Insight into degradation mechanism of sulfamethoxazole by metal-organic framework derived novel magnetic Fe@C composite activated persulfate

Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase compo...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 414; p. 125598
Main Authors Pu, Mengjie, Wan, Jinquan, Zhang, Fengzhen, Brusseau, Mark L., Ye, Daqi, Niu, Junfeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe3C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe3C species provide electrons for PS to decompose and generate sulfate radical (SO4·−), hydroxyl radical (·OH), and superoxide radical (O2·−), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O2·− give rise to the generation of singlet oxygen (1O2), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation. [Display omitted] •Novel porous carbonized MOF derivate Fe@Cs are fabricated for the first time.•Different pyrolysis temperature endows Fe@Cs diverse iron phases and magnetism.•The core-shell Fe@C-800 possesses strong ferromagnetic properties for recycling.•Fe@C-800/PS system displays high RSE of 20.9% compared to Fe2+/PS systems.•SMX degradation includes both radical and non-radical mechanisms.
AbstractList Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe3C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe3C species provide electrons for PS to decompose and generate sulfate radical (SO4·-), hydroxyl radical (·OH), and superoxide radical (O2·-), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O2·- give rise to the generation of singlet oxygen (1O2), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation.Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe3C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe3C species provide electrons for PS to decompose and generate sulfate radical (SO4·-), hydroxyl radical (·OH), and superoxide radical (O2·-), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O2·- give rise to the generation of singlet oxygen (1O2), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation.
Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe3C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe3C species provide electrons for PS to decompose and generate sulfate radical (SO4·−), hydroxyl radical (·OH), and superoxide radical (O2·−), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O2·− give rise to the generation of singlet oxygen (1O2), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation. [Display omitted] •Novel porous carbonized MOF derivate Fe@Cs are fabricated for the first time.•Different pyrolysis temperature endows Fe@Cs diverse iron phases and magnetism.•The core-shell Fe@C-800 possesses strong ferromagnetic properties for recycling.•Fe@C-800/PS system displays high RSE of 20.9% compared to Fe2+/PS systems.•SMX degradation includes both radical and non-radical mechanisms.
Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs diverse physical-chemical properties, including morphology, crystal structure, defect level, magnetism, and most importantly, iron phase composition. Fe@C-800 consists mainly of Fe₃C and α-Fe, thus possesses strong ferromagnetic properties, which imparts the ability to be separated and recycled. Its catalytic activity towards the activation of persulfate (PS) and the decomposition of sulfamethoxazole (SMX) was found to be the best among all the Fe@Cs, and this activity can be regenerated by simple heat treatment. Given the mixed form of iron and N-doped carbon, α-Fe/Fe₃C species provide electrons for PS to decompose and generate sulfate radical (SO₄·⁻), hydroxyl radical (·OH), and superoxide radical (O₂·⁻), initiating the radical pathway for partial SMX degradation. The positively charged C atoms on PS bonded Fe@C, as well as the conversion of O₂·⁻ give rise to the generation of singlet oxygen (¹O₂), which was responsible for the non-radical pathway for SMX degradation. As a consequence, SMX was degraded to intermediates through five degradation pathways, and finally mineralized to inorganic molecules. The results indicate that Fe@C-800 has great potential to serve as a promising activator for persulfate-mediated environmental remediation.
ArticleNumber 125598
Author Wan, Jinquan
Ye, Daqi
Brusseau, Mark L.
Niu, Junfeng
Pu, Mengjie
Zhang, Fengzhen
Author_xml – sequence: 1
  givenname: Mengjie
  orcidid: 0000-0001-6980-4873
  surname: Pu
  fullname: Pu, Mengjie
  email: scutpmj@163.com
  organization: Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
– sequence: 2
  givenname: Jinquan
  surname: Wan
  fullname: Wan, Jinquan
  email: ppjqwan@scut.edu.cn
  organization: College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
– sequence: 3
  givenname: Fengzhen
  orcidid: 0000-0002-1651-5901
  surname: Zhang
  fullname: Zhang, Fengzhen
  email: zhangfz@dgut.edu.cn
  organization: Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
– sequence: 4
  givenname: Mark L.
  surname: Brusseau
  fullname: Brusseau, Mark L.
  email: brusseau@email.arizona.edu
  organization: Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, Arizona, 85721, USA
– sequence: 5
  givenname: Daqi
  surname: Ye
  fullname: Ye, Daqi
  email: ydq13569@163.com
  organization: Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
– sequence: 6
  givenname: Junfeng
  orcidid: 0000-0003-2592-3103
  surname: Niu
  fullname: Niu, Junfeng
  email: niujf@dgut.edu.cn
  organization: Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
BookMark eNqNkc1uEzEUhS1UJNLCIyB5yWaCf-bHFgtAEYVKldjA2rqx7yQOM3awnUD7DH3ouk1XbMrqLu73ncU55-QsxICEvOVsyRnv3--Wuy3czlCWggm-5KLrtHpBFlwNspFS9mdkwSRrG6l0-4qc57xjjPGhaxfk7ipkv9kW6kOJ1OEmgYPiY6Az2i0En2caR5oP0wgzlm38C7dxQrq-qUCBqYlpUylLx1T_f2L6VUOSP6KjIR5xojNsApYKXOKnFbVx3sfsC1KwxR-hVG6P6TG-4GvycoQp45une0F-Xn75sfrWXH__erX6fN1YOXSlWQ9WKVDc9cCZGsTYMs67UTLosQXN2x6Ztq7XvbZacqm5dtZqNa4FWsadvCDvTrn7FH8fMBcz-2xxmiBgPGQjOilEK5Vs_wOtoJSd6Cv64YTaFHNOOBrry2OXJYGfDGfmYS6zM09zmYe5zGmuanf_2PvkZ0g3z3ofTx7Wwo4ek8nWY7DofEJbjIv-mYR7Tqa3jA
CitedBy_id crossref_primary_10_1016_j_seppur_2022_121279
crossref_primary_10_1016_j_scitotenv_2024_171885
crossref_primary_10_1021_acs_langmuir_4c05366
crossref_primary_10_1186_s42825_023_00140_8
crossref_primary_10_1016_j_cej_2022_137120
crossref_primary_10_1016_j_jece_2024_112414
crossref_primary_10_1016_j_jhazmat_2024_136880
crossref_primary_10_1016_j_jece_2024_112379
crossref_primary_10_1016_j_optmat_2022_113332
crossref_primary_10_1016_j_jece_2022_108273
crossref_primary_10_1016_j_jece_2023_111685
crossref_primary_10_1016_j_jwpe_2025_107466
crossref_primary_10_1007_s11356_023_27391_6
crossref_primary_10_1016_j_cej_2022_138933
crossref_primary_10_1016_j_colsurfa_2021_126608
crossref_primary_10_1016_j_jcis_2024_01_061
crossref_primary_10_1080_09593330_2022_2129457
crossref_primary_10_1016_j_jclepro_2022_134118
crossref_primary_10_1021_acs_analchem_4c02208
crossref_primary_10_1016_j_jhazmat_2023_131471
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_3390_nano13243116
crossref_primary_10_1016_j_jclepro_2022_131367
crossref_primary_10_1039_D4RA07287A
crossref_primary_10_1016_j_cej_2021_133443
crossref_primary_10_1016_j_cej_2021_133369
crossref_primary_10_1016_j_cej_2022_136755
crossref_primary_10_1021_acsomega_3c02977
crossref_primary_10_1016_j_apcatb_2022_121259
crossref_primary_10_1016_j_jhazmat_2021_127640
crossref_primary_10_1016_j_apsusc_2023_158302
crossref_primary_10_1039_D4SC02850C
crossref_primary_10_1016_j_seppur_2022_122991
crossref_primary_10_1021_acsestwater_2c00529
crossref_primary_10_3390_catal12060671
crossref_primary_10_1016_j_ces_2025_121457
crossref_primary_10_1016_j_jece_2024_113897
crossref_primary_10_1016_j_chemosphere_2021_131171
crossref_primary_10_1016_j_seppur_2024_130058
crossref_primary_10_1039_D4NJ00266K
crossref_primary_10_1016_j_scitotenv_2023_164345
crossref_primary_10_1016_j_colsurfa_2024_133860
crossref_primary_10_3390_nano14090786
crossref_primary_10_1016_j_seppur_2024_126672
crossref_primary_10_1016_j_cej_2023_147273
crossref_primary_10_1016_j_jhazmat_2021_127270
crossref_primary_10_1016_j_cej_2023_145298
crossref_primary_10_1016_j_seppur_2021_120357
crossref_primary_10_1016_j_nanoen_2024_109740
crossref_primary_10_1016_j_jhazmat_2021_126535
crossref_primary_10_1016_j_ecoenv_2023_115364
crossref_primary_10_1016_j_chemosphere_2022_136291
crossref_primary_10_3390_nano14050473
crossref_primary_10_1016_j_chemosphere_2024_142733
crossref_primary_10_3389_fenvs_2024_1467797
crossref_primary_10_1016_j_cjsc_2023_100093
crossref_primary_10_1016_j_jece_2024_112759
crossref_primary_10_1016_j_jece_2024_113403
crossref_primary_10_1016_j_envres_2022_112956
crossref_primary_10_1016_j_jece_2023_110649
crossref_primary_10_1016_j_seppur_2023_123273
crossref_primary_10_1016_j_seppur_2024_130881
crossref_primary_10_1016_j_jclepro_2022_133769
crossref_primary_10_1016_j_mtcomm_2021_103103
crossref_primary_10_1016_j_jece_2021_106276
crossref_primary_10_1016_j_seppur_2022_120806
crossref_primary_10_1016_j_seppur_2022_121937
crossref_primary_10_1039_D3RA04296K
crossref_primary_10_1016_j_seppur_2023_124768
crossref_primary_10_1002_jctb_7297
crossref_primary_10_1016_j_cej_2023_146124
crossref_primary_10_1016_j_chemosphere_2024_143874
crossref_primary_10_1016_j_colsurfa_2022_130011
crossref_primary_10_2166_wst_2024_260
crossref_primary_10_1007_s10562_022_04211_z
crossref_primary_10_1007_s11356_022_21077_1
crossref_primary_10_1016_j_cej_2023_141317
crossref_primary_10_1016_j_chemosphere_2022_136937
crossref_primary_10_3390_catal12111345
crossref_primary_10_1002_aic_17879
crossref_primary_10_1016_j_apcatb_2022_122034
crossref_primary_10_1016_j_ceja_2023_100447
crossref_primary_10_1016_j_jclepro_2022_133336
crossref_primary_10_1016_j_jclepro_2022_134105
crossref_primary_10_1016_j_seppur_2024_129601
crossref_primary_10_1016_j_scitotenv_2022_159279
crossref_primary_10_1016_j_seppur_2024_128595
crossref_primary_10_1016_j_cej_2022_140244
crossref_primary_10_1016_j_apsusc_2023_157669
crossref_primary_10_1016_j_biortech_2022_127080
Cites_doi 10.1016/j.cej.2013.05.045
10.1039/c3ta10592j
10.1016/j.cej.2018.05.118
10.1016/j.cej.2019.123921
10.1016/j.jhazmat.2020.122751
10.1016/j.jhazmat.2019.05.081
10.1016/j.jhazmat.2020.123297
10.1016/j.chemosphere.2020.126798
10.1016/j.envint.2019.104905
10.1016/j.cej.2019.122780
10.1016/j.cej.2018.02.064
10.1016/j.cej.2018.08.060
10.1016/j.chemosphere.2008.08.043
10.1016/j.scitotenv.2020.140997
10.1039/C9TA02931A
10.1016/j.chemosphere.2020.127672
10.1039/C6CY02355J
10.1016/j.cej.2020.125044
10.1039/C9RA05362J
10.1039/C5RA06043E
10.1016/j.scitotenv.2020.141414
10.1016/j.cej.2011.12.048
10.1016/j.watres.2017.03.054
10.1016/j.envint.2017.10.016
10.1016/j.scitotenv.2015.05.130
10.1016/j.jhazmat.2020.123530
10.1016/j.cej.2020.126701
10.1021/acs.est.0c00914
10.1039/C6CY01479H
10.1039/C4CE01414F
10.1016/j.cej.2019.122004
10.1016/j.carbon.2017.01.058
10.1016/j.jhazmat.2020.122938
10.1016/j.cej.2014.07.002
10.1016/j.watres.2016.06.005
10.1016/j.cej.2017.02.133
10.1002/etc.2945
10.1016/j.jhazmat.2020.122598
10.1016/j.apcatb.2019.04.081
10.1016/j.apcata.2017.09.021
10.1016/j.cej.2020.126090
10.1016/j.cej.2019.123592
10.1016/j.cej.2019.123361
10.1016/j.envpol.2018.08.061
10.1016/j.cej.2015.11.101
10.1021/es060413l
10.1021/acscatal.6b00426
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7S9
L.6
7X8
DOI 10.1016/j.jhazmat.2021.125598
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 10_1016_j_jhazmat_2021_125598
S0304389421005616
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
7S9
L.6
7X8
ID FETCH-LOGICAL-c375t-b7c88a81d6a10872f40115f30a6e4a9146e09cd6969c9313919dcc98fb2ec01d3
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Thu Jul 10 23:06:19 EDT 2025
Fri Jul 11 05:05:09 EDT 2025
Tue Jul 01 00:49:43 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Fri Feb 23 02:46:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PS
Ferromagnetic
MOF
Fe3C
SMX
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-b7c88a81d6a10872f40115f30a6e4a9146e09cd6969c9313919dcc98fb2ec01d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6980-4873
0000-0003-2592-3103
0000-0002-1651-5901
PQID 2524333526
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2532243834
proquest_miscellaneous_2524333526
crossref_citationtrail_10_1016_j_jhazmat_2021_125598
crossref_primary_10_1016_j_jhazmat_2021_125598
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_125598
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-15
PublicationDateYYYYMMDD 2021-07-15
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of hazardous materials
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References El Asmar, Baalbaki, Abou Khalil, Naim, Bejjani, Ghauch (bib6) 2021; 405
Archundia, Duwig, Spadini, Morel, Prado, Perez, Orsag, Martins (bib5) 2019; 130
Al Hakim, Baalbaki, Tantawi, Ghauch (bib2) 2019; 9
Jin, Zhang, Wen, Wang, Gu, Zhao, Wang, Chen, Hayat, Wang (bib14) 2018; 243
Lei, Zhang, Tian, Yao, Duan, Zuo (bib15) 2020; 748
Peng, Zhang, Deng, Shan, He, Yu (bib27) 2018; 341
Liu, Xu, Li, Su, Li, Zhou, Gao, Yue (bib19) 2020; 382
Wang, Kim, Malgras, Na, Lin, You, Zhang, Li, Yamauchi (bib36) 2019; 15
Pruden, Pei, Storteboom, Carlson (bib28) 2006; 40
Yang, Lu, Jiang, Ma, Liu, Cao, Liu, Li, Pang, Kong, Luo (bib40) 2017; 118
Andrew Lin, Hsu (bib4) 2015; 5
Zhu, Bin, Shen, Huang, He, Chen (bib47) 2020; 402
Zhang, Sun, Wei, Huang, Zhang (bib45) 2020; 385
Ayoub, Ghauch (bib7) 2014; 256
Ghauch, Baalbaki, Amasha, El Asmar, Tantawi (bib11) 2017; 317
Pu, Niu, Brusseau, Sun, Zhou, Deng, Wan (bib31) 2020; 394
Zeng, Deng, Zhang, Zhou, Shi (bib43) 2020; 400
Li, Duan, Sun, Kang, Zhang, Tade, Wang (bib20) 2017; 115
Zhang, Xiao, Yan, Chen, Wang, Luo, Qi, Sun, Wang, Li (bib46) 2020; 54
Wezendonk, Santos, Nasalevich, Warringa, Dugulan, Chojecki, Koeken, Ruitenbeek, Meima, Islam, Sankar, Makkee, Kapteijn, Gascon (bib38) 2016; 6
Huang, Zhang, Yi, Cheng, Lai, Xu, Zhang, Liu, Zhou, Xue, Wang, Li, Chen (bib13) 2021; 263
Yang, Yan, Yu, Pan, Pignatello (bib41) 2020; 391
Li, Li, Pan, Xiong, Yao, Xie, Lai (bib22) 2020; 384
Pu, Guan, Ma, Wan, Wang, Brusseau, Chi (bib29) 2018; 549
Straub (bib34) 2016; 35
Pu, Ma, Wan, Wang, Wang, Brusseau (bib30) 2017; 7
Shang, Chen, Zhang, Yue, Li, Gao, Xu (bib33) 2019; 375
Amasha, Baalbaki, Ghauch (bib3) 2018; 350
Li, Liao, Ye, Yeh (bib21) 2020; 398
Naim, Ghauch (bib25) 2016; 288
Chi, Wan, Ma, Wang, Ding, Li (bib9) 2019; 377
Yang, Zhang, Jian, Wang, Xing, Sun, Hao (bib42) 2020; 396
Ahmed, Zhou, Ngo, Guo (bib1) 2015; 532
Bao, Lee, Lim, Wang, Hu (bib8) 2019; 254
Liu, Tan, Guo, Wang (bib17) 2020; 396
Xu, Niu, Xie, Ma, Zhu, Crittenden (bib39) 2021; 402
Ghauch, Tuqan (bib12) 2012; 183
Liang, Huang, Mohanty, Kurakalva (bib16) 2008; 73
Liu, Wang, Zhang, Li, Meng, Song, Qi, Xu, Chu, Yuan, Yu (bib18) 2018; 354
Qiao, Ying, Singer, Zhu (bib32) 2018; 110
Wan, Wan, Zhao, Wang, Luo, Yang, Liu (bib37) 2020; 254
Li, Rykov, Zhang, Zhang, Wang (bib23) 2016; 6
Wang, Chu, Wojnarovits, Takacs (bib35) 2020; 744
Zhang, Luo, Wang, Zhang, Yan, Sun, Wang, Li (bib44) 2019; 7
Peng, Liu, Sun, Yao, Zhi, Wang (bib26) 2013; 1
Ghauch, Ayoub, Naim (bib10) 2013; 228
Zhu, Santiago-Schuebel, Xiao, Hollert, Kueppers (bib48) 2016; 102
Li, Tian, Zhang, Qian, Du (bib24) 2014; 16
Andrew Lin (10.1016/j.jhazmat.2021.125598_bib4) 2015; 5
Li (10.1016/j.jhazmat.2021.125598_bib20) 2017; 115
Peng (10.1016/j.jhazmat.2021.125598_bib26) 2013; 1
Zeng (10.1016/j.jhazmat.2021.125598_bib43) 2020; 400
Wang (10.1016/j.jhazmat.2021.125598_bib36) 2019; 15
Pu (10.1016/j.jhazmat.2021.125598_bib31) 2020; 394
Amasha (10.1016/j.jhazmat.2021.125598_bib3) 2018; 350
Yang (10.1016/j.jhazmat.2021.125598_bib40) 2017; 118
Zhu (10.1016/j.jhazmat.2021.125598_bib48) 2016; 102
Ghauch (10.1016/j.jhazmat.2021.125598_bib12) 2012; 183
Wang (10.1016/j.jhazmat.2021.125598_bib35) 2020; 744
Liu (10.1016/j.jhazmat.2021.125598_bib18) 2018; 354
Pruden (10.1016/j.jhazmat.2021.125598_bib28) 2006; 40
Lei (10.1016/j.jhazmat.2021.125598_bib15) 2020; 748
Pu (10.1016/j.jhazmat.2021.125598_bib30) 2017; 7
Straub (10.1016/j.jhazmat.2021.125598_bib34) 2016; 35
Liang (10.1016/j.jhazmat.2021.125598_bib16) 2008; 73
Pu (10.1016/j.jhazmat.2021.125598_bib29) 2018; 549
Yang (10.1016/j.jhazmat.2021.125598_bib42) 2020; 396
Zhu (10.1016/j.jhazmat.2021.125598_bib47) 2020; 402
Qiao (10.1016/j.jhazmat.2021.125598_bib32) 2018; 110
Shang (10.1016/j.jhazmat.2021.125598_bib33) 2019; 375
Bao (10.1016/j.jhazmat.2021.125598_bib8) 2019; 254
Zhang (10.1016/j.jhazmat.2021.125598_bib44) 2019; 7
Zhang (10.1016/j.jhazmat.2021.125598_bib46) 2020; 54
Li (10.1016/j.jhazmat.2021.125598_bib21) 2020; 398
Ghauch (10.1016/j.jhazmat.2021.125598_bib10) 2013; 228
Li (10.1016/j.jhazmat.2021.125598_bib24) 2014; 16
El Asmar (10.1016/j.jhazmat.2021.125598_bib6) 2021; 405
Ghauch (10.1016/j.jhazmat.2021.125598_bib11) 2017; 317
Naim (10.1016/j.jhazmat.2021.125598_bib25) 2016; 288
Chi (10.1016/j.jhazmat.2021.125598_bib9) 2019; 377
Yang (10.1016/j.jhazmat.2021.125598_bib41) 2020; 391
Jin (10.1016/j.jhazmat.2021.125598_bib14) 2018; 243
Liu (10.1016/j.jhazmat.2021.125598_bib17) 2020; 396
Li (10.1016/j.jhazmat.2021.125598_bib23) 2016; 6
Wan (10.1016/j.jhazmat.2021.125598_bib37) 2020; 254
Peng (10.1016/j.jhazmat.2021.125598_bib27) 2018; 341
Archundia (10.1016/j.jhazmat.2021.125598_bib5) 2019; 130
Zhang (10.1016/j.jhazmat.2021.125598_bib45) 2020; 385
Liu (10.1016/j.jhazmat.2021.125598_bib19) 2020; 382
Wezendonk (10.1016/j.jhazmat.2021.125598_bib38) 2016; 6
Li (10.1016/j.jhazmat.2021.125598_bib22) 2020; 384
Al Hakim (10.1016/j.jhazmat.2021.125598_bib2) 2019; 9
Ayoub (10.1016/j.jhazmat.2021.125598_bib7) 2014; 256
Xu (10.1016/j.jhazmat.2021.125598_bib39) 2021; 402
Huang (10.1016/j.jhazmat.2021.125598_bib13) 2021; 263
Ahmed (10.1016/j.jhazmat.2021.125598_bib1) 2015; 532
References_xml – volume: 263
  year: 2021
  ident: bib13
  article-title: Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment
  publication-title: Chemosphere
– volume: 396
  year: 2020
  ident: bib42
  article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol
  publication-title: J. Hazard. Mater.
– volume: 341
  start-page: 361
  year: 2018
  end-page: 370
  ident: bib27
  article-title: Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe
  publication-title: Chem. Eng. J.
– volume: 532
  start-page: 112
  year: 2015
  end-page: 126
  ident: bib1
  article-title: Adsorptive removal of antibiotics from water and wastewater: progress and challenges
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 50790
  year: 2015
  end-page: 50800
  ident: bib4
  article-title: Magnetic iron/carbon nanorods derived from a metal organic framework as an efficient heterogeneous catalyst for the chemical oxidation process in water
  publication-title: RSC Adv.
– volume: 118
  start-page: 196
  year: 2017
  end-page: 207
  ident: bib40
  article-title: Degradation of sulfamethoxazole by UV, UV/H
  publication-title: Water Res.
– volume: 7
  start-page: 12547
  year: 2019
  end-page: 12555
  ident: bib44
  article-title: Confined pyrolysis of metal-organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes
  publication-title: J. Mater. Chem. A
– volume: 398
  year: 2020
  ident: bib21
  article-title: Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism
  publication-title: J. Hazard. Mater.
– volume: 377
  start-page: 163
  year: 2019
  end-page: 171
  ident: bib9
  article-title: Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater
  publication-title: J. Hazard. Mater.
– volume: 354
  start-page: 835
  year: 2018
  end-page: 848
  ident: bib18
  article-title: Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 9208
  year: 2014
  end-page: 9215
  ident: bib24
  article-title: An alternative strategy to construct Fe(II)-based MOFs with multifarious structures and magnetic behaviors
  publication-title: CrystEngComm
– volume: 288
  start-page: 276
  year: 2016
  end-page: 288
  ident: bib25
  article-title: Ranitidine abatement in chemically activated persulfate systems: assessment of industrial iron waste for sustainable applications
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 5854
  year: 2013
  end-page: 5859
  ident: bib26
  article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water
  publication-title: J. Mater. Chem. A
– volume: 405
  year: 2021
  ident: bib6
  article-title: Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation
  publication-title: Chem. Eng. J.
– volume: 394
  year: 2020
  ident: bib31
  article-title: Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole
  publication-title: Chem. Eng. J.
– volume: 15
  year: 2019
  ident: bib36
  article-title: Metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification
  publication-title: Small
– volume: 35
  start-page: 767
  year: 2016
  end-page: 779
  ident: bib34
  article-title: Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe
  publication-title: Environ. Toxicol. Chem.
– volume: 183
  start-page: 162
  year: 2012
  end-page: 171
  ident: bib12
  article-title: Oxidation of bisoprolol in heated persulfate/H
  publication-title: Chem. Eng. J.
– volume: 382
  year: 2020
  ident: bib19
  article-title: One-step synthesis of “nuclear-shell” structure iron-carbon nanocomposite as a persulfate activator for bisphenol A degradation
  publication-title: Chem. Eng. J.
– volume: 243
  start-page: 218
  year: 2018
  end-page: 227
  ident: bib14
  article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix
  publication-title: Environ. Pollut.
– volume: 748
  year: 2020
  ident: bib15
  article-title: Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate
  publication-title: Sci. Total Environ.
– volume: 102
  start-page: 52
  year: 2016
  end-page: 62
  ident: bib48
  article-title: Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change
  publication-title: Water Res.
– volume: 115
  start-page: 649
  year: 2017
  end-page: 658
  ident: bib20
  article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: the effects of precursors and annealing ambience on metal-free catalytic oxidation
  publication-title: Carbon
– volume: 384
  year: 2020
  ident: bib22
  article-title: Peroxymonosulfate activation on FeCo
  publication-title: Chem. Eng. J.
– volume: 317
  start-page: 1012
  year: 2017
  end-page: 1025
  ident: bib11
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
– volume: 110
  start-page: 160
  year: 2018
  end-page: 172
  ident: bib32
  article-title: Review of antibiotic resistance in China and its environment
  publication-title: Environ. Int.
– volume: 40
  start-page: 7445
  year: 2006
  end-page: 7450
  ident: bib28
  article-title: Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado
  publication-title: Environ. Sci. Technol.
– volume: 396
  year: 2020
  ident: bib17
  article-title: Catalytic activation of O
  publication-title: J. Hazard. Mater.
– volume: 256
  start-page: 280
  year: 2014
  end-page: 292
  ident: bib7
  article-title: Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: application to sulfamethoxazole degradation
  publication-title: Chem. Eng. J.
– volume: 744
  year: 2020
  ident: bib35
  article-title: Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview
  publication-title: Sci. Total Environ.
– volume: 130
  year: 2019
  ident: bib5
  article-title: Assessment of the Sulfamethoxazole mobility in natural soils and of the risk of contamination of water resources at the catchment scale
  publication-title: Environ. Int.
– volume: 254
  start-page: 37
  year: 2019
  end-page: 46
  ident: bib8
  article-title: Pore-functionalized ceramic membrane with isotropically impregnated cobalt oxide for sulfamethoxazole degradation and membrane fouling elimination: synergistic effect between catalytic oxidation and membrane separation
  publication-title: Appl. Catal. B Environ.
– volume: 400
  year: 2020
  ident: bib43
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
– volume: 7
  start-page: 1129
  year: 2017
  end-page: 1140
  ident: bib30
  article-title: Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal-organic framework MIL-53(Fe) with Fe
  publication-title: Catal. Sci. Technol.
– volume: 402
  year: 2020
  ident: bib47
  article-title: In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants
  publication-title: Chem. Eng. J.
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: bib16
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
– volume: 6
  start-page: 3236
  year: 2016
  end-page: 3247
  ident: bib38
  article-title: Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts
  publication-title: ACS Catal.
– volume: 391
  year: 2020
  ident: bib41
  article-title: Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 33472
  year: 2019
  end-page: 33485
  ident: bib2
  article-title: Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent
  publication-title: RSC Adv.
– volume: 375
  year: 2019
  ident: bib33
  article-title: Removal of sulfamethoxazole from water via activation of persulfate by Fe
  publication-title: Chem. Eng. J.
– volume: 549
  start-page: 82
  year: 2018
  end-page: 92
  ident: bib29
  article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution
  publication-title: Appl. Catal. A
– volume: 254
  year: 2020
  ident: bib37
  article-title: Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation
  publication-title: Chemosphere
– volume: 54
  start-page: 10289
  year: 2020
  end-page: 10300
  ident: bib46
  article-title: Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: size-exclusion and confinement effect
  publication-title: Environ. Sci. Technol.
– volume: 350
  start-page: 395
  year: 2018
  end-page: 410
  ident: bib3
  article-title: A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 7486
  year: 2016
  end-page: 7494
  ident: bib23
  article-title: Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate
  publication-title: Catal. Sci. Technol.
– volume: 385
  year: 2020
  ident: bib45
  article-title: Enhanced H
  publication-title: Chem. Eng. J.
– volume: 228
  start-page: 1168
  year: 2013
  end-page: 1181
  ident: bib10
  article-title: Degradation of sulfamethoxazole by persulfate assisted micrometric Fe
  publication-title: Chem. Eng. J.
– volume: 402
  year: 2021
  ident: bib39
  article-title: Effective degradation of aqueous carbamazepine on a novel blue-colored TiO
  publication-title: J. Hazard. Mater.
– volume: 228
  start-page: 1168
  year: 2013
  ident: 10.1016/j.jhazmat.2021.125598_bib10
  article-title: Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.05.045
– volume: 1
  start-page: 5854
  year: 2013
  ident: 10.1016/j.jhazmat.2021.125598_bib26
  article-title: Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10592j
– volume: 15
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib36
  article-title: Metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification
  publication-title: Small
– volume: 350
  start-page: 395
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib3
  article-title: A comparative study of the common persulfate activation techniques for the complete degradation of an NSAID: The case of ketoprofen
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.118
– volume: 385
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib45
  article-title: Enhanced H2O2 activation and sulfamethoxazole degradation by Fe-impregnated biochar
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123921
– volume: 396
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib17
  article-title: Catalytic activation of O2 by Al0-CNTs-Cu2O composite for Fenton-like degradation of sulfamerazine antibiotic at wide pH range
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122751
– volume: 377
  start-page: 163
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib9
  article-title: Ferrous metal-organic frameworks with stronger coordinatively unsaturated metal sites for persulfate activation to effectively degrade dibutyl phthalate in wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.05.081
– volume: 400
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib43
  article-title: Development of oxygen vacancies enriched CoAl hydroxide@hydroxysulfide hollow flowers for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123297
– volume: 254
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib37
  article-title: Facile preparation of iron oxide doped Fe-MOFs-MW as robust peroxydisulfate catalyst for emerging pollutants degradation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126798
– volume: 130
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib5
  article-title: Assessment of the Sulfamethoxazole mobility in natural soils and of the risk of contamination of water resources at the catchment scale
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104905
– volume: 382
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib19
  article-title: One-step synthesis of “nuclear-shell” structure iron-carbon nanocomposite as a persulfate activator for bisphenol A degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122780
– volume: 341
  start-page: 361
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib27
  article-title: Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.02.064
– volume: 354
  start-page: 835
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib18
  article-title: Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH2-group into structure of its MOF precursor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.060
– volume: 73
  start-page: 1540
  year: 2008
  ident: 10.1016/j.jhazmat.2021.125598_bib16
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 744
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib35
  article-title: Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140997
– volume: 7
  start-page: 12547
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib44
  article-title: Confined pyrolysis of metal-organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02931A
– volume: 263
  year: 2021
  ident: 10.1016/j.jhazmat.2021.125598_bib13
  article-title: Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127672
– volume: 7
  start-page: 1129
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125598_bib30
  article-title: Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal-organic framework MIL-53(Fe) with FeII/FeIII mixed-valence coordinatively unsaturated iron center
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02355J
– volume: 394
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib31
  article-title: Ferrous metal-organic frameworks with strong electron-donating properties for persulfate activation to effectively degrade aqueous sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125044
– volume: 9
  start-page: 33472
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib2
  article-title: Chemically and thermally activated persulfate for theophylline degradation and application to pharmaceutical factory effluent
  publication-title: RSC Adv.
  doi: 10.1039/C9RA05362J
– volume: 5
  start-page: 50790
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125598_bib4
  article-title: Magnetic iron/carbon nanorods derived from a metal organic framework as an efficient heterogeneous catalyst for the chemical oxidation process in water
  publication-title: RSC Adv.
  doi: 10.1039/C5RA06043E
– volume: 748
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib15
  article-title: Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141414
– volume: 183
  start-page: 162
  year: 2012
  ident: 10.1016/j.jhazmat.2021.125598_bib12
  article-title: Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.12.048
– volume: 118
  start-page: 196
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125598_bib40
  article-title: Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.054
– volume: 110
  start-page: 160
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib32
  article-title: Review of antibiotic resistance in China and its environment
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.10.016
– volume: 532
  start-page: 112
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125598_bib1
  article-title: Adsorptive removal of antibiotics from water and wastewater: progress and challenges
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.05.130
– volume: 402
  year: 2021
  ident: 10.1016/j.jhazmat.2021.125598_bib39
  article-title: Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123530
– volume: 405
  year: 2021
  ident: 10.1016/j.jhazmat.2021.125598_bib6
  article-title: Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126701
– volume: 54
  start-page: 10289
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib46
  article-title: Efficient removal of organic pollutants by metal-organic framework derived Co/C yolk-shell nanoreactors: size-exclusion and confinement effect
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00914
– volume: 6
  start-page: 7486
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125598_bib23
  article-title: Graphene encapsulated FexCoy nanocages derived from metal–organic frameworks as efficient activators for peroxymonosulfate
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY01479H
– volume: 16
  start-page: 9208
  year: 2014
  ident: 10.1016/j.jhazmat.2021.125598_bib24
  article-title: An alternative strategy to construct Fe(II)-based MOFs with multifarious structures and magnetic behaviors
  publication-title: CrystEngComm
  doi: 10.1039/C4CE01414F
– volume: 375
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib33
  article-title: Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122004
– volume: 115
  start-page: 649
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125598_bib20
  article-title: Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: the effects of precursors and annealing ambience on metal-free catalytic oxidation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.058
– volume: 398
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib21
  article-title: Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122938
– volume: 256
  start-page: 280
  year: 2014
  ident: 10.1016/j.jhazmat.2021.125598_bib7
  article-title: Assessment of bimetallic and trimetallic iron-based systems for persulfate activation: application to sulfamethoxazole degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.07.002
– volume: 102
  start-page: 52
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125598_bib48
  article-title: Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.06.005
– volume: 317
  start-page: 1012
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125598_bib11
  article-title: Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.133
– volume: 35
  start-page: 767
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125598_bib34
  article-title: Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2945
– volume: 396
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib42
  article-title: Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122598
– volume: 254
  start-page: 37
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125598_bib8
  article-title: Pore-functionalized ceramic membrane with isotropically impregnated cobalt oxide for sulfamethoxazole degradation and membrane fouling elimination: synergistic effect between catalytic oxidation and membrane separation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.081
– volume: 549
  start-page: 82
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib29
  article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2017.09.021
– volume: 402
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib47
  article-title: In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126090
– volume: 391
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib41
  article-title: Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123592
– volume: 384
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125598_bib22
  article-title: Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123361
– volume: 243
  start-page: 218
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125598_bib14
  article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.061
– volume: 288
  start-page: 276
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125598_bib25
  article-title: Ranitidine abatement in chemically activated persulfate systems: assessment of industrial iron waste for sustainable applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.11.101
– volume: 40
  start-page: 7445
  year: 2006
  ident: 10.1016/j.jhazmat.2021.125598_bib28
  article-title: Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060413l
– volume: 6
  start-page: 3236
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125598_bib38
  article-title: Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer-Tropsch catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00426
SSID ssj0001754
Score 2.6106389
Snippet Novel Fe@C composites derived from metal-organic framework (MOF) were synthesized. Being subject to pyrolysis under different temperatures endows these Fe@Cs...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125598
SubjectTerms carbon
catalytic activity
coordination polymers
crystal structure
Fe3C
Ferromagnetic
ferromagnetism
heat treatment
hydroxyl radicals
iron
MOF
pyrolysis
remediation
singlet oxygen
SMX
sulfamethoxazole
sulfates
superoxide anion
Title Insight into degradation mechanism of sulfamethoxazole by metal-organic framework derived novel magnetic Fe@C composite activated persulfate
URI https://dx.doi.org/10.1016/j.jhazmat.2021.125598
https://www.proquest.com/docview/2524333526
https://www.proquest.com/docview/2532243834
Volume 414
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-MwFLZYLnAYDZtgGJBH4to2i5PYt0EVVWEGLoDEzbIdG1q1SUVTtsP8An4072Vhkxgkjolsy_J7_t5n-y2E7AXGeEmagPI6jc-MsOeUCQAMtYkF5zqyBu87jk_i_jk7uogu5ki3iYVBt8oa-ytML9G6_tOpV7MzGQw6p_ioB-aWwaEFaTCm3WYsQS1v_3tx8wDzWKWQwhcAaP0SxdMZtodX6gGIIRwTA7_tl8nKP7JP75C6ND-97-RbzRvpfjW1FTJns1Wy_Cqb4CqZ_6tu18jjYTbFAzcdZEVOU8wFUZVNomOLUb6D6Zjmjk5nI6fK8tF36iEfWarvoQEw8VZV58lQ17htwSDXgIkpzfIbO6JjdZlh5CPt2d9dii7p6PdlKUZI3ABzTekEKCUOX9h1ct47OOv2W3XJhZYJk6ho6cRwroDDxsr3eBI4hpTRhZ6KLVMCYNV6wqSxiIURIbBHX6TGCO50YI3np-EGWcjyzG4SGqko1BHnqXAgFlAUqxOhEwc6A8oR2C3CmoWWps5HjmUxRrJxPBvKWj4S5SMr-WyR9nO3SZWQ47MOvJGifKNZEozGZ11_NVKXsOvwKUVlNp9NZRAFLMRwtfh_bQAsMRMs-_H1KWyTJfzC22Q_-kkWiuuZ3QEaVOjdUs93yeL-4Z_-yROGMQsd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB616QE4ICggSgsYiWuSfdi79o0qapTQNBdaqTfL9nohUbIbNZtC-xv40cxkd8tDgkpcd23L8oy_-WzPA-B95FyQZikqb27pmRH3nHERgqF1iZLSCu_ovuNsmowu-MdLcbkDgzYWhtwqG-yvMX2L1s2XfrOa_dVs1v9Ej3pobjkeWogGJ7uwR9mpRAf2jseno-kdIKOFrLNI0SMAdvgZyNOf9-ZfzC1yQzwpRmEv3OYr_5uJ-gOstxZo-AQeN9SRHdezewo7vtiHR78kFNyH3Yn5-gy-j4s1nbnZrKhKllE6iLpyElt6CvSdrZeszNl6s8jNtoL0N3NbLjyzN9gAyXi3LvXkWN56buEgVwiLGSvKa79gS_O5oOBHNvQfBoy80sn1yzMKkrhG8pqxFbJKGr7yz-FieHI-GHWbqgtdF6ei6trUSWmQxiYmDGQa5ZxYYx4HJvHcKERWHyiXJSpRTsVIIEOVOadkbiPvgjCLX0CnKAv_EpgwIrZCykzlnKeoK96myqY5qg3qR-QPgLcLrV2TkpwqYyx063s21418NMlH1_I5gN5dt1Wdk-O-DrKVov5NuTTajfu6vmulrnHj0WuKKXy5WetIRDymiLXkX20QLykZLH_1_1N4Cw9G52cTPRlPTw_hIf2hy-VQHEGnutr418iKKvum0fofmYwNzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+degradation+mechanism+of+sulfamethoxazole+by+metal-organic+framework+derived+novel+magnetic+Fe%40C+composite+activated+persulfate&rft.jtitle=Journal+of+hazardous+materials&rft.au=Pu%2C+Mengjie&rft.au=Wan%2C+Jinquan&rft.au=Zhang%2C+Fengzhen&rft.au=Brusseau%2C+Mark+L&rft.date=2021-07-15&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=414&rft.spage=125598&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.125598&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon