Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precu...
Saved in:
Published in | Journal of molecular medicine (Berlin, Germany) Vol. 100; no. 4; pp. 485 - 498 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research. |
---|---|
AbstractList | Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research. Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research. |
Author | Wan, Gui Machens, Hans-Günther Li, Wenqing Chen, Yangyang Wang, Cheng Yan, Chengqi Mao, Renqun Yang, Xiaofan Chen, Jing Chen, Zhenbing |
Author_xml | – sequence: 1 givenname: Gui orcidid: 0000-0002-2425-0050 surname: Wan fullname: Wan, Gui organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 2 givenname: Yangyang surname: Chen fullname: Chen, Yangyang organization: Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 3 givenname: Jing surname: Chen fullname: Chen, Jing organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 4 givenname: Chengqi surname: Yan fullname: Yan, Chengqi organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 5 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 6 givenname: Wenqing surname: Li fullname: Li, Wenqing organization: Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital – sequence: 7 givenname: Renqun surname: Mao fullname: Mao, Renqun organization: Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital – sequence: 8 givenname: Hans-Günther surname: Machens fullname: Machens, Hans-Günther organization: Department of Plastic and Hand Surgery, Technical University of Munich – sequence: 9 givenname: Xiaofan orcidid: 0000-0002-0997-0973 surname: Yang fullname: Yang, Xiaofan email: xiaofanyang23@163.com organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology – sequence: 10 givenname: Zhenbing orcidid: 0000-0003-2828-866X surname: Chen fullname: Chen, Zhenbing email: zbchen@hust.edu.cn organization: Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34997250$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJSTZp_kAPRdBLLm71tZbVWwlNWwgUSnsWsjz2KnglVx-EpX--cjahkEMOYsTwvMO8856jEx88IPSWkg-UEPkxEUKJagij65Osoa_QhgpeP0KQE7QhSrQNk7Q9Q-cp3VVcbpU4RWdcKCXZlmzQ358wldlkFzwOIwY_hLyD2ZkZLzFM4F0OEVuYZzwWb1cu4aFE5ye8OywQp_lgYe_MJ-zhHldtNAuU7CzOJk6QE3YeD870sPbuQ_ED3oGZ64A36PVo5gSXj_UC_b758uv6W3P74-v368-3jeVymxurFOG97aUxlnac25GOjPKOm9roZaeGTnay-hcwmgEEU4PoW97TjhjTKcUv0NVxbnX0p0DKeu_Sasl4CCVp1tKOsZZJWdH3z9C7UKKv21VKVEbQ7Uq9e6RKv4dBL9HtTTzop7NWoDsCNoaUIozauvxw5ByNmzUlek1QHxPUNT39kKCmVcqeSZ-mvyjiR1Fa1mQg_l_7BdU_382vSQ |
CitedBy_id | crossref_primary_10_1155_2023_2523245 crossref_primary_10_1016_j_biopha_2023_116035 crossref_primary_10_1016_j_heliyon_2024_e39251 crossref_primary_10_1007_s00210_023_02808_8 crossref_primary_10_1111_bph_70002 crossref_primary_10_1186_s11658_025_00702_0 crossref_primary_10_2174_1566524023666230911141402 crossref_primary_10_1016_j_mtbio_2024_101330 crossref_primary_10_1042_CS20230853 crossref_primary_10_1177_1721727X231151526 crossref_primary_10_1186_s12951_023_02119_3 crossref_primary_10_1007_s00109_022_02251_x crossref_primary_10_1016_j_biopha_2024_117072 crossref_primary_10_2147_IJN_S480901 crossref_primary_10_1021_acsbiomaterials_4c00692 crossref_primary_10_1021_acsbiomaterials_4c00470 crossref_primary_10_1111_1753_0407_13372 crossref_primary_10_1016_j_mtbio_2025_101652 |
Cites_doi | 10.1177/1479164112444639 10.1016/j.yjmcc.2011.04.007 10.1038/s41573-020-0088-2 10.1089/ars.2008.2121 10.1016/j.atherosclerosis.2010.02.022 10.1002/stem.745 10.1016/j.peptides.2018.05.008 10.1038/s12276-018-0177-z 10.1139/cjpp-2018-0743 10.1152/ajpendo.00696.2013 10.3390/cells9040876 10.1056/NEJMra2022774 10.1016/j.yexcr.2018.03.012 10.1097/prs.0000000000006502 10.2337/db18-1178 10.1016/j.jconrel.2016.07.043 10.12659/msm.881383 10.1016/j.lfs.2017.05.021 10.3390/cells10092338 10.1186/s13287-021-02185-0 10.1002/stem.2300 10.1038/s41580-020-0230-3 10.1002/cbin.10833 10.1002/sctm.20-0309 10.1089/scd.2017.0114 10.1161/01.CIR.0000137969.87365.05 10.2174/0929867324666171012110244 10.1186/s13287-021-02324-7 10.3892/mmr.2019.10831 10.1126/scitranslmed.3009337 10.18632/aging.202257 10.1128/mmbr.00043-14 10.1155/2017/3831750 10.1186/s13287-019-1152-x 10.1155/2018/9847015 10.1172/jci137556 10.3390/antiox10050727 10.1186/s13287-021-02592-3 10.1161/ATVBAHA.109.191635 10.1182/blood-2007-03-078709 10.1016/j.mam.2019.09.007 10.1038/s41580-020-00314-w 10.1007/978-1-61779-943-3_13 10.1155/2012/471823 10.1016/j.jaad.2015.08.070 10.1007/s00592-020-01551-3 10.2337/db13-0894 10.1074/jbc.M308197200 10.21037/cdt-20-536 10.1111/jcmm.16111 10.1016/j.addr.2018.09.010 10.1182/blood.2019000510 10.2337/db13-0941 10.1177/1479164117719058 10.1007/s10456-013-9350-0 10.1038/nm1075 10.1677/joe-08-0036 10.1002/jcp.28771 10.1155/2018/9045976 10.1016/j.cell.2016.08.055 10.1016/j.yjmcc.2011.03.008 10.1155/2016/2029854 10.5966/sctm.2015-0227 10.1042/BSR20171459 10.3892/ijmm.2020.4664 10.1126/science.275.5302.964 10.3892/mmr.2011.644 10.1002/cyto.a.22596 10.1007/s00125-019-4959-1 10.1016/j.ydbio.2021.05.010 10.1159/000430132 10.1097/HJH.0000000000001983 10.1016/j.bcmd.2013.11.004 10.1186/1475-2840-8-56 10.1186/s13287-020-01687-7 10.1016/j.arr.2020.101139 10.1002/cbin.10288 10.1016/j.jcyt.2019.09.002 10.1111/j.1582-4934.2011.01301.x 10.1038/s41419-021-04136-2 10.1007/s13770-021-00366-9 10.2337/db12-1621 10.1038/nrendo.2016.15 10.1038/s41467-021-23448-7 10.1016/j.gene.2018.07.072 10.3390/ijms18071419 10.3892/mmr.2017.7707 10.1007/s00277-011-1300-6 10.1186/1756-8722-4-24 10.3727/105221613x13776146743307 10.1016/j.mcp.2020.101527 10.1186/s13287-018-1060-5 10.1007/s10456-020-09732-y 10.1002/cbin.11070 10.1089/wound.2012.0398 10.3390/ijms22126375 10.1111/wrr.12708 10.1096/fj.201800248RR 10.1016/j.bios.2019.03.010 10.1002/term.2684 10.1007/s12020-015-0688-5 10.1161/circresaha.120.316851 10.1177/1534734617706636 10.1080/15287394.2018.1440185 10.3892/ijmm.2018.3727 10.1152/physrev.00045.2011 10.1016/j.jdiacomp.2013.04.007 10.1007/s00109-013-1002-8 10.1016/b978-0-12-407694-5.00002-x 10.4252/wjsc.v13.i8.971 10.1186/s12967-017-1280-y 10.3727/096368912X658007 10.1007/s12015-011-9332-9 10.1152/ajpendo.00001.2011 10.1016/j.bbrc.2015.02.050 10.1038/srep43057 10.1093/eurheartj/ehq254 10.1088/1758-5090/7/4/045010 10.1111/wrr.12253 10.1038/s41581-020-0278-5 10.1016/j.tcm.2004.10.001 10.2337/db19-0829 10.1111/jcmm.13434 10.21037/atm-21-2459 10.1186/s13287-020-01958-3 10.1111/1440-1681.12227 10.1161/01.ATV.0000156401.04325.8f 10.2337/db13-0483 10.1016/j.yjmcc.2012.04.003 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00109-021-02172-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest One Academic Middle East (New) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1440 |
EndPage | 498 |
ExternalDocumentID | 34997250 10_1007_s00109_021_02172_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .55 .86 .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7R Z7U Z7W Z7Z Z82 Z83 Z87 Z8M Z8O Z8Q Z8T Z8V Z8W Z91 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-c9903bcb7aac1833cf1f21383aaacb789d87871724efade429d4b63b180aa8993 |
IEDL.DBID | U2A |
ISSN | 0946-2716 1432-1440 |
IngestDate | Mon Aug 18 12:41:22 EDT 2025 Sat Aug 23 14:29:23 EDT 2025 Thu Apr 03 07:07:35 EDT 2025 Tue Jul 01 02:55:39 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 21 02:47:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Hyperglycemia Wound healing Diabetes EPCs |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-c9903bcb7aac1833cf1f21383aaacb789d87871724efade429d4b63b180aa8993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-2828-866X 0000-0002-0997-0973 0000-0002-2425-0050 |
PMID | 34997250 |
PQID | 2642624157 |
PQPubID | 48876 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2618226277 proquest_journals_2642624157 pubmed_primary_34997250 crossref_citationtrail_10_1007_s00109_021_02172_1 crossref_primary_10_1007_s00109_021_02172_1 springer_journals_10_1007_s00109_021_02172_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220400 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: New York |
PublicationTitle | Journal of molecular medicine (Berlin, Germany) |
PublicationTitleAbbrev | J Mol Med |
PublicationTitleAlternate | J Mol Med (Berl) |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | MirHAAliRMushtaqUKhandayFAStructure-functional implications of longevity protein p66Shc in health and diseaseAgeing Res Rev2020631:CAS:528:DC%2BB3cXhvVSlsL7O3279550410.1016/j.arr.2020.101139 LiWDuDWangHLiuYLaiXJiangFChenDZhangYZongJLiYSilent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathwayInt J Clin Exp Pathol2015822742287260457354440044 EidSSasKMAbcouwerSFFeldmanELGardnerTWPennathurSFortPENew insights into the mechanisms of diabetic complications: role of lipids and lipid metabolismDiabetologia2019621539154931346658667981410.1007/s00125-019-4959-1 ChenQShenZMaoYLiQLiuYMeiMQiuFWangMInhibition of microRNA-34a mediates protection of thymosin beta 4 in endothelial progenitor cells against advanced glycation endproducts by targeting B-cell lymphoma 2Can J Physiol Pharmacol2019979459511:CAS:528:DC%2BC1MXhsFGjt7bE3139759910.1139/cjpp-2018-0743 MizushimaNLevineBAutophagy in human diseasesN Engl J Med2020383156415761:CAS:528:DC%2BB3cXitFWmsbvM3305328510.1056/NEJMra2022774 UmpierrezGKorytkowskiMDiabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemiaNat Rev Endocrinol2016122222321:CAS:528:DC%2BC28Xjt1ymtL0%3D2689326210.1038/nrendo.2016.15 ZhuYHoshiRChenSYiJDuanCGalianoRDZhangHFAmeerGASustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetesJ Control Release20162381141221:CAS:528:DC%2BC28Xht1GltrfF2747376610.1016/j.jconrel.2016.07.043 LuoYFWanXXZhaoLLGuoZShenRTZengPYWangLHYuanJJYangWJYueCMicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-junAging (Albany NY)2020131186121110.18632/aging.202257 WangKDaiXHeJYanXYangCFanXSunSChenJXuJDengZEndothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cellsDiabetes2020691779179232404351751947410.2337/db19-0829 Diaz Del MoralSBarrenaSMunoz-ChapuliRCarmonaREmbryonic circulating endothelial progenitor cellsAngiogenesis2020235315413261336110.1007/s10456-020-09732-y BenincasaJCde Freitas FilhoLHCarneiroGDSielskiMSGiorgioSWerneckCCVicenteCPHyperbaric oxygen affects endothelial progenitor cells proliferation in vitroCell Biol Int2019431361461:CAS:528:DC%2BC1MXhvVeksrc%3D3036221210.1002/cbin.11070 PetrelliADi FenzaRCarvelloMGattiFSecchiAFiorinaPStrategies to reverse endothelial progenitor cell dysfunction in diabetesExp Diabetes Res2012201222474422329620210.1155/2012/471823 LewisDMAbaciHEXuYGerechtSEndothelial progenitor cell recruitment in a microfluidic vascular modelBiofabrication201572669359910.1088/1758-5090/7/4/045010 LinRZMoreno-LunaRMunoz-HernandezRLiDJaminetSCGreeneAKMelero-MartinJMHuman white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potentialAngiogenesis2013167357441:CAS:528:DC%2BC3sXhsVOgsrbP23636611376291610.1007/s10456-013-9350-0 AbdelgawadMEDesterkeCUzanGNaserianSSingle-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markersStem Cell Res Ther2021121451:CAS:528:DC%2BB3MXntVOgsr4%3D33627177790565610.1186/s13287-021-02185-0 ChengSMChangSJTsaiTNWuCHLinWSLinWYChengCCDifferential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophagesGene Expr20131615241:CAS:528:DC%2BC2cXltFKhu7Y%3D24397208875026310.3727/105221613x13776146743307 KienstraKAHirschiKKVascular progenitor cell mobilizationMethods Mol Biol20129041551641:CAS:528:DC%2BC38XhvVClsbjI2289093010.1007/978-1-61779-943-3_13 Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38 LiYZhiKHanSLiXLiMLianWZhangHZhangXTUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signalingStem Cell Res Ther2020114411:CAS:528:DC%2BB3cXitFSgtrrO33059750755875210.1186/s13287-020-01958-3 ChopraHHungMKKwongDLZhangCFPowEHNInsights into endothelial progenitor cells: origin, classification, potentials, and prospectsStem Cells Int2018201898470151:CAS:528:DC%2BC1MXitleltLnK30581475627649010.1155/2018/9847015 KimJHKimKAShinYJKimHMajidABaeONMethylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cellsJ Toxicol Environ Health A2018812662771:CAS:528:DC%2BC1cXjtlygtLo%3D2947378810.1080/15287394.2018.1440185 AlexandruNFrunzãSWeissEBãdilãEGeorgescuAMechanisms of vascular defects in diabetes mellitus2017SwitzerlandSpringer International Publishing AG GaoJWangYLiWZhangJCheYCuiXSunBZhaoGLoss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cellsGene2018678171:CAS:528:DC%2BC1cXhsVGit77K3006393710.1016/j.gene.2018.07.072 UrbichCDimmelerSEndothelial progenitor cells functional characterizationTrends Cardiovasc Med2004143183221:CAS:528:DC%2BD2cXhtVOntLnL1559610910.1016/j.tcm.2004.10.001 RuggeriAPaviglianitiAVoltFKenzeyCRafiiHRochaVGluckmanEEndothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantationCurr Med Chem201825453545441:CAS:528:DC%2BC1cXisF2hu7fM2902250410.2174/0929867324666171012110244 ProustRPonsenACRouffiacVSchenowitzCMontespanFSer-Le RouxKDe LeeuwFLaplace-BuilhéCMauduitPCarosellaEDCord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse modelStem Cell Res Ther2020111721:CAS:528:DC%2BB3cXptVGktbc%3D32381102720673410.1186/s13287-020-01687-7 WenYChenRZhuCQiaoHLiuYJiHMiaoJChenLLiuXYangYMiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting ApelinPeptides201810558651:CAS:528:DC%2BC1cXhtVais7%2FK2980058810.1016/j.peptides.2018.05.008 SunkariVGLindFBotusanIRKashifALiuZJYla-HerttualaSBrismarKVelazquezOCatrinaSBHyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic miceWound Repair Regen201523981032553261910.1111/wrr.12253 CeradiniDJKulkarniARCallaghanMJTepperOMBastidasNKleinmanMECaplaJMGalianoRDLevineJPGurtnerGCProgenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1Nat Med2004108588641:CAS:528:DC%2BD2cXmtFWrtr0%3D1523559710.1038/nm1075 Gurevich DB, David DT, Sundararaman A, Patel J (2021) Endothelial heterogeneity in development and wound healing. Cells 10. https://doi.org/10.3390/cells10092338 IshiharaJIshiharaAStarkeRDPeghaireCRSmithKEMcKinnonTAJTabataYSasakiKWhiteMJVFukunagaKThe heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healingBlood2019133255925691:CAS:528:DC%2BC1MXhsVyrsrrN30975637656659310.1182/blood.2019000510 HanXTaoYDengYYuJSunYJiangGMetformin accelerates wound healing in type 2 diabetic db/db miceMol Med Rep201716869186981:CAS:528:DC%2BC1cXhtl2rs7bO28990070577994710.3892/mmr.2017.7707 KangHMaXLiuJFanYDengXHigh glucose-induced endothelial progenitor cell dysfunctionDiab Vasc Dis Res2017143813941:CAS:528:DC%2BC1cXhvVCrs7c%3D2871831810.1177/1479164117719058 ChruewkamlowNPruekprasertKPhutthakunphithakPAcharayothinOPrapassaroTHongkuKHahtapornsawanSPuangpunngamNChinsakchaiKWongwanitCNovel culture media enhances mononuclear cells from patients with chronic limb-threatening ischemia to increase vasculogenesis and anti-inflammatory effectStem Cell Res Ther2021125201:CAS:528:DC%2BB38Xjt1Klur4%3D34583768847988510.1186/s13287-021-02592-3 AlbieroMPoncinaNTjwaMCiciliotSMenegazzoLCeolottoGVigili de KreutzenbergSMouraRGiorgioMPelicciPDiabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1Diabetes201463135313651:CAS:528:DC%2BC2cXls1Oisbc%3D2427098310.2337/db13-0894 WangCMaoCLouYXuJWangQZhangZTangQZhangXXuHFengYMonotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healingJ Cell Mol Med201822158316001:CAS:528:DC%2BC1cXjsVyksb8%3D2927830910.1111/jcmm.13434 LiJHLiYHuangDYaoMRole of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regenerationTissue Eng Regen Med2021187477581:CAS:528:DC%2BB3MXitVSkt7bP3444906410.1007/s13770-021-00366-9 CalissiGLamEWLinkWTherapeutic strategies targeting FOXO transcription factorsNat Rev Drug Discov20212021381:CAS:528:DC%2BB3cXit12ktLvO3317318910.1038/s41573-020-0088-2 JiangCLiRXiuCMaXHuHWeiLTangYTaoMZhaoJUpregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitusStem Cell Res Ther2021122641:CAS:528:DC%2BB3MXhtlOmsbbE33941256809172010.1186/s13287-021-02324-7 YangYZhouYWangYWeiXWuLWangTMaAExendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axisActa Diabetol202057131513261:CAS:528:DC%2BB3cXhtF2ju77F3255653210.1007/s00592-020-01551-3 YoderMCIs endothelium the origin of endothelial progenitor cells?Arterioscler Thromb Vasc Biol201030109411031:CAS:528:DC%2BC3cXmt1alsbg%3D2045316910.1161/ATVBAHA.109.191635 RoseJAErzurumSAsosinghKBiology and flow cytometry of proangiogenic hematopoietic progenitors cellsCytometry A2015875191:CAS:528:DC%2BC2cXitFGrsr7I2541803010.1002/cyto.a.22596 Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071419 ChongMSNgWKChanJKConcise review: endothelial progenitor cells in regenerative medicine: applications and challengesStem Cells Transl Med201655305381:CAS:528:DC%2BC2sXhtVyht70%3D26956207479874010.5966/sctm.2015-0227 ReschTPircherAKählerCMPratschkeJHilbeWEndothelial progenitor cells: current issues on chara E Zuccolo (2172_CR63) 2018; 27 S Diaz Del Moral (2172_CR29) 2020; 23 YW Kwon (2172_CR50) 2017; 7 X Han (2172_CR99) 2017; 16 G Eelen (2172_CR7) 2020; 127 RK Ambasta (2172_CR83) 2017; 15 2172_CR13 R Proust (2172_CR26) 2020; 11 Y Zhu (2172_CR54) 2019; 27 Z Yang (2172_CR78) 2010; 211 T Asahara (2172_CR23) 1997; 275 R Tanaka (2172_CR126) 2014; 23 N Krankel (2172_CR130) 2005; 25 JD Luo (2172_CR131) 2004; 110 H Jin (2172_CR110) 2018; 50 MS Chong (2172_CR34) 2016; 5 C Wang (2172_CR92) 2018; 22 A Zeke (2172_CR67) 2016; 80 S Kadam (2172_CR91) 2018; 12 JT Liu (2172_CR120) 2017; 2017 A Ruggeri (2172_CR18) 2018; 25 Z Kong (2172_CR36) 2020; 10 JC Benincasa (2172_CR98) 2019; 43 Q Xu (2172_CR112) 2014; 41 VG Sunkari (2172_CR4) 2015; 23 S Balaji (2172_CR60) 2013; 2 G Calissi (2172_CR69) 2021; 20 H Kang (2172_CR61) 2017; 14 XR Wang (2172_CR90) 2011; 300 Y Wen (2172_CR105) 2018; 105 KA Kienstra (2172_CR31) 2012; 904 C Jiang (2172_CR73) 2021; 12 2172_CR38 JA Rose (2172_CR51) 2015; 87 SM Kwon (2172_CR43) 2011; 51 SM Cheng (2172_CR44) 2013; 16 R Tanaka (2172_CR127) 2021; 10 ME Abdelgawad (2172_CR39) 2021; 12 RZ Lin (2172_CR33) 2013; 16 Y Yang (2172_CR94) 2020; 57 P Chen (2172_CR107) 2019; 234 X Song (2172_CR114) 2017; 41 S Meng (2172_CR65) 2012; 53 RY Wang (2172_CR117) 2018; 42 L Tie (2172_CR89) 2014; 306 Y Li (2172_CR37) 2020; 11 F Liu (2172_CR64) 2014; 63 H Chopra (2172_CR28) 2018; 2018 N Mizushima (2172_CR108) 2020; 383 Y Yao (2172_CR95) 2019; 68 X Dai (2172_CR71) 2011; 15 E Pelosi (2172_CR46) 2014; 52 M Hassanpour (2172_CR109) 2018; 9 MC Yoder (2172_CR32) 2010; 30 B Hibbert (2172_CR118) 2014; 63 MC Yoder (2172_CR49) 2013; 91 J Zhang (2172_CR81) 2013; 10 DJ Ceradini (2172_CR58) 2004; 10 M Razazian (2172_CR41) 2021; 13 DM Lewis (2172_CR17) 2015; 7 R Tanaka (2172_CR20) 2013; 62 J Bo (2172_CR87) 2016; 2016 2172_CR121 2172_CR52 A Piatkowski (2172_CR45) 2013; 306 CH Tsai (2172_CR48) 2021; 12 N Alexandru (2172_CR35) 2017 2172_CR5 Q Chen (2172_CR106) 2019; 97 CV Desouza (2172_CR124) 2013; 27 W Zhang (2172_CR77) 2008; 197 2172_CR8 W Cao (2172_CR19) 2017; 181 Y Zhu (2172_CR97) 2016; 238 JB Cole (2172_CR9) 2020; 16 G Li (2172_CR55) 2021; 12 M Ye (2172_CR66) 2015; 36 J Ye (2172_CR101) 2017; 16 J Gao (2172_CR96) 2018; 678 R Di Micco (2172_CR113) 2021; 22 YF Luo (2172_CR103) 2020; 13 C Urbich (2172_CR24) 2004; 14 Y Aso (2172_CR111) 2015; 50 C Liu (2172_CR123) 2020; 145 J Ishihara (2172_CR14) 2019; 133 Q Hu (2172_CR62) 2019; 37 J Cheng (2172_CR104) 2020; 46 W Li (2172_CR70) 2015; 8 JH Kim (2172_CR88) 2018; 81 H Sies (2172_CR82) 2020; 21 MA Smolle (2172_CR100) 2019; 70 JB Aquino (2172_CR42) 2021; 477 K Bachelier (2172_CR27) 2020; 21 MC Deregibus (2172_CR80) 2007; 110 JH Li (2172_CR53) 2021; 18 2172_CR74 T Thum (2172_CR2) 2011; 32 H Wu (2172_CR119) 2018; 2018 ZJ Liu (2172_CR57) 2008; 10 K Kaushik (2172_CR22) 2019; 21 T Kanayasu-Toyoda (2172_CR79) 2016; 34 J Gao (2172_CR102) 2018; 366 J Fan (2172_CR3) 2021; 25 K Kasuno (2172_CR59) 2004; 279 N Chruewkamlow (2172_CR40) 2021; 12 Y Shi (2172_CR122) 2018; 32 D Srivastava (2172_CR128) 2016; 166 AL George (2172_CR6) 2011; 4 C Cao (2172_CR72) 2012; 5 AP Veith (2172_CR16) 2019; 146 HA Mir (2172_CR85) 2020; 63 2172_CR84 G Umpierrez (2172_CR10) 2016; 12 2172_CR1 T Resch (2172_CR30) 2012; 8 T Asahara (2172_CR47) 2011; 29 Q Yuan (2172_CR116) 2015; 458 Y Yang (2172_CR93) 2020; 51 S Eid (2172_CR11) 2019; 62 JM Forbes (2172_CR12) 2013; 93 S Hamed (2172_CR129) 2009; 8 S Ren (2172_CR15) 2019; 10 JE Gunton (2172_CR56) 2020; 130 J Qian (2172_CR25) 2021; 9 PH Huang (2172_CR115) 2011; 51 K Wang (2172_CR21) 2020; 69 M Albiero (2172_CR68) 2014; 63 C Jiraritthamrong (2172_CR76) 2012; 91 A Petrelli (2172_CR125) 2012; 2012 Q Yuan (2172_CR75) 2014; 38 L Ramachandra Bhat (2172_CR86) 2019; 133 |
References_xml | – reference: VeithAPHendersonKSpencerASligarADBakerABTherapeutic strategies for enhancing angiogenesis in wound healingAdv Drug Deliv Rev2019146971251:CAS:528:DC%2BC1cXhvVGisbvF3026774210.1016/j.addr.2018.09.010 – reference: BachelierKBergholzCFriedrichEBDifferentiation potential and functional properties of a CD34CD133+ subpopulation of endothelial progenitor cellsMol Med Rep2020215015071:CAS:528:DC%2BB3cXjt1CqsL0%3D3174640710.3892/mmr.2019.10831 – reference: ChongMSNgWKChanJKConcise review: endothelial progenitor cells in regenerative medicine: applications and challengesStem Cells Transl Med201655305381:CAS:528:DC%2BC2sXhtVyht70%3D26956207479874010.5966/sctm.2015-0227 – reference: KadamSKanitkarMDixitKDeshpandeRSeshadriVKaleVCurcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivoJ Tissue Eng Regen Med201812159416071:CAS:528:DC%2BC1cXht1Ohu77I2970275310.1002/term.2684 – reference: AquinoJBSierraRMontaldoLADiverse cellular origins of adult blood vascular endothelial cellsDev Biol20214771171321:CAS:528:DC%2BB3MXhtlajsrbP3404873410.1016/j.ydbio.2021.05.010 – reference: Eming SA, Martin P, Tomic-Canic M (2014) Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 6: 265sr266. https://doi.org/10.1126/scitranslmed.3009337 – reference: ChenPZhongJYeJHeYLiangZChengYZhengJChenHChenCmiR-324-5p protects against oxidative stress-induced endothelial progenitor cell injury by targeting Mtfr1J Cell Physiol201923422082220921:CAS:528:DC%2BC1MXovFGqt7k%3D3106604410.1002/jcp.28771 – reference: UmpierrezGKorytkowskiMDiabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemiaNat Rev Endocrinol2016122222321:CAS:528:DC%2BC28Xjt1ymtL0%3D2689326210.1038/nrendo.2016.15 – reference: AbdelgawadMEDesterkeCUzanGNaserianSSingle-cell transcriptomic profiling and characterization of endothelial progenitor cells: new approach for finding novel markersStem Cell Res Ther2021121451:CAS:528:DC%2BB3MXntVOgsr4%3D33627177790565610.1186/s13287-021-02185-0 – reference: YangYZhouYWangYWeiXWuLWangTMaAExendin-4 reverses high glucose-induced endothelial progenitor cell dysfunction via SDF-1β/CXCR7-AMPK/p38-MAPK/IL-6 axisActa Diabetol202057131513261:CAS:528:DC%2BB3cXhtF2ju77F3255653210.1007/s00592-020-01551-3 – reference: HuangPHChenJSTsaiHYChenYHLinFYLeuHBWuTCLinSJChenJWGlobular adiponectin improves high glucose-suppressed endothelial progenitor cell function through endothelial nitric oxide synthase dependent mechanismsJ Mol Cell Cardiol2011511091191:CAS:528:DC%2BC3MXmslyisro%3D2143996810.1016/j.yjmcc.2011.03.008 – reference: EidSSasKMAbcouwerSFFeldmanELGardnerTWPennathurSFortPENew insights into the mechanisms of diabetic complications: role of lipids and lipid metabolismDiabetologia2019621539154931346658667981410.1007/s00125-019-4959-1 – reference: IshiharaJIshiharaAStarkeRDPeghaireCRSmithKEMcKinnonTAJTabataYSasakiKWhiteMJVFukunagaKThe heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healingBlood2019133255925691:CAS:528:DC%2BC1MXhsVyrsrrN30975637656659310.1182/blood.2019000510 – reference: Di MiccoRKrizhanovskyVBakerDd'Adda di FagagnaFCellular senescence in ageing: from mechanisms to therapeutic opportunitiesNat Rev Mol Cell Biol20212275951:CAS:528:DC%2BB3cXis1Wkur7I3332861410.1038/s41580-020-00314-w – reference: ColeJBFlorezJCGenetics of diabetes mellitus and diabetes complicationsNat Rev Nephrol2020163773903239886810.1038/s41581-020-0278-5 – reference: KwonSMLeeYKYokoyamaAJungSYMasudaHKawamotoALeeYMAsaharaTDifferential activity of bone marrow hematopoietic stem cell subpopulations for EPC development and ischemic neovascularizationJ Mol Cell Cardiol2011513083171:CAS:528:DC%2BC3MXpvFWqs7w%3D2155794710.1016/j.yjmcc.2011.04.007 – reference: RenSChenJDuscherDLiuYGuoGKangYXiongHZhanPWangYWangCMicrovesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathwaysStem Cell Res Ther201910471:CAS:528:DC%2BC1MXhs1WjsrnK30704535635742110.1186/s13287-019-1152-x – reference: ThumTSchmitterKFleissnerFWiebkingVDietrichBWidderJDJazbutyteVHahnerSErtlGBauersachsJImpairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humansEur Heart J201132127512861:CAS:528:DC%2BC3MXmt1yms7Y%3D2092636310.1093/eurheartj/ehq254 – reference: ProustRPonsenACRouffiacVSchenowitzCMontespanFSer-Le RouxKDe LeeuwFLaplace-BuilhéCMauduitPCarosellaEDCord blood-endothelial colony forming cells are immunotolerated and participate at post-ischemic angiogenesis in an original dorsal chamber immunocompetent mouse modelStem Cell Res Ther2020111721:CAS:528:DC%2BB3cXptVGktbc%3D32381102720673410.1186/s13287-020-01687-7 – reference: HassanpourMRezabakhshAPezeshkianMRahbarghaziRNouriMDistinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cellsStem Cell Res Ther2018930530409213622565810.1186/s13287-018-1060-5 – reference: YaoYLiYSongQHuCXieWXuCChenQWangQKAngiogenic factor AGGF1-primed endothelial progenitor cells repair vascular defect in diabetic miceDiabetes201968163516481:CAS:528:DC%2BB3cXnt1GnsQ%3D%3D31092480690548810.2337/db18-1178 – reference: Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38 – reference: YoderMCEndothelial progenitor cell: a blood cell by many other names may serve similar functionsJ Mol Med (Berl)20139128529510.1007/s00109-013-1002-8 – reference: LiYZhiKHanSLiXLiMLianWZhangHZhangXTUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/Wnt signalingStem Cell Res Ther2020114411:CAS:528:DC%2BB3cXitFSgtrrO33059750755875210.1186/s13287-020-01958-3 – reference: GeorgeALBangalore-PrakashPRajoriaSSurianoRShanmugamAMittelmanATiwariRKEndothelial progenitor cell biology in disease and tissue regenerationJ Hematol Oncol201142421609465312365310.1186/1756-8722-4-24 – reference: GaoJWangYLiWZhangJCheYCuiXSunBZhaoGLoss of histone deacetylase 2 inhibits oxidative stress induced by high glucose via the HO-1/SIRT1 pathway in endothelial progenitor cellsGene2018678171:CAS:528:DC%2BC1cXhsVGit77K3006393710.1016/j.gene.2018.07.072 – reference: WenYChenRZhuCQiaoHLiuYJiHMiaoJChenLLiuXYangYMiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting ApelinPeptides201810558651:CAS:528:DC%2BC1cXhtVais7%2FK2980058810.1016/j.peptides.2018.05.008 – reference: ChruewkamlowNPruekprasertKPhutthakunphithakPAcharayothinOPrapassaroTHongkuKHahtapornsawanSPuangpunngamNChinsakchaiKWongwanitCNovel culture media enhances mononuclear cells from patients with chronic limb-threatening ischemia to increase vasculogenesis and anti-inflammatory effectStem Cell Res Ther2021125201:CAS:528:DC%2BB38Xjt1Klur4%3D34583768847988510.1186/s13287-021-02592-3 – reference: LiGKoCNLiDYangCWangWYangGJDi PrimoCWongVKWXiangYLinLA small molecule HIF-1alpha stabilizer that accelerates diabetic wound healingNat Commun20211233631:CAS:528:DC%2BB3MXhsVOqtrzP34099651818491110.1038/s41467-021-23448-7 – reference: RazazianMKhosraviMBahiraiiSUzanGShamdaniSNaserianSDifferences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cellsWorld J Stem Cells20211397198434567420842293210.4252/wjsc.v13.i8.971 – reference: TieLChenLYChenDDXieHHChannonKMChenAFGTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1Am J Physiol Endocrinol Metab2014306E112011311:CAS:528:DC%2BC2cXptVCitLY%3D2464424210.1152/ajpendo.00696.2013 – reference: KaushikKDasAEndothelial progenitor cell therapy for chronic wound tissue regenerationCytotherapy201921113711501:CAS:528:DC%2BC1MXitVClur%2FF3166848710.1016/j.jcyt.2019.09.002 – reference: QianJShenQYanCXYinHCaoXLinZHCaiYFLiuHAtorvastatin improves bone marrow endothelial progenitor cell function from patients with immune-related hemocytopeniaAnn Transl Med2021911421:CAS:528:DC%2BB3MXitVKksr3I34430583835068810.21037/atm-21-2459 – reference: RoseJAErzurumSAsosinghKBiology and flow cytometry of proangiogenic hematopoietic progenitors cellsCytometry A2015875191:CAS:528:DC%2BC2cXitFGrsr7I2541803010.1002/cyto.a.22596 – reference: WangRYLiuLHLiuHWuKFAnJWangQLiuYBaiLJQiBMQiBLNrf2 protects against diabetic dysfunction of endothelial progenitor cells via regulating cell senescenceInt J Mol Med201842132713401:CAS:528:DC%2BC1MXhvFCku7w%3D29901179608976010.3892/ijmm.2018.3727 – reference: ZuccoloEDi BuduoCLodolaFOrecchioniSScarpellinoGKhederDAPolettoVGuerraGBertoliniFBalduiniAStromal cell-derived factor-1α promotes endothelial colony-forming cell migration through the Ca(2+)-dependent activation of the extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/AKT pathwaysStem Cells Dev20182723341:CAS:528:DC%2BC1cXkvFegsg%3D%3D2912181710.1089/scd.2017.0114 – reference: LiWDuDWangHLiuYLaiXJiangFChenDZhangYZongJLiYSilent information regulator 1 (SIRT1) promotes the migration and proliferation of endothelial progenitor cells through the PI3K/Akt/eNOS signaling pathwayInt J Clin Exp Pathol2015822742287260457354440044 – reference: ReschTPircherAKählerCMPratschkeJHilbeWEndothelial progenitor cells: current issues on characterization and challenging clinical applicationsStem Cell Rev Rep201289269391:CAS:528:DC%2BC38XhtFKlsLjO2209542910.1007/s12015-011-9332-9 – reference: EelenGTrepsLLiXCarmelietPBasic and therapeutic aspects of angiogenesis updatedCirc Res20201273103291:CAS:528:DC%2BB3cXhtlSkt7vP3283356910.1161/circresaha.120.316851 – reference: ZhuYHoshiRChenSYiJDuanCGalianoRDZhangHFAmeerGASustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetesJ Control Release20162381141221:CAS:528:DC%2BC28Xht1GltrfF2747376610.1016/j.jconrel.2016.07.043 – reference: Gurevich DB, David DT, Sundararaman A, Patel J (2021) Endothelial heterogeneity in development and wound healing. Cells 10. https://doi.org/10.3390/cells10092338 – reference: PelosiECastelliGTestaUEndothelial progenitorsBlood Cells Mol Dis2014521861942433258310.1016/j.bcmd.2013.11.004 – reference: ZekeAMishevaMReményiABogoyevitchMAJNK signaling: regulation and functions based on complex protein-protein partnershipsMicrobiol Mol Biol Rev2016807938351:CAS:528:DC%2BC1cXnt1Kqsbk%3D27466283498167610.1128/mmbr.00043-14 – reference: AsaharaTKawamotoAMasudaHConcise review: circulating endothelial progenitor cells for vascular medicineStem Cells201129165016551:CAS:528:DC%2BC3MXhs1ejsLbK2194864910.1002/stem.745 – reference: GaoJZhaoGLiWZhangJCheYSongMGaoSZengBWangYMiR-155 targets PTCH1 to mediate endothelial progenitor cell dysfunction caused by high glucoseExp Cell Res201836655621:CAS:528:DC%2BC1cXltVyltbc%3D2954509110.1016/j.yexcr.2018.03.012 – reference: LiuCZhuJHaiBZhangWWangHLengHXuYSongCSingle intraosseous injection of simvastatin promotes endothelial progenitor cell mobilization, neovascularization, and wound healing in diabetic ratsPlast Reconstr Surg20201454334431:CAS:528:DC%2BB3cXhs1Kis7c%3D3198563710.1097/prs.0000000000006502 – reference: DaiXTanYCaiSXiongXWangLYeQYanXMaKCaiLThe role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cellsJ Cell Mol Med201115129913091:CAS:528:DC%2BC3MXnvFelsr0%3D21418513437333010.1111/j.1582-4934.2011.01301.x – reference: TanakaRVaynrubMMasudaHItoRKoboriMMiyasakaMMizunoHWarrenSMAsaharaTQuality-control culture system restores diabetic endothelial progenitor cell vasculogenesis and accelerates wound closureDiabetes201362320732171:CAS:528:DC%2BC3sXhtl2jtLrM23670975374935710.2337/db12-1621 – reference: HibbertBLavoieJRMaXSeibertTRaizmanJESimardTChenYXStewartDO'BrienERGlycogen synthase kinase-3β inhibition augments diabetic endothelial progenitor cell abundance and functionality via cathepsin B: a novel therapeutic opportunity for arterial repairDiabetes201463141014211:CAS:528:DC%2BC2cXls1OitrY%3D2429671410.2337/db13-0941 – reference: PetrelliADi FenzaRCarvelloMGattiFSecchiAFiorinaPStrategies to reverse endothelial progenitor cell dysfunction in diabetesExp Diabetes Res2012201222474422329620210.1155/2012/471823 – reference: ZhuYWangYJiaYXuJChaiYRoxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic ratsWound Repair Regen2019273243343081706510.1111/wrr.12708 – reference: WuHChenZChenJZXieJXuBResveratrol improves tube formation in AGE-induced late endothelial progenitor cells by suppressing syndecan-4 sheddingOxid Med Cell Longev2018201890459761:CAS:528:DC%2BC1MXht1GnurjI29849922591412210.1155/2018/9045976 – reference: SmolleMAPrinzFCalinGAPichlerMCurrent concepts of non-coding RNA regulation of immune checkpoints in cancerMol Aspects Med2019701171263158225910.1016/j.mam.2019.09.007 – reference: SrivastavaDDeWittNIn vivo cellular reprogramming: the next generationCell2016166138613961:CAS:528:DC%2BC28XhsFSltL3O27610565623400710.1016/j.cell.2016.08.055 – reference: DeregibusMCCantaluppiVCalogeroRLo IaconoMTettaCBianconeLBrunoSBussolatiBCamussiGEndothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNABlood2007110244024481:CAS:528:DC%2BD2sXhtFCnsbrJ10.1182/blood-2007-03-078709 – reference: LuoJDWangYYFuWLWuJChenAFGene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic miceCirculation2004110248424931:CAS:528:DC%2BD2cXosVSls7k%3D1526282910.1161/01.CIR.0000137969.87365.05 – reference: KienstraKAHirschiKKVascular progenitor cell mobilizationMethods Mol Biol20129041551641:CAS:528:DC%2BC38XhvVClsbjI2289093010.1007/978-1-61779-943-3_13 – reference: SiesHJonesDPReactive oxygen species (ROS) as pleiotropic physiological signalling agentsNat Rev Mol Cell Biol2020213633831:CAS:528:DC%2BB3cXlvFKhtrY%3D3223126310.1038/s41580-020-0230-3 – reference: HamedSBrennerBAharonADaoudDRoguinANitric oxide and superoxide dismutase modulate endothelial progenitor cell function in type 2 diabetes mellitusCardiovasc Diabetol20098561:CAS:528:DC%2BD1MXhsVSju7zK19878539277375910.1186/1475-2840-8-56 – reference: KangHMaXLiuJFanYDengXHigh glucose-induced endothelial progenitor cell dysfunctionDiab Vasc Dis Res2017143813941:CAS:528:DC%2BC1cXhvVCrs7c%3D2871831810.1177/1479164117719058 – reference: SunkariVGLindFBotusanIRKashifALiuZJYla-HerttualaSBrismarKVelazquezOCatrinaSBHyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic miceWound Repair Regen201523981032553261910.1111/wrr.12253 – reference: Okonkwo UA, DiPietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18071419 – reference: Diaz Del MoralSBarrenaSMunoz-ChapuliRCarmonaREmbryonic circulating endothelial progenitor cellsAngiogenesis2020235315413261336110.1007/s10456-020-09732-y – reference: LuoYFWanXXZhaoLLGuoZShenRTZengPYWangLHYuanJJYangWJYueCMicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-junAging (Albany NY)2020131186121110.18632/aging.202257 – reference: Xiao-Yun X, Zhao-Hui M, Ke C, Hong-Hui H, Yan-Hong X (2011) Glucagon-like peptide-1 improves proliferation and differentiation of endothelial progenitor cells via upregulating VEGF generation. Med Sci Monit 17:Br35–41. https://doi.org/10.12659/msm.881383 – reference: LiuFChenDDSunXXieHHYuanHJiaWChenAFHydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetesDiabetes201463176317781:CAS:528:DC%2BC2cXnt1Khtb4%3D24487028399495810.2337/db13-0483 – reference: ChengSMChangSJTsaiTNWuCHLinWSLinWYChengCCDifferential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophagesGene Expr20131615241:CAS:528:DC%2BC2cXltFKhu7Y%3D24397208875026310.3727/105221613x13776146743307 – reference: BenincasaJCde Freitas FilhoLHCarneiroGDSielskiMSGiorgioSWerneckCCVicenteCPHyperbaric oxygen affects endothelial progenitor cells proliferation in vitroCell Biol Int2019431361461:CAS:528:DC%2BC1MXhvVeksrc%3D3036221210.1002/cbin.11070 – reference: AmbastaRKKohliHKumarPMultiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorderJ Transl Med2017151851:CAS:528:DC%2BC1cXitVOgtbzI28859673558020410.1186/s12967-017-1280-y – reference: KongZChenMJiangJZhuJLiuYA new method of culturing rat bone marrow endothelial progenitor cells in vitroCardiovasc Diagn Ther2020101270127933224751766694010.21037/cdt-20-536 – reference: ShiYLvXLiuYLiBLiuMYanMLiuYLiQZhangXHeSElevating ATP-binding cassette transporter G1 improves re-endothelialization function of endothelial progenitor cells via Lyn/Akt/eNOS in diabetic miceFaseb j201832652565361:CAS:528:DC%2BC1MXjslSiu7c%3D3049598710.1096/fj.201800248RR – reference: GuntonJEHypoxia-inducible factors and diabetesJ Clin Invest2020130506350731:CAS:528:DC%2BB3cXitF2qs7bM32809974752447710.1172/jci137556 – reference: JiangCLiRXiuCMaXHuHWeiLTangYTaoMZhaoJUpregulating CXCR7 accelerates endothelial progenitor cell-mediated endothelial repair by activating Akt/Keap-1/Nrf2 signaling in diabetes mellitusStem Cell Res Ther2021122641:CAS:528:DC%2BB3MXhtlOmsbbE33941256809172010.1186/s13287-021-02324-7 – reference: ChopraHHungMKKwongDLZhangCFPowEHNInsights into endothelial progenitor cells: origin, classification, potentials, and prospectsStem Cells Int2018201898470151:CAS:528:DC%2BC1MXitleltLnK30581475627649010.1155/2018/9847015 – reference: YangZvon BallmoosMWFaesslerDVoelzmannJOrtmannJDiehmNKalka-MollWBaumgartnerIDi SantoSKalkaCParacrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cellsAtherosclerosis20102111031091:CAS:528:DC%2BC3cXos1yit7w%3D2022769310.1016/j.atherosclerosis.2010.02.022 – reference: Ramachandra BhatLVedanthamSKrishnanUMRayappanJBBMethylglyoxal - an emerging biomarker for diabetes mellitus diagnosis and its detection methodsBiosens Bioelectron20191331071241:CAS:528:DC%2BC1MXlvFSjsb8%3D3092162710.1016/j.bios.2019.03.010 – reference: BalajiSKingACrombleholmeTMKeswaniSGThe role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healingAdv Wound Care (New Rochelle)2013228329510.1089/wound.2012.0398 – reference: JinHZhangZWangCTangQWangJBaiXWangQNisarMTianNWangQMelatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic miceExp Mol Med2018501151:CAS:528:DC%2BC1cXit12lurfL30559383603009410.1038/s12276-018-0177-z – reference: ChengJHuWZhengFWuYLiMhsa_circ_0058092 protects against hyperglycemia-induced endothelial progenitor cell damage via miR-217/FOXO3Int J Mol Med202046114611541:CAS:528:DC%2BB3cXitVGhtLbP32705235738709210.3892/ijmm.2020.4664 – reference: SongXYangBQiuFJiaMFuGHigh glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathwayCell Biol Int201741114611591:CAS:528:DC%2BC2sXhsFWjt7%2FJ2878615210.1002/cbin.10833 – reference: Kanayasu-ToyodaTTanakaTKikuchiYUchidaEMatsuyamaAYamaguchiTCell-surface MMP-9 protein is a novel functional marker to identify and separate proangiogenic cells from early endothelial progenitor cells derived from CD133(+) CellsStem Cells201634125112621:CAS:528:DC%2BC28Xnt1Kmt7Y%3D2682479810.1002/stem.2300 – reference: KimJHKimKAShinYJKimHMajidABaeONMethylglyoxal induced advanced glycation end products (AGE)/receptor for AGE (RAGE)-mediated angiogenic impairment in bone marrow-derived endothelial progenitor cellsJ Toxicol Environ Health A2018812662771:CAS:528:DC%2BC1cXjtlygtLo%3D2947378810.1080/15287394.2018.1440185 – reference: LiuZJVelazquezOCHyperoxia, endothelial progenitor cell mobilization, and diabetic wound healingAntioxid Redox Signal200810186918821:CAS:528:DC%2BD1cXhtVymsbvN18627349263821310.1089/ars.2008.2121 – reference: CaoWCuiJLiSZhangDGuoYLiQLuanYLiuXCrocetin restores diabetic endothelial progenitor cell dysfunction by enhancing NO bioavailability via regulation of PI3K/AKT-eNOS and ROS pathwaysLife Sci20171819161:CAS:528:DC%2BC2sXhtVShsrbK2852886210.1016/j.lfs.2017.05.021 – reference: TsaiCHChenCJGongCLLiuSCChenPCHuangCCHuSLWangSWTangCHCXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progressionCell Death Dis2021128461:CAS:528:DC%2BB38Xislagsbg%3D34518512843794110.1038/s41419-021-04136-2 – reference: FanJLiuHWangJZengJTanYWangYYuXLiWWangPYangZProcyanidin B2 improves endothelial progenitor cell function and promotes wound healing in diabetic mice via activating Nrf2J Cell Mol Med2021256526651:CAS:528:DC%2BB3MXhsl2gtL4%3D3321588310.1111/jcmm.16111 – reference: PiatkowskiAGriebGSimonsDBernhagenJvan der HulstRREndothelial progenitor cells–potential new avenues to improve neoangiogenesis and reendothelializationInt Rev Cell Mol Biol201330643811:CAS:528:DC%2BC3sXhvFaltbfK2401652310.1016/b978-0-12-407694-5.00002-x – reference: ChenQShenZMaoYLiQLiuYMeiMQiuFWangMInhibition of microRNA-34a mediates protection of thymosin beta 4 in endothelial progenitor cells against advanced glycation endproducts by targeting B-cell lymphoma 2Can J Physiol Pharmacol2019979459511:CAS:528:DC%2BC1MXhsFGjt7bE3139759910.1139/cjpp-2018-0743 – reference: DesouzaCVDoes drug therapy reverse endothelial progenitor cell dysfunction in diabetes?.J Diabetes Complications2013275195252380976510.1016/j.jdiacomp.2013.04.007 – reference: LiJHLiYHuangDYaoMRole of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regenerationTissue Eng Regen Med2021187477581:CAS:528:DC%2BB3MXitVSkt7bP3444906410.1007/s13770-021-00366-9 – reference: HuQKeXZhangTChenYHuangQDengBXieSWangJNieRHydrogen sulfide improves vascular repair by promoting endothelial nitric oxide synthase-dependent mobilization of endothelial progenitor cellsJ Hypertens2019379729841:CAS:528:DC%2BC1MXlvFaqtbo%3D3048945310.1097/HJH.0000000000001983 – reference: MizushimaNLevineBAutophagy in human diseasesN Engl J Med2020383156415761:CAS:528:DC%2BB3cXitFWmsbvM3305328510.1056/NEJMra2022774 – reference: KwonYWHeoSCLeeTWParkGTYoonJWJangIHKimSCKoHCRyuYKangHN-acetylated proline-glycine-proline accelerates cutaneous wound healing and neovascularization by human endothelial progenitor cellsSci Rep20177430571:CAS:528:DC%2BC2sXjsVGjt7s%3D28230162532235610.1038/srep43057 – reference: UrbichCDimmelerSEndothelial progenitor cells functional characterizationTrends Cardiovasc Med2004143183221:CAS:528:DC%2BD2cXhtVOntLnL1559610910.1016/j.tcm.2004.10.001 – reference: Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S (2021) Diabetic complications and oxidative stress: a 20-year voyage back in time and back to the future. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10050727 – reference: AsaharaTMuroharaTSullivanASilverMvan der ZeeRLiTWitzenbichlerBSchattemanGIsnerJMIsolation of putative progenitor endothelial cells for angiogenesisScience19972759649671:CAS:528:DyaK2sXht1Clu7k%3D902007610.1126/science.275.5302.964 – reference: LinRZMoreno-LunaRMunoz-HernandezRLiDJaminetSCGreeneAKMelero-MartinJMHuman white adipose tissue vasculature contains endothelial colony-forming cells with robust in vivo vasculogenic potentialAngiogenesis2013167357441:CAS:528:DC%2BC3sXhsVOgsrbP23636611376291610.1007/s10456-013-9350-0 – reference: ZhangJZhangXLiHCuiXGuanXTangKJinCChengMHyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actionsDiab Vasc Dis Res20131049561:CAS:528:DC%2BC2cXhslCnsLvJ2256122910.1177/1479164112444639 – reference: JiraritthamrongCKheolamaiPY UP, Chayosumrit M, Supokawej A, Manochantr S, Tantrawatpan C, Sritanaudomchai H, Issaragrisil S, In vitro vessel-forming capacity of endothelial progenitor cells in high glucose conditionsAnn Hematol2012913113201:CAS:528:DC%2BC38XitFGmu78%3D2182261810.1007/s00277-011-1300-6 – reference: CalissiGLamEWLinkWTherapeutic strategies targeting FOXO transcription factorsNat Rev Drug Discov20212021381:CAS:528:DC%2BB3cXit12ktLvO3317318910.1038/s41573-020-0088-2 – reference: WangCMaoCLouYXuJWangQZhangZTangQZhangXXuHFengYMonotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healingJ Cell Mol Med201822158316001:CAS:528:DC%2BC1cXjsVyksb8%3D2927830910.1111/jcmm.13434 – reference: CeradiniDJKulkarniARCallaghanMJTepperOMBastidasNKleinmanMECaplaJMGalianoRDLevineJPGurtnerGCProgenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1Nat Med2004108588641:CAS:528:DC%2BD2cXmtFWrtr0%3D1523559710.1038/nm1075 – reference: KrankelNAdamsVLinkeAGielenSErbsSLenkKSchulerGHambrechtRHyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cellsArterioscler Thromb Vasc Biol2005256987031:CAS:528:DC%2BD2MXitlOmsLY%3D1566202210.1161/01.ATV.0000156401.04325.8f – reference: RuggeriAPaviglianitiAVoltFKenzeyCRafiiHRochaVGluckmanEEndothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantationCurr Med Chem201825453545441:CAS:528:DC%2BC1cXisF2hu7fM2902250410.2174/0929867324666171012110244 – reference: YeMLiDYangJXieJYuFMaYZhuXZhaoJLvZMicroRNA-130a Targets MAP3K12 to modulate diabetic endothelial progenitor cell functionCell Physiol Biochem2015367127261:CAS:528:DC%2BC2MXptFagur0%3D2599901710.1159/000430132 – reference: YuanQBaiYPShiRZLiuSYChenXMChenLLiYJHuCPRegulation of endothelial progenitor cell differentiation and function by dimethylarginine dimethylaminohydrolase 2 in an asymmetric dimethylarginine-independent mannerCell Biol Int201438101310221:CAS:528:DC%2BC2cXht1Kisr7F2476431310.1002/cbin.10288 – reference: ForbesJMCooperMEMechanisms of diabetic complicationsPhysiol Rev2013931371881:CAS:528:DC%2BC3sXhvFKns7w%3D2330390810.1152/physrev.00045.2011 – reference: LiuJTChenHYChenWCManKMChenYHRed yeast rice protects circulating bone marrow-derived proangiogenic cells against high-glucose-induced senescence and oxidative stress: the role of heme oxygenase-1Oxid Med Cell Longev2017201738317501:CAS:528:DC%2BC1cXhvVKjs7fP28555162543885510.1155/2017/3831750 – reference: Terriaca S, Fiorelli E, Scioli MG, Fabbri G, Storti G, Cervelli V, Orlandi A (2021) Endothelial progenitor cell-derived extracellular vesicles: potential therapeutic application in tissue repair and regeneration. Int J Mol Sci 22. https://doi.org/10.3390/ijms22126375 – reference: LewisDMAbaciHEXuYGerechtSEndothelial progenitor cell recruitment in a microfluidic vascular modelBiofabrication201572669359910.1088/1758-5090/7/4/045010 – reference: WangKDaiXHeJYanXYangCFanXSunSChenJXuJDengZEndothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cellsDiabetes2020691779179232404351751947410.2337/db19-0829 – reference: KasunoKTakabuchiSFukudaKKizaka-KondohSYodoiJAdachiTSemenzaGLHirotaKNitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signalingJ Biol Chem2004279255025581:CAS:528:DC%2BD2cXkslOkug%3D%3D1460015310.1074/jbc.M308197200 – reference: YeJKangYSunXNiPWuMLuSMicroRNA-155 Inhibition promoted wound healing in diabetic ratsInt J Low Extrem Wounds20171674841:CAS:528:DC%2BC1cXhvVCqsrg%3D2868273210.1177/1534734617706636 – reference: MengSCaoJTZhangBZhouQShenCXWangCQDownregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1J Mol Cell Cardiol20125364721:CAS:528:DC%2BC38XntFansb4%3D2252525610.1016/j.yjmcc.2012.04.003 – reference: MirHAAliRMushtaqUKhandayFAStructure-functional implications of longevity protein p66Shc in health and diseaseAgeing Res Rev2020631:CAS:528:DC%2BB3cXhvVSlsL7O3279550410.1016/j.arr.2020.101139 – reference: YangYZhouYWangYWeiXWangTMaAExendin-4 regulates endoplasmic reticulum stress to protect endothelial progenitor cells from high-glucose damageMol Cell Probes2020511:CAS:528:DC%2BB3cXjsVOksr0%3D3199630910.1016/j.mcp.2020.101527 – reference: AlbieroMPoncinaNTjwaMCiciliotSMenegazzoLCeolottoGVigili de KreutzenbergSMouraRGiorgioMPelicciPDiabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1Diabetes201463135313651:CAS:528:DC%2BC2cXls1Oisbc%3D2427098310.2337/db13-0894 – reference: ZhangWWangXHChenSFZhangGPLuNHuRMJinHMBiphasic response of endothelial progenitor cell proliferation induced by high glucose and its relationship with reactive oxygen speciesJ Endocrinol20081974634701:CAS:528:DC%2BD1cXntVCgsr8%3D1849281210.1677/joe-08-0036 – reference: TanakaRMasudaHKatoSImagawaKKanabuchiKNakashioyaCYoshibaFFukuiTItoRKoboriMAutologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcerCell Transplant2014231671792310745010.3727/096368912X658007 – reference: CaoCZhangHGongLHeYZhangNHigh glucose conditions suppress the function of bone marrow-derived endothelial progenitor cells via inhibition of the eNOS-caveolin-1 complexMol Med Rep201253413461:CAS:528:DC%2BC38XkvFelsw%3D%3D2202034310.3892/mmr.2011.644 – reference: Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol 74:607–625; quiz 625–606. https://doi.org/10.1016/j.jaad.2015.08.070 – reference: AsoYJojimaTIijimaTSuzukiKTerasawaTFukushimaMMomobayashiAHaraKTakebayashiKKasaiKSitagliptin, a dipeptidyl peptidase-4 inhibitor, increases the number of circulating CD34+CXCR4+ cells in patients with type 2 diabetesEndocrine2015506596641:CAS:528:DC%2BC2MXht1aktb%2FL2620903810.1007/s12020-015-0688-5 – reference: BoJXieSGuoYZhangCGuanYLiCLuJMengQHMethylglyoxal impairs insulin secretion of pancreatic beta-cells through increased production of ROS and mitochondrial dysfunction mediated by upregulation of UCP2 and MAPKsJ Diabetes Res2016201620298541:CAS:528:DC%2BC1cXlvFSlurs%3D2677954010.1155/2016/2029854 – reference: HanXTaoYDengYYuJSunYJiangGMetformin accelerates wound healing in type 2 diabetic db/db miceMol Med Rep201716869186981:CAS:528:DC%2BC1cXhtl2rs7bO28990070577994710.3892/mmr.2017.7707 – reference: YoderMCIs endothelium the origin of endothelial progenitor cells?Arterioscler Thromb Vasc Biol201030109411031:CAS:528:DC%2BC3cXmt1alsbg%3D2045316910.1161/ATVBAHA.109.191635 – reference: XuQMengSLiuBLiMQLiYFangLLiYGMicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3Clin Exp Pharmacol Physiol2014413513571:CAS:528:DC%2BC2cXmsFahurw%3D2475034910.1111/1440-1681.12227 – reference: AlexandruNFrunzãSWeissEBãdilãEGeorgescuAMechanisms of vascular defects in diabetes mellitus2017SwitzerlandSpringer International Publishing AG – reference: WangXRZhangMWChenDDZhangYChenAFAMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetesAm J Physiol Endocrinol Metab2011300E113511451:CAS:528:DC%2BC3MXot1Cns7s%3D21427411311859710.1152/ajpendo.00001.2011 – reference: YuanQHuCPGongZCBaiYPLiuSYLiYJJiangJLAccelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginineBiochem Biophys Res Commun20154588698761:CAS:528:DC%2BC2MXjtlWjsb0%3D2570178210.1016/j.bbrc.2015.02.050 – reference: Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA (2020) Human peripheral blood-derived endothelial colony-forming cells are highly similar to mature vascular endothelial cells yet demonstrate a transitional transcriptomic signature. Cells 9. https://doi.org/10.3390/cells9040876 – reference: TanakaRIto-HiranoRFujimuraSAritaKHagiwaraHMitaTItohMKawajiHOgawaTWatadaHEx vivo conditioning of peripheral blood mononuclear cells of diabetic patients promotes vasculogenic wound healingStem Cells Transl Med20211089590933599112813334310.1002/sctm.20-0309 – volume: 10 start-page: 49 year: 2013 ident: 2172_CR81 publication-title: Diab Vasc Dis Res doi: 10.1177/1479164112444639 – volume: 51 start-page: 308 year: 2011 ident: 2172_CR43 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2011.04.007 – volume: 20 start-page: 21 year: 2021 ident: 2172_CR69 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-020-0088-2 – volume: 10 start-page: 1869 year: 2008 ident: 2172_CR57 publication-title: Antioxid Redox Signal doi: 10.1089/ars.2008.2121 – volume: 211 start-page: 103 year: 2010 ident: 2172_CR78 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2010.02.022 – volume: 29 start-page: 1650 year: 2011 ident: 2172_CR47 publication-title: Stem Cells doi: 10.1002/stem.745 – volume: 105 start-page: 58 year: 2018 ident: 2172_CR105 publication-title: Peptides doi: 10.1016/j.peptides.2018.05.008 – volume: 50 start-page: 1 year: 2018 ident: 2172_CR110 publication-title: Exp Mol Med doi: 10.1038/s12276-018-0177-z – volume: 97 start-page: 945 year: 2019 ident: 2172_CR106 publication-title: Can J Physiol Pharmacol doi: 10.1139/cjpp-2018-0743 – volume: 306 start-page: E1120 year: 2014 ident: 2172_CR89 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00696.2013 – ident: 2172_CR38 doi: 10.3390/cells9040876 – volume: 383 start-page: 1564 year: 2020 ident: 2172_CR108 publication-title: N Engl J Med doi: 10.1056/NEJMra2022774 – volume: 366 start-page: 55 year: 2018 ident: 2172_CR102 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2018.03.012 – volume: 145 start-page: 433 year: 2020 ident: 2172_CR123 publication-title: Plast Reconstr Surg doi: 10.1097/prs.0000000000006502 – volume: 68 start-page: 1635 year: 2019 ident: 2172_CR95 publication-title: Diabetes doi: 10.2337/db18-1178 – volume: 238 start-page: 114 year: 2016 ident: 2172_CR97 publication-title: J Control Release doi: 10.1016/j.jconrel.2016.07.043 – ident: 2172_CR74 doi: 10.12659/msm.881383 – volume: 181 start-page: 9 year: 2017 ident: 2172_CR19 publication-title: Life Sci doi: 10.1016/j.lfs.2017.05.021 – ident: 2172_CR8 doi: 10.3390/cells10092338 – volume: 12 start-page: 145 year: 2021 ident: 2172_CR39 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02185-0 – volume: 34 start-page: 1251 year: 2016 ident: 2172_CR79 publication-title: Stem Cells doi: 10.1002/stem.2300 – volume: 21 start-page: 363 year: 2020 ident: 2172_CR82 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0230-3 – volume: 41 start-page: 1146 year: 2017 ident: 2172_CR114 publication-title: Cell Biol Int doi: 10.1002/cbin.10833 – volume: 10 start-page: 895 year: 2021 ident: 2172_CR127 publication-title: Stem Cells Transl Med doi: 10.1002/sctm.20-0309 – volume: 27 start-page: 23 year: 2018 ident: 2172_CR63 publication-title: Stem Cells Dev doi: 10.1089/scd.2017.0114 – volume: 110 start-page: 2484 year: 2004 ident: 2172_CR131 publication-title: Circulation doi: 10.1161/01.CIR.0000137969.87365.05 – volume: 25 start-page: 4535 year: 2018 ident: 2172_CR18 publication-title: Curr Med Chem doi: 10.2174/0929867324666171012110244 – volume: 12 start-page: 264 year: 2021 ident: 2172_CR73 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02324-7 – volume: 21 start-page: 501 year: 2020 ident: 2172_CR27 publication-title: Mol Med Rep doi: 10.3892/mmr.2019.10831 – ident: 2172_CR5 doi: 10.1126/scitranslmed.3009337 – volume: 13 start-page: 1186 year: 2020 ident: 2172_CR103 publication-title: Aging (Albany NY) doi: 10.18632/aging.202257 – volume: 80 start-page: 793 year: 2016 ident: 2172_CR67 publication-title: Microbiol Mol Biol Rev doi: 10.1128/mmbr.00043-14 – volume: 2017 start-page: 3831750 year: 2017 ident: 2172_CR120 publication-title: Oxid Med Cell Longev doi: 10.1155/2017/3831750 – volume: 10 start-page: 47 year: 2019 ident: 2172_CR15 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-019-1152-x – volume: 2018 start-page: 9847015 year: 2018 ident: 2172_CR28 publication-title: Stem Cells Int doi: 10.1155/2018/9847015 – volume: 130 start-page: 5063 year: 2020 ident: 2172_CR56 publication-title: J Clin Invest doi: 10.1172/jci137556 – ident: 2172_CR84 doi: 10.3390/antiox10050727 – volume: 12 start-page: 520 year: 2021 ident: 2172_CR40 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02592-3 – volume: 30 start-page: 1094 year: 2010 ident: 2172_CR32 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.109.191635 – volume: 110 start-page: 2440 year: 2007 ident: 2172_CR80 publication-title: Blood doi: 10.1182/blood-2007-03-078709 – volume: 70 start-page: 117 year: 2019 ident: 2172_CR100 publication-title: Mol Aspects Med doi: 10.1016/j.mam.2019.09.007 – volume: 22 start-page: 75 year: 2021 ident: 2172_CR113 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-00314-w – volume: 904 start-page: 155 year: 2012 ident: 2172_CR31 publication-title: Methods Mol Biol doi: 10.1007/978-1-61779-943-3_13 – volume: 2012 year: 2012 ident: 2172_CR125 publication-title: Exp Diabetes Res doi: 10.1155/2012/471823 – ident: 2172_CR13 doi: 10.1016/j.jaad.2015.08.070 – volume: 57 start-page: 1315 year: 2020 ident: 2172_CR94 publication-title: Acta Diabetol doi: 10.1007/s00592-020-01551-3 – volume: 63 start-page: 1353 year: 2014 ident: 2172_CR68 publication-title: Diabetes doi: 10.2337/db13-0894 – volume: 279 start-page: 2550 year: 2004 ident: 2172_CR59 publication-title: J Biol Chem doi: 10.1074/jbc.M308197200 – volume: 10 start-page: 1270 year: 2020 ident: 2172_CR36 publication-title: Cardiovasc Diagn Ther doi: 10.21037/cdt-20-536 – volume: 25 start-page: 652 year: 2021 ident: 2172_CR3 publication-title: J Cell Mol Med doi: 10.1111/jcmm.16111 – volume: 146 start-page: 97 year: 2019 ident: 2172_CR16 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.09.010 – volume: 133 start-page: 2559 year: 2019 ident: 2172_CR14 publication-title: Blood doi: 10.1182/blood.2019000510 – volume: 63 start-page: 1410 year: 2014 ident: 2172_CR118 publication-title: Diabetes doi: 10.2337/db13-0941 – volume: 14 start-page: 381 year: 2017 ident: 2172_CR61 publication-title: Diab Vasc Dis Res doi: 10.1177/1479164117719058 – volume: 16 start-page: 735 year: 2013 ident: 2172_CR33 publication-title: Angiogenesis doi: 10.1007/s10456-013-9350-0 – volume: 10 start-page: 858 year: 2004 ident: 2172_CR58 publication-title: Nat Med doi: 10.1038/nm1075 – volume: 197 start-page: 463 year: 2008 ident: 2172_CR77 publication-title: J Endocrinol doi: 10.1677/joe-08-0036 – volume: 234 start-page: 22082 year: 2019 ident: 2172_CR107 publication-title: J Cell Physiol doi: 10.1002/jcp.28771 – volume: 2018 start-page: 9045976 year: 2018 ident: 2172_CR119 publication-title: Oxid Med Cell Longev doi: 10.1155/2018/9045976 – volume: 166 start-page: 1386 year: 2016 ident: 2172_CR128 publication-title: Cell doi: 10.1016/j.cell.2016.08.055 – volume: 51 start-page: 109 year: 2011 ident: 2172_CR115 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2011.03.008 – volume: 2016 start-page: 2029854 year: 2016 ident: 2172_CR87 publication-title: J Diabetes Res doi: 10.1155/2016/2029854 – volume: 5 start-page: 530 year: 2016 ident: 2172_CR34 publication-title: Stem Cells Transl Med doi: 10.5966/sctm.2015-0227 – ident: 2172_CR121 doi: 10.1042/BSR20171459 – volume-title: Mechanisms of vascular defects in diabetes mellitus year: 2017 ident: 2172_CR35 – volume: 46 start-page: 1146 year: 2020 ident: 2172_CR104 publication-title: Int J Mol Med doi: 10.3892/ijmm.2020.4664 – volume: 275 start-page: 964 year: 1997 ident: 2172_CR23 publication-title: Science doi: 10.1126/science.275.5302.964 – volume: 5 start-page: 341 year: 2012 ident: 2172_CR72 publication-title: Mol Med Rep doi: 10.3892/mmr.2011.644 – volume: 87 start-page: 5 year: 2015 ident: 2172_CR51 publication-title: Cytometry A doi: 10.1002/cyto.a.22596 – volume: 62 start-page: 1539 year: 2019 ident: 2172_CR11 publication-title: Diabetologia doi: 10.1007/s00125-019-4959-1 – volume: 477 start-page: 117 year: 2021 ident: 2172_CR42 publication-title: Dev Biol doi: 10.1016/j.ydbio.2021.05.010 – volume: 36 start-page: 712 year: 2015 ident: 2172_CR66 publication-title: Cell Physiol Biochem doi: 10.1159/000430132 – volume: 37 start-page: 972 year: 2019 ident: 2172_CR62 publication-title: J Hypertens doi: 10.1097/HJH.0000000000001983 – volume: 52 start-page: 186 year: 2014 ident: 2172_CR46 publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2013.11.004 – volume: 8 start-page: 56 year: 2009 ident: 2172_CR129 publication-title: Cardiovasc Diabetol doi: 10.1186/1475-2840-8-56 – volume: 11 start-page: 172 year: 2020 ident: 2172_CR26 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-01687-7 – volume: 8 start-page: 2274 year: 2015 ident: 2172_CR70 publication-title: Int J Clin Exp Pathol – volume: 63 year: 2020 ident: 2172_CR85 publication-title: Ageing Res Rev doi: 10.1016/j.arr.2020.101139 – volume: 38 start-page: 1013 year: 2014 ident: 2172_CR75 publication-title: Cell Biol Int doi: 10.1002/cbin.10288 – volume: 21 start-page: 1137 year: 2019 ident: 2172_CR22 publication-title: Cytotherapy doi: 10.1016/j.jcyt.2019.09.002 – volume: 15 start-page: 1299 year: 2011 ident: 2172_CR71 publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2011.01301.x – volume: 12 start-page: 846 year: 2021 ident: 2172_CR48 publication-title: Cell Death Dis doi: 10.1038/s41419-021-04136-2 – volume: 18 start-page: 747 year: 2021 ident: 2172_CR53 publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-021-00366-9 – volume: 62 start-page: 3207 year: 2013 ident: 2172_CR20 publication-title: Diabetes doi: 10.2337/db12-1621 – volume: 12 start-page: 222 year: 2016 ident: 2172_CR10 publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2016.15 – volume: 12 start-page: 3363 year: 2021 ident: 2172_CR55 publication-title: Nat Commun doi: 10.1038/s41467-021-23448-7 – volume: 678 start-page: 1 year: 2018 ident: 2172_CR96 publication-title: Gene doi: 10.1016/j.gene.2018.07.072 – ident: 2172_CR52 doi: 10.3390/ijms18071419 – volume: 16 start-page: 8691 year: 2017 ident: 2172_CR99 publication-title: Mol Med Rep doi: 10.3892/mmr.2017.7707 – volume: 91 start-page: 311 year: 2012 ident: 2172_CR76 publication-title: Ann Hematol doi: 10.1007/s00277-011-1300-6 – volume: 4 start-page: 24 year: 2011 ident: 2172_CR6 publication-title: J Hematol Oncol doi: 10.1186/1756-8722-4-24 – volume: 16 start-page: 15 year: 2013 ident: 2172_CR44 publication-title: Gene Expr doi: 10.3727/105221613x13776146743307 – volume: 51 year: 2020 ident: 2172_CR93 publication-title: Mol Cell Probes doi: 10.1016/j.mcp.2020.101527 – volume: 9 start-page: 305 year: 2018 ident: 2172_CR109 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1060-5 – volume: 23 start-page: 531 year: 2020 ident: 2172_CR29 publication-title: Angiogenesis doi: 10.1007/s10456-020-09732-y – volume: 43 start-page: 136 year: 2019 ident: 2172_CR98 publication-title: Cell Biol Int doi: 10.1002/cbin.11070 – volume: 2 start-page: 283 year: 2013 ident: 2172_CR60 publication-title: Adv Wound Care (New Rochelle) doi: 10.1089/wound.2012.0398 – ident: 2172_CR1 doi: 10.3390/ijms22126375 – volume: 27 start-page: 324 year: 2019 ident: 2172_CR54 publication-title: Wound Repair Regen doi: 10.1111/wrr.12708 – volume: 32 start-page: 6525 year: 2018 ident: 2172_CR122 publication-title: Faseb j doi: 10.1096/fj.201800248RR – volume: 133 start-page: 107 year: 2019 ident: 2172_CR86 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2019.03.010 – volume: 12 start-page: 1594 year: 2018 ident: 2172_CR91 publication-title: J Tissue Eng Regen Med doi: 10.1002/term.2684 – volume: 50 start-page: 659 year: 2015 ident: 2172_CR111 publication-title: Endocrine doi: 10.1007/s12020-015-0688-5 – volume: 127 start-page: 310 year: 2020 ident: 2172_CR7 publication-title: Circ Res doi: 10.1161/circresaha.120.316851 – volume: 16 start-page: 74 year: 2017 ident: 2172_CR101 publication-title: Int J Low Extrem Wounds doi: 10.1177/1534734617706636 – volume: 81 start-page: 266 year: 2018 ident: 2172_CR88 publication-title: J Toxicol Environ Health A doi: 10.1080/15287394.2018.1440185 – volume: 42 start-page: 1327 year: 2018 ident: 2172_CR117 publication-title: Int J Mol Med doi: 10.3892/ijmm.2018.3727 – volume: 93 start-page: 137 year: 2013 ident: 2172_CR12 publication-title: Physiol Rev doi: 10.1152/physrev.00045.2011 – volume: 27 start-page: 519 year: 2013 ident: 2172_CR124 publication-title: J Diabetes Complications doi: 10.1016/j.jdiacomp.2013.04.007 – volume: 91 start-page: 285 year: 2013 ident: 2172_CR49 publication-title: J Mol Med (Berl) doi: 10.1007/s00109-013-1002-8 – volume: 306 start-page: 43 year: 2013 ident: 2172_CR45 publication-title: Int Rev Cell Mol Biol doi: 10.1016/b978-0-12-407694-5.00002-x – volume: 13 start-page: 971 year: 2021 ident: 2172_CR41 publication-title: World J Stem Cells doi: 10.4252/wjsc.v13.i8.971 – volume: 15 start-page: 185 year: 2017 ident: 2172_CR83 publication-title: J Transl Med doi: 10.1186/s12967-017-1280-y – volume: 23 start-page: 167 year: 2014 ident: 2172_CR126 publication-title: Cell Transplant doi: 10.3727/096368912X658007 – volume: 8 start-page: 926 year: 2012 ident: 2172_CR30 publication-title: Stem Cell Rev Rep doi: 10.1007/s12015-011-9332-9 – volume: 300 start-page: E1135 year: 2011 ident: 2172_CR90 publication-title: Am J Physiol Endocrinol Metab doi: 10.1152/ajpendo.00001.2011 – volume: 458 start-page: 869 year: 2015 ident: 2172_CR116 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.02.050 – volume: 7 start-page: 43057 year: 2017 ident: 2172_CR50 publication-title: Sci Rep doi: 10.1038/srep43057 – volume: 32 start-page: 1275 year: 2011 ident: 2172_CR2 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehq254 – volume: 7 year: 2015 ident: 2172_CR17 publication-title: Biofabrication doi: 10.1088/1758-5090/7/4/045010 – volume: 23 start-page: 98 year: 2015 ident: 2172_CR4 publication-title: Wound Repair Regen doi: 10.1111/wrr.12253 – volume: 16 start-page: 377 year: 2020 ident: 2172_CR9 publication-title: Nat Rev Nephrol doi: 10.1038/s41581-020-0278-5 – volume: 14 start-page: 318 year: 2004 ident: 2172_CR24 publication-title: Trends Cardiovasc Med doi: 10.1016/j.tcm.2004.10.001 – volume: 69 start-page: 1779 year: 2020 ident: 2172_CR21 publication-title: Diabetes doi: 10.2337/db19-0829 – volume: 22 start-page: 1583 year: 2018 ident: 2172_CR92 publication-title: J Cell Mol Med doi: 10.1111/jcmm.13434 – volume: 9 start-page: 1142 year: 2021 ident: 2172_CR25 publication-title: Ann Transl Med doi: 10.21037/atm-21-2459 – volume: 11 start-page: 441 year: 2020 ident: 2172_CR37 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-020-01958-3 – volume: 41 start-page: 351 year: 2014 ident: 2172_CR112 publication-title: Clin Exp Pharmacol Physiol doi: 10.1111/1440-1681.12227 – volume: 25 start-page: 698 year: 2005 ident: 2172_CR130 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000156401.04325.8f – volume: 63 start-page: 1763 year: 2014 ident: 2172_CR64 publication-title: Diabetes doi: 10.2337/db13-0483 – volume: 53 start-page: 64 year: 2012 ident: 2172_CR65 publication-title: J Mol Cell Cardiol doi: 10.1016/j.yjmcc.2012.04.003 |
SSID | ssj0017594 |
Score | 2.4809237 |
SecondaryResourceType | review_article |
Snippet | Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 485 |
SubjectTerms | Biomedical and Life Sciences Biomedicine Diabetes Diabetes mellitus Endothelial cells Human Genetics Hyperglycemia Internal Medicine Molecular Medicine Molecular modelling Progenitor cells Review Stem cells Therapeutic targets Tissue engineering Wound healing |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-QLyIb9cXEbxpsG2yTetFRBQR9CAu7K0kaarC2q67KyL-eWfStKuIXts0DflmMu8MIYeRNVpxzpmWEWdCqoSpJI1ZoYSQNrRA0ujQv72Lr3vipt_te4fb2KdVNmeiO6jzyqCP_AQEdxSjuJFnw1eGXaMwuupbaMySeby6DKla9luDCySja4QIFkzMIjAMfNGMK51zMSGGCQquRxMLfwqmX9rmr0ipE0BXy2TJa470vIZ6hczYcpUs3PrY-Br5vK_bysNG06qgtsyxuGoA9EUxCcsi744oOuopCjNHb7SuUqRPYI2OHgcfxr48q1MKqjb9VphF63TxMX0uae2rhWfv2I-Jop4JE6yT3tXlw8U1860VmOGyO2EGhBDXRkulDDA1N0VYRCFYqwoeaJmkeQKcDPsibKFyC0IrFzrmOkwCBVimfIPMlVVptwi1SoeFyUU3iFLAukgx7SM1wsQBT41JOyRs9jUz_t5xbH8xyNobkx0WGeCQOSyysEOO2m-G9a0b_47ebeDKPAeOsym9dMhB-xp4B_dZlbZ6wzFgXcEoCWM2a5jb33GBJcXdoEOOG9ynk_-9lu3_17JDFiOsn3CpP7tkbjJ6s3ug1Uz0viPdL6IC8sc priority: 102 providerName: ProQuest |
Title | Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing |
URI | https://link.springer.com/article/10.1007/s00109-021-02172-1 https://www.ncbi.nlm.nih.gov/pubmed/34997250 https://www.proquest.com/docview/2642624157 https://www.proquest.com/docview/2618226277 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_8APFFPL9u_Vhy4NtdYNukTXtvq6wninKIC-tTSdL0Ttjryu6KiP_8zaQfengKPhXSaVrml-nMZGYyAIehs0YLIbhRoeBS6YTrJI15oaVULnC4pGlD_-IyPh3Ks1E0qovCZk22exOS9H_qttjNR3E4pRT4rkocfZ7lCH13SuQahv02dqAi3_4Q_ZaYh-gO1KUy_5_jX3X0ysZ8FR_1audkHdZqe5H1K4A_wYIrN2Dloo6Ib8LTVdVMHtnLJgVzZU4lVWNcVYxSrxxJ7JTR9jwjFeZXGatqE9lv9EGnv8aP1v251d8ZGtjsRTkWq5LEZ-y2ZNUOLY49UBcmRtYlTrAFw5PB9fEprxsqcCtUNOcWVY8w1iitLYqysEVQhAH6qBoHjErSPEH5Rb5IV-jcoarKpYmFCZKeRgRTsQ1L5aR0n4E5bYLC5jLqhSkiXKSU7JFaaeOeSK1NOxA0fM1sfdo4Nb0YZ-05yR6LDHHIPBZZ0IGv7TN31Vkb71LvN3BltdzNMjTvwpiMEtWBL-1tlBjisy7d5J5o0KdCKoU0OxXM7euEpELiqNeBbw3uz5O__S27HyPfg9WQqih8AtA-LM2n9-4AbZu56cKiGqkuLPd_3JwP8Ho0uPx51fUL_C9tVvOj |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKtFeUEtfS2lxpfbUWk1sb5xUqqqKh5bCcqhA2ltqO05BWrJ0dxFC_Cd-Y2ecB1QIblwdx3E8n-fhmfEAfBDeWSOl5FYLyZU2KTdplvDSKKV97BHSdKA_3E8Gh-rnqD9agKs2F4bCKlueGBh1MXF0Rv4FBbdISNzo76d_OVWNIu9qW0KjhsWuvzhHk232bWcT6ftRiO2tg40Bb6oKcCd1f84d8l9pndXGOMSzdGVcihgNNYMNVqdZkSKIUa4rX5rCI78ulE2kjdPI4G_Q5UvI8h-h4I3I2NOjzsBDSRwKL6LFlHCBhkiTpBNS9YIPilNARKgJxeP_BeEt7faWZzYIvO2nsNxoquxHDa1nsOCrFVgaNr7453D5qy5jj4Rlk5L5qqBkrjHimVHQlydeMWXkGGAkPAO-WZ0VyY7Q-p3-GV84f3JsvjJU7dmNRDBWh6fP2HHF6rNhbDun-k-M9Foc4AUcPsiiv4TFalL518C8sXHpCtWPRIbYKjMKM8mcckkkM-eyHsTtuuauueecym2M8-6G5kCLHOmQB1rkcQ8-de-c1rd83Nt7rSVX3uz4WX6Nzx687x7jXqV1NpWfnFEftOawl8Y-r2oyd5-TilKY-1EPPrd0vx787rms3j-XdXg8OBju5Xs7-7tv4Img3I0QdrQGi_PpmX-LGtXcvgswZvD7offNPxr2MEM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ-QIyG-GFHUE9Sa6JM23Lbd7a4JMSpc-JALIZLwtrbdrpIce3B3hBD-M_86Z7ofaIi88drtdrudX-ejM9MBeCu8s0ZKya0WkittUm7SLOGlUUr7yCOk6UB_f5RsH6nd4_h4AX63uTAUVtnyxMCoi4mjM_J1FNwiIXGj18smLOJgc_jp7JxTBSnytLblNGqI7PmrSzTfZhs7m0jrd0IMt75_3eZNhQHupI7n3CEvltZZbYxDbEtXRqWI0Ggz2GB1mhUpAhplvPKlKTzy7kLZRNooHRj8JbqICdn_oiarqAeLX7ZGB4edD0PHoQwj2k8JF2iWNCk7IXEveKQ4hUeEClE8-lcs3tJ1b_lpg_gbPoKHjd7KPtdAW4YFXz2Gpf3GM_8Erg_rovZIZjYpma8KSu0aI7oZhYB54hxTRm4CRqI0oJ3VOZLsF9rC05_jK-dPT8xHhoo--ystjNXB6jN2UrH6pBjbLqkaFCMtFwdYgaN7Wfan0KsmlX8OzBsbla5Q8UBkiLQyo6CTzCmXDGTmXNaHqF3X3DW3nlPxjXHe3dccaJEjHfJAizzqw_vunbP6zo87e6-15Mqb_T_Lb9DahzfdY9y5tM6m8pML6oO2HfbS2OdZTebuc1JRQnM86MOHlu43g_9_Li_unstrWMI9k3_bGe2twgNBiRwhBmkNevPphX-J6tXcvmpwzODHfW-dP5EMNd4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+endothelial+progenitor+cell+functions+during+hyperglycemia%3A+new+therapeutic+targets+in+diabetic+wound+healing&rft.jtitle=Journal+of+molecular+medicine+%28Berlin%2C+Germany%29&rft.au=Wan%2C+Gui&rft.au=Chen%2C+Yangyang&rft.au=Chen%2C+Jing&rft.au=Yan%2C+Chengqi&rft.date=2022-04-01&rft.eissn=1432-1440&rft.volume=100&rft.issue=4&rft.spage=485&rft_id=info:doi/10.1007%2Fs00109-021-02172-1&rft_id=info%3Apmid%2F34997250&rft.externalDocID=34997250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0946-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0946-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0946-2716&client=summon |