Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia

This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network...

Full description

Saved in:
Bibliographic Details
Published inMolecular psychiatry Vol. 29; no. 4; pp. 1088 - 1098
Main Authors Chen, Hui, Lei, Yanqin, Li, Rihui, Xia, Xinxin, Cui, Nanyi, Chen, Xianliang, Liu, Jiali, Tang, Huajia, Zhou, Jiawei, Huang, Ying, Tian, Yusheng, Wang, Xiaoping, Zhou, Jiansong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1359-4184
1476-5578
1476-5578
DOI10.1038/s41380-023-02395-3

Cover

Loading…
Abstract This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group ( p  < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach ( p  < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
AbstractList This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group ( p  < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach ( p  < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major depression (PMD), and schizophrenia (SCZ). The study also evaluates the effectiveness of machine learning algorithms based on these network manifestations in differentiating individuals with NPMD, PMD, and SCZ. A total of 579 participants were recruited, including 152 patients with NPMD, 45 patients with PMD, 185 patients with SCZ, and 197 healthy controls (HCs). A dynamic functional connectivity (DFC) approach was employed to estimate the principal FC states within each diagnostic group. Incremental proportions of data (ranging from 10% to 100%) within each diagnostic group were used for variability testing. DFC metrics, such as proportion, mean duration, and transition number, were examined among the four diagnostic groups to identify disease-related neural activity patterns. These patterns were then used to train a two-layer classifier for the four groups (HC, NPMD, PMD, and SCZ). The four principal brain states (i.e., states 1,2,3, and 4) identified by the DFC approach were highly representative within and across diagnostic groups. Between-group comparisons revealed significant differences in network metrics of state 2 and state 3, within delta, theta, and gamma frequency bands, between healthy individuals and patients in each diagnostic group (p < 0.01, FDR corrected). Moreover, the identified key dynamic network metrics achieved an accuracy of 73.1 ± 2.8% in the four-way classification of HC, NPMD, PMD, and SCZ, outperforming the static functional connectivity (SFC) approach (p < 0.001). These findings suggest that the proposed DFC approach can identify dynamic network biomarkers at the single-subject level. These biomarkers have the potential to accurately differentiate individual subjects among various diagnostic groups of psychiatric disorders or healthy controls. This work may contribute to the development of a valuable EEG-based diagnostic tool with enhanced accuracy and assistive capabilities.
Author Cui, Nanyi
Lei, Yanqin
Tian, Yusheng
Liu, Jiali
Xia, Xinxin
Chen, Hui
Zhou, Jiawei
Zhou, Jiansong
Tang, Huajia
Li, Rihui
Huang, Ying
Chen, Xianliang
Wang, Xiaoping
Author_xml – sequence: 1
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 2
  givenname: Yanqin
  surname: Lei
  fullname: Lei, Yanqin
  organization: TeleBrain Medical Technology Co
– sequence: 3
  givenname: Rihui
  surname: Li
  fullname: Li, Rihui
  organization: Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau
– sequence: 4
  givenname: Xinxin
  surname: Xia
  fullname: Xia, Xinxin
  organization: TeleBrain Medical Technology Co
– sequence: 5
  givenname: Nanyi
  surname: Cui
  fullname: Cui, Nanyi
  organization: TeleBrain Medical Technology Co
– sequence: 6
  givenname: Xianliang
  surname: Chen
  fullname: Chen, Xianliang
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 7
  givenname: Jiali
  surname: Liu
  fullname: Liu, Jiali
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 8
  givenname: Huajia
  surname: Tang
  fullname: Tang, Huajia
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 9
  givenname: Jiawei
  surname: Zhou
  fullname: Zhou, Jiawei
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 10
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 11
  givenname: Yusheng
  surname: Tian
  fullname: Tian, Yusheng
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 12
  givenname: Xiaoping
  orcidid: 0000-0002-7862-0491
  surname: Wang
  fullname: Wang, Xiaoping
  email: xiaop6@csu.edu.cn
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
– sequence: 13
  givenname: Jiansong
  orcidid: 0000-0003-2135-2139
  surname: Zhou
  fullname: Zhou, Jiansong
  email: zhoujs2003@csu.edu.cn
  organization: Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38267620$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoO02A_9A15IwBsvjOZzkrmUsrZCQSh6HfK13SwzyZjMFNbf4I82220pFOxFSMJ5nsPhPWfgKOUUAHhH8GeCmfpSOWEKI0zZ_vQCsVfglHDZISGkOmpvJnrEieIn4KzWLcb7ongNTpiinewoPgV_b0KdY7pFdTZzgKvVJfS7ZMbo4HpJbo45mQG6nFJon7s476CP98YS6yZU2GZCU925TZ6bM5ptLtCHqYRam_sJ_r8GTfKwuk38k6dNCSmaN-B4bYYa3j7c5-DXt9XPiyt0_ePy-8XXa-SYFDOyrMcCG4mV8lha2uGeE-uNC5IQ7yhnRnjrqXCWM049sx32VlATLLPcBHYOPh76TiX_XloAeozVhWEwKeSlatoTJQimvWzoh2foNi-lZVI1w50UHWNUNer9A7XYMXg9lTiastOPOTdAHQBXcq0lrLWLLfCWwlxMHDTBer9SfVipbuvU9yvVrKn0mfrY_UWJHaTa4HQbytPYL1j_AM_yto0
CitedBy_id crossref_primary_10_1016_j_cca_2025_120204
crossref_primary_10_1186_s12888_024_06283_0
crossref_primary_10_1117_1_NPh_11_4_045013
crossref_primary_10_1016_j_jad_2024_10_087
crossref_primary_10_1016_j_inffus_2024_102723
crossref_primary_10_3390_diagnostics15020154
crossref_primary_10_9758_cpn_24_1165
crossref_primary_10_1155_da_7645625
Cites_doi 10.1016/j.neubiorev.2019.07.021
10.3389/fpsyt.2021.745458
10.1016/j.nicl.2018.06.012
10.1109/TNSRE.2021.3115266
10.1109/JBHI.2020.3043427
10.1093/brain/aww143
10.1159/000511348
10.1109/TNSRE.2020.3043426
10.1038/s41467-020-16914-1
10.1097/YCO.0000000000000648
10.1016/S0140-6736(18)31948-2
10.1192/bjp.2022.140
10.1109/JBHI.2019.2938247
10.1093/brain/awx233
10.1371/journal.pmed.1003901
10.1016/j.artmed.2019.07.004
10.1002/hbm.25683
10.1016/j.nicl.2018.101622
10.1016/j.schres.2021.09.005
10.1186/s13195-020-00632-3
10.1016/j.neuroimage.2021.118263
10.1016/j.media.2022.102366
10.1186/s12888-020-02972-8
10.1002/hbm.23430
10.1176/appi.ajp.2018.17091020
10.1016/S0140-6736(21)01730-X
10.1016/j.neuroimage.2013.05.079
10.1016/j.biopsych.2022.07.025
10.1016/j.nbd.2018.06.020
10.1038/s41467-018-05317-y
10.1093/bioinformatics/btab501
10.1016/j.jad.2020.12.081
10.1016/j.schres.2015.11.021
10.1016/j.bja.2020.05.068
10.1001/jamapsychiatry.2015.0071
10.1186/s13195-023-01181-1
10.1073/pnas.0700668104
10.1176/appi.ajp.2021.21080824
10.1016/j.nicl.2014.07.003
10.1016/S2215-0366(20)30262-5
10.1016/j.biopsych.2022.12.011
10.1016/j.pnpbp.2021.110401
10.1016/j.neuroimage.2016.04.051
10.1007/s11910-021-01111-4
10.1176/appi.ajp.2020.19060647
10.1016/S2215-0366(21)00395-3
10.1016/j.clinph.2020.03.031
10.1177/1545968320969937
10.1126/sciadv.abq8566
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
7X8
DOI 10.1038/s41380-023-02395-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-5578
EndPage 1098
ExternalDocumentID 38267620
10_1038_s41380_023_02395_3
Genre Journal Article
GrantInformation_xml – fundername: Human Health Foundation (HHF)
  grantid: 202103091470
  funderid: https://doi.org/10.13039/501100003823
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82071543; 82171509
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82071543
– fundername: Human Health Foundation (HHF)
  grantid: 202103091470
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82171509
GroupedDBID ---
-Q-
0R~
123
29M
2WC
36B
39C
3V.
4.4
406
53G
70F
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AXYYD
AZQEC
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
IPY
ITC
IWAJR
JSO
JZLTJ
KQ8
M1P
M2M
M7P
NAO
NQJWS
O9-
OK1
OVD
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
TUS
UKHRP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FE
8FH
8FK
K9.
LK8
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c375t-b39050a7088d07b260941bdace711dc243a5dbd25cb4342d3b60db52aeb3b4ae3
IEDL.DBID 7X7
ISSN 1359-4184
1476-5578
IngestDate Fri Jul 11 16:47:23 EDT 2025
Tue Aug 19 04:12:00 EDT 2025
Mon Jul 21 06:03:36 EDT 2025
Tue Jul 01 00:22:03 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Fri Feb 21 02:39:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-b39050a7088d07b260941bdace711dc243a5dbd25cb4342d3b60db52aeb3b4ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7862-0491
0000-0003-2135-2139
PMID 38267620
PQID 3067563328
PQPubID 44096
PageCount 11
ParticipantIDs proquest_miscellaneous_2918510297
proquest_journals_3067563328
pubmed_primary_38267620
crossref_citationtrail_10_1038_s41380_023_02395_3
crossref_primary_10_1038_s41380_023_02395_3
springer_journals_10_1038_s41380_023_02395_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
PublicationTitle Molecular psychiatry
PublicationTitleAbbrev Mol Psychiatry
PublicationTitleAlternate Mol Psychiatry
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hawco, Buchanan, Calarco, Mulsant, Viviano, Dickie (CR10) 2019; 176
Damaraju, Allen, Belger, Ford, McEwen, Mathalon (CR38) 2014; 5
Jang, Kim, Kim, Lee, Chae (CR21) 2021; 12
Zhang, Shen, Din, Liu, Wang, Hu (CR20) 2019; 23
Dubovsky, Ghosh, Serotte, Cranwell (CR4) 2021; 90
Li, Nguyen, Potter, Zhang (CR18) 2019; 21
Whiting, Lichtenstein, Fazel (CR43) 2021; 8
Kaiser, Andrews-Hanna, Wager, Pizzagalli (CR45) 2015; 72
Hutchison, Womelsdorf, Allen, Bandettini, Calhoun, Corbetta (CR44) 2013; 80
Pervaiz, Vidaurre, Gohil, Smith, Woolrich (CR31) 2022; 77
da Cruz, Favrod, Roinishvili, Chkonia, Brand, Mohr (CR15) 2020; 11
Shim, Im, Kim, Lee (CR28) 2018; 19
Dunne (CR42) 2021; 34
Malhi, Mann (CR3) 2018; 392
Li, Mayseless, Balters, Reiss (CR33) 2021; 238
Tinaz (CR27) 2021; 21
Mahmoudian, Venäläinen, Klén, Elo (CR41) 2021; 37
Benschop, Poppa, Medani, Shahabi, Baeken, Leahy (CR46) 2021; 281
Du, Pearlson, Yu, He, Lin, Sui (CR36) 2016; 170
Akar, Kara, Agambayev, Bilgic (CR49) 2015; 2015
(CR1) 2022; 9
Rosen, Harrow, Tong, Jobe, Harrow (CR8) 2021; 238
Kalin (CR7) 2021; 178
Moitra, Santomauro, Collins, Vos, Whiteford, Saxena (CR2) 2022; 19
Hallett, de Haan, Deco, Dengler, Di Iorio, Gallea (CR26) 2020; 131
Li, Zhang, Zhu, Mao, Sun, Wang (CR9) 2019; 99
Jauhar, Johnstone, McKenna (CR6) 2022; 399
Dienel, Lewis (CR50) 2019; 131
Kallionpää, Valli, Scheinin, Långsjö, Maksimow, Vahlberg (CR40) 2020; 125
Chao, Zheng, Wu, Wang, Zhang, Peng (CR13) 2021; 29
Paljärvi, Tiihonen, Lähteenvuo, Tanskanen, Fazel, Taipale (CR5) 2023; 222
Kim, Criaud, Cho, Díez-Cirarda, Mihaescu, Coakeley (CR35) 2017; 140
Lebois, Li, Baker, Wolff, Wang, Lambros (CR47) 2021; 178
Jang, Lee, Lee, Huh, Chae (CR22) 2020; 20
Zhang, Cheng, Liu, Zhang, Lei, Yao (CR34) 2016; 139
Zhang, Yan, Yang, Su, Wang, Lei (CR14) 2021; 29
Liu, Wang, Li, Wang, Li, Zhang (CR37) 2017; 38
Jiao, Li, Zhou, Qing, Liu, Pan (CR17) 2023; 15
De Aguiar Neto, Rosa (CR19) 2019; 105
Rashid, Arbabshirani, Damaraju, Cetin, Miller, Pearlson (CR39) 2016; 134
Cao, Zhao, Shan, Wei, Guo, Chen (CR23) 2022; 43
Li, Li, Roh, Wang, Zhang (CR16) 2020; 34
Yun, Kim (CR29) 2021; 111
Peng, Liu, Hubbard, Wang, Zhu, Fox (CR32) 2023; 9
Mantini, Perrucci, Del Gratta, Romani, Corbetta (CR48) 2007; 104
Chen, Patil, Yeo, Eickhoff (CR11) 2023; 93
Xia, Ma, Ciric, Gu, Betzel, Kaczkurkin (CR30) 2018; 9
Sen, Cullen, Parhi (CR12) 2021; 25
Briels, Schoonhoven, Stam, de Waal, Scheltens, Gouw (CR25) 2020; 12
Bullmore, Fornito (CR24) 2023; 93
Y Du (2395_CR36) 2016; 170
KI Jang (2395_CR21) 2021; 12
KI Jang (2395_CR22) 2020; 20
JY Yun (2395_CR29) 2021; 111
J Chen (2395_CR11) 2023; 93
L Benschop (2395_CR46) 2021; 281
CH Xia (2395_CR30) 2018; 9
M Hallett (2395_CR26) 2020; 131
RM Hutchison (2395_CR44) 2013; 80
AL Dunne (2395_CR42) 2021; 34
RH Kaiser (2395_CR45) 2015; 72
X Zhang (2395_CR20) 2019; 23
RE Kallionpää (2395_CR40) 2020; 125
X Li (2395_CR9) 2019; 99
SJ Dienel (2395_CR50) 2019; 131
FS De Aguiar Neto (2395_CR19) 2019; 105
SA Akar (2395_CR49) 2015; 2015
T Paljärvi (2395_CR5) 2023; 222
R Li (2395_CR33) 2021; 238
ET Bullmore (2395_CR24) 2023; 93
LAM Lebois (2395_CR47) 2021; 178
GS Malhi (2395_CR3) 2018; 392
B Rashid (2395_CR39) 2016; 134
D Whiting (2395_CR43) 2021; 8
D Mantini (2395_CR48) 2007; 104
X Peng (2395_CR32) 2023; 9
S Tinaz (2395_CR27) 2021; 21
M Shim (2395_CR28) 2018; 19
CT Briels (2395_CR25) 2020; 12
M Mahmoudian (2395_CR41) 2021; 37
SL Dubovsky (2395_CR4) 2021; 90
U Pervaiz (2395_CR31) 2022; 77
E Damaraju (2395_CR38) 2014; 5
M Moitra (2395_CR2) 2022; 19
S Jauhar (2395_CR6) 2022; 399
J Cao (2395_CR23) 2022; 43
C Rosen (2395_CR8) 2021; 238
JR da Cruz (2395_CR15) 2020; 11
J Kim (2395_CR35) 2017; 140
B Zhang (2395_CR14) 2021; 29
B Jiao (2395_CR17) 2023; 15
J Chao (2395_CR13) 2021; 29
F Liu (2395_CR37) 2017; 38
Collaborators GMD. (2395_CR1) 2022; 9
R Li (2395_CR16) 2020; 34
C Hawco (2395_CR10) 2019; 176
R Li (2395_CR18) 2019; 21
NH Kalin (2395_CR7) 2021; 178
J Zhang (2395_CR34) 2016; 139
B Sen (2395_CR12) 2021; 25
References_xml – volume: 105
  start-page: 83
  year: 2019
  end-page: 93
  ident: CR19
  article-title: Depression biomarkers using non-invasive EEG: A review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2019.07.021
– volume: 12
  start-page: 745458
  year: 2021
  ident: CR21
  article-title: Machine learning-based electroencephalographic phenotypes of schizophrenia and major depressive disorder
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2021.745458
– volume: 19
  start-page: 1000
  year: 2018
  end-page: 7
  ident: CR28
  article-title: Altered cortical functional network in major depressive disorder: A resting-state electroencephalogram study
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.06.012
– volume: 29
  start-page: 2211
  year: 2021
  end-page: 21
  ident: CR13
  article-title: fNIRS evidence for distinguishing patients with major depression and healthy controls
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3115266
– volume: 25
  start-page: 2604
  year: 2021
  end-page: 14
  ident: CR12
  article-title: Classification of adolescent major depressive disorder via static and dynamic connectivity
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2020.3043427
– volume: 139
  start-page: 2307
  year: 2016
  end-page: 21
  ident: CR34
  article-title: Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders
  publication-title: Brain
  doi: 10.1093/brain/aww143
– volume: 90
  start-page: 160
  year: 2021
  end-page: 77
  ident: CR4
  article-title: Psychotic depression: diagnosis, differential diagnosis, and treatment
  publication-title: Psychother Psychosom
  doi: 10.1159/000511348
– volume: 29
  start-page: 215
  year: 2021
  end-page: 29
  ident: CR14
  article-title: Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3043426
– volume: 11
  year: 2020
  ident: CR15
  article-title: EEG microstates are a candidate endophenotype for schizophrenia
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16914-1
– volume: 34
  start-page: 64
  year: 2021
  end-page: 69
  ident: CR42
  article-title: Psychopathy and the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition alternative model of personality disorder: a synthesis and critique of the emergent literature
  publication-title: Curr Opin Psychiatry
  doi: 10.1097/YCO.0000000000000648
– volume: 392
  start-page: 2299
  year: 2018
  end-page: 312
  ident: CR3
  article-title: Depression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31948-2
– volume: 222
  start-page: 37
  year: 2023
  end-page: 43
  ident: CR5
  article-title: Mortality in psychotic depression: 18-year follow-up study
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2022.140
– volume: 23
  start-page: 2265
  year: 2019
  end-page: 75
  ident: CR20
  article-title: Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2938247
– volume: 140
  start-page: 2955
  year: 2017
  end-page: 67
  ident: CR35
  article-title: Abnormal intrinsic brain functional network dynamics in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awx233
– volume: 19
  start-page: e1003901
  year: 2022
  ident: CR2
  article-title: The global gap in treatment coverage for major depressive disorder in 84 countries from 2000-2019: A systematic review and Bayesian meta-regression analysis
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1003901
– volume: 99
  start-page: 101696
  year: 2019
  ident: CR9
  article-title: Depression recognition using machine learning methods with different feature generation strategies
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.07.004
– volume: 43
  start-page: 860
  year: 2022
  end-page: 79
  ident: CR23
  article-title: Brain functional and effective connectivity based on electroencephalography recordings: A review
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25683
– volume: 21
  start-page: 101622
  year: 2019
  ident: CR18
  article-title: Dynamic cortical connectivity alterations associated with Alzheimer’s disease: An EEG and fNIRS integration study
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101622
– volume: 238
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR8
  article-title: A word is worth a thousand pictures: A 20-year comparative analysis of aberrant abstraction in schizophrenia, affective psychosis, and non-psychotic depression
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2021.09.005
– volume: 12
  start-page: 68
  year: 2020
  ident: CR25
  article-title: Reproducibility of EEG functional connectivity in Alzheimer’s disease
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-020-00632-3
– volume: 238
  start-page: 118263
  year: 2021
  ident: CR33
  article-title: Dynamic inter-brain synchrony in real-life inter-personal cooperation: A functional near-infrared spectroscopy hyperscanning study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118263
– volume: 2015
  start-page: 7410
  year: 2015
  end-page: 3
  ident: CR49
  article-title: Nonlinear analysis of EEG in major depression with fractal dimensions
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 77
  start-page: 102366
  year: 2022
  ident: CR31
  article-title: Multi-dynamic modelling reveals strongly time-varying resting fMRI correlations
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102366
– volume: 20
  year: 2020
  ident: CR22
  article-title: Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-020-02972-8
– volume: 38
  start-page: 957
  year: 2017
  end-page: 73
  ident: CR37
  article-title: Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23430
– volume: 176
  start-page: 521
  year: 2019
  end-page: 30
  ident: CR10
  article-title: Separable and replicable neural strategies during social brain function in people with and without severe mental illness
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2018.17091020
– volume: 399
  start-page: 473
  year: 2022
  end-page: 86
  ident: CR6
  article-title: Schizophrenia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01730-X
– volume: 80
  start-page: 360
  year: 2013
  end-page: 78
  ident: CR44
  article-title: Dynamic functional connectivity: promise, issues, and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 93
  start-page: 18
  year: 2023
  end-page: 28
  ident: CR11
  article-title: Leveraging machine learning for gaining neurobiological and nosological insights in psychiatric research
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.07.025
– volume: 131
  start-page: 104208
  year: 2019
  ident: CR50
  article-title: Alterations in cortical interneurons and cognitive function in schizophrenia
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2018.06.020
– volume: 9
  year: 2018
  ident: CR30
  article-title: Linked dimensions of psychopathology and connectivity in functional brain networks
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05317-y
– volume: 37
  start-page: 4810
  year: 2021
  end-page: 7
  ident: CR41
  article-title: Stable iterative variable selection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab501
– volume: 281
  start-page: 493
  year: 2021
  end-page: 501
  ident: CR46
  article-title: Electrophysiological scarring in remitted depressed patients: Elevated EEG functional connectivity between the posterior cingulate cortex and the subgenual prefrontal cortex as a neural marker for rumination
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2020.12.081
– volume: 170
  start-page: 55
  year: 2016
  end-page: 65
  ident: CR36
  article-title: Interaction among subsystems within default mode network diminished in schizophrenia patients: A dynamic connectivity approach
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.11.021
– volume: 125
  start-page: 518
  year: 2020
  end-page: 28
  ident: CR40
  article-title: Alpha band frontal connectivity is a state-specific electroencephalographic correlate of unresponsiveness during exposure to dexmedetomidine and propofol
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.05.068
– volume: 72
  start-page: 603
  year: 2015
  end-page: 11
  ident: CR45
  article-title: Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0071
– volume: 15
  start-page: 32
  year: 2023
  ident: CR17
  article-title: Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-023-01181-1
– volume: 104
  start-page: 13170
  year: 2007
  end-page: 5
  ident: CR48
  article-title: Electrophysiological signatures of resting state networks in the human brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0700668104
– volume: 178
  start-page: 881
  year: 2021
  end-page: 4
  ident: CR7
  article-title: Depression and schizophrenia: sleep, medical risk factors, biomarkers, and treatment
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2021.21080824
– volume: 5
  start-page: 298
  year: 2014
  end-page: 308
  ident: CR38
  article-title: Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.07.003
– volume: 8
  start-page: 150
  year: 2021
  end-page: 61
  ident: CR43
  article-title: Violence and mental disorders: a structured review of associations by individual diagnoses, risk factors, and risk assessment
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(20)30262-5
– volume: 93
  start-page: 384
  year: 2023
  end-page: 5
  ident: CR24
  article-title: Making connections: biological mechanisms of human brain (Dys)connectivity
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.12.011
– volume: 111
  start-page: 110401
  year: 2021
  ident: CR29
  article-title: Graph theory approach for the structural-functional brain connectome of depression
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2021.110401
– volume: 134
  start-page: 645
  year: 2016
  end-page: 57
  ident: CR39
  article-title: Classification of schizophrenia and bipolar patients using static and dynamic resting-state fMRI brain connectivity
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.051
– volume: 21
  year: 2021
  ident: CR27
  article-title: Functional connectome in Parkinson’s disease and Parkinsonism
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-021-01111-4
– volume: 178
  start-page: 165
  year: 2021
  end-page: 73
  ident: CR47
  article-title: Large-scale functional brain network architecture changes associated with trauma-related dissociation
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2020.19060647
– volume: 9
  start-page: 137
  year: 2022
  end-page: 50
  ident: CR1
  article-title: Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(21)00395-3
– volume: 131
  start-page: 1621
  year: 2020
  end-page: 51
  ident: CR26
  article-title: Human brain connectivity: Clinical applications for clinical neurophysiology
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2020.03.031
– volume: 34
  start-page: 1099
  year: 2020
  end-page: 110
  ident: CR16
  article-title: Multimodal neuroimaging using concurrent EEG/fNIRS for poststroke recovery assessment: an exploratory study
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968320969937
– volume: 9
  start-page: eabq8566
  year: 2023
  ident: CR32
  article-title: Robust dynamic brain coactivation states estimated in individuals
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abq8566
– volume: 2015
  start-page: 7410
  year: 2015
  ident: 2395_CR49
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 20
  year: 2020
  ident: 2395_CR22
  publication-title: BMC Psychiatry
  doi: 10.1186/s12888-020-02972-8
– volume: 80
  start-page: 360
  year: 2013
  ident: 2395_CR44
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 104
  start-page: 13170
  year: 2007
  ident: 2395_CR48
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0700668104
– volume: 238
  start-page: 1
  year: 2021
  ident: 2395_CR8
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2021.09.005
– volume: 15
  start-page: 32
  year: 2023
  ident: 2395_CR17
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-023-01181-1
– volume: 139
  start-page: 2307
  year: 2016
  ident: 2395_CR34
  publication-title: Brain
  doi: 10.1093/brain/aww143
– volume: 131
  start-page: 1621
  year: 2020
  ident: 2395_CR26
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2020.03.031
– volume: 281
  start-page: 493
  year: 2021
  ident: 2395_CR46
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2020.12.081
– volume: 19
  start-page: 1000
  year: 2018
  ident: 2395_CR28
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.06.012
– volume: 77
  start-page: 102366
  year: 2022
  ident: 2395_CR31
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102366
– volume: 93
  start-page: 18
  year: 2023
  ident: 2395_CR11
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.07.025
– volume: 23
  start-page: 2265
  year: 2019
  ident: 2395_CR20
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2019.2938247
– volume: 134
  start-page: 645
  year: 2016
  ident: 2395_CR39
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.051
– volume: 72
  start-page: 603
  year: 2015
  ident: 2395_CR45
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0071
– volume: 29
  start-page: 2211
  year: 2021
  ident: 2395_CR13
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2021.3115266
– volume: 11
  year: 2020
  ident: 2395_CR15
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-16914-1
– volume: 38
  start-page: 957
  year: 2017
  ident: 2395_CR37
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23430
– volume: 5
  start-page: 298
  year: 2014
  ident: 2395_CR38
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2014.07.003
– volume: 9
  start-page: eabq8566
  year: 2023
  ident: 2395_CR32
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abq8566
– volume: 170
  start-page: 55
  year: 2016
  ident: 2395_CR36
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2015.11.021
– volume: 99
  start-page: 101696
  year: 2019
  ident: 2395_CR9
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.07.004
– volume: 37
  start-page: 4810
  year: 2021
  ident: 2395_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab501
– volume: 9
  start-page: 137
  year: 2022
  ident: 2395_CR1
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(21)00395-3
– volume: 25
  start-page: 2604
  year: 2021
  ident: 2395_CR12
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2020.3043427
– volume: 111
  start-page: 110401
  year: 2021
  ident: 2395_CR29
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2021.110401
– volume: 21
  year: 2021
  ident: 2395_CR27
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-021-01111-4
– volume: 9
  year: 2018
  ident: 2395_CR30
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05317-y
– volume: 140
  start-page: 2955
  year: 2017
  ident: 2395_CR35
  publication-title: Brain
  doi: 10.1093/brain/awx233
– volume: 34
  start-page: 1099
  year: 2020
  ident: 2395_CR16
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968320969937
– volume: 12
  start-page: 68
  year: 2020
  ident: 2395_CR25
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-020-00632-3
– volume: 34
  start-page: 64
  year: 2021
  ident: 2395_CR42
  publication-title: Curr Opin Psychiatry
  doi: 10.1097/YCO.0000000000000648
– volume: 105
  start-page: 83
  year: 2019
  ident: 2395_CR19
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2019.07.021
– volume: 392
  start-page: 2299
  year: 2018
  ident: 2395_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31948-2
– volume: 222
  start-page: 37
  year: 2023
  ident: 2395_CR5
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.2022.140
– volume: 125
  start-page: 518
  year: 2020
  ident: 2395_CR40
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.05.068
– volume: 176
  start-page: 521
  year: 2019
  ident: 2395_CR10
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2018.17091020
– volume: 43
  start-page: 860
  year: 2022
  ident: 2395_CR23
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25683
– volume: 93
  start-page: 384
  year: 2023
  ident: 2395_CR24
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2022.12.011
– volume: 399
  start-page: 473
  year: 2022
  ident: 2395_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01730-X
– volume: 8
  start-page: 150
  year: 2021
  ident: 2395_CR43
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(20)30262-5
– volume: 29
  start-page: 215
  year: 2021
  ident: 2395_CR14
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3043426
– volume: 12
  start-page: 745458
  year: 2021
  ident: 2395_CR21
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2021.745458
– volume: 178
  start-page: 165
  year: 2021
  ident: 2395_CR47
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2020.19060647
– volume: 178
  start-page: 881
  year: 2021
  ident: 2395_CR7
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2021.21080824
– volume: 19
  start-page: e1003901
  year: 2022
  ident: 2395_CR2
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1003901
– volume: 90
  start-page: 160
  year: 2021
  ident: 2395_CR4
  publication-title: Psychother Psychosom
  doi: 10.1159/000511348
– volume: 238
  start-page: 118263
  year: 2021
  ident: 2395_CR33
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118263
– volume: 21
  start-page: 101622
  year: 2019
  ident: 2395_CR18
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.101622
– volume: 131
  start-page: 104208
  year: 2019
  ident: 2395_CR50
  publication-title: Neurobiol Dis
  doi: 10.1016/j.nbd.2018.06.020
SSID ssj0014765
Score 2.5326807
Snippet This study aims to identify dynamic patterns within the spatiotemporal feature space that are specific to nonpsychotic major depression (NPMD), psychotic major...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1088
SubjectTerms 692/699/476/1414
692/699/476/1799
Activity patterns
Adult
Behavioral Sciences
Biological Psychology
Biomarkers
Brain - physiopathology
Connectome - methods
Depressive Disorder, Major - physiopathology
EEG
Electroencephalography
Electroencephalography - methods
Female
Humans
Machine Learning
Male
Medicine
Medicine & Public Health
Mental depression
Mental disorders
Middle Aged
Nerve Net - diagnostic imaging
Nerve Net - physiopathology
Neural networks
Neurosciences
Pharmacotherapy
Psychiatry
Psychosis
Psychotic Disorders - diagnosis
Psychotic Disorders - physiopathology
Schizophrenia
Schizophrenia - physiopathology
Theta rhythms
Young Adult
Title Resting-state EEG dynamic functional connectivity distinguishes non-psychotic major depression, psychotic major depression and schizophrenia
URI https://link.springer.com/article/10.1038/s41380-023-02395-3
https://www.ncbi.nlm.nih.gov/pubmed/38267620
https://www.proquest.com/docview/3067563328
https://www.proquest.com/docview/2918510297
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RfCl-O1qLRF8s6Gbr8vek_TkziJ4SLFwbyHZ5KSie2337sH_wT_aycdtldI-LLuQZDfsTDIzmY8fwDsV8Ryk19Sy2lOUt5xap0fIy3a5tLbRYRkTnL_MRydn8vNCLcqBW1_CKrd7Ytqo_aqNZ-RHSbUdCcGbDxeXNKJGRe9qgdC4D7uxdFk0vvRiMLiY1AlKkgkVvZ2NLEkztWiOety8m5qixIrXWFHxv2C6oW3e8JQmATR7BHtFcyTHmdSP4V7onsCDjCX5-yn8OY31MrrvNKUIken0E_EZbZ5E2ZWP_Egb41rajBhB_HkasYlh8T3pVh0tOVk45pf9sboiQ5xsd0hubyO286T_N3rvGZzNpt8-ntACtUBbodWaOjGuVW017jm-1g6NnLFkzts2aMZ8y6WwyjvPVeukkNwLN6q9U9yiLe6kDeI57OA0w0sgNfZxSnuLDxK1LaeUCIFZnjyiS1cB2_5n05Y65BEO46dJ_nDRmEwbg3QxiTZGVPB-GHORq3Dc2Xt_Sz5TVmRvrvmngrdDM66l6CCxXVhtesPHqL2wCOdVwYtM9uFzAu0wFBx1BYdbPrh--e1zeXX3XF7DQ45aUg4F2oed9dUmvEEtZ-0OEisfwO7xbDKZ430ynX89_QtGaP0c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviHcDBYwEJ2o18WOdPaCqgi1b-jigVtqbsWMvagXZ0uwK9T_wW_iNjO0kBVXtrYdIkRw7VmbsbyYz4w_gjQx8DsIpaorcUcRbRo1VA9RlM50aUyo_DQXO-weD8ZH4PJGTJfjT1cKEtMpuT4wbtZtV4R_5RjRtB5yzcvP0Jw2sUSG62lFoJLXY9ee_0GVr3u98RPm-ZWx7dPhhTFtWAVpxJefUopcvc6NweblcWbTnh6KwzlReFYWrmOBGOuuYrKzggjluB7mzkhl0O60wnuO4t-A2Am8eUgjVpHfwCqEidWXBZYiulqIt0sl5udEgWJQ5RYQM11BS_j8QXrJuL0VmI-Bt34d7raVKtpJqPYAlXz-EO4m78vwR_P4Szueov9FYkkRGo0_EJXZ7ErAy_WIkVcijqRJDBXHHsccipOE3pJ7VtK0Bwz4_zMnsjPR5ufU6ubqNmNqR5t9swcdwdCNCeALLOE2_CiTHZ6xUzuCNQOvOSsm9LwyLEdipzaDovrOu2nPPA_3Gdx3j77zUSTYa5aKjbDTP4F3f5zSd-nHt02ud-HS7AzT6Ql8zeN0349oNARlT-9mi0WyI1lIR6MMyeJrE3r-Oo9-HQJVnsN7pwcXgV8_l2fVzeQV3x4f7e3pv52D3OawwtNBSGtIaLM_PFv4FWlhz-zKqNYGvN72O_gL9hDd0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBiVqb-LHOHhBCdJeWQoUQlfbm2rGDQJAtza5Q_wO_iF_H2E5SUNXeeogUyY9YmRnPjGfGH8AzGfAchFPUFLmjqG8ZNVaNkZdNXRtTKl-HAucPe-PtffFuLudr8KevhQlplf2eGDdqt6jCGfkomrZjzlk5qru0iI9bs1eHP2lAkAqR1h5OI7HIrj_-he5b-3JnC2n9nLHZ9PObbdohDNCKK7mkFj1-mRuFouZyZdG2n4jCOlN5VRSuYoIb6axjsrKCC-a4HefOSmbQBbXCeI7zXoLLiqPaRFlS88HZK4SKMJYFlyHSWoquYCfn5ahFxVHmFLVleCaS8v-V4ilL91SUNiq_2Q243lmt5HVis5uw5ptbcCXhWB7fht-fwl0dzRcay5PIdPqWuIR0T4LeTMeNpAo5NVVCqyDuaxyxCin5LWkWDe3qwXDMD_NtcUSGHN1mk5zdRkzjSPtv5uAd2L8QItyFdVymvw8kxz5WKmfwRaClZ6Xk3heGxWhsbTMo-v-sq-4O9ADF8V3HWDwvdaKNRrroSBvNM3gxjDlMN4Cc23ujJ5_udoNWn_BuBk-HZpTjEJwxjV-sWs0maDkVAUosg3uJ7MPnOPqAqLTyDDZ7PjiZ_Oy1PDh_LU_gKkqQfr-zt_sQrjE01lJG0gasL49W_hEaW0v7OHI1gYOLFqO_dts7qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-state+EEG+dynamic+functional+connectivity+distinguishes+non-psychotic+major+depression%2C+psychotic+major+depression+and+schizophrenia&rft.jtitle=Molecular+psychiatry&rft.au=Chen%2C+Hui&rft.au=Lei%2C+Yanqin&rft.au=Li%2C+Rihui&rft.au=Xia%2C+Xinxin&rft.date=2024-04-01&rft.issn=1476-5578&rft.eissn=1476-5578&rft.volume=29&rft.issue=4&rft.spage=1088&rft_id=info:doi/10.1038%2Fs41380-023-02395-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4184&client=summon