Time crystallinity in dissipative Floquet systems
We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject to the latter for the entire cycle tends to lose c...
Saved in:
Published in | Physical review research Vol. 2; no. 2; p. 022002 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
03.04.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a short-ranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic oscillations stabilized by the dissipation. We also show that this is fundamentally different from the disordered discrete time crystal previously found in closed systems, both conceptually and in its phenomenology. The framework we develop here clarifies how fully connected models constitute a special case where subharmonic oscillations are stable in the thermodynamic limit. |
---|---|
AbstractList | We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that coupling to a bath introduces not only cooling but also noise, we point out that a system subject to the latter for the entire cycle tends to lose coherence of the subharmonic oscillations, and thereby the long-time temporal symmetry breaking. We provide an example of a short-ranged two-dimensional system which does not suffer from this and therefore displays persistent subharmonic oscillations stabilized by the dissipation. We also show that this is fundamentally different from the disordered discrete time crystal previously found in closed systems, both conceptually and in its phenomenology. The framework we develop here clarifies how fully connected models constitute a special case where subharmonic oscillations are stable in the thermodynamic limit. |
ArticleNumber | 022002 |
Author | Moessner, Roderich Piazza, Francesco Lazarides, Achilleas Roy, Sthitadhi |
Author_xml | – sequence: 1 givenname: Achilleas orcidid: 0000-0002-0698-2776 surname: Lazarides fullname: Lazarides, Achilleas – sequence: 2 givenname: Sthitadhi surname: Roy fullname: Roy, Sthitadhi – sequence: 3 givenname: Francesco surname: Piazza fullname: Piazza, Francesco – sequence: 4 givenname: Roderich surname: Moessner fullname: Moessner, Roderich |
BookMark | eNqFkN1KAzEQhYNUsNa-w77A1vxv9kaQYrVQUEq9Dvm1KdvdmsTCvr2rVZDeeDXDcObjnHMNRm3XOgAKBGcIQXL7su3T2h3XLjkVzXaGZxBjCPEFGGNOSYkYp6M_-xWYprSDg4IhRAUbA7QJe1eY2Kesmia0IfdFaAsbUgoHlcPRFYume_9wuUiDxu3TDbj0qklu-jMn4HXxsJk_lavnx-X8flUaUrFcamKdJ7TylhiBtVOeUqihg3VVeYEr7YkWgwtumVWMGmp1TWztuEC1N4aSCVieuLZTO3mIYa9iLzsV5Pehi29SxRxM4yQnzNRaVVpxTiurhK2VIZorw4TWHA6suxPLxC6l6Lw0IQ_pujZHFRqJoPzqU571KbE89TkAxBng19C_r5-VmoRA |
CitedBy_id | crossref_primary_10_1103_PhysRevA_109_012208 crossref_primary_10_1038_s42005_025_02040_1 crossref_primary_10_1038_s41567_021_01491_x crossref_primary_10_1038_s42005_022_01090_z crossref_primary_10_1088_1742_5468_ad37bd crossref_primary_10_1103_PhysRevB_105_134422 crossref_primary_10_1103_PhysRevB_104_054304 crossref_primary_10_1103_PhysRevB_109_214306 crossref_primary_10_1103_PhysRevLett_130_150401 crossref_primary_10_1103_PhysRevB_102_134307 crossref_primary_10_1103_PhysRevE_111_034119 crossref_primary_10_1103_PhysRevLett_133_266601 crossref_primary_10_3389_fphy_2022_847409 crossref_primary_10_1103_PhysRevA_108_012209 crossref_primary_10_1103_PhysRevLett_130_130401 crossref_primary_10_1126_science_abk0603 crossref_primary_10_3390_atoms9020025 crossref_primary_10_1103_PhysRevLett_127_043602 crossref_primary_10_1103_PhysRevLett_129_090404 crossref_primary_10_1038_s41467_022_28462_x crossref_primary_10_1103_PhysRevLett_132_050801 crossref_primary_10_21468_SciPostPhys_17_3_089 crossref_primary_10_1103_RevModPhys_95_031001 crossref_primary_10_1103_PhysRevResearch_3_023106 crossref_primary_10_1038_s41467_021_22583_5 crossref_primary_10_1103_PhysRevA_110_012208 crossref_primary_10_1007_s44214_022_00002_0 crossref_primary_10_1103_PhysRevResearch_4_013018 crossref_primary_10_22331_q_2022_02_10_649 crossref_primary_10_1103_PhysRevResearch_2_032038 crossref_primary_10_1126_science_adn7087 crossref_primary_10_1038_s41567_024_02542_9 crossref_primary_10_3390_photonics9020061 crossref_primary_10_1103_PhysRevResearch_5_023014 crossref_primary_10_22331_q_2020_05_25_270 crossref_primary_10_1103_PhysRevA_103_023320 crossref_primary_10_1103_PhysRevA_108_L041303 crossref_primary_10_1088_1361_648X_ad1363 crossref_primary_10_1103_PhysRevA_105_053530 crossref_primary_10_1103_PhysRevB_106_L161111 crossref_primary_10_1103_PhysRevB_108_014434 crossref_primary_10_1103_PhysRevLett_127_140602 crossref_primary_10_1103_PhysRevLett_127_140603 crossref_primary_10_1103_PhysRevLett_131_180402 crossref_primary_10_1002_lpor_202100469 crossref_primary_10_1103_PhysRevResearch_4_023025 crossref_primary_10_1103_PhysRevLett_128_080603 crossref_primary_10_1103_PhysRevA_107_033311 crossref_primary_10_1103_PhysRevLett_128_070401 crossref_primary_10_1103_PRXQuantum_5_030325 crossref_primary_10_1103_PhysRevA_109_042212 crossref_primary_10_1103_PhysRevX_13_031013 crossref_primary_10_1103_PhysRevResearch_2_033347 crossref_primary_10_1103_PhysRevB_103_184308 crossref_primary_10_1103_PhysRevA_103_023713 crossref_primary_10_1103_PhysRevLett_125_160601 crossref_primary_10_1103_PhysRevB_104_014307 crossref_primary_10_21468_SciPostPhysCore_6_3_053 |
Cites_doi | 10.1103/PhysRevLett.122.015701 10.1103/PhysRevLett.93.086104 10.1103/PhysRevLett.114.140401 10.1103/PhysRevA.97.023807 10.1103/PhysRevB.95.195135 10.1103/PhysRevE.90.012110 10.1038/nature21413 10.1103/PhysRevB.95.214307 10.1103/PhysRevX.4.041048 10.1103/PhysRevA.91.033617 10.1016/j.aop.2014.11.008 10.1103/PhysRevLett.117.090402 10.1038/nphys4106 10.1038/nature21426 10.1038/s41567-019-0782-3 10.1088/1751-8121/aacbdb 10.1103/PhysRevLett.116.250401 10.1103/PhysRevLett.120.180602 10.1103/PhysRevLett.120.040404 10.1103/PhysRevLett.120.180603 10.1103/PhysRevLett.118.030401 10.1103/PhysRevLett.115.030402 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.2.022002 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_635c9ba7ba6647da8d9ac3b6ac58bb60 10_1103_PhysRevResearch_2_022002 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c375t-b3def347fd3c82beaf440b0e0977f827bf3b85116d5da54c4db93d9e6819fcc43 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:21:27 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Tue Jul 01 02:05:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-b3def347fd3c82beaf440b0e0977f827bf3b85116d5da54c4db93d9e6819fcc43 |
ORCID | 0000-0002-0698-2776 |
OpenAccessLink | https://doaj.org/article/635c9ba7ba6647da8d9ac3b6ac58bb60 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_635c9ba7ba6647da8d9ac3b6ac58bb60 crossref_citationtrail_10_1103_PhysRevResearch_2_022002 crossref_primary_10_1103_PhysRevResearch_2_022002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-03 |
PublicationDateYYYYMMDD | 2020-04-03 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-03 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2020 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.2.022002Cc11R1 PhysRevResearch.2.022002Cc20R1 PhysRevResearch.2.022002Cc1R1 PhysRevResearch.2.022002Cc13R1 PhysRevResearch.2.022002Cc25R1 PhysRevResearch.2.022002Cc2R1 PhysRevResearch.2.022002Cc12R1 PhysRevResearch.2.022002Cc3R1 PhysRevResearch.2.022002Cc15R1 PhysRevResearch.2.022002Cc23R1 PhysRevResearch.2.022002Cc4R1 PhysRevResearch.2.022002Cc14R1 PhysRevResearch.2.022002Cc24R1 PhysRevResearch.2.022002Cc5R1 PhysRevResearch.2.022002Cc17R1 PhysRevResearch.2.022002Cc18R1 PhysRevResearch.2.022002Cc6R1 PhysRevResearch.2.022002Cc16R1 PhysRevResearch.2.022002Cc19R1 PhysRevResearch.2.022002Cc7R1 PhysRevResearch.2.022002Cc8R1 PhysRevResearch.2.022002Cc9R1 |
References_xml | – ident: PhysRevResearch.2.022002Cc19R1 doi: 10.1103/PhysRevLett.122.015701 – ident: PhysRevResearch.2.022002Cc23R1 doi: 10.1103/PhysRevLett.93.086104 – ident: PhysRevResearch.2.022002Cc15R1 doi: 10.1103/PhysRevLett.114.140401 – ident: PhysRevResearch.2.022002Cc24R1 doi: 10.1103/PhysRevA.97.023807 – ident: PhysRevResearch.2.022002Cc16R1 doi: 10.1103/PhysRevB.95.195135 – ident: PhysRevResearch.2.022002Cc12R1 doi: 10.1103/PhysRevE.90.012110 – ident: PhysRevResearch.2.022002Cc6R1 doi: 10.1038/nature21413 – ident: PhysRevResearch.2.022002Cc17R1 doi: 10.1103/PhysRevB.95.214307 – ident: PhysRevResearch.2.022002Cc11R1 doi: 10.1103/PhysRevX.4.041048 – ident: PhysRevResearch.2.022002Cc4R1 doi: 10.1103/PhysRevA.91.033617 – ident: PhysRevResearch.2.022002Cc13R1 doi: 10.1016/j.aop.2014.11.008 – ident: PhysRevResearch.2.022002Cc2R1 doi: 10.1103/PhysRevLett.117.090402 – ident: PhysRevResearch.2.022002Cc3R1 doi: 10.1038/nphys4106 – ident: PhysRevResearch.2.022002Cc7R1 doi: 10.1038/nature21426 – ident: PhysRevResearch.2.022002Cc20R1 doi: 10.1038/s41567-019-0782-3 – ident: PhysRevResearch.2.022002Cc25R1 doi: 10.1088/1751-8121/aacbdb – ident: PhysRevResearch.2.022002Cc1R1 doi: 10.1103/PhysRevLett.116.250401 – ident: PhysRevResearch.2.022002Cc8R1 doi: 10.1103/PhysRevLett.120.180602 – ident: PhysRevResearch.2.022002Cc18R1 doi: 10.1103/PhysRevLett.120.040404 – ident: PhysRevResearch.2.022002Cc9R1 doi: 10.1103/PhysRevLett.120.180603 – ident: PhysRevResearch.2.022002Cc5R1 doi: 10.1103/PhysRevLett.118.030401 – ident: PhysRevResearch.2.022002Cc14R1 doi: 10.1103/PhysRevLett.115.030402 |
SSID | ssj0002511485 |
Score | 2.4679968 |
Snippet | We investigate the conditions under which periodically driven quantum systems subject to dissipation exhibit a stable subharmonic response. Noting that... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 022002 |
Title | Time crystallinity in dissipative Floquet systems |
URI | https://doaj.org/article/635c9ba7ba6647da8d9ac3b6ac58bb60 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EELyIn1i_yMFr2nRns5s9qrQUoR7EQm9hZz9AKFHaWPDib3d3k5TiRQ9ecgjZkLxJdt4kb94ScmuNcNz6F8kx5QsUZmgqqXEpzzDTmtlCxiax6ROfzNjjPJ9vLfUVNGGNPXAD3MAnRC1RCVScM2FUYaTSgFzpvEDksVr3OW-rmApzcCDOrMg76U4GgyCofLbrTs_Wp_3QY9p-Teny0ZZtf8wv40Ny0BLD5K65oCOyY6tjshcFmnp1QoahVyPRy0_P5oKNtifPyWuVhN_pURS9tsl4ESb5OmnMmVenZDYevTxM0na5g1SDyOsUwVgHTDgDuqBolWPMI2YzT9FcQQU6wMCPuMmNyplmBiUYablP6s7jCmdkt3qr7DlJPOZaKevpGko2VBQZZFahwMJxYAA9IrqbLnXrBR6WpFiUsSbIoPwBV0nLBq4eGW5Gvjd-GH8Ycx9w3RwfHK3jDh_nso1z-VucL_7jJJdkn4Z6OShv4Irs1ssPe-1JRY038fnx2-nX6BsFmNAa |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+crystallinity+in+dissipative+Floquet+systems&rft.jtitle=Physical+review+research&rft.au=Lazarides%2C+Achilleas&rft.au=Roy%2C+Sthitadhi&rft.au=Piazza%2C+Francesco&rft.au=Moessner%2C+Roderich&rft.date=2020-04-03&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1103%2FPhysRevResearch.2.022002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_2_022002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |