Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia
This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network...
Saved in:
Published in | Molecular psychiatry Vol. 29; no. 4; pp. 1088 - 1098 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1359-4184 1476-5578 1476-5578 |
DOI | 10.1038/s41380-023-02395-3 |
Cover
Loading…
Abstract | This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (
p
< 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (
p
< 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities. |
---|---|
AbstractList | This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (
p
< 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (
p
< 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities. This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities. This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities. |
Author | Cui, Nanyi Lei, Yanqin Tian, Yusheng Liu, Jiali Xia, Xinxin Chen, Hui Zhou, Jiawei Zhou, Jiansong Tang, Huajia Li, Rihui Huang, Ying Chen, Xianliang Wang, Xiaoping |
Author_xml | – sequence: 1 givenname: Hui surname: Chen fullname: Chen, Hui organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 2 givenname: Yanqin surname: Lei fullname: Lei, Yanqin organization: TeleBrain Medical Technology Co – sequence: 3 givenname: Rihui surname: Li fullname: Li, Rihui organization: Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau – sequence: 4 givenname: Xinxin surname: Xia fullname: Xia, Xinxin organization: TeleBrain Medical Technology Co – sequence: 5 givenname: Nanyi surname: Cui fullname: Cui, Nanyi organization: TeleBrain Medical Technology Co – sequence: 6 givenname: Xianliang surname: Chen fullname: Chen, Xianliang organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 7 givenname: Jiali surname: Liu fullname: Liu, Jiali organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 8 givenname: Huajia surname: Tang fullname: Tang, Huajia organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 9 givenname: Jiawei surname: Zhou fullname: Zhou, Jiawei organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 10 givenname: Ying surname: Huang fullname: Huang, Ying organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 11 givenname: Yusheng surname: Tian fullname: Tian, Yusheng organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 12 givenname: Xiaoping orcidid: 0000-0002-7862-0491 surname: Wang fullname: Wang, Xiaoping email: xiaop6@csu.edu.cn organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University – sequence: 13 givenname: Jiansong orcidid: 0000-0003-2135-2139 surname: Zhou fullname: Zhou, Jiansong email: zhoujs2003@csu.edu.cn organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38267620$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoO02A_9A15IwBsvjOZzkrmUsrZCQSh6HfK13SwzyZjMFNbf4I82220pFOxFSMJ5nsPhPWfgKOUUAHhH8GeCmfpSOWEKI0zZ_vQCsVfglHDZISGkOmpvJnrEieIn4KzWLcb7ongNTpiinewoPgV_b0KdY7pFdTZzgKvVJfS7ZMbo4HpJbo45mQG6nFJon7s476CP98YS6yZU2GZCU925TZ6bM5ptLtCHqYRam_sJ_r8GTfKwuk38k6dNCSmaN-B4bYYa3j7c5-DXt9XPiyt0_ePy-8XXa-SYFDOyrMcCG4mV8lha2uGeE-uNC5IQ7yhnRnjrqXCWM049sx32VlATLLPcBHYOPh76TiX_XloAeozVhWEwKeSlatoTJQimvWzoh2foNi-lZVI1w50UHWNUNer9A7XYMXg9lTiastOPOTdAHQBXcq0lrLWLLfCWwlxMHDTBer9SfVipbuvU9yvVrKn0mfrY_UWJHaTa4HQbytPYL1j_AM_yto0 |
CitedBy_id | crossref_primary_10_1016_j_cca_2025_120204 crossref_primary_10_1186_s12888_024_06283_0 crossref_primary_10_1117_1_NPh_11_4_045013 crossref_primary_10_1016_j_jad_2024_10_087 crossref_primary_10_1016_j_inffus_2024_102723 crossref_primary_10_3390_diagnostics15020154 crossref_primary_10_9758_cpn_24_1165 crossref_primary_10_1155_da_7645625 |
Cites_doi | 10.1016/j.neubiorev.2019.07.021 10.3389/fpsyt.2021.745458 10.1016/j.nicl.2018.06.012 10.1109/TNSRE.2021.3115266 10.1109/JBHI.2020.3043427 10.1093/brain/aww143 10.1159/000511348 10.1109/TNSRE.2020.3043426 10.1038/s41467-020-16914-1 10.1097/YCO.0000000000000648 10.1016/S0140-6736(18)31948-2 10.1192/bjp.2022.140 10.1109/JBHI.2019.2938247 10.1093/brain/awx233 10.1371/journal.pmed.1003901 10.1016/j.artmed.2019.07.004 10.1002/hbm.25683 10.1016/j.nicl.2018.101622 10.1016/j.schres.2021.09.005 10.1186/s13195-020-00632-3 10.1016/j.neuroimage.2021.118263 10.1016/j.media.2022.102366 10.1186/s12888-020-02972-8 10.1002/hbm.23430 10.1176/appi.ajp.2018.17091020 10.1016/S0140-6736(21)01730-X 10.1016/j.neuroimage.2013.05.079 10.1016/j.biopsych.2022.07.025 10.1016/j.nbd.2018.06.020 10.1038/s41467-018-05317-y 10.1093/bioinformatics/btab501 10.1016/j.jad.2020.12.081 10.1016/j.schres.2015.11.021 10.1016/j.bja.2020.05.068 10.1001/jamapsychiatry.2015.0071 10.1186/s13195-023-01181-1 10.1073/pnas.0700668104 10.1176/appi.ajp.2021.21080824 10.1016/j.nicl.2014.07.003 10.1016/S2215-0366(20)30262-5 10.1016/j.biopsych.2022.12.011 10.1016/j.pnpbp.2021.110401 10.1016/j.neuroimage.2016.04.051 10.1007/s11910-021-01111-4 10.1176/appi.ajp.2020.19060647 10.1016/S2215-0366(21)00395-3 10.1016/j.clinph.2020.03.031 10.1177/1545968320969937 10.1126/sciadv.abq8566 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U 7X8 |
DOI | 10.1038/s41380-023-02395-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-5578 |
EndPage | 1098 |
ExternalDocumentID | 38267620 10_1038_s41380_023_02395_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Human Health Foundation (HHF) grantid: 202103091470 funderid: https://doi.org/10.13039/501100003823 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82071543; 82171509 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82071543 – fundername: Human Health Foundation (HHF) grantid: 202103091470 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82171509 |
GroupedDBID | --- -Q- 0R~ 123 29M 2WC 36B 39C 3V. 4.4 406 53G 70F 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ABZZP ACAOD ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AXYYD AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL EPS ESX F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR IPY ITC IWAJR JSO JZLTJ KQ8 M1P M2M M7P NAO NQJWS O9- OK1 OVD P2P PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG TUS UKHRP ~8M AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FE 8FH 8FK K9. LK8 PKEHL PQEST PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-b39050a7088d07b260941bdace711dc243a5dbd25cb4342d3b60db52aeb3b4ae3 |
IEDL.DBID | 7X7 |
ISSN | 1359-4184 1476-5578 |
IngestDate | Fri Jul 11 16:47:23 EDT 2025 Tue Aug 19 04:12:00 EDT 2025 Mon Jul 21 06:03:36 EDT 2025 Tue Jul 01 00:22:03 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Fri Feb 21 02:39:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-b39050a7088d07b260941bdace711dc243a5dbd25cb4342d3b60db52aeb3b4ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7862-0491 0000-0003-2135-2139 |
PMID | 38267620 |
PQID | 3067563328 |
PQPubID | 44096 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2918510297 proquest_journals_3067563328 pubmed_primary_38267620 crossref_citationtrail_10_1038_s41380_023_02395_3 crossref_primary_10_1038_s41380_023_02395_3 springer_journals_10_1038_s41380_023_02395_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: New York |
PublicationTitle | Molecular psychiatry |
PublicationTitleAbbrev | Mol Psychiatry |
PublicationTitleAlternate | Mol Psychiatry |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hawco, Buchanan, Calarco, Mulsant, Viviano, Dickie (CR10) 2019; 176 Damaraju, Allen, Belger, Ford, McEwen, Mathalon (CR38) 2014; 5 Jang, Kim, Kim, Lee, Chae (CR21) 2021; 12 Zhang, Shen, Din, Liu, Wang, Hu (CR20) 2019; 23 Dubovsky, Ghosh, Serotte, Cranwell (CR4) 2021; 90 Li, Nguyen, Potter, Zhang (CR18) 2019; 21 Whiting, Lichtenstein, Fazel (CR43) 2021; 8 Kaiser, Andrews-Hanna, Wager, Pizzagalli (CR45) 2015; 72 Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta (CR44) 2013; 80 Pervaiz, Vidaurre, Gohil, Smith, Woolrich (CR31) 2022; 77 da Cruz, Favrod, Roinishvili, Chkonia, Brand, Mohr (CR15) 2020; 11 Shim, Im, Kim, Lee (CR28) 2018; 19 Dunne (CR42) 2021; 34 Malhi, Mann (CR3) 2018; 392 Li, Mayseless, Balters, Reiss (CR33) 2021; 238 Tinaz (CR27) 2021; 21 Mahmoudian, Venäläinen, Klén, Elo (CR41) 2021; 37 Benschop, Poppa, Medani, Shahabi, Baeken, Leahy (CR46) 2021; 281 Du, Pearlson, Yu, He, Lin, Sui (CR36) 2016; 170 Akar, Kara, Agambayev, Bilgic (CR49) 2015; 2015 (CR1) 2022; 9 Rosen, Harrow, Tong, Jobe, Harrow (CR8) 2021; 238 Kalin (CR7) 2021; 178 Moitra, Santomauro, Collins, Vos, Whiteford, Saxena (CR2) 2022; 19 Hallett, de Haan, Deco, Dengler, Di Iorio, Gallea (CR26) 2020; 131 Li, Zhang, Zhu, Mao, Sun, Wang (CR9) 2019; 99 Jauhar, Johnstone, McKenna (CR6) 2022; 399 Dienel, Lewis (CR50) 2019; 131 Kallionpää, Valli, Scheinin, Långsjö, Maksimow, Vahlberg (CR40) 2020; 125 Chao, Zheng, Wu, Wang, Zhang, Peng (CR13) 2021; 29 Paljärvi, Tiihonen, Lähteenvuo, Tanskanen, Fazel, Taipale (CR5) 2023; 222 Kim, Criaud, Cho, Díez-Cirarda, Mihaescu, Coakeley (CR35) 2017; 140 Lebois, Li, Baker, Wolff, Wang, Lambros (CR47) 2021; 178 Jang, Lee, Lee, Huh, Chae (CR22) 2020; 20 Zhang, Cheng, Liu, Zhang, Lei, Yao (CR34) 2016; 139 Zhang, Yan, Yang, Su, Wang, Lei (CR14) 2021; 29 Liu, Wang, Li, Wang, Li, Zhang (CR37) 2017; 38 Jiao, Li, Zhou, Qing, Liu, Pan (CR17) 2023; 15 De Aguiar Neto, Rosa (CR19) 2019; 105 Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson (CR39) 2016; 134 Cao, Zhao, Shan, Wei, Guo, Chen (CR23) 2022; 43 Li, Li, Roh, Wang, Zhang (CR16) 2020; 34 Yun, Kim (CR29) 2021; 111 Peng, Liu, Hubbard, Wang, Zhu, Fox (CR32) 2023; 9 Mantini, Perrucci, Del Gratta, Romani, Corbetta (CR48) 2007; 104 Chen, Patil, Yeo, Eickhoff (CR11) 2023; 93 Xia, Ma, Ciric, Gu, Betzel, Kaczkurkin (CR30) 2018; 9 Sen, Cullen, Parhi (CR12) 2021; 25 Briels, Schoonhoven, Stam, de Waal, Scheltens, Gouw (CR25) 2020; 12 Bullmore, Fornito (CR24) 2023; 93 Y Du (2395_CR36) 2016; 170 KI Jang (2395_CR21) 2021; 12 KI Jang (2395_CR22) 2020; 20 JY Yun (2395_CR29) 2021; 111 J Chen (2395_CR11) 2023; 93 L Benschop (2395_CR46) 2021; 281 CH Xia (2395_CR30) 2018; 9 M Hallett (2395_CR26) 2020; 131 RM Hutchison (2395_CR44) 2013; 80 AL Dunne (2395_CR42) 2021; 34 RH Kaiser (2395_CR45) 2015; 72 X Zhang (2395_CR20) 2019; 23 RE Kallionpää (2395_CR40) 2020; 125 X Li (2395_CR9) 2019; 99 SJ Dienel (2395_CR50) 2019; 131 FS De Aguiar Neto (2395_CR19) 2019; 105 SA Akar (2395_CR49) 2015; 2015 T Paljärvi (2395_CR5) 2023; 222 R Li (2395_CR33) 2021; 238 ET Bullmore (2395_CR24) 2023; 93 LAM Lebois (2395_CR47) 2021; 178 GS Malhi (2395_CR3) 2018; 392 B Rashid (2395_CR39) 2016; 134 D Whiting (2395_CR43) 2021; 8 D Mantini (2395_CR48) 2007; 104 X Peng (2395_CR32) 2023; 9 S Tinaz (2395_CR27) 2021; 21 M Shim (2395_CR28) 2018; 19 CT Briels (2395_CR25) 2020; 12 M Mahmoudian (2395_CR41) 2021; 37 SL Dubovsky (2395_CR4) 2021; 90 U Pervaiz (2395_CR31) 2022; 77 E Damaraju (2395_CR38) 2014; 5 M Moitra (2395_CR2) 2022; 19 S Jauhar (2395_CR6) 2022; 399 J Cao (2395_CR23) 2022; 43 C Rosen (2395_CR8) 2021; 238 JR da Cruz (2395_CR15) 2020; 11 J Kim (2395_CR35) 2017; 140 B Zhang (2395_CR14) 2021; 29 B Jiao (2395_CR17) 2023; 15 J Chao (2395_CR13) 2021; 29 F Liu (2395_CR37) 2017; 38 Collaborators GMD. (2395_CR1) 2022; 9 R Li (2395_CR16) 2020; 34 C Hawco (2395_CR10) 2019; 176 R Li (2395_CR18) 2019; 21 NH Kalin (2395_CR7) 2021; 178 J Zhang (2395_CR34) 2016; 139 B Sen (2395_CR12) 2021; 25 |
References_xml | – volume: 105 start-page: 83 year: 2019 end-page: 93 ident: CR19 article-title: Depression biomarkers using non-invasive EEG: A review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2019.07.021 – volume: 12 start-page: 745458 year: 2021 ident: CR21 article-title: Machine learning-based electroencephalographic phenotypes of schizophrenia and major depressive disorder publication-title: Front Psychiatry doi: 10.3389/fpsyt.2021.745458 – volume: 19 start-page: 1000 year: 2018 end-page: 7 ident: CR28 article-title: Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.06.012 – volume: 29 start-page: 2211 year: 2021 end-page: 21 ident: CR13 article-title: fNIRS evidence for distinguishing patients with major depression and healthy controls publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3115266 – volume: 25 start-page: 2604 year: 2021 end-page: 14 ident: CR12 article-title: Classification of adolescent major depressive disorder via static and dynamic connectivity publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2020.3043427 – volume: 139 start-page: 2307 year: 2016 end-page: 21 ident: CR34 article-title: Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders publication-title: Brain doi: 10.1093/brain/aww143 – volume: 90 start-page: 160 year: 2021 end-page: 77 ident: CR4 article-title: Psychotic depression: diagnosis, differential diagnosis, and treatment publication-title: Psychother Psychosom doi: 10.1159/000511348 – volume: 29 start-page: 215 year: 2021 end-page: 29 ident: CR14 article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3043426 – volume: 11 year: 2020 ident: CR15 article-title: EEG microstates are a candidate endophenotype for schizophrenia publication-title: Nat Commun doi: 10.1038/s41467-020-16914-1 – volume: 34 start-page: 64 year: 2021 end-page: 69 ident: CR42 article-title: Psychopathy and the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition alternative model of personality disorder: a synthesis and critique of the emergent literature publication-title: Curr Opin Psychiatry doi: 10.1097/YCO.0000000000000648 – volume: 392 start-page: 2299 year: 2018 end-page: 312 ident: CR3 article-title: Depression publication-title: Lancet doi: 10.1016/S0140-6736(18)31948-2 – volume: 222 start-page: 37 year: 2023 end-page: 43 ident: CR5 article-title: Mortality in psychotic depression: 18-year follow-up study publication-title: Br J Psychiatry doi: 10.1192/bjp.2022.140 – volume: 23 start-page: 2265 year: 2019 end-page: 75 ident: CR20 article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2938247 – volume: 140 start-page: 2955 year: 2017 end-page: 67 ident: CR35 article-title: Abnormal intrinsic brain functional network dynamics in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awx233 – volume: 19 start-page: e1003901 year: 2022 ident: CR2 article-title: The global gap in treatment coverage for major depressive disorder in 84 countries from 2000-2019: A systematic review and Bayesian meta-regression analysis publication-title: PLoS Med doi: 10.1371/journal.pmed.1003901 – volume: 99 start-page: 101696 year: 2019 ident: CR9 article-title: Depression recognition using machine learning methods with different feature generation strategies publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.07.004 – volume: 43 start-page: 860 year: 2022 end-page: 79 ident: CR23 article-title: Brain functional and effective connectivity based on electroencephalography recordings: A review publication-title: Hum Brain Mapp doi: 10.1002/hbm.25683 – volume: 21 start-page: 101622 year: 2019 ident: CR18 article-title: Dynamic cortical connectivity alterations associated with Alzheimer’s disease: An EEG and fNIRS integration study publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101622 – volume: 238 start-page: 1 year: 2021 end-page: 9 ident: CR8 article-title: A word is worth a thousand pictures: A 20-year comparative analysis of aberrant abstraction in schizophrenia, affective psychosis, and non-psychotic depression publication-title: Schizophr Res doi: 10.1016/j.schres.2021.09.005 – volume: 12 start-page: 68 year: 2020 ident: CR25 article-title: Reproducibility of EEG functional connectivity in Alzheimer’s disease publication-title: Alzheimers Res Ther doi: 10.1186/s13195-020-00632-3 – volume: 238 start-page: 118263 year: 2021 ident: CR33 article-title: Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118263 – volume: 2015 start-page: 7410 year: 2015 end-page: 3 ident: CR49 article-title: Nonlinear analysis of EEG in major depression with fractal dimensions publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 77 start-page: 102366 year: 2022 ident: CR31 article-title: Multi-dynamic modelling reveals strongly time-varying resting fMRI correlations publication-title: Med Image Anal doi: 10.1016/j.media.2022.102366 – volume: 20 year: 2020 ident: CR22 article-title: Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls publication-title: BMC Psychiatry doi: 10.1186/s12888-020-02972-8 – volume: 38 start-page: 957 year: 2017 end-page: 73 ident: CR37 article-title: Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure publication-title: Hum Brain Mapp doi: 10.1002/hbm.23430 – volume: 176 start-page: 521 year: 2019 end-page: 30 ident: CR10 article-title: Separable and replicable neural strategies during social brain function in people with and without severe mental illness publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2018.17091020 – volume: 399 start-page: 473 year: 2022 end-page: 86 ident: CR6 article-title: Schizophrenia publication-title: Lancet doi: 10.1016/S0140-6736(21)01730-X – volume: 80 start-page: 360 year: 2013 end-page: 78 ident: CR44 article-title: Dynamic functional connectivity: promise, issues, and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 93 start-page: 18 year: 2023 end-page: 28 ident: CR11 article-title: Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2022.07.025 – volume: 131 start-page: 104208 year: 2019 ident: CR50 article-title: Alterations in cortical interneurons and cognitive function in schizophrenia publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2018.06.020 – volume: 9 year: 2018 ident: CR30 article-title: Linked dimensions of psychopathology and connectivity in functional brain networks publication-title: Nat Commun doi: 10.1038/s41467-018-05317-y – volume: 37 start-page: 4810 year: 2021 end-page: 7 ident: CR41 article-title: Stable iterative variable selection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab501 – volume: 281 start-page: 493 year: 2021 end-page: 501 ident: CR46 article-title: Electrophysiological scarring in remitted depressed patients: Elevated EEG functional connectivity between the posterior cingulate cortex and the subgenual prefrontal cortex as a neural marker for rumination publication-title: J Affect Disord doi: 10.1016/j.jad.2020.12.081 – volume: 170 start-page: 55 year: 2016 end-page: 65 ident: CR36 article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach publication-title: Schizophr Res doi: 10.1016/j.schres.2015.11.021 – volume: 125 start-page: 518 year: 2020 end-page: 28 ident: CR40 article-title: Alpha band frontal connectivity is a state-specific electroencephalographic correlate of unresponsiveness during exposure to dexmedetomidine and propofol publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.05.068 – volume: 72 start-page: 603 year: 2015 end-page: 11 ident: CR45 article-title: Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0071 – volume: 15 start-page: 32 year: 2023 ident: CR17 article-title: Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology publication-title: Alzheimers Res Ther doi: 10.1186/s13195-023-01181-1 – volume: 104 start-page: 13170 year: 2007 end-page: 5 ident: CR48 article-title: Electrophysiological signatures of resting state networks in the human brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0700668104 – volume: 178 start-page: 881 year: 2021 end-page: 4 ident: CR7 article-title: Depression and schizophrenia: sleep, medical risk factors, biomarkers, and treatment publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2021.21080824 – volume: 5 start-page: 298 year: 2014 end-page: 308 ident: CR38 article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.07.003 – volume: 8 start-page: 150 year: 2021 end-page: 61 ident: CR43 article-title: Violence and mental disorders: a structured review of associations by individual diagnoses, risk factors, and risk assessment publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(20)30262-5 – volume: 93 start-page: 384 year: 2023 end-page: 5 ident: CR24 article-title: Making connections: biological mechanisms of human brain (Dys)connectivity publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2022.12.011 – volume: 111 start-page: 110401 year: 2021 ident: CR29 article-title: Graph theory approach for the structural-functional brain connectome of depression publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2021.110401 – volume: 134 start-page: 645 year: 2016 end-page: 57 ident: CR39 article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.051 – volume: 21 year: 2021 ident: CR27 article-title: Functional connectome in Parkinson’s disease and Parkinsonism publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-021-01111-4 – volume: 178 start-page: 165 year: 2021 end-page: 73 ident: CR47 article-title: Large-scale functional brain network architecture changes associated with trauma-related dissociation publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2020.19060647 – volume: 9 start-page: 137 year: 2022 end-page: 50 ident: CR1 article-title: Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(21)00395-3 – volume: 131 start-page: 1621 year: 2020 end-page: 51 ident: CR26 article-title: Human brain connectivity: Clinical applications for clinical neurophysiology publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2020.03.031 – volume: 34 start-page: 1099 year: 2020 end-page: 110 ident: CR16 article-title: Multimodal neuroimaging using concurrent EEG/fNIRS for poststroke recovery assessment: an exploratory study publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968320969937 – volume: 9 start-page: eabq8566 year: 2023 ident: CR32 article-title: Robust dynamic brain coactivation states estimated in individuals publication-title: Sci Adv doi: 10.1126/sciadv.abq8566 – volume: 2015 start-page: 7410 year: 2015 ident: 2395_CR49 publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 20 year: 2020 ident: 2395_CR22 publication-title: BMC Psychiatry doi: 10.1186/s12888-020-02972-8 – volume: 80 start-page: 360 year: 2013 ident: 2395_CR44 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.079 – volume: 104 start-page: 13170 year: 2007 ident: 2395_CR48 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0700668104 – volume: 238 start-page: 1 year: 2021 ident: 2395_CR8 publication-title: Schizophr Res doi: 10.1016/j.schres.2021.09.005 – volume: 15 start-page: 32 year: 2023 ident: 2395_CR17 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-023-01181-1 – volume: 139 start-page: 2307 year: 2016 ident: 2395_CR34 publication-title: Brain doi: 10.1093/brain/aww143 – volume: 131 start-page: 1621 year: 2020 ident: 2395_CR26 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2020.03.031 – volume: 281 start-page: 493 year: 2021 ident: 2395_CR46 publication-title: J Affect Disord doi: 10.1016/j.jad.2020.12.081 – volume: 19 start-page: 1000 year: 2018 ident: 2395_CR28 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.06.012 – volume: 77 start-page: 102366 year: 2022 ident: 2395_CR31 publication-title: Med Image Anal doi: 10.1016/j.media.2022.102366 – volume: 93 start-page: 18 year: 2023 ident: 2395_CR11 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2022.07.025 – volume: 23 start-page: 2265 year: 2019 ident: 2395_CR20 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2019.2938247 – volume: 134 start-page: 645 year: 2016 ident: 2395_CR39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.051 – volume: 72 start-page: 603 year: 2015 ident: 2395_CR45 publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0071 – volume: 29 start-page: 2211 year: 2021 ident: 2395_CR13 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2021.3115266 – volume: 11 year: 2020 ident: 2395_CR15 publication-title: Nat Commun doi: 10.1038/s41467-020-16914-1 – volume: 38 start-page: 957 year: 2017 ident: 2395_CR37 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23430 – volume: 5 start-page: 298 year: 2014 ident: 2395_CR38 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2014.07.003 – volume: 9 start-page: eabq8566 year: 2023 ident: 2395_CR32 publication-title: Sci Adv doi: 10.1126/sciadv.abq8566 – volume: 170 start-page: 55 year: 2016 ident: 2395_CR36 publication-title: Schizophr Res doi: 10.1016/j.schres.2015.11.021 – volume: 99 start-page: 101696 year: 2019 ident: 2395_CR9 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.07.004 – volume: 37 start-page: 4810 year: 2021 ident: 2395_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab501 – volume: 9 start-page: 137 year: 2022 ident: 2395_CR1 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(21)00395-3 – volume: 25 start-page: 2604 year: 2021 ident: 2395_CR12 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2020.3043427 – volume: 111 start-page: 110401 year: 2021 ident: 2395_CR29 publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2021.110401 – volume: 21 year: 2021 ident: 2395_CR27 publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-021-01111-4 – volume: 9 year: 2018 ident: 2395_CR30 publication-title: Nat Commun doi: 10.1038/s41467-018-05317-y – volume: 140 start-page: 2955 year: 2017 ident: 2395_CR35 publication-title: Brain doi: 10.1093/brain/awx233 – volume: 34 start-page: 1099 year: 2020 ident: 2395_CR16 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968320969937 – volume: 12 start-page: 68 year: 2020 ident: 2395_CR25 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-020-00632-3 – volume: 34 start-page: 64 year: 2021 ident: 2395_CR42 publication-title: Curr Opin Psychiatry doi: 10.1097/YCO.0000000000000648 – volume: 105 start-page: 83 year: 2019 ident: 2395_CR19 publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2019.07.021 – volume: 392 start-page: 2299 year: 2018 ident: 2395_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(18)31948-2 – volume: 222 start-page: 37 year: 2023 ident: 2395_CR5 publication-title: Br J Psychiatry doi: 10.1192/bjp.2022.140 – volume: 125 start-page: 518 year: 2020 ident: 2395_CR40 publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.05.068 – volume: 176 start-page: 521 year: 2019 ident: 2395_CR10 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2018.17091020 – volume: 43 start-page: 860 year: 2022 ident: 2395_CR23 publication-title: Hum Brain Mapp doi: 10.1002/hbm.25683 – volume: 93 start-page: 384 year: 2023 ident: 2395_CR24 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2022.12.011 – volume: 399 start-page: 473 year: 2022 ident: 2395_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(21)01730-X – volume: 8 start-page: 150 year: 2021 ident: 2395_CR43 publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(20)30262-5 – volume: 29 start-page: 215 year: 2021 ident: 2395_CR14 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3043426 – volume: 12 start-page: 745458 year: 2021 ident: 2395_CR21 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2021.745458 – volume: 178 start-page: 165 year: 2021 ident: 2395_CR47 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2020.19060647 – volume: 178 start-page: 881 year: 2021 ident: 2395_CR7 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2021.21080824 – volume: 19 start-page: e1003901 year: 2022 ident: 2395_CR2 publication-title: PLoS Med doi: 10.1371/journal.pmed.1003901 – volume: 90 start-page: 160 year: 2021 ident: 2395_CR4 publication-title: Psychother Psychosom doi: 10.1159/000511348 – volume: 238 start-page: 118263 year: 2021 ident: 2395_CR33 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118263 – volume: 21 start-page: 101622 year: 2019 ident: 2395_CR18 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.101622 – volume: 131 start-page: 104208 year: 2019 ident: 2395_CR50 publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2018.06.020 |
SSID | ssj0014765 |
Score | 2.5326807 |
Snippet | This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1088 |
SubjectTerms | 692/699/476/1414 692/699/476/1799 Activity patterns Adult Behavioral Sciences Biological Psychology Biomarkers Brain - physiopathology Connectome - methods Depressive Disorder, Major - physiopathology EEG Electroencephalography Electroencephalography - methods Female Humans Machine Learning Male Medicine Medicine & Public Health Mental depression Mental disorders Middle Aged Nerve Net - diagnostic imaging Nerve Net - physiopathology Neural networks Neurosciences Pharmacotherapy Psychiatry Psychosis Psychotic Disorders - diagnosis Psychotic Disorders - physiopathology Schizophrenia Schizophrenia - physiopathology Theta rhythms Young Adult |
Title | Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia |
URI | https://link.springer.com/article/10.1038/s41380-023-02395-3 https://www.ncbi.nlm.nih.gov/pubmed/38267620 https://www.proquest.com/docview/3067563328 https://www.proquest.com/docview/2918510297 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RfCl-O1qLRF8s6Gbr8vek_TkziJ4SLFwbyHZ5KSie2337sH_wT_aycdtldI-LLuQZDfsTDIzmY8fwDsV8Ryk19Sy2lOUt5xap0fIy3a5tLbRYRkTnL_MRydn8vNCLcqBW1_CKrd7Ytqo_aqNZ-RHSbUdCcGbDxeXNKJGRe9qgdC4D7uxdFk0vvRiMLiY1AlKkgkVvZ2NLEkztWiOety8m5qixIrXWFHxv2C6oW3e8JQmATR7BHtFcyTHmdSP4V7onsCDjCX5-yn8OY31MrrvNKUIken0E_EZbZ5E2ZWP_Egb41rajBhB_HkasYlh8T3pVh0tOVk45pf9sboiQ5xsd0hubyO286T_N3rvGZzNpt8-ntACtUBbodWaOjGuVW017jm-1g6NnLFkzts2aMZ8y6WwyjvPVeukkNwLN6q9U9yiLe6kDeI57OA0w0sgNfZxSnuLDxK1LaeUCIFZnjyiS1cB2_5n05Y65BEO46dJ_nDRmEwbg3QxiTZGVPB-GHORq3Dc2Xt_Sz5TVmRvrvmngrdDM66l6CCxXVhtesPHqL2wCOdVwYtM9uFzAu0wFBx1BYdbPrh--e1zeXX3XF7DQ45aUg4F2oed9dUmvEEtZ-0OEisfwO7xbDKZ430ynX89_QtGaP0c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviHcDBYwEJ2o18WOdPaCqgi1b-jigVtqbsWMvagXZ0uwK9T_wW_iNjO0kBVXtrYdIkRw7VmbsbyYz4w_gjQx8DsIpaorcUcRbRo1VA9RlM50aUyo_DQXO-weD8ZH4PJGTJfjT1cKEtMpuT4wbtZtV4R_5RjRtB5yzcvP0Jw2sUSG62lFoJLXY9ee_0GVr3u98RPm-ZWx7dPhhTFtWAVpxJefUopcvc6NweblcWbTnh6KwzlReFYWrmOBGOuuYrKzggjluB7mzkhl0O60wnuO4t-A2Am8eUgjVpHfwCqEidWXBZYiulqIt0sl5udEgWJQ5RYQM11BS_j8QXrJuL0VmI-Bt34d7raVKtpJqPYAlXz-EO4m78vwR_P4Szueov9FYkkRGo0_EJXZ7ErAy_WIkVcijqRJDBXHHsccipOE3pJ7VtK0Bwz4_zMnsjPR5ufU6ubqNmNqR5t9swcdwdCNCeALLOE2_CiTHZ6xUzuCNQOvOSsm9LwyLEdipzaDovrOu2nPPA_3Gdx3j77zUSTYa5aKjbDTP4F3f5zSd-nHt02ud-HS7AzT6Ql8zeN0349oNARlT-9mi0WyI1lIR6MMyeJrE3r-Oo9-HQJVnsN7pwcXgV8_l2fVzeQV3x4f7e3pv52D3OawwtNBSGtIaLM_PFv4FWlhz-zKqNYGvN72O_gL9hDd0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBiVqb-LHOHhBCdJeWQoUQlfbm2rGDQJAtza5Q_wO_iF_H2E5SUNXeeogUyY9YmRnPjGfGH8AzGfAchFPUFLmjqG8ZNVaNkZdNXRtTKl-HAucPe-PtffFuLudr8KevhQlplf2eGDdqt6jCGfkomrZjzlk5qru0iI9bs1eHP2lAkAqR1h5OI7HIrj_-he5b-3JnC2n9nLHZ9PObbdohDNCKK7mkFj1-mRuFouZyZdG2n4jCOlN5VRSuYoIb6axjsrKCC-a4HefOSmbQBbXCeI7zXoLLiqPaRFlS88HZK4SKMJYFlyHSWoquYCfn5ahFxVHmFLVleCaS8v-V4ilL91SUNiq_2Q243lmt5HVis5uw5ptbcCXhWB7fht-fwl0dzRcay5PIdPqWuIR0T4LeTMeNpAo5NVVCqyDuaxyxCin5LWkWDe3qwXDMD_NtcUSGHN1mk5zdRkzjSPtv5uAd2L8QItyFdVymvw8kxz5WKmfwRaClZ6Xk3heGxWhsbTMo-v-sq-4O9ADF8V3HWDwvdaKNRrroSBvNM3gxjDlMN4Cc23ujJ5_udoNWn_BuBk-HZpTjEJwxjV-sWs0maDkVAUosg3uJ7MPnOPqAqLTyDDZ7PjiZ_Oy1PDh_LU_gKkqQfr-zt_sQrjE01lJG0gasL49W_hEaW0v7OHI1gYOLFqO_dts7qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-state+EEG+dynamic+functional+connectivity+distinguishes+non-psychotic+major+depression%2C+psychotic+major+depression+and+schizophrenia&rft.jtitle=Molecular+psychiatry&rft.au=Chen%2C+Hui&rft.au=Lei%2C+Yanqin&rft.au=Li%2C+Rihui&rft.au=Xia%2C+Xinxin&rft.date=2024-04-01&rft.issn=1476-5578&rft.eissn=1476-5578&rft.volume=29&rft.issue=4&rft.spage=1088&rft_id=info:doi/10.1038%2Fs41380-023-02395-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4184&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4184&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4184&client=summon |