Quantum algorithms for quantum dynamics: A performance study on the spin-boson model
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardwa...
Saved in:
Published in | Physical review research Vol. 3; no. 4; p. 043212 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.12.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics, a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a VQA based on McLachlan's principle to simulate the dynamics of a spin-boson model subject to varying levels of realistic hardware noise as well as in different physical regimes, and discuss the algorithm's accuracy and scaling behavior as a function of system size. We observe a good performance of the variational approach used in combination with a general, physically motivated wave function ansatz, and compare it to the conventional first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent problems. |
---|---|
AbstractList | Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics, a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a VQA based on McLachlan's principle to simulate the dynamics of a spin-boson model subject to varying levels of realistic hardware noise as well as in different physical regimes, and discuss the algorithm's accuracy and scaling behavior as a function of system size. We observe a good performance of the variational approach used in combination with a general, physically motivated wave function ansatz, and compare it to the conventional first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent problems. |
ArticleNumber | 043212 |
Author | Ollitrault, Pauline J. Tavernelli, Ivano Miessen, Alexander |
Author_xml | – sequence: 1 givenname: Alexander orcidid: 0000-0002-4904-7446 surname: Miessen fullname: Miessen, Alexander – sequence: 2 givenname: Pauline J. surname: Ollitrault fullname: Ollitrault, Pauline J. – sequence: 3 givenname: Ivano surname: Tavernelli fullname: Tavernelli, Ivano |
BookMark | eNqFkNlKBDEQRYMouM0_5Ad6TNKdXnwQRNxAcEGfQyWpzES6O2OSEebvbR0F8cWnqnuLOlTdQ7I7hhEJoZzNOWflycNyk57w_QkTQjTLeTlnVSm42CEHoq7Kgsu62v3V75NZSq-MMSE5r1p5QJ4f1zDm9UChX4To83JI1IVI375tuxlh8Cad0nO6wjiNBhgN0pTXdkPDSPNyEis_FjqkSQ7BYn9M9hz0CWff9Yi8XF0-X9wUd_fXtxfnd4UpG5kL01RGN9YK0TrZoDPGoe2E1Zo5py1r0UiBTBvTIROlhBoEd0w2FUCHgpdH5HbLtQFe1Sr6AeJGBfDqywhxoSBmb3pUDbZ6ellyB12l3QS1FdQWse20trWbWGdblokhpYhOGZ8h-zDmCL5XnKnPyNWfyFWptpFPgPYP4Oegf1c_AJC3khs |
CitedBy_id | crossref_primary_10_1016_j_medntd_2024_100339 crossref_primary_10_1021_acs_jctc_3c00319 crossref_primary_10_1021_acs_chemrev_4c00428 crossref_primary_10_1038_s43588_022_00374_2 crossref_primary_10_1103_PhysRevA_108_012412 crossref_primary_10_1103_PhysRevA_109_032612 crossref_primary_10_1103_PRXQuantum_4_030327 crossref_primary_10_1116_5_0193981 crossref_primary_10_1103_PhysRevResearch_5_023046 crossref_primary_10_1016_j_xcrp_2024_102105 crossref_primary_10_1021_acs_jctc_1c00849 crossref_primary_10_22331_q_2023_07_25_1067 crossref_primary_10_1088_1751_8121_ac6bd0 crossref_primary_10_1103_PhysRevResearch_6_033302 crossref_primary_10_3390_sym15122174 crossref_primary_10_1103_PRXQuantum_5_040320 crossref_primary_10_22331_q_2023_10_12_1139 crossref_primary_10_22331_q_2024_09_19_1477 crossref_primary_10_3390_e24121766 crossref_primary_10_3390_quantum6030024 crossref_primary_10_1088_1361_6633_ad85f0 crossref_primary_10_1103_PRXQuantum_5_037001 crossref_primary_10_1021_acs_accounts_1c00514 crossref_primary_10_1021_acs_jctc_1c01176 |
Cites_doi | 10.1038/s41467-017-01061-x 10.1142/S0219749903000310 10.1103/PhysRevA.99.032331 10.1103/PhysRevE.88.023303 10.1126/science.273.5278.1073 10.1137/S0097539799359385 10.1103/PhysRevA.65.042323 10.1103/PhysRevResearch.2.033364 10.22331/q-2021-07-28-512 10.1103/PhysRevLett.127.120502 10.26421/qic12.11-12 10.1103/PhysRevLett.124.150601 10.1038/nature23879 10.1016/0009-2614(88)80380-4 10.1038/s42254-018-0006-2 10.1088/1367-2630/18/2/023023 10.1103/PhysRevLett.123.050503 10.1017/S0305004100016108 10.1103/PhysRevLett.121.110504 10.1080/00268976400100041 10.1103/PhysRevLett.120.153602 10.22331/q-2018-08-06-79 10.1088/2058-9565/aab822 10.1103/PRXQuantum.2.030307 10.1103/PhysRevLett.111.243602 10.22331/q-2019-10-07-191 10.1038/s41534-019-0217-0 10.1063/5.0016160 10.1103/PhysRevResearch.3.033083 10.1038/ncomms5213 10.1103/PhysRevResearch.2.043140 10.1103/PhysRevA.93.043843 10.1038/s41592-019-0686-2 10.21468/SciPostPhys.9.4.048 10.5555/2011679.2011685 10.1103/PhysRevLett.118.010501 10.1103/PhysRevA.104.042418 10.1073/pnas.0808245105 10.1038/s41467-017-00894-w 10.1103/PhysRevA.92.042303 10.1103/PhysRevLett.125.260511 10.22331/q-2019-07-12-163 10.1038/s41567-019-0437-4 10.1103/PhysRevX.7.021050 10.1038/s41534-020-00302-0 10.1098/rspa.1998.0162 10.1038/s41586-019-1040-7 10.1038/srep07482 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.3.043212 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f 10_1103_PhysRevResearch_3_043212 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c375t-c74cb7dd228f57efccfed92dbb0ffbd08ec52e0bcc9e0235a6a21f0574aa9e213 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:18:29 EDT 2025 Tue Jul 01 02:05:49 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-c74cb7dd228f57efccfed92dbb0ffbd08ec52e0bcc9e0235a6a21f0574aa9e213 |
ORCID | 0000-0002-4904-7446 |
OpenAccessLink | https://doaj.org/article/7e8b11451fa94bf0bcd4a6dee89bbd6f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f crossref_citationtrail_10_1103_PhysRevResearch_3_043212 crossref_primary_10_1103_PhysRevResearch_3_043212 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.3.043212Cc16R1 PhysRevResearch.3.043212Cc37R1 PhysRevResearch.3.043212Cc18R1 PhysRevResearch.3.043212Cc39R1 PhysRevResearch.3.043212Cc1R1 PhysRevResearch.3.043212Cc12R1 PhysRevResearch.3.043212Cc33R1 PhysRevResearch.3.043212Cc14R1 PhysRevResearch.3.043212Cc35R1 PhysRevResearch.3.043212Cc56R1 PhysRevResearch.3.043212Cc40R1 PhysRevResearch.3.043212Cc3R1 PhysRevResearch.3.043212Cc21R1 PhysRevResearch.3.043212Cc42R1 PhysRevResearch.3.043212Cc9R1 PhysRevResearch.3.043212Cc7R1 J. Frenkel (PhysRevResearch.3.043212Cc48R1) 1934 PhysRevResearch.3.043212Cc27R1 PhysRevResearch.3.043212Cc29R1 P. Kramer (PhysRevResearch.3.043212Cc50R1) 1981 PhysRevResearch.3.043212Cc23R1 PhysRevResearch.3.043212Cc46R1 PhysRevResearch.3.043212Cc44R1 PhysRevResearch.3.043212Cc25R1 PhysRevResearch.3.043212Cc53R1 PhysRevResearch.3.043212Cc32R1 PhysRevResearch.3.043212Cc51R1 PhysRevResearch.3.043212Cc38R1 PhysRevResearch.3.043212Cc17R1 PhysRevResearch.3.043212Cc59R1 PhysRevResearch.3.043212Cc11R1 PhysRevResearch.3.043212Cc34R1 PhysRevResearch.3.043212Cc57R1 PhysRevResearch.3.043212Cc36R1 PhysRevResearch.3.043212Cc55R1 PhysRevResearch.3.043212Cc4R1 PhysRevResearch.3.043212Cc43R1 PhysRevResearch.3.043212Cc8R1 PhysRevResearch.3.043212Cc6R1 PhysRevResearch.3.043212Cc26R1 PhysRevResearch.3.043212Cc28R1 PhysRevResearch.3.043212Cc49R1 PhysRevResearch.3.043212Cc45R1 PhysRevResearch.3.043212Cc22R1 PhysRevResearch.3.043212Cc47R1 PhysRevResearch.3.043212Cc24R1 PhysRevResearch.3.043212Cc54R1 PhysRevResearch.3.043212Cc10R1 PhysRevResearch.3.043212Cc31R1 PhysRevResearch.3.043212Cc52R1 |
References_xml | – ident: PhysRevResearch.3.043212Cc36R1 doi: 10.1038/s41467-017-01061-x – ident: PhysRevResearch.3.043212Cc55R1 doi: 10.1142/S0219749903000310 – ident: PhysRevResearch.3.043212Cc52R1 doi: 10.1103/PhysRevA.99.032331 – ident: PhysRevResearch.3.043212Cc31R1 doi: 10.1103/PhysRevE.88.023303 – ident: PhysRevResearch.3.043212Cc22R1 doi: 10.1126/science.273.5278.1073 – ident: PhysRevResearch.3.043212Cc4R1 doi: 10.1137/S0097539799359385 – ident: PhysRevResearch.3.043212Cc51R1 doi: 10.1103/PhysRevA.65.042323 – ident: PhysRevResearch.3.043212Cc40R1 doi: 10.1103/PhysRevResearch.2.033364 – ident: PhysRevResearch.3.043212Cc18R1 doi: 10.22331/q-2021-07-28-512 – ident: PhysRevResearch.3.043212Cc53R1 doi: 10.1103/PhysRevLett.127.120502 – ident: PhysRevResearch.3.043212Cc27R1 doi: 10.26421/qic12.11-12 – ident: PhysRevResearch.3.043212Cc45R1 doi: 10.1103/PhysRevLett.124.150601 – ident: PhysRevResearch.3.043212Cc9R1 doi: 10.1038/nature23879 – ident: PhysRevResearch.3.043212Cc46R1 doi: 10.1016/0009-2614(88)80380-4 – ident: PhysRevResearch.3.043212Cc37R1 doi: 10.1038/s42254-018-0006-2 – ident: PhysRevResearch.3.043212Cc7R1 doi: 10.1088/1367-2630/18/2/023023 – ident: PhysRevResearch.3.043212Cc42R1 doi: 10.1103/PhysRevLett.123.050503 – ident: PhysRevResearch.3.043212Cc47R1 doi: 10.1017/S0305004100016108 – ident: PhysRevResearch.3.043212Cc39R1 doi: 10.1103/PhysRevLett.121.110504 – ident: PhysRevResearch.3.043212Cc49R1 doi: 10.1080/00268976400100041 – ident: PhysRevResearch.3.043212Cc56R1 doi: 10.1103/PhysRevLett.120.153602 – ident: PhysRevResearch.3.043212Cc3R1 doi: 10.22331/q-2018-08-06-79 – ident: PhysRevResearch.3.043212Cc8R1 doi: 10.1088/2058-9565/aab822 – ident: PhysRevResearch.3.043212Cc16R1 doi: 10.1103/PRXQuantum.2.030307 – ident: PhysRevResearch.3.043212Cc32R1 doi: 10.1103/PhysRevLett.111.243602 – ident: PhysRevResearch.3.043212Cc43R1 doi: 10.22331/q-2019-10-07-191 – volume-title: Wave Mechanics; Advanced General Theory year: 1934 ident: PhysRevResearch.3.043212Cc48R1 – ident: PhysRevResearch.3.043212Cc24R1 doi: 10.1038/s41534-019-0217-0 – ident: PhysRevResearch.3.043212Cc38R1 doi: 10.1063/5.0016160 – ident: PhysRevResearch.3.043212Cc21R1 doi: 10.1103/PhysRevResearch.3.033083 – ident: PhysRevResearch.3.043212Cc6R1 doi: 10.1038/ncomms5213 – ident: PhysRevResearch.3.043212Cc11R1 doi: 10.1103/PhysRevResearch.2.043140 – ident: PhysRevResearch.3.043212Cc33R1 doi: 10.1103/PhysRevA.93.043843 – ident: PhysRevResearch.3.043212Cc59R1 doi: 10.1038/s41592-019-0686-2 – volume-title: Lecture Notes in Physics year: 1981 ident: PhysRevResearch.3.043212Cc50R1 – ident: PhysRevResearch.3.043212Cc44R1 doi: 10.21468/SciPostPhys.9.4.048 – ident: PhysRevResearch.3.043212Cc54R1 doi: 10.5555/2011679.2011685 – ident: PhysRevResearch.3.043212Cc28R1 doi: 10.1103/PhysRevLett.118.010501 – ident: PhysRevResearch.3.043212Cc17R1 doi: 10.1103/PhysRevA.104.042418 – ident: PhysRevResearch.3.043212Cc23R1 doi: 10.1073/pnas.0808245105 – ident: PhysRevResearch.3.043212Cc35R1 doi: 10.1038/s41467-017-00894-w – ident: PhysRevResearch.3.043212Cc57R1 doi: 10.1103/PhysRevA.92.042303 – ident: PhysRevResearch.3.043212Cc26R1 doi: 10.1103/PhysRevLett.125.260511 – ident: PhysRevResearch.3.043212Cc29R1 doi: 10.22331/q-2019-07-12-163 – ident: PhysRevResearch.3.043212Cc25R1 doi: 10.1038/s41567-019-0437-4 – ident: PhysRevResearch.3.043212Cc12R1 doi: 10.1103/PhysRevX.7.021050 – ident: PhysRevResearch.3.043212Cc14R1 doi: 10.1038/s41534-020-00302-0 – ident: PhysRevResearch.3.043212Cc1R1 doi: 10.1098/rspa.1998.0162 – ident: PhysRevResearch.3.043212Cc10R1 doi: 10.1038/s41586-019-1040-7 – ident: PhysRevResearch.3.043212Cc34R1 doi: 10.1038/srep07482 |
SSID | ssj0002511485 |
Score | 2.4002657 |
Snippet | Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 043212 |
Title | Quantum algorithms for quantum dynamics: A performance study on the spin-boson model |
URI | https://doaj.org/article/7e8b11451fa94bf0bcd4a6dee89bbd6f |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yELyIP3H-Igev3dokTVtvUzaGMEHZYLeSH19U2LppN4_-7SZpN6cXPXjpITSlPD7yvQ9e3kPoKlSgjW1FATWRHVBUyoIMOAns4AOUaIil95kd3PP-iN2N4_FG1JfThFX2wBVw7QRSGbk4WSMyJk0olWaCa4A0k1Jz405f2_M2hil3BjvizNJ4Jd0JadsJKh_hfaVna9GWM6OLyLd-tGHb7_tLbw_t1sQQd6of2kdbUBygbS_QVOUhGj4sLQbLKRaTp5kd6J-nJbZ8E7_Wy7pKli-vcQfPvy4DYG8fi2cFtkQPl_OXIpAzS7GxT8A5QqNed3jbD-pEhEDRJF4EKmFKJloTkpo4AaOUAZ0RLWVojNRhCiomYDFSGTgjG8EFiYylZEyIDEhEj1GjmBVwgjBwbXhstypBmCCZSDSHiGil3c2OkDZRssIlV7VduEutmOR-bAhp_gPRnOYVok0UrXfOK8uMP-y5cdCv33em137BlkJel0L-Wymc_sdHztAOcbIVr1g5R43F2xIuLO9YyEtfYvY5-Oh-AvBX3ok |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+algorithms+for+quantum+dynamics%3A+A+performance+study+on+the+spin-boson+model&rft.jtitle=Physical+review+research&rft.au=Alexander+Miessen&rft.au=Pauline+J.+Ollitrault&rft.au=Ivano+Tavernelli&rft.date=2021-12-01&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=3&rft.issue=4&rft.spage=043212&rft_id=info:doi/10.1103%2FPhysRevResearch.3.043212&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |