTzCmXDGTmXNaHqF3X3DW3nlPxjXHe3dccaJEjHfJAizzqw_vunbP6zo87e6-15Mqb_T_Lb9DahzfdY9y5tM6m8pML6oO2HfbS2OdZTebuc1JRQnM86MOHlu43g_9_Li_unstrWMI9k3_bGe2twgNBiRwhBmkNevPphX-J6tXcvmpwzODHfW-dP5EMNd4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+endothelial+progenitor+cell+functions+during+hyperglycemia%3A+new+therapeutic+targets+in+diabetic+wound+healing&rft.jtitle=Journal+of+molecular+medicine+%28Berlin%2C+Germany%29&rft.au=Wan%2C+Gui&rft.au=Chen%2C+Yangyang&rft.au=Chen%2C+Jing&rft.au=Yan%2C+Chengqi&rft.date=2022-04-01&rft.eissn=1432-1440&rft.volume=100&rft.issue=4&rft.spage=485&rft_id=info:doi/10.1007%2Fs00109-021-02172-1&rft_id=info%3Apmid%2F34997250&rft.externalDocID=34997250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-2716&client=summon