User- and Speed-Independent Slope Estimation for Lower-Extremity Wearable Robots

Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 52; no. 3; pp. 487 - 497
Main Authors Maldonado-Contreras, Jairo Y., Bhakta, Krishan, Camargo, Jonathan, Kunapuli, Pratik, Young, Aaron J.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation ( N  = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.
AbstractList Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.
Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation ( N  = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.
Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject's static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models were trained on static-slope (fixed-slope) data and evaluated on a novel subject's static-slope and dynamic-slope (variable-slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using only static-slope data regardless of the type of lower-extremity wearable robot.
Author Maldonado-Contreras, Jairo Y.
Camargo, Jonathan
Bhakta, Krishan
Young, Aaron J.
Kunapuli, Pratik
Author_xml – sequence: 1
  givenname: Jairo Y.
  orcidid: 0000-0003-0831-7355
  surname: Maldonado-Contreras
  fullname: Maldonado-Contreras, Jairo Y.
  email: jym3@gatech.edu
  organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology
– sequence: 2
  givenname: Krishan
  surname: Bhakta
  fullname: Bhakta, Krishan
  organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 3
  givenname: Jonathan
  surname: Camargo
  fullname: Camargo, Jonathan
  organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology
– sequence: 4
  givenname: Pratik
  surname: Kunapuli
  fullname: Kunapuli, Pratik
  organization: General Robotics Automation Sensing and Perception Laboratory, University of Pennsylvania
– sequence: 5
  givenname: Aaron J.
  surname: Young
  fullname: Young, Aaron J.
  organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37930501$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9LHDEUx4ModdX-Ax5koBcvsS_JzCQ5Ftm2woLFH_QYZpI3ZWQ2GZMsdv97U9e24EECL5fPJ3nvfY_Ivg8eCTllcMEA5OfEoBaaAhcUhNCMbvfIgjVSUN2qdp8sADTQVrf1ITlK6QGAMSWaD-RQSC2gAbYgP-4TRlp13lW3M6KjV97hjKX4XN1OYcZqmfK47vIYfDWEWK3CUzGWv3PE9Zi31U_sYtdPWN2EPuR0Qg6Gbkr48fU-Jvdfl3eX3-nq-tvV5ZcVtUI2mVrumrqHVjU9Wjdo4QA47yw4aeu-lqXBHgdpyykD4SAck1wq4GitHdwgjsn57t05hscNpmzWY7I4TZ3HsEmGK9U2um2VKuinN-hD2ERfujNc81oxUde8UGev1KZfozNzLFPHrfm7qwLwHWBjSCni8A9hYP4EYnaBmBKIeQnEbIuk3kh2zC_LzLEbp_dVsVNT-cf_wvi_7XesZyJ7n34
CitedBy_id crossref_primary_10_1016_j_bjps_2024_09_011
Cites_doi 10.3390/s110808045
10.1109/TBME.2009.2034734
10.1109/TRO.2022.3226887
10.1109/TBME.2011.2161671
10.1109/LRA.2021.3068711
10.1016/j.jbiomech.2014.01.048
10.1123/jab.2018-0384
10.1109/TBME.2004.840727
10.1109/19.387322
10.1109/TBME.2008.2003293
10.1109/LRA.2021.3066973
10.3182/20060912-3-DE-2911.00147
10.1016/j.jbiomech.2021.110320
10.1098/rsos.180550
10.1109/TNSRE.2015.2412461
10.1016/j.jbiomech.2005.05.005
10.1109/TBME.2021.3065809
10.1155/2018/5712108
10.1038/s41598-020-60932-4
10.3390/s120911910
10.1115/1.3662552
10.1186/s13643-019-1063-z
10.1007/s10439-013-0909-0
10.3390/e22080852
10.1109/TNSRE.2010.2087360
10.1109/LRA.2020.3007480
10.1109/TASE.2020.3037973
10.1016/j.jbiomech.2006.05.023
10.2196/mhealth.9177
10.3390/s19204418
10.1109/ICORR.2019.8779433
10.1101/2021.09.13.460170
10.48550/arXiv.2205.00155
10.1109/IEMBS.2011.6091493
10.1109/ICORR.2017.8009254
10.1109/ICORR.2005.1501139
10.1145/2939672.2939785
10.1109/ICORR.2009.5209598
10.1109/ICORR.2015.7281231
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
Copyright_xml – notice: The Author(s) under exclusive licence to Biomedical Engineering Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1007/s10439-023-03391-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 497
ExternalDocumentID 37930501
10_1007_s10439_023_03391_y
Genre Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
ID FETCH-LOGICAL-c375t-c2d54b0685becdf93d0022ac0d7c4b47793bef7c7c7573ef3d1727802ecccfdf3
IEDL.DBID 7X7
ISSN 0090-6964
1573-9686
IngestDate Fri Jul 11 16:13:25 EDT 2025
Sat Aug 23 12:28:09 EDT 2025
Mon Jul 21 06:00:28 EDT 2025
Tue Jul 01 00:38:23 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Fri Feb 21 02:42:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Slope estimation
Intention recognition
Exoskeleton
Prosthesis
Machine learning
Language English
License 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-c2d54b0685becdf93d0022ac0d7c4b47793bef7c7c7573ef3d1727802ecccfdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0831-7355
PMID 37930501
PQID 2924813442
PQPubID 54090
PageCount 11
ParticipantIDs proquest_miscellaneous_2886596688
proquest_journals_2924813442
pubmed_primary_37930501
crossref_primary_10_1007_s10439_023_03391_y
crossref_citationtrail_10_1007_s10439_023_03391_y
springer_journals_10_1007_s10439_023_03391_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References López, Álvarez, González, Álvarez (CR12) 2012; 12
Qin, Shi (CR39) 2020; 22
Camargo, Ramanathan, Flanagan, Young (CR1) 2021; 119
Kalman (CR23) 1960; 82
Zou, Huang, Qiu, Chen, Cheng (CR17) 2021; 18
CR19
CR18
CR15
Shim, Han, Choi, Ha, Kim, Baek (CR16) 2019; 19
CR36
CR13
Fukuchi, Fukuchi, Duarte (CR28) 2019; 8
CR35
Aminian, Robert, Jequier, Schutz (CR25) 1995; 44
Huang, Kuiken, Lipschutz (CR29) 2009; 56
Sup, Varol, Goldfarb (CR8) 2011; 19
Varol, Sup, Goldfarb (CR31) 2010; 57
MacLean, Ferris (CR7) 2019; 35
CR30
Best, Welker, Rouse, Gregg (CR11) 2023
Huang, Zhang, Hargrove, Dou, Rogers, Englehart (CR32) 2011; 58
Lee, Kang, Molinaro, Yu, Young (CR21) 2021; 6
Montgomery, Grabowski (CR4) 2018; 5
Bhakta, Camargo, Donovan, Herrin, Young (CR24) 2020; 5
Nakagome, Luu, He, Ravindran, Contreras-Vidal (CR38) 2020; 10
Sabatini, Martelloni, Scapellato, Cavallo (CR14) 2005; 52
CR6
CR5
Bhakta, Camargo, Compton, Herrin, Young (CR34) 2021; 6
Young, Hargrove (CR26) 2016; 24
Wang, Wu, Ma, Wu, Luo (CR33) 2018; 2018
Lay, Hass, Richard Nichols, Gregor (CR3) 2007; 40
Park, Suh (CR9) 2011; 11
CR20
Shawen, Lonini, Mummidisetty (CR37) 2017; 5
Koehler, Dhaher, Hansen (CR40) 2014; 47
Camargo, Flanagan, Csomay-Shanklin, Kanwar, Young (CR22) 2021; 68
Young, Simon, Fey, Hargrove (CR27) 2013; 42
Ulf Holmberg (CR10) 2006; 39
Lay, Hass, Gregor (CR2) 2006; 39
J Camargo (3391_CR1) 2021; 119
3391_CR36
3391_CR13
3391_CR35
D Lee (3391_CR21) 2021; 6
3391_CR5
3391_CR15
AM Sabatini (3391_CR14) 2005; 52
3391_CR18
AN Lay (3391_CR3) 2007; 40
3391_CR19
S Nakagome (3391_CR38) 2020; 10
F Sup (3391_CR8) 2011; 19
3391_CR30
N Shawen (3391_CR37) 2017; 5
C Wang (3391_CR33) 2018; 2018
K Bhakta (3391_CR34) 2021; 6
K Aminian (3391_CR25) 1995; 44
TK Best (3391_CR11) 2023
P Qin (3391_CR39) 2020; 22
M Shim (3391_CR16) 2019; 19
C Zou (3391_CR17) 2021; 18
AN Lay (3391_CR2) 2006; 39
HA Varol (3391_CR31) 2010; 57
SK Park (3391_CR9) 2011; 11
JR Montgomery (3391_CR4) 2018; 5
J Camargo (3391_CR22) 2021; 68
H Huang (3391_CR29) 2009; 56
AJ Young (3391_CR26) 2016; 24
H Huang (3391_CR32) 2011; 58
3391_CR20
WS Ulf Holmberg (3391_CR10) 2006; 39
K Bhakta (3391_CR24) 2020; 5
AM López (3391_CR12) 2012; 12
CA Fukuchi (3391_CR28) 2019; 8
AJ Young (3391_CR27) 2013; 42
3391_CR6
MK MacLean (3391_CR7) 2019; 35
SR Koehler (3391_CR40) 2014; 47
RE Kalman (3391_CR23) 1960; 82
References_xml – volume: 11
  start-page: 8045
  issue: 8
  year: 2011
  end-page: 8059
  ident: CR9
  article-title: Height compensation using ground inclination estimation in inertial sensor-based pedestrian navigation
  publication-title: Sensors
  doi: 10.3390/s110808045
– volume: 57
  start-page: 542
  issue: 3
  year: 2010
  end-page: 551
  ident: CR31
  article-title: Multiclass real-time intent recognition of a powered lower limb prosthesis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2034734
– ident: CR18
– year: 2023
  ident: CR11
  article-title: Data-driven variable impedance control of a powered knee-ankle prosthesis for adaptive speed and incline walking
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2022.3226887
– volume: 58
  start-page: 2867
  issue: 10
  year: 2011
  end-page: 2875
  ident: CR32
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular—mechanical fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 6
  start-page: 4820
  issue: 3
  year: 2021
  end-page: 4826
  ident: CR34
  article-title: Evaluation of continuous walking speed determination algorithms and embedded sensors for a powered knee & ankle prosthesis
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3068711
– ident: CR30
– volume: 47
  start-page: 1542
  issue: 6
  year: 2014
  end-page: 1547
  ident: CR40
  article-title: Cross-validation of a portable, six-degree-of-freedom load cell for use in lower-limb prosthetics research
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.01.048
– volume: 35
  start-page: 320
  issue: 5
  year: 2019
  end-page: 326
  ident: CR7
  article-title: Energetics of walking with a robotic knee exoskeleton
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2018-0384
– ident: CR35
– ident: CR6
– volume: 52
  start-page: 486
  issue: 3
  year: 2005
  end-page: 494
  ident: CR14
  article-title: Assessment of walking features from foot inertial sensing
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.840727
– volume: 44
  start-page: 743
  issue: 3
  year: 1995
  end-page: 746
  ident: CR25
  article-title: Estimation of speed and incline of walking using neural network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.387322
– volume: 56
  start-page: 65
  issue: 1
  year: 2009
  end-page: 73
  ident: CR29
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 6
  start-page: 3995
  issue: 2
  year: 2021
  end-page: 4000
  ident: CR21
  article-title: Real-time user-independent slope prediction using deep learning for modulation of robotic knee exoskeleton assistance
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3066973
– volume: 39
  start-page: 856
  issue: 16
  year: 2006
  end-page: 861
  ident: CR10
  article-title: An autonomous control system for a prosthetic foot ankle
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20060912-3-DE-2911.00147
– volume: 119
  year: 2021
  ident: CR1
  article-title: A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110320
– ident: CR19
– volume: 5
  issue: 8
  year: 2018
  ident: CR4
  article-title: The contributions of ankle, knee and hip joint work to individual leg work change during uphill and downhill walking over a range of speeds
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.180550
– volume: 24
  start-page: 217
  issue: 2
  year: 2016
  end-page: 225
  ident: CR26
  article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2412461
– volume: 39
  start-page: 1621
  issue: 9
  year: 2006
  end-page: 1628
  ident: CR2
  article-title: The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.05.005
– volume: 68
  start-page: 1569
  issue: 5
  year: 2021
  end-page: 1578
  ident: CR22
  article-title: A machine learning strategy for locomotion classification and parameter estimation using fusion of wearable sensors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3065809
– volume: 2018
  year: 2018
  ident: CR33
  article-title: A flexible lower extremity exoskeleton robot with deep locomotion mode identification
  publication-title: Complexity
  doi: 10.1155/2018/5712108
– ident: CR15
– volume: 10
  start-page: 4372
  issue: 1
  year: 2020
  ident: CR38
  article-title: An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60932-4
– volume: 12
  start-page: 11910
  issue: 9
  year: 2012
  end-page: 11921
  ident: CR12
  article-title: Slope estimation during normal walking using a shank-mounted inertial sensor
  publication-title: Sensors
  doi: 10.3390/s120911910
– ident: CR13
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  end-page: 45
  ident: CR23
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– volume: 8
  start-page: 153
  issue: 1
  year: 2019
  ident: CR28
  article-title: Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-019-1063-z
– volume: 42
  start-page: 631
  issue: 3
  year: 2013
  end-page: 641
  ident: CR27
  article-title: Intent recognition in apowered lower limb prosthesis using time history information
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0909-0
– volume: 22
  start-page: 852
  issue: 8
  year: 2020
  ident: CR39
  article-title: Evaluation of feature extraction and classification for lower limb motion based on sEMG signal
  publication-title: Entropy (Basel)
  doi: 10.3390/e22080852
– volume: 19
  start-page: 71
  issue: 1
  year: 2011
  end-page: 78
  ident: CR8
  article-title: Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2087360
– volume: 5
  start-page: 5393
  issue: 4
  year: 2020
  end-page: 5400
  ident: CR24
  article-title: Machine learning model comparisons of user independent & dependent intent recognition systems for powered prostheses
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3007480
– ident: CR36
– ident: CR5
– volume: 18
  start-page: 405
  issue: 2
  year: 2021
  end-page: 413
  ident: CR17
  article-title: Slope gradient adaptive gait planning for walking assistance lower limb exoskeletons
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3037973
– volume: 40
  start-page: 1276
  issue: 6
  year: 2007
  end-page: 1285
  ident: CR3
  article-title: The effects of sloped surfaces on locomotion: an electromyographic analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.05.023
– volume: 5
  issue: 12
  year: 2017
  ident: CR37
  article-title: Addendum of: fall detection in individuals with lower limb amputations using mobile phones: machine learning enhances robustness for real-world applications
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/mhealth.9177
– volume: 19
  start-page: 4418
  issue: 20
  year: 2019
  ident: CR16
  article-title: Terrain feature estimation method for a lower limb exoskeleton using kinematic analysis and center of pressure
  publication-title: Sensors
  doi: 10.3390/s19204418
– ident: CR20
– volume: 47
  start-page: 1542
  issue: 6
  year: 2014
  ident: 3391_CR40
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.01.048
– volume: 8
  start-page: 153
  issue: 1
  year: 2019
  ident: 3391_CR28
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-019-1063-z
– volume: 6
  start-page: 4820
  issue: 3
  year: 2021
  ident: 3391_CR34
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3068711
– volume: 52
  start-page: 486
  issue: 3
  year: 2005
  ident: 3391_CR14
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.840727
– ident: 3391_CR20
  doi: 10.1109/ICORR.2019.8779433
– volume: 22
  start-page: 852
  issue: 8
  year: 2020
  ident: 3391_CR39
  publication-title: Entropy (Basel)
  doi: 10.3390/e22080852
– volume: 57
  start-page: 542
  issue: 3
  year: 2010
  ident: 3391_CR31
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2034734
– volume: 5
  issue: 12
  year: 2017
  ident: 3391_CR37
  publication-title: JMIR mHealth uHealth
  doi: 10.2196/mhealth.9177
– ident: 3391_CR6
  doi: 10.1101/2021.09.13.460170
– volume: 35
  start-page: 320
  issue: 5
  year: 2019
  ident: 3391_CR7
  publication-title: J. Appl. Biomech.
  doi: 10.1123/jab.2018-0384
– ident: 3391_CR19
  doi: 10.48550/arXiv.2205.00155
– volume: 18
  start-page: 405
  issue: 2
  year: 2021
  ident: 3391_CR17
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.3037973
– year: 2023
  ident: 3391_CR11
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2022.3226887
– ident: 3391_CR30
  doi: 10.1109/IEMBS.2011.6091493
– volume: 2018
  year: 2018
  ident: 3391_CR33
  publication-title: Complexity
  doi: 10.1155/2018/5712108
– ident: 3391_CR5
  doi: 10.1109/ICORR.2017.8009254
– volume: 39
  start-page: 856
  issue: 16
  year: 2006
  ident: 3391_CR10
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20060912-3-DE-2911.00147
– volume: 24
  start-page: 217
  issue: 2
  year: 2016
  ident: 3391_CR26
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2412461
– volume: 119
  year: 2021
  ident: 3391_CR1
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110320
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 3391_CR23
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3662552
– ident: 3391_CR15
  doi: 10.1109/ICORR.2005.1501139
– volume: 5
  start-page: 5393
  issue: 4
  year: 2020
  ident: 3391_CR24
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.3007480
– volume: 12
  start-page: 11910
  issue: 9
  year: 2012
  ident: 3391_CR12
  publication-title: Sensors
  doi: 10.3390/s120911910
– volume: 42
  start-page: 631
  issue: 3
  year: 2013
  ident: 3391_CR27
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0909-0
– volume: 44
  start-page: 743
  issue: 3
  year: 1995
  ident: 3391_CR25
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.387322
– volume: 10
  start-page: 4372
  issue: 1
  year: 2020
  ident: 3391_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60932-4
– volume: 58
  start-page: 2867
  issue: 10
  year: 2011
  ident: 3391_CR32
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 39
  start-page: 1621
  issue: 9
  year: 2006
  ident: 3391_CR2
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.05.005
– volume: 11
  start-page: 8045
  issue: 8
  year: 2011
  ident: 3391_CR9
  publication-title: Sensors
  doi: 10.3390/s110808045
– volume: 68
  start-page: 1569
  issue: 5
  year: 2021
  ident: 3391_CR22
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2021.3065809
– ident: 3391_CR35
– volume: 5
  issue: 8
  year: 2018
  ident: 3391_CR4
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.180550
– ident: 3391_CR36
  doi: 10.1145/2939672.2939785
– ident: 3391_CR13
  doi: 10.1109/ICORR.2009.5209598
– volume: 40
  start-page: 1276
  issue: 6
  year: 2007
  ident: 3391_CR3
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.05.023
– volume: 19
  start-page: 4418
  issue: 20
  year: 2019
  ident: 3391_CR16
  publication-title: Sensors
  doi: 10.3390/s19204418
– ident: 3391_CR18
  doi: 10.1109/ICORR.2015.7281231
– volume: 19
  start-page: 71
  issue: 1
  year: 2011
  ident: 3391_CR8
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2010.2087360
– volume: 56
  start-page: 65
  issue: 1
  year: 2009
  ident: 3391_CR29
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 6
  start-page: 3995
  issue: 2
  year: 2021
  ident: 3391_CR21
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3066973
SSID ssj0011835
Score 2.4179265
SecondaryResourceType review_article
Snippet Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assistance. However, generalizing the same...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 487
SubjectTerms Ankle
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Estimators
Exoskeleton
Exoskeletons
Gait
Hip
Humans
Inertial platforms
Knee
Lower Extremity
Machine learning
Mathematical models
Numerical methods
Prostheses
Regression analysis
Regression models
Review
Robot dynamics
Robots
Slopes
Thigh
Walking
Wearable Electronic Devices
Wearable technology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBdH2tLyJ400DbJJv0KLKioiKui95K0qSntV3cCvrvnWwfKj5AeuwkDTPfdGaYzAzAIeJWGR1oGlvFKLc8pCaWhjLGpfbtPiLpa4evb3rnQ375KB7rorBJc9u9SUlO_9Sfit3QeFK0MTRgLA7p2yzMCx-7I4qH0UmbO0CQVnMLYgyM4h6vS2V-3uOrOfrmY37Lj07NztkKLNf-IjmpBLwKMy7vwNKnLoIdWLiu8-NrcDtERFGic0sGY7RL9KKdcluSwagYO9JHna7KFQn6q-TKT0mj_dfy2T2hQ04eEPm-morcFaYoJ-swPOvfn57TemYCTZkUJU0jK7gJekqgcGwWM-uttE4DK1NuuER1NC6TKT5CMpcx6z0YFUQoyjSzGduAubzI3RYQmalY-WYxWmCM5oxWgbYYwYTWKJ2FURfChnVJWjcU93MtRslHK2TP7gTZnUzZnbx14ahdM67aafxJvdtIJKlVa5JEGDGqkHGOBzhoX6NS-EyHzl3xgjRK9QQGckp1YbOSZPs5hiwIRBB24bgR7cfmv59l-3_kO7CI0OTVbbVdmCufX9weui-l2Z-i9R3Ww-Rh
  priority: 102
  providerName: Springer Nature
Title User- and Speed-Independent Slope Estimation for Lower-Extremity Wearable Robots
URI https://link.springer.com/article/10.1007/s10439-023-03391-y
https://www.ncbi.nlm.nih.gov/pubmed/37930501
https://www.proquest.com/docview/2924813442
https://www.proquest.com/docview/2886596688
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiF4QDBgCxuTkXgDCyd2audpalG6D1g1bVSUp8iOnactKWsmsf-ec-OmTNOmSMmDncS68_l-5_PdAXzCeauMZppmVnEqrIipyaShnAupfbqPRPrY4dPJ4GgqTmbpLGy4LcKxytWauFyobVP6PfKvCRoKKuZCJAfzP9RXjfLe1VBC4yls-tRl_kiXnPUGF2LnrsAmy9BEygYiBM2E0DlUxRQ1FmWcZzG9vauY7qHNe57SpQIav4KXATmSYcfq1_DE1Vvw4r98glvw7DR4yt_A2RTnFiW6tuRijhqKHvf1bltycdnMHclRurvARYLIlfzw9dJo_re9dlcIzckvlAEfV0XOG9O0i7cwHec_vx3RUD2BllymLS0TmwrDBipFNtkq49bra10yK0thhETBNK6SJV6p5K7i1mMZxRJkalnZir-Djbqp3Q4QWalM-bQxOkVrzRmtmLZoy8TWKF3FSQTxinRFGVKL-woXl8U6KbInd4HkLpbkLm4j-Ny_M-8Sazzae2_FkSII2aJYT4kIPvbNKB7e56Fr19xgH6UGKZp0SkWw3XGy_x1HErCUxRF8WbF2_fGHx_L-8bHswvMEgU93Tm0PNtrrG_cBgUtr9pezE-9qfLgPm8PxaDTxz8Pf33N8jvLJ2Tm2TpPhP6pe7Wk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhU4IFpegUKNBCewmtjO2jkgVJVdduluhWhX7S21Y-dUkqWbCvZP8RsZbx5bVNFblWNix5mHZybjmQ_gLcqtMjrUNLGKU2FFRE0iDeVcSO3bfTDpa4cnh73hVHw9jU_X4E9bC-OPVbZ74nKjtmXm_5HvMgwUVMSFYJ9mP6lHjfLZ1RZCoxaLA7f4hSHb_OPoM_L3HWOD_vH-kDaoAjTjMq5oxmwsTNhTMS7f5gm33o7pLLQyE0ZIFFjjcpnhFUvucm69jVchw4_NcptznPcO3BWcJ16j1OBLl7VA9agRExIMyZKeaIp0mlI9NP0ULSQNcWREF_8awmve7bXM7NLgDR7Bw8ZTJXu1aG3Cmiu24MGV_oVbsDFpMvOP4dsUZZkSXVhyNEOLSEcdvm5Fjs7LmSN93E3qQkmCnjIZe3w22v9dXbgfGAqQEySur-Mi30tTVvMnML0Vuj6F9aIs3HMgMleJ8m1qdIzRoTNahdpi7BRZo3QesQCilnRp1rQy94ga5-mqCbMnd4rkTpfkThcBvO_GzOpGHjc-vd1yJG2Uep6uRDCAN91tVEefY9GFKy_xGaV6MYaQSgXwrOZk9zqOJAjjMArgQ8va1eT_X8uLm9eyA_eGx5NxOh4dHryE-wydrvqM3DasVxeX7hU6TZV5vZRUAme3rRp_AR0oJZE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQKW8AgWMBCew6tjO2jlUFaK76tKHKsqKvQU7dk4lWbqpYP8av67jzWNBFb1VOcZx4nl45st4ZgDeotxqa5ihqdOCSidjalNlqRBSmVDug6uQO3x8MjiYyM_TZLoGf7pcmHCsstsTlxu1q_Lwj3yHI1DQsZCS7xTtsYjT_dHe7CcNHaRCpLVrp9GIyKFf_EL4Nt8d7yOv33E-Gn79dEDbDgM0Fyqpac5dIi0b6ASX4opUuGDTTM6cyqWVCoXX-kLleCVK-EK4YO8147jwvHCFwHnvwF0lkjjomJr2YA_99qa5J0sRnqUD2SbstGl76AZQtJaUCZHGdPGvUbzm6V6L0i6N32gTHrReK_nYiNlDWPPlFtz_q5bhFmwct1H6R3A6QbmmxJSOnM3QOtJx32u3Jmfn1cyTIe4sTdIkQa-ZHIVebXT4u77wPxAWkG9I3JDTRb5Utqrnj2FyK3R9AutlVfpnQFShUx1K1pgEkaK3RjPjEEfFzmpTxDyCuCNdlrdlzUN3jfNsVZA5kDtDcmdLcmeLCN73z8yaoh43jt7uOJK1Cj7PVuIYwZv-NqpmiLeY0leXOEbrQYJwUusInjac7F8nkAQsYXEEHzrWrib__7c8v_lbXsMGKkV2ND45fAH3OPpfzXG5bVivLy79S_SfavtqKagEvt-2ZlwBtBApvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User-+and+Speed-Independent+Slope+Estimation+for+Lower-Extremity+Wearable+Robots&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Maldonado-Contreras%2C+Jairo+Y&rft.au=Bhakta%2C+Krishan&rft.au=Camargo%2C+Jonathan&rft.au=Kunapuli%2C+Pratik&rft.date=2024-03-01&rft.issn=1573-9686&rft.eissn=1573-9686&rft.volume=52&rft.issue=3&rft.spage=487&rft_id=info:doi/10.1007%2Fs10439-023-03391-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon