Quantum algorithms for quantum dynamics: A performance study on the spin-boson model

Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardwa...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 3; no. 4; p. 043212
Main Authors Miessen, Alexander, Ollitrault, Pauline J., Tavernelli, Ivano
Format Journal Article
LanguageEnglish
Published American Physical Society 01.12.2021
Online AccessGet full text

Cover

Loading…
Abstract Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics, a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a VQA based on McLachlan's principle to simulate the dynamics of a spin-boson model subject to varying levels of realistic hardware noise as well as in different physical regimes, and discuss the algorithm's accuracy and scaling behavior as a function of system size. We observe a good performance of the variational approach used in combination with a general, physically motivated wave function ansatz, and compare it to the conventional first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent problems.
AbstractList Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This approach typically relies on deep circuits and is therefore hampered by the substantial limitations of available noisy and near-term quantum hardware. On the other hand, variational quantum algorithms (VQAs) have become an indispensable alternative, enabling small-scale simulations on present-day hardware. However, despite the recent development of VQAs for quantum dynamics, a detailed assessment of their efficiency and scalability is yet to be presented. To fill this gap, we applied a VQA based on McLachlan's principle to simulate the dynamics of a spin-boson model subject to varying levels of realistic hardware noise as well as in different physical regimes, and discuss the algorithm's accuracy and scaling behavior as a function of system size. We observe a good performance of the variational approach used in combination with a general, physically motivated wave function ansatz, and compare it to the conventional first-order Trotter evolution. Finally, based on this, we make scaling predictions for the simulation of a classically intractable system. We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage for the solution of time-dependent problems.
ArticleNumber 043212
Author Ollitrault, Pauline J.
Tavernelli, Ivano
Miessen, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-4904-7446
  surname: Miessen
  fullname: Miessen, Alexander
– sequence: 2
  givenname: Pauline J.
  surname: Ollitrault
  fullname: Ollitrault, Pauline J.
– sequence: 3
  givenname: Ivano
  surname: Tavernelli
  fullname: Tavernelli, Ivano
BookMark eNqFkNlKBDEQRYMouM0_5Ad6TNKdXnwQRNxAcEGfQyWpzES6O2OSEebvbR0F8cWnqnuLOlTdQ7I7hhEJoZzNOWflycNyk57w_QkTQjTLeTlnVSm42CEHoq7Kgsu62v3V75NZSq-MMSE5r1p5QJ4f1zDm9UChX4To83JI1IVI375tuxlh8Cad0nO6wjiNBhgN0pTXdkPDSPNyEis_FjqkSQ7BYn9M9hz0CWff9Yi8XF0-X9wUd_fXtxfnd4UpG5kL01RGN9YK0TrZoDPGoe2E1Zo5py1r0UiBTBvTIROlhBoEd0w2FUCHgpdH5HbLtQFe1Sr6AeJGBfDqywhxoSBmb3pUDbZ6ellyB12l3QS1FdQWse20trWbWGdblokhpYhOGZ8h-zDmCL5XnKnPyNWfyFWptpFPgPYP4Oegf1c_AJC3khs
CitedBy_id crossref_primary_10_1016_j_medntd_2024_100339
crossref_primary_10_1021_acs_jctc_3c00319
crossref_primary_10_1021_acs_chemrev_4c00428
crossref_primary_10_1038_s43588_022_00374_2
crossref_primary_10_1103_PhysRevA_108_012412
crossref_primary_10_1103_PhysRevA_109_032612
crossref_primary_10_1103_PRXQuantum_4_030327
crossref_primary_10_1116_5_0193981
crossref_primary_10_1103_PhysRevResearch_5_023046
crossref_primary_10_1016_j_xcrp_2024_102105
crossref_primary_10_1021_acs_jctc_1c00849
crossref_primary_10_22331_q_2023_07_25_1067
crossref_primary_10_1088_1751_8121_ac6bd0
crossref_primary_10_1103_PhysRevResearch_6_033302
crossref_primary_10_3390_sym15122174
crossref_primary_10_1103_PRXQuantum_5_040320
crossref_primary_10_22331_q_2023_10_12_1139
crossref_primary_10_22331_q_2024_09_19_1477
crossref_primary_10_3390_e24121766
crossref_primary_10_3390_quantum6030024
crossref_primary_10_1088_1361_6633_ad85f0
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_1021_acs_accounts_1c00514
crossref_primary_10_1021_acs_jctc_1c01176
Cites_doi 10.1038/s41467-017-01061-x
10.1142/S0219749903000310
10.1103/PhysRevA.99.032331
10.1103/PhysRevE.88.023303
10.1126/science.273.5278.1073
10.1137/S0097539799359385
10.1103/PhysRevA.65.042323
10.1103/PhysRevResearch.2.033364
10.22331/q-2021-07-28-512
10.1103/PhysRevLett.127.120502
10.26421/qic12.11-12
10.1103/PhysRevLett.124.150601
10.1038/nature23879
10.1016/0009-2614(88)80380-4
10.1038/s42254-018-0006-2
10.1088/1367-2630/18/2/023023
10.1103/PhysRevLett.123.050503
10.1017/S0305004100016108
10.1103/PhysRevLett.121.110504
10.1080/00268976400100041
10.1103/PhysRevLett.120.153602
10.22331/q-2018-08-06-79
10.1088/2058-9565/aab822
10.1103/PRXQuantum.2.030307
10.1103/PhysRevLett.111.243602
10.22331/q-2019-10-07-191
10.1038/s41534-019-0217-0
10.1063/5.0016160
10.1103/PhysRevResearch.3.033083
10.1038/ncomms5213
10.1103/PhysRevResearch.2.043140
10.1103/PhysRevA.93.043843
10.1038/s41592-019-0686-2
10.21468/SciPostPhys.9.4.048
10.5555/2011679.2011685
10.1103/PhysRevLett.118.010501
10.1103/PhysRevA.104.042418
10.1073/pnas.0808245105
10.1038/s41467-017-00894-w
10.1103/PhysRevA.92.042303
10.1103/PhysRevLett.125.260511
10.22331/q-2019-07-12-163
10.1038/s41567-019-0437-4
10.1103/PhysRevX.7.021050
10.1038/s41534-020-00302-0
10.1098/rspa.1998.0162
10.1038/s41586-019-1040-7
10.1038/srep07482
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.3.043212
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f
10_1103_PhysRevResearch_3_043212
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c375t-c74cb7dd228f57efccfed92dbb0ffbd08ec52e0bcc9e0235a6a21f0574aa9e213
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:18:29 EDT 2025
Tue Jul 01 02:05:49 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-c74cb7dd228f57efccfed92dbb0ffbd08ec52e0bcc9e0235a6a21f0574aa9e213
ORCID 0000-0002-4904-7446
OpenAccessLink https://doaj.org/article/7e8b11451fa94bf0bcd4a6dee89bbd6f
ParticipantIDs doaj_primary_oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f
crossref_citationtrail_10_1103_PhysRevResearch_3_043212
crossref_primary_10_1103_PhysRevResearch_3_043212
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.3.043212Cc16R1
PhysRevResearch.3.043212Cc37R1
PhysRevResearch.3.043212Cc18R1
PhysRevResearch.3.043212Cc39R1
PhysRevResearch.3.043212Cc1R1
PhysRevResearch.3.043212Cc12R1
PhysRevResearch.3.043212Cc33R1
PhysRevResearch.3.043212Cc14R1
PhysRevResearch.3.043212Cc35R1
PhysRevResearch.3.043212Cc56R1
PhysRevResearch.3.043212Cc40R1
PhysRevResearch.3.043212Cc3R1
PhysRevResearch.3.043212Cc21R1
PhysRevResearch.3.043212Cc42R1
PhysRevResearch.3.043212Cc9R1
PhysRevResearch.3.043212Cc7R1
J. Frenkel (PhysRevResearch.3.043212Cc48R1) 1934
PhysRevResearch.3.043212Cc27R1
PhysRevResearch.3.043212Cc29R1
P. Kramer (PhysRevResearch.3.043212Cc50R1) 1981
PhysRevResearch.3.043212Cc23R1
PhysRevResearch.3.043212Cc46R1
PhysRevResearch.3.043212Cc44R1
PhysRevResearch.3.043212Cc25R1
PhysRevResearch.3.043212Cc53R1
PhysRevResearch.3.043212Cc32R1
PhysRevResearch.3.043212Cc51R1
PhysRevResearch.3.043212Cc38R1
PhysRevResearch.3.043212Cc17R1
PhysRevResearch.3.043212Cc59R1
PhysRevResearch.3.043212Cc11R1
PhysRevResearch.3.043212Cc34R1
PhysRevResearch.3.043212Cc57R1
PhysRevResearch.3.043212Cc36R1
PhysRevResearch.3.043212Cc55R1
PhysRevResearch.3.043212Cc4R1
PhysRevResearch.3.043212Cc43R1
PhysRevResearch.3.043212Cc8R1
PhysRevResearch.3.043212Cc6R1
PhysRevResearch.3.043212Cc26R1
PhysRevResearch.3.043212Cc28R1
PhysRevResearch.3.043212Cc49R1
PhysRevResearch.3.043212Cc45R1
PhysRevResearch.3.043212Cc22R1
PhysRevResearch.3.043212Cc47R1
PhysRevResearch.3.043212Cc24R1
PhysRevResearch.3.043212Cc54R1
PhysRevResearch.3.043212Cc10R1
PhysRevResearch.3.043212Cc31R1
PhysRevResearch.3.043212Cc52R1
References_xml – ident: PhysRevResearch.3.043212Cc36R1
  doi: 10.1038/s41467-017-01061-x
– ident: PhysRevResearch.3.043212Cc55R1
  doi: 10.1142/S0219749903000310
– ident: PhysRevResearch.3.043212Cc52R1
  doi: 10.1103/PhysRevA.99.032331
– ident: PhysRevResearch.3.043212Cc31R1
  doi: 10.1103/PhysRevE.88.023303
– ident: PhysRevResearch.3.043212Cc22R1
  doi: 10.1126/science.273.5278.1073
– ident: PhysRevResearch.3.043212Cc4R1
  doi: 10.1137/S0097539799359385
– ident: PhysRevResearch.3.043212Cc51R1
  doi: 10.1103/PhysRevA.65.042323
– ident: PhysRevResearch.3.043212Cc40R1
  doi: 10.1103/PhysRevResearch.2.033364
– ident: PhysRevResearch.3.043212Cc18R1
  doi: 10.22331/q-2021-07-28-512
– ident: PhysRevResearch.3.043212Cc53R1
  doi: 10.1103/PhysRevLett.127.120502
– ident: PhysRevResearch.3.043212Cc27R1
  doi: 10.26421/qic12.11-12
– ident: PhysRevResearch.3.043212Cc45R1
  doi: 10.1103/PhysRevLett.124.150601
– ident: PhysRevResearch.3.043212Cc9R1
  doi: 10.1038/nature23879
– ident: PhysRevResearch.3.043212Cc46R1
  doi: 10.1016/0009-2614(88)80380-4
– ident: PhysRevResearch.3.043212Cc37R1
  doi: 10.1038/s42254-018-0006-2
– ident: PhysRevResearch.3.043212Cc7R1
  doi: 10.1088/1367-2630/18/2/023023
– ident: PhysRevResearch.3.043212Cc42R1
  doi: 10.1103/PhysRevLett.123.050503
– ident: PhysRevResearch.3.043212Cc47R1
  doi: 10.1017/S0305004100016108
– ident: PhysRevResearch.3.043212Cc39R1
  doi: 10.1103/PhysRevLett.121.110504
– ident: PhysRevResearch.3.043212Cc49R1
  doi: 10.1080/00268976400100041
– ident: PhysRevResearch.3.043212Cc56R1
  doi: 10.1103/PhysRevLett.120.153602
– ident: PhysRevResearch.3.043212Cc3R1
  doi: 10.22331/q-2018-08-06-79
– ident: PhysRevResearch.3.043212Cc8R1
  doi: 10.1088/2058-9565/aab822
– ident: PhysRevResearch.3.043212Cc16R1
  doi: 10.1103/PRXQuantum.2.030307
– ident: PhysRevResearch.3.043212Cc32R1
  doi: 10.1103/PhysRevLett.111.243602
– ident: PhysRevResearch.3.043212Cc43R1
  doi: 10.22331/q-2019-10-07-191
– volume-title: Wave Mechanics; Advanced General Theory
  year: 1934
  ident: PhysRevResearch.3.043212Cc48R1
– ident: PhysRevResearch.3.043212Cc24R1
  doi: 10.1038/s41534-019-0217-0
– ident: PhysRevResearch.3.043212Cc38R1
  doi: 10.1063/5.0016160
– ident: PhysRevResearch.3.043212Cc21R1
  doi: 10.1103/PhysRevResearch.3.033083
– ident: PhysRevResearch.3.043212Cc6R1
  doi: 10.1038/ncomms5213
– ident: PhysRevResearch.3.043212Cc11R1
  doi: 10.1103/PhysRevResearch.2.043140
– ident: PhysRevResearch.3.043212Cc33R1
  doi: 10.1103/PhysRevA.93.043843
– ident: PhysRevResearch.3.043212Cc59R1
  doi: 10.1038/s41592-019-0686-2
– volume-title: Lecture Notes in Physics
  year: 1981
  ident: PhysRevResearch.3.043212Cc50R1
– ident: PhysRevResearch.3.043212Cc44R1
  doi: 10.21468/SciPostPhys.9.4.048
– ident: PhysRevResearch.3.043212Cc54R1
  doi: 10.5555/2011679.2011685
– ident: PhysRevResearch.3.043212Cc28R1
  doi: 10.1103/PhysRevLett.118.010501
– ident: PhysRevResearch.3.043212Cc17R1
  doi: 10.1103/PhysRevA.104.042418
– ident: PhysRevResearch.3.043212Cc23R1
  doi: 10.1073/pnas.0808245105
– ident: PhysRevResearch.3.043212Cc35R1
  doi: 10.1038/s41467-017-00894-w
– ident: PhysRevResearch.3.043212Cc57R1
  doi: 10.1103/PhysRevA.92.042303
– ident: PhysRevResearch.3.043212Cc26R1
  doi: 10.1103/PhysRevLett.125.260511
– ident: PhysRevResearch.3.043212Cc29R1
  doi: 10.22331/q-2019-07-12-163
– ident: PhysRevResearch.3.043212Cc25R1
  doi: 10.1038/s41567-019-0437-4
– ident: PhysRevResearch.3.043212Cc12R1
  doi: 10.1103/PhysRevX.7.021050
– ident: PhysRevResearch.3.043212Cc14R1
  doi: 10.1038/s41534-020-00302-0
– ident: PhysRevResearch.3.043212Cc1R1
  doi: 10.1098/rspa.1998.0162
– ident: PhysRevResearch.3.043212Cc10R1
  doi: 10.1038/s41586-019-1040-7
– ident: PhysRevResearch.3.043212Cc34R1
  doi: 10.1038/srep07482
SSID ssj0002511485
Score 2.4002657
Snippet Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter approximation of the time-evolution operator. This...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 043212
Title Quantum algorithms for quantum dynamics: A performance study on the spin-boson model
URI https://doaj.org/article/7e8b11451fa94bf0bcd4a6dee89bbd6f
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yELyIP3H-Igev3dokTVtvUzaGMEHZYLeSH19U2LppN4_-7SZpN6cXPXjpITSlPD7yvQ9e3kPoKlSgjW1FATWRHVBUyoIMOAns4AOUaIil95kd3PP-iN2N4_FG1JfThFX2wBVw7QRSGbk4WSMyJk0olWaCa4A0k1Jz405f2_M2hil3BjvizNJ4Jd0JadsJKh_hfaVna9GWM6OLyLd-tGHb7_tLbw_t1sQQd6of2kdbUBygbS_QVOUhGj4sLQbLKRaTp5kd6J-nJbZ8E7_Wy7pKli-vcQfPvy4DYG8fi2cFtkQPl_OXIpAzS7GxT8A5QqNed3jbD-pEhEDRJF4EKmFKJloTkpo4AaOUAZ0RLWVojNRhCiomYDFSGTgjG8EFiYylZEyIDEhEj1GjmBVwgjBwbXhstypBmCCZSDSHiGil3c2OkDZRssIlV7VduEutmOR-bAhp_gPRnOYVok0UrXfOK8uMP-y5cdCv33em137BlkJel0L-Wymc_sdHztAOcbIVr1g5R43F2xIuLO9YyEtfYvY5-Oh-AvBX3ok
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+algorithms+for+quantum+dynamics%3A+A+performance+study+on+the+spin-boson+model&rft.jtitle=Physical+review+research&rft.au=Alexander+Miessen&rft.au=Pauline+J.+Ollitrault&rft.au=Ivano+Tavernelli&rft.date=2021-12-01&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=3&rft.issue=4&rft.spage=043212&rft_id=info:doi/10.1103%2FPhysRevResearch.3.043212&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e8b11451fa94bf0bcd4a6dee89bbd6f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon