User- and Speed-Independent Slope Estimation for Lower-Extremity Wearable Robots
Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the...
Saved in:
Published in | Annals of biomedical engineering Vol. 52; no. 3; pp. 487 - 497 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (
N
= 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot. |
---|---|
AbstractList | Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot. Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation ( N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot. Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject's static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject's static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot. |
Author | Maldonado-Contreras, Jairo Y. Camargo, Jonathan Bhakta, Krishan Young, Aaron J. Kunapuli, Pratik |
Author_xml | – sequence: 1 givenname: Jairo Y. orcidid: 0000-0003-0831-7355 surname: Maldonado-Contreras fullname: Maldonado-Contreras, Jairo Y. email: jym3@gatech.edu organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology – sequence: 2 givenname: Krishan surname: Bhakta fullname: Bhakta, Krishan organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 3 givenname: Jonathan surname: Camargo fullname: Camargo, Jonathan organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology – sequence: 4 givenname: Pratik surname: Kunapuli fullname: Kunapuli, Pratik organization: General Robotics Automation Sensing and Perception Laboratory, University of Pennsylvania – sequence: 5 givenname: Aaron J. surname: Young fullname: Young, Aaron J. organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37930501$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9LHDEUx4ModdX-Ax5koBcvsS_JzCQ5Ftm2woLFH_QYZpI3ZWQ2GZMsdv97U9e24EECL5fPJ3nvfY_Ivg8eCTllcMEA5OfEoBaaAhcUhNCMbvfIgjVSUN2qdp8sADTQVrf1ITlK6QGAMSWaD-RQSC2gAbYgP-4TRlp13lW3M6KjV97hjKX4XN1OYcZqmfK47vIYfDWEWK3CUzGWv3PE9Zi31U_sYtdPWN2EPuR0Qg6Gbkr48fU-Jvdfl3eX3-nq-tvV5ZcVtUI2mVrumrqHVjU9Wjdo4QA47yw4aeu-lqXBHgdpyykD4SAck1wq4GitHdwgjsn57t05hscNpmzWY7I4TZ3HsEmGK9U2um2VKuinN-hD2ERfujNc81oxUde8UGev1KZfozNzLFPHrfm7qwLwHWBjSCni8A9hYP4EYnaBmBKIeQnEbIuk3kh2zC_LzLEbp_dVsVNT-cf_wvi_7XesZyJ7n34 |
CitedBy_id | crossref_primary_10_1016_j_bjps_2024_09_011 |
Cites_doi | 10.3390/s110808045 10.1109/TBME.2009.2034734 10.1109/TRO.2022.3226887 10.1109/TBME.2011.2161671 10.1109/LRA.2021.3068711 10.1016/j.jbiomech.2014.01.048 10.1123/jab.2018-0384 10.1109/TBME.2004.840727 10.1109/19.387322 10.1109/TBME.2008.2003293 10.1109/LRA.2021.3066973 10.3182/20060912-3-DE-2911.00147 10.1016/j.jbiomech.2021.110320 10.1098/rsos.180550 10.1109/TNSRE.2015.2412461 10.1016/j.jbiomech.2005.05.005 10.1109/TBME.2021.3065809 10.1155/2018/5712108 10.1038/s41598-020-60932-4 10.3390/s120911910 10.1115/1.3662552 10.1186/s13643-019-1063-z 10.1007/s10439-013-0909-0 10.3390/e22080852 10.1109/TNSRE.2010.2087360 10.1109/LRA.2020.3007480 10.1109/TASE.2020.3037973 10.1016/j.jbiomech.2006.05.023 10.2196/mhealth.9177 10.3390/s19204418 10.1109/ICORR.2019.8779433 10.1101/2021.09.13.460170 10.48550/arXiv.2205.00155 10.1109/IEMBS.2011.6091493 10.1109/ICORR.2017.8009254 10.1109/ICORR.2005.1501139 10.1145/2939672.2939785 10.1109/ICORR.2009.5209598 10.1109/ICORR.2015.7281231 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s) under exclusive licence to Biomedical Engineering Society. |
Copyright_xml | – notice: The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s) under exclusive licence to Biomedical Engineering Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1007/s10439-023-03391-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 497 |
ExternalDocumentID | 37930501 10_1007_s10439_023_03391_y |
Genre | Journal Article Review |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c375t-c2d54b0685becdf93d0022ac0d7c4b47793bef7c7c7573ef3d1727802ecccfdf3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Fri Jul 11 16:13:25 EDT 2025 Sat Aug 23 12:28:09 EDT 2025 Mon Jul 21 06:00:28 EDT 2025 Tue Jul 01 00:38:23 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Fri Feb 21 02:42:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Slope estimation Intention recognition Exoskeleton Prosthesis Machine learning |
Language | English |
License | 2023. The Author(s) under exclusive licence to Biomedical Engineering Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-c2d54b0685becdf93d0022ac0d7c4b47793bef7c7c7573ef3d1727802ecccfdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0831-7355 |
PMID | 37930501 |
PQID | 2924813442 |
PQPubID | 54090 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2886596688 proquest_journals_2924813442 pubmed_primary_37930501 crossref_primary_10_1007_s10439_023_03391_y crossref_citationtrail_10_1007_s10439_023_03391_y springer_journals_10_1007_s10439_023_03391_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240300 2024-03-00 2024-Mar 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2024 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | López, Álvarez, González, Álvarez (CR12) 2012; 12 Qin, Shi (CR39) 2020; 22 Camargo, Ramanathan, Flanagan, Young (CR1) 2021; 119 Kalman (CR23) 1960; 82 Zou, Huang, Qiu, Chen, Cheng (CR17) 2021; 18 CR19 CR18 CR15 Shim, Han, Choi, Ha, Kim, Baek (CR16) 2019; 19 CR36 CR13 Fukuchi, Fukuchi, Duarte (CR28) 2019; 8 CR35 Aminian, Robert, Jequier, Schutz (CR25) 1995; 44 Huang, Kuiken, Lipschutz (CR29) 2009; 56 Sup, Varol, Goldfarb (CR8) 2011; 19 Varol, Sup, Goldfarb (CR31) 2010; 57 MacLean, Ferris (CR7) 2019; 35 CR30 Best, Welker, Rouse, Gregg (CR11) 2023 Huang, Zhang, Hargrove, Dou, Rogers, Englehart (CR32) 2011; 58 Lee, Kang, Molinaro, Yu, Young (CR21) 2021; 6 Montgomery, Grabowski (CR4) 2018; 5 Bhakta, Camargo, Donovan, Herrin, Young (CR24) 2020; 5 Nakagome, Luu, He, Ravindran, Contreras-Vidal (CR38) 2020; 10 Sabatini, Martelloni, Scapellato, Cavallo (CR14) 2005; 52 CR6 CR5 Bhakta, Camargo, Compton, Herrin, Young (CR34) 2021; 6 Young, Hargrove (CR26) 2016; 24 Wang, Wu, Ma, Wu, Luo (CR33) 2018; 2018 Lay, Hass, Richard Nichols, Gregor (CR3) 2007; 40 Park, Suh (CR9) 2011; 11 CR20 Shawen, Lonini, Mummidisetty (CR37) 2017; 5 Koehler, Dhaher, Hansen (CR40) 2014; 47 Camargo, Flanagan, Csomay-Shanklin, Kanwar, Young (CR22) 2021; 68 Young, Simon, Fey, Hargrove (CR27) 2013; 42 Ulf Holmberg (CR10) 2006; 39 Lay, Hass, Gregor (CR2) 2006; 39 J Camargo (3391_CR1) 2021; 119 3391_CR36 3391_CR13 3391_CR35 D Lee (3391_CR21) 2021; 6 3391_CR5 3391_CR15 AM Sabatini (3391_CR14) 2005; 52 3391_CR18 AN Lay (3391_CR3) 2007; 40 3391_CR19 S Nakagome (3391_CR38) 2020; 10 F Sup (3391_CR8) 2011; 19 3391_CR30 N Shawen (3391_CR37) 2017; 5 C Wang (3391_CR33) 2018; 2018 K Bhakta (3391_CR34) 2021; 6 K Aminian (3391_CR25) 1995; 44 TK Best (3391_CR11) 2023 P Qin (3391_CR39) 2020; 22 M Shim (3391_CR16) 2019; 19 C Zou (3391_CR17) 2021; 18 AN Lay (3391_CR2) 2006; 39 HA Varol (3391_CR31) 2010; 57 SK Park (3391_CR9) 2011; 11 JR Montgomery (3391_CR4) 2018; 5 J Camargo (3391_CR22) 2021; 68 H Huang (3391_CR29) 2009; 56 AJ Young (3391_CR26) 2016; 24 H Huang (3391_CR32) 2011; 58 3391_CR20 WS Ulf Holmberg (3391_CR10) 2006; 39 K Bhakta (3391_CR24) 2020; 5 AM López (3391_CR12) 2012; 12 CA Fukuchi (3391_CR28) 2019; 8 AJ Young (3391_CR27) 2013; 42 3391_CR6 MK MacLean (3391_CR7) 2019; 35 SR Koehler (3391_CR40) 2014; 47 RE Kalman (3391_CR23) 1960; 82 |
References_xml | – volume: 11 start-page: 8045 issue: 8 year: 2011 end-page: 8059 ident: CR9 article-title: Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation publication-title: Sensors doi: 10.3390/s110808045 – volume: 57 start-page: 542 issue: 3 year: 2010 end-page: 551 ident: CR31 article-title: Multiclass real-time intent recognition of a powered lower limb prosthesis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2034734 – ident: CR18 – year: 2023 ident: CR11 article-title: Data-driven variable impedance control of a powered knee-ankle prosthesis for adaptive speed and incline walking publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2022.3226887 – volume: 58 start-page: 2867 issue: 10 year: 2011 end-page: 2875 ident: CR32 article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular—mechanical fusion publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161671 – volume: 6 start-page: 4820 issue: 3 year: 2021 end-page: 4826 ident: CR34 article-title: Evaluation of continuous walking speed determination algorithms and embedded sensors for a powered knee & ankle prosthesis publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3068711 – ident: CR30 – volume: 47 start-page: 1542 issue: 6 year: 2014 end-page: 1547 ident: CR40 article-title: Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.01.048 – volume: 35 start-page: 320 issue: 5 year: 2019 end-page: 326 ident: CR7 article-title: Energetics of walking with a robotic knee exoskeleton publication-title: J. Appl. Biomech. doi: 10.1123/jab.2018-0384 – ident: CR35 – ident: CR6 – volume: 52 start-page: 486 issue: 3 year: 2005 end-page: 494 ident: CR14 article-title: Assessment of walking features from foot inertial sensing publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.840727 – volume: 44 start-page: 743 issue: 3 year: 1995 end-page: 746 ident: CR25 article-title: Estimation of speed and incline of walking using neural network publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.387322 – volume: 56 start-page: 65 issue: 1 year: 2009 end-page: 73 ident: CR29 article-title: A strategy for identifying locomotion modes using surface electromyography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2003293 – volume: 6 start-page: 3995 issue: 2 year: 2021 end-page: 4000 ident: CR21 article-title: Real-time user-independent slope prediction using deep learning for modulation of robotic knee exoskeleton assistance publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3066973 – volume: 39 start-page: 856 issue: 16 year: 2006 end-page: 861 ident: CR10 article-title: An autonomous control system for a prosthetic foot ankle publication-title: IFAC Proc. Vol. doi: 10.3182/20060912-3-DE-2911.00147 – volume: 119 year: 2021 ident: CR1 article-title: A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110320 – ident: CR19 – volume: 5 issue: 8 year: 2018 ident: CR4 article-title: The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.180550 – volume: 24 start-page: 217 issue: 2 year: 2016 end-page: 225 ident: CR26 article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2412461 – volume: 39 start-page: 1621 issue: 9 year: 2006 end-page: 1628 ident: CR2 article-title: The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.05.005 – volume: 68 start-page: 1569 issue: 5 year: 2021 end-page: 1578 ident: CR22 article-title: A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3065809 – volume: 2018 year: 2018 ident: CR33 article-title: A flexible lower extremity exoskeleton robot with deep locomotion mode identification publication-title: Complexity doi: 10.1155/2018/5712108 – ident: CR15 – volume: 10 start-page: 4372 issue: 1 year: 2020 ident: CR38 article-title: An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding publication-title: Sci. Rep. doi: 10.1038/s41598-020-60932-4 – volume: 12 start-page: 11910 issue: 9 year: 2012 end-page: 11921 ident: CR12 article-title: Slope estimation during normal walking using a shank-mounted inertial sensor publication-title: Sensors doi: 10.3390/s120911910 – ident: CR13 – volume: 82 start-page: 35 issue: 1 year: 1960 end-page: 45 ident: CR23 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – volume: 8 start-page: 153 issue: 1 year: 2019 ident: CR28 article-title: Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis publication-title: Syst. Rev. doi: 10.1186/s13643-019-1063-z – volume: 42 start-page: 631 issue: 3 year: 2013 end-page: 641 ident: CR27 article-title: Intent recognition in apowered lower limb prosthesis using time history information publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0909-0 – volume: 22 start-page: 852 issue: 8 year: 2020 ident: CR39 article-title: Evaluation of feature extraction and classification for lower limb motion based on sEMG signal publication-title: Entropy (Basel) doi: 10.3390/e22080852 – volume: 19 start-page: 71 issue: 1 year: 2011 end-page: 78 ident: CR8 article-title: Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2087360 – volume: 5 start-page: 5393 issue: 4 year: 2020 end-page: 5400 ident: CR24 article-title: Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3007480 – ident: CR36 – ident: CR5 – volume: 18 start-page: 405 issue: 2 year: 2021 end-page: 413 ident: CR17 article-title: Slope gradient adaptive gait planning for walking assistance lower limb exoskeletons publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3037973 – volume: 40 start-page: 1276 issue: 6 year: 2007 end-page: 1285 ident: CR3 article-title: The effects of sloped surfaces on locomotion: an electromyographic analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.05.023 – volume: 5 issue: 12 year: 2017 ident: CR37 article-title: Addendum of: fall detection in individuals with lower limb amputations using mobile phones: machine learning enhances robustness for real-world applications publication-title: JMIR mHealth uHealth doi: 10.2196/mhealth.9177 – volume: 19 start-page: 4418 issue: 20 year: 2019 ident: CR16 article-title: Terrain feature estimation method for a lower limb exoskeleton using kinematic analysis and center of pressure publication-title: Sensors doi: 10.3390/s19204418 – ident: CR20 – volume: 47 start-page: 1542 issue: 6 year: 2014 ident: 3391_CR40 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.01.048 – volume: 8 start-page: 153 issue: 1 year: 2019 ident: 3391_CR28 publication-title: Syst. Rev. doi: 10.1186/s13643-019-1063-z – volume: 6 start-page: 4820 issue: 3 year: 2021 ident: 3391_CR34 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3068711 – volume: 52 start-page: 486 issue: 3 year: 2005 ident: 3391_CR14 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.840727 – ident: 3391_CR20 doi: 10.1109/ICORR.2019.8779433 – volume: 22 start-page: 852 issue: 8 year: 2020 ident: 3391_CR39 publication-title: Entropy (Basel) doi: 10.3390/e22080852 – volume: 57 start-page: 542 issue: 3 year: 2010 ident: 3391_CR31 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2034734 – volume: 5 issue: 12 year: 2017 ident: 3391_CR37 publication-title: JMIR mHealth uHealth doi: 10.2196/mhealth.9177 – ident: 3391_CR6 doi: 10.1101/2021.09.13.460170 – volume: 35 start-page: 320 issue: 5 year: 2019 ident: 3391_CR7 publication-title: J. Appl. Biomech. doi: 10.1123/jab.2018-0384 – ident: 3391_CR19 doi: 10.48550/arXiv.2205.00155 – volume: 18 start-page: 405 issue: 2 year: 2021 ident: 3391_CR17 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.3037973 – year: 2023 ident: 3391_CR11 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2022.3226887 – ident: 3391_CR30 doi: 10.1109/IEMBS.2011.6091493 – volume: 2018 year: 2018 ident: 3391_CR33 publication-title: Complexity doi: 10.1155/2018/5712108 – ident: 3391_CR5 doi: 10.1109/ICORR.2017.8009254 – volume: 39 start-page: 856 issue: 16 year: 2006 ident: 3391_CR10 publication-title: IFAC Proc. Vol. doi: 10.3182/20060912-3-DE-2911.00147 – volume: 24 start-page: 217 issue: 2 year: 2016 ident: 3391_CR26 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2412461 – volume: 119 year: 2021 ident: 3391_CR1 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110320 – volume: 82 start-page: 35 issue: 1 year: 1960 ident: 3391_CR23 publication-title: J. Basic Eng. doi: 10.1115/1.3662552 – ident: 3391_CR15 doi: 10.1109/ICORR.2005.1501139 – volume: 5 start-page: 5393 issue: 4 year: 2020 ident: 3391_CR24 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.3007480 – volume: 12 start-page: 11910 issue: 9 year: 2012 ident: 3391_CR12 publication-title: Sensors doi: 10.3390/s120911910 – volume: 42 start-page: 631 issue: 3 year: 2013 ident: 3391_CR27 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0909-0 – volume: 44 start-page: 743 issue: 3 year: 1995 ident: 3391_CR25 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.387322 – volume: 10 start-page: 4372 issue: 1 year: 2020 ident: 3391_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-020-60932-4 – volume: 58 start-page: 2867 issue: 10 year: 2011 ident: 3391_CR32 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161671 – volume: 39 start-page: 1621 issue: 9 year: 2006 ident: 3391_CR2 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.05.005 – volume: 11 start-page: 8045 issue: 8 year: 2011 ident: 3391_CR9 publication-title: Sensors doi: 10.3390/s110808045 – volume: 68 start-page: 1569 issue: 5 year: 2021 ident: 3391_CR22 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3065809 – ident: 3391_CR35 – volume: 5 issue: 8 year: 2018 ident: 3391_CR4 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.180550 – ident: 3391_CR36 doi: 10.1145/2939672.2939785 – ident: 3391_CR13 doi: 10.1109/ICORR.2009.5209598 – volume: 40 start-page: 1276 issue: 6 year: 2007 ident: 3391_CR3 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.05.023 – volume: 19 start-page: 4418 issue: 20 year: 2019 ident: 3391_CR16 publication-title: Sensors doi: 10.3390/s19204418 – ident: 3391_CR18 doi: 10.1109/ICORR.2015.7281231 – volume: 19 start-page: 71 issue: 1 year: 2011 ident: 3391_CR8 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2010.2087360 – volume: 56 start-page: 65 issue: 1 year: 2009 ident: 3391_CR29 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2003293 – volume: 6 start-page: 3995 issue: 2 year: 2021 ident: 3391_CR21 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3066973 |
SSID | ssj0011835 |
Score | 2.4179265 |
SecondaryResourceType | review_article |
Snippet | Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 487 |
SubjectTerms | Ankle Biochemistry Biological and Medical Physics Biomechanical Phenomena Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Estimators Exoskeleton Exoskeletons Gait Hip Humans Inertial platforms Knee Lower Extremity Machine learning Mathematical models Numerical methods Prostheses Regression analysis Regression models Review Robot dynamics Robots Slopes Thigh Walking Wearable Electronic Devices Wearable technology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBdH2tLyJ400DbJJv0KLKioiKui95K0qSntV3cCvrvnWwfKj5AeuwkDTPfdGaYzAzAIeJWGR1oGlvFKLc8pCaWhjLGpfbtPiLpa4evb3rnQ375KB7rorBJc9u9SUlO_9Sfit3QeFK0MTRgLA7p2yzMCx-7I4qH0UmbO0CQVnMLYgyM4h6vS2V-3uOrOfrmY37Lj07NztkKLNf-IjmpBLwKMy7vwNKnLoIdWLiu8-NrcDtERFGic0sGY7RL9KKdcluSwagYO9JHna7KFQn6q-TKT0mj_dfy2T2hQ04eEPm-morcFaYoJ-swPOvfn57TemYCTZkUJU0jK7gJekqgcGwWM-uttE4DK1NuuER1NC6TKT5CMpcx6z0YFUQoyjSzGduAubzI3RYQmalY-WYxWmCM5oxWgbYYwYTWKJ2FURfChnVJWjcU93MtRslHK2TP7gTZnUzZnbx14ahdM67aafxJvdtIJKlVa5JEGDGqkHGOBzhoX6NS-EyHzl3xgjRK9QQGckp1YbOSZPs5hiwIRBB24bgR7cfmv59l-3_kO7CI0OTVbbVdmCufX9weui-l2Z-i9R3Ww-Rh priority: 102 providerName: Springer Nature |
Title | User- and Speed-Independent Slope Estimation for Lower-Extremity Wearable Robots |
URI | https://link.springer.com/article/10.1007/s10439-023-03391-y https://www.ncbi.nlm.nih.gov/pubmed/37930501 https://www.proquest.com/docview/2924813442 https://www.proquest.com/docview/2886596688 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiF4QDBgCxuTkXgDCyd2audpalG6D1g1bVSUp8iOnactKWsmsf-ec-OmTNOmSMmDncS68_l-5_PdAXzCeauMZppmVnEqrIipyaShnAupfbqPRPrY4dPJ4GgqTmbpLGy4LcKxytWauFyobVP6PfKvCRoKKuZCJAfzP9RXjfLe1VBC4yls-tRl_kiXnPUGF2LnrsAmy9BEygYiBM2E0DlUxRQ1FmWcZzG9vauY7qHNe57SpQIav4KXATmSYcfq1_DE1Vvw4r98glvw7DR4yt_A2RTnFiW6tuRijhqKHvf1bltycdnMHclRurvARYLIlfzw9dJo_re9dlcIzckvlAEfV0XOG9O0i7cwHec_vx3RUD2BllymLS0TmwrDBipFNtkq49bra10yK0thhETBNK6SJV6p5K7i1mMZxRJkalnZir-Djbqp3Q4QWalM-bQxOkVrzRmtmLZoy8TWKF3FSQTxinRFGVKL-woXl8U6KbInd4HkLpbkLm4j-Ny_M-8Sazzae2_FkSII2aJYT4kIPvbNKB7e56Fr19xgH6UGKZp0SkWw3XGy_x1HErCUxRF8WbF2_fGHx_L-8bHswvMEgU93Tm0PNtrrG_cBgUtr9pezE-9qfLgPm8PxaDTxz8Pf33N8jvLJ2Tm2TpPhP6pe7Wk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IFpegUKNBCewmtjO2jkgVJVdduluhWhX7S21Y-dUkqWbCvZP8RsZbx5bVNFblWNix5mHZybjmQ_gLcqtMjrUNLGKU2FFRE0iDeVcSO3bfTDpa4cnh73hVHw9jU_X4E9bC-OPVbZ74nKjtmXm_5HvMgwUVMSFYJ9mP6lHjfLZ1RZCoxaLA7f4hSHb_OPoM_L3HWOD_vH-kDaoAjTjMq5oxmwsTNhTMS7f5gm33o7pLLQyE0ZIFFjjcpnhFUvucm69jVchw4_NcptznPcO3BWcJ16j1OBLl7VA9agRExIMyZKeaIp0mlI9NP0ULSQNcWREF_8awmve7bXM7NLgDR7Bw8ZTJXu1aG3Cmiu24MGV_oVbsDFpMvOP4dsUZZkSXVhyNEOLSEcdvm5Fjs7LmSN93E3qQkmCnjIZe3w22v9dXbgfGAqQEySur-Mi30tTVvMnML0Vuj6F9aIs3HMgMleJ8m1qdIzRoTNahdpi7BRZo3QesQCilnRp1rQy94ga5-mqCbMnd4rkTpfkThcBvO_GzOpGHjc-vd1yJG2Uep6uRDCAN91tVEefY9GFKy_xGaV6MYaQSgXwrOZk9zqOJAjjMArgQ8va1eT_X8uLm9eyA_eGx5NxOh4dHryE-wydrvqM3DasVxeX7hU6TZV5vZRUAme3rRp_AR0oJZE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQKW8AgWMBCew6tjO2jlUFaK76tKHKsqKvQU7dk4lWbqpYP8av67jzWNBFb1VOcZx4nl45st4ZgDeotxqa5ihqdOCSidjalNlqRBSmVDug6uQO3x8MjiYyM_TZLoGf7pcmHCsstsTlxu1q_Lwj3yHI1DQsZCS7xTtsYjT_dHe7CcNHaRCpLVrp9GIyKFf_EL4Nt8d7yOv33E-Gn79dEDbDgM0Fyqpac5dIi0b6ASX4opUuGDTTM6cyqWVCoXX-kLleCVK-EK4YO8147jwvHCFwHnvwF0lkjjomJr2YA_99qa5J0sRnqUD2SbstGl76AZQtJaUCZHGdPGvUbzm6V6L0i6N32gTHrReK_nYiNlDWPPlFtz_q5bhFmwct1H6R3A6QbmmxJSOnM3QOtJx32u3Jmfn1cyTIe4sTdIkQa-ZHIVebXT4u77wPxAWkG9I3JDTRb5Utqrnj2FyK3R9AutlVfpnQFShUx1K1pgEkaK3RjPjEEfFzmpTxDyCuCNdlrdlzUN3jfNsVZA5kDtDcmdLcmeLCN73z8yaoh43jt7uOJK1Cj7PVuIYwZv-NqpmiLeY0leXOEbrQYJwUusInjac7F8nkAQsYXEEHzrWrib__7c8v_lbXsMGKkV2ND45fAH3OPpfzXG5bVivLy79S_SfavtqKagEvt-2ZlwBtBApvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User-+and+Speed-Independent+Slope+Estimation+for+Lower-Extremity+Wearable+Robots&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Maldonado-Contreras%2C+Jairo+Y&rft.au=Bhakta%2C+Krishan&rft.au=Camargo%2C+Jonathan&rft.au=Kunapuli%2C+Pratik&rft.date=2024-03-01&rft.issn=1573-9686&rft.eissn=1573-9686&rft.volume=52&rft.issue=3&rft.spage=487&rft_id=info:doi/10.1007%2Fs10439-023-03391-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |