3D-printed electrically conductive silicon carbide
The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structur...
Saved in:
Published in | Additive manufacturing Vol. 59; no. PA; p. 103109 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structures inevitably hindering the thermal management capability, thus resulting in a temperature-dependent electrical behavior in high-temperature environments. We report an additive manufacturing protocol through vat photopolymerization 3D printing to fabricate the architectured conductive silicon carbide (SiC) ceramics that simultaneously possess high electrical conductivity as well as low thermal conductivity, and demonstrate electric reliability under high-temperature environments above 600°C. The percolation of graphene into the ceramic scaffold establishes a uniform conductive network, exhibiting its electrical conductivity up to 1000 S m−1. The bulk density of the 3D-printed ceramic is measured from 0.366 g cm−3 to 0.897 g cm−3, with thermal conductivity ranging from 62 mW m−1 K−1 to 88 mW m−1 K−1. Furthermore, the mechanical performance of conductive ceramic can be effectively reinforced by densifying the microstructures via spark plasma sintering treatment. The proposed additive manufacturing strategy widens the potential of ceramics as a structural and functional material, offering a promising pathway toward high-temperature electronics applications. |
---|---|
AbstractList | The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structures inevitably hindering the thermal management capability, thus resulting in a temperature-dependent electrical behavior in high-temperature environments. We report an additive manufacturing protocol through vat photopolymerization 3D printing to fabricate the architectured conductive silicon carbide (SiC) ceramics that simultaneously possess high electrical conductivity as well as low thermal conductivity, and demonstrate electric reliability under high-temperature environments above 600°C. The percolation of graphene into the ceramic scaffold establishes a uniform conductive network, exhibiting its electrical conductivity up to 1000 S m−1. The bulk density of the 3D-printed ceramic is measured from 0.366 g cm−3 to 0.897 g cm−3, with thermal conductivity ranging from 62 mW m−1 K−1 to 88 mW m−1 K−1. Furthermore, the mechanical performance of conductive ceramic can be effectively reinforced by densifying the microstructures via spark plasma sintering treatment. The proposed additive manufacturing strategy widens the potential of ceramics as a structural and functional material, offering a promising pathway toward high-temperature electronics applications. |
ArticleNumber | 103109 |
Author | Wu, Yiquan Hu, Yong Armstrong, Jason Zhou, Chi Chivate, Aditya Guo, Zipeng An, Lu Ren, Shenqiang Li, Jiao Khuje, Saurabh |
Author_xml | – sequence: 1 givenname: Zipeng surname: Guo fullname: Guo, Zipeng organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 2 givenname: Lu surname: An fullname: An, Lu organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 3 givenname: Saurabh surname: Khuje fullname: Khuje, Saurabh organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 4 givenname: Aditya surname: Chivate fullname: Chivate, Aditya organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 5 givenname: Jiao surname: Li fullname: Li, Jiao organization: Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA – sequence: 6 givenname: Yiquan surname: Wu fullname: Wu, Yiquan organization: Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA – sequence: 7 givenname: Yong surname: Hu fullname: Hu, Yong organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 8 givenname: Jason surname: Armstrong fullname: Armstrong, Jason organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 9 givenname: Shenqiang surname: Ren fullname: Ren, Shenqiang email: shenren@buffalo.edu organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA – sequence: 10 givenname: Chi surname: Zhou fullname: Zhou, Chi email: chizhou@buffalo.edu organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA |
BackLink | https://www.osti.gov/biblio/1885090$$D View this record in Osti.gov |
BookMark | eNqFkDtPwzAUhS1UJErpL2CJ2FP8iJ1kYECFAlIlFpitG_tGuEoTZJtK_fc4pBMDTPeh-12dcy7JrB96JOSa0RWjTN3uVmDtHlaccp42gtH6jMw5Z0VeVozOTn2laHFBliHsKKVMirKu-Jxw8ZB_etdHtBl2aKJ3BrrumJmht18mugNmwXUujZkB3ziLV-S8hS7g8lQX5H3z-LZ-zrevTy_r-21uRClj3jCloGK2sbK0qkVgLciSgmxQSUBeVrYFo2re8KIVKAtRFCiKVokSJQMpFuRm-juE6HQwLqL5SDr6pFKzqpK0pulITEfGDyF4bHVyswd_1IzqMR690z_x6DEePcWTqPoXlb5DdEMfPbjuH_ZuYjF5Pzj0ozTsDVrnR2V2cH_y35t9goU |
CitedBy_id | crossref_primary_10_1002_advs_202411951 crossref_primary_10_1080_17452759_2023_2276250 crossref_primary_10_1002_adfm_202213252 |
Cites_doi | 10.1080/21870764.2018.1446490 10.1021/acsami.8b12933 10.1021/acsnano.8b00304 10.1039/C6TC01163B 10.1111/j.1551-2916.2008.02778.x 10.1126/science.1255908 10.1002/adma.201906652 10.1023/A:1004813305237 10.1016/j.carbon.2015.12.103 10.1016/j.jeurceramsoc.2019.04.043 10.1108/13552541311312148 10.1002/adma.201605506 10.1002/adma.201405046 10.1016/j.apcatb.2018.04.066 10.1016/j.ceramint.2019.12.278 10.1111/jace.16888 10.1002/admt.202101462 10.1002/smll.201503524 10.2109/jcersj.109.S7 10.1039/C8MH00668G 10.1111/j.1151-2916.2000.tb01327.x 10.1016/j.jeurceramsoc.2003.10.016 10.1080/01614940600631348 10.1016/j.ceramint.2021.11.091 10.1007/s10853-011-6140-1 10.1038/ncomms7962 10.1088/2053-1583/aac055 10.1002/adem.201500298 10.2109/jcersj2.116.1167 10.1038/s41467-022-32027-3 10.1111/jace.16785 10.1016/S0167-2738(97)00315-9 10.1021/acsanm.1c04354 10.1016/j.ceramint.2017.11.133 10.1016/j.scriptamat.2020.09.008 10.1016/j.ceramint.2017.09.212 10.1016/j.actamat.2011.10.010 10.1039/C6CC05910D |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.addma.2022.103109 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
ExternalDocumentID | 1885090 10_1016_j_addma_2022_103109 S2214860422004985 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF OTOTI |
ID | FETCH-LOGICAL-c375t-b166a81dbd57d6fea1fa570a5be65ae278dfac692b24f3e54344e34f637e51a53 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Thu May 18 22:31:51 EDT 2023 Thu Apr 24 23:10:25 EDT 2025 Tue Jul 01 01:47:12 EDT 2025 Fri Feb 23 02:39:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | PA |
Keywords | Multiscale structures Spark plasma sintering Electrically conductive ceramics Additive manufacturing Thermal insulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-b166a81dbd57d6fea1fa570a5be65ae278dfac692b24f3e54344e34f637e51a53 |
Notes | EE0008675 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
OpenAccessLink | https://www.osti.gov/biblio/1885090 |
ParticipantIDs | osti_scitechconnect_1885090 crossref_primary_10_1016_j_addma_2022_103109 crossref_citationtrail_10_1016_j_addma_2022_103109 elsevier_sciencedirect_doi_10_1016_j_addma_2022_103109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Additive manufacturing |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | An (bib39) 2022; 5 Liu, Tan, Li (bib2) 2006; 48 An (bib12) 2022; 13 García‐Tuñon (bib26) 2015; 27 Yuchang (bib10) 2016; 4 de Faoite (bib8) 2012; 47 Ru (bib29) 2018; 10 Zhang (bib7) 2008; 91 Turcer, Sengupta, Padture (bib5) 2021; 191 Watari (bib6) 2001; 109 Zhang, Yang, Cao (bib9) 2012; 60 Larson (bib17) 2016; 18 Zhang (bib13) 2020; 34 Harshe, Balan, Riedel (bib32) 2004; 24 Tong (bib33) 2022; 48 Murayama (bib1) 2008; 116 Huang, Wan, Goodenough (bib4) 2001; 36 An (bib23) 2016; 52 Meza, Das, Greer (bib11) 2014; 345 Van De Goor, Sägesser, Berroth (bib3) 1997; 101 Hensleigh (bib38) 2018; 5 Zhou (bib31) 2013 Zhang, Carloni, Wu (bib40) 2020; 103 Clegg (bib35) 2000; 83 Yao (bib37) 2020; 32 Lv (bib15) 2019; 39 Terrani, Jolly, Trammell (bib16) 2020; 103 Zhang (bib25) 2016; 12 Guo, Zhou (bib19) 2021; 48 Quintanilla (bib18) 2018; 235 Zhang (bib22) 2017; 29 Du (bib34) 2018; 44 Marsden (bib36) 2018; 5 Tu, Jiang (bib20) 2018; 44 Huang (bib21) 2020; 46 Roman-Manso (bib14) 2016; 100 Taki (bib24) 2018; 6 Tang (bib27) 2018; 12 Wang (bib30) 2022 Zhu (bib28) 2015; 6 Taki (10.1016/j.addma.2022.103109_bib24) 2018; 6 Zhang (10.1016/j.addma.2022.103109_bib40) 2020; 103 Clegg (10.1016/j.addma.2022.103109_bib35) 2000; 83 Huang (10.1016/j.addma.2022.103109_bib4) 2001; 36 Lv (10.1016/j.addma.2022.103109_bib15) 2019; 39 Harshe (10.1016/j.addma.2022.103109_bib32) 2004; 24 Zhang (10.1016/j.addma.2022.103109_bib13) 2020; 34 Hensleigh (10.1016/j.addma.2022.103109_bib38) 2018; 5 Yao (10.1016/j.addma.2022.103109_bib37) 2020; 32 Quintanilla (10.1016/j.addma.2022.103109_bib18) 2018; 235 Turcer (10.1016/j.addma.2022.103109_bib5) 2021; 191 Murayama (10.1016/j.addma.2022.103109_bib1) 2008; 116 García‐Tuñon (10.1016/j.addma.2022.103109_bib26) 2015; 27 Guo (10.1016/j.addma.2022.103109_bib19) 2021; 48 An (10.1016/j.addma.2022.103109_bib12) 2022; 13 Huang (10.1016/j.addma.2022.103109_bib21) 2020; 46 Tong (10.1016/j.addma.2022.103109_bib33) 2022; 48 Terrani (10.1016/j.addma.2022.103109_bib16) 2020; 103 Marsden (10.1016/j.addma.2022.103109_bib36) 2018; 5 Yuchang (10.1016/j.addma.2022.103109_bib10) 2016; 4 Larson (10.1016/j.addma.2022.103109_bib17) 2016; 18 Ru (10.1016/j.addma.2022.103109_bib29) 2018; 10 Zhu (10.1016/j.addma.2022.103109_bib28) 2015; 6 Zhang (10.1016/j.addma.2022.103109_bib22) 2017; 29 Zhang (10.1016/j.addma.2022.103109_bib25) 2016; 12 Zhang (10.1016/j.addma.2022.103109_bib9) 2012; 60 Meza (10.1016/j.addma.2022.103109_bib11) 2014; 345 Watari (10.1016/j.addma.2022.103109_bib6) 2001; 109 Zhang (10.1016/j.addma.2022.103109_bib7) 2008; 91 Zhou (10.1016/j.addma.2022.103109_bib31) 2013 Tu (10.1016/j.addma.2022.103109_bib20) 2018; 44 Tang (10.1016/j.addma.2022.103109_bib27) 2018; 12 Roman-Manso (10.1016/j.addma.2022.103109_bib14) 2016; 100 An (10.1016/j.addma.2022.103109_bib23) 2016; 52 Wang (10.1016/j.addma.2022.103109_bib30) 2022 Van De Goor (10.1016/j.addma.2022.103109_bib3) 1997; 101 Liu (10.1016/j.addma.2022.103109_bib2) 2006; 48 de Faoite (10.1016/j.addma.2022.103109_bib8) 2012; 47 Du (10.1016/j.addma.2022.103109_bib34) 2018; 44 An (10.1016/j.addma.2022.103109_bib39) 2022; 5 |
References_xml | – start-page: 2101462 year: 2022 ident: bib30 article-title: Multimaterial additive manufacturing of LTCC matrix and silver conductors for 3D ceramic electronics publication-title: Adv. Mater. Technol. – volume: 13 start-page: 1 year: 2022 end-page: 7 ident: bib12 article-title: Tailoring thermal insulation architectures from additive manufacturing publication-title: Nat. Commun. – volume: 12 start-page: 1702 year: 2016 end-page: 1708 ident: bib25 article-title: 3D printing of graphene aerogels publication-title: Small – volume: 4 start-page: 4853 year: 2016 end-page: 4862 ident: bib10 article-title: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band publication-title: J. Mater. Chem. C. – volume: 103 start-page: 1575 year: 2020 end-page: 1581 ident: bib16 article-title: 3D printing of high‐purity silicon carbide publication-title: J. Am. Ceram. Soc. – volume: 27 start-page: 1688 year: 2015 end-page: 1693 ident: bib26 article-title: Printing in three dimensions with graphene publication-title: Adv. Mater. – volume: 103 start-page: 839 year: 2020 end-page: 848 ident: bib40 article-title: Ultraviolet emission transparent Gd: YAG ceramics processed by solid‐state reaction spark plasma sintering publication-title: J. Am. Ceram. Soc. – volume: 44 start-page: 3400 year: 2018 end-page: 3405 ident: bib20 article-title: SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying publication-title: Ceram. Int. – volume: 29 start-page: 1605506 year: 2017 ident: bib22 article-title: Flyweight, superelastic, electrically conductive, and flame‐retardant 3D multi‐nanolayer graphene/ceramic metamaterial publication-title: Adv. Mater. – volume: 18 start-page: 39 year: 2016 end-page: 45 ident: bib17 article-title: Direct ink writing of silicon carbide for microwave optics publication-title: Adv. Eng. Mater. – volume: 5 year: 2018 ident: bib36 article-title: Electrical percolation in graphene–polymer composites publication-title: 2D Mater. – volume: 235 start-page: 246 year: 2018 end-page: 255 ident: bib18 article-title: 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes publication-title: Appl. Catal. B: Environ. – volume: 101 start-page: 1163 year: 1997 end-page: 1170 ident: bib3 article-title: Electrically conductive ceramic composites publication-title: Solid State Ion. – volume: 48 start-page: 145 year: 2006 end-page: 198 ident: bib2 article-title: Mixed conducting ceramics for catalytic membrane processing publication-title: Catal. Rev. – volume: 39 start-page: 3380 year: 2019 end-page: 3386 ident: bib15 article-title: Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology publication-title: J. Eur. Ceram. Soc. – volume: 91 start-page: 3950 year: 2008 end-page: 3954 ident: bib7 article-title: Temperature‐dependent electrical properties of 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 ceramics publication-title: J. Am. Ceram. Soc. – volume: 5 start-page: 1035 year: 2018 end-page: 1041 ident: bib38 article-title: Additive manufacturing of complex micro-architected graphene aerogels publication-title: Mater. Horiz. – volume: 48 start-page: 5468 year: 2022 end-page: 5475 ident: bib33 article-title: Preparation and textural evolution: from organosilane aerogel to SiOC aerogels publication-title: Ceram. Int. – volume: 12 start-page: 3502 year: 2018 end-page: 3511 ident: bib27 article-title: Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels publication-title: ACS nano – volume: 46 start-page: 10096 year: 2020 end-page: 10104 ident: bib21 article-title: 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering publication-title: Ceram. Int. – volume: 100 start-page: 318 year: 2016 end-page: 328 ident: bib14 article-title: Electrically functional 3D-architectured graphene/SiC composites publication-title: Carbon – volume: 345 start-page: 1322 year: 2014 end-page: 1326 ident: bib11 article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices publication-title: Science – volume: 83 start-page: 1039 year: 2000 end-page: 1043 ident: bib35 article-title: Role of carbon in the sintering of boron‐doped silicon carbide publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 95 year: 2018 end-page: 101 ident: bib24 article-title: Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering publication-title: J. Asian Ceram. Soc. – volume: 24 start-page: 3471 year: 2004 end-page: 3482 ident: bib32 article-title: Amorphous Si (Al) OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications publication-title: J. Eur. Ceram. Soc. – volume: 109 start-page: S7 year: 2001 end-page: S16 ident: bib6 article-title: High thermal conductivity non-oxide ceramics publication-title: J. Ceram. Soc. Jpn. – volume: 44 start-page: 563 year: 2018 end-page: 570 ident: bib34 article-title: Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment publication-title: Ceram. Int. – volume: 116 start-page: 1167 year: 2008 end-page: 1174 ident: bib1 article-title: Nanostructural design of electrically conductive ceramics and its application in gas sensors publication-title: J. Ceram. Soc. Jpn. – volume: 47 start-page: 4211 year: 2012 end-page: 4235 ident: bib8 article-title: A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics publication-title: J. Mater. Sci. – year: 2013 ident: bib31 article-title: Digital material fabrication using mask‐image‐projection‐based stereolithography publication-title: Rapid Prototyp. J. – volume: 191 start-page: 40 year: 2021 end-page: 45 ident: bib5 article-title: Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings publication-title: Scr. Mater. – volume: 36 start-page: 1093 year: 2001 end-page: 1098 ident: bib4 article-title: Oxide-ion conducting ceramics for solid oxide fuel cells publication-title: J. Mater. Sci. – volume: 5 start-page: 2655 year: 2022 end-page: 2663 ident: bib39 article-title: Nanoengineering porous silica for thermal management publication-title: ACS Appl. Nano Mater. – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bib28 article-title: Highly compressible 3D periodic graphene aerogel microlattices publication-title: Nat. Commun. – volume: 10 start-page: 39245 year: 2018 end-page: 39256 ident: bib29 article-title: Electrically conductive and mechanically strong graphene/mullite ceramic composites for high-performance electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 10948 year: 2016 end-page: 10951 ident: bib23 article-title: Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing publication-title: Chem. Commun. – volume: 34 year: 2020 ident: bib13 article-title: Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics publication-title: Addit. Manuf. – volume: 60 start-page: 469 year: 2012 end-page: 475 ident: bib9 article-title: The temperature-dependent electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–Bi0. 5K0. 5TiO3 near the morphotropic phase boundary publication-title: Acta Mater. – volume: 32 start-page: 1906652 year: 2020 ident: bib37 article-title: 3D‐printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels publication-title: Adv. Mater. – volume: 48 year: 2021 ident: bib19 article-title: Recent advances in ink-based additive manufacturing for porous structures publication-title: Addit. Manuf. – volume: 6 start-page: 95 issue: 1 year: 2018 ident: 10.1016/j.addma.2022.103109_bib24 article-title: Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering publication-title: J. Asian Ceram. Soc. doi: 10.1080/21870764.2018.1446490 – volume: 10 start-page: 39245 issue: 45 year: 2018 ident: 10.1016/j.addma.2022.103109_bib29 article-title: Electrically conductive and mechanically strong graphene/mullite ceramic composites for high-performance electromagnetic interference shielding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12933 – volume: 48 year: 2021 ident: 10.1016/j.addma.2022.103109_bib19 article-title: Recent advances in ink-based additive manufacturing for porous structures publication-title: Addit. Manuf. – volume: 12 start-page: 3502 issue: 4 year: 2018 ident: 10.1016/j.addma.2022.103109_bib27 article-title: Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels publication-title: ACS nano doi: 10.1021/acsnano.8b00304 – volume: 4 start-page: 4853 issue: 22 year: 2016 ident: 10.1016/j.addma.2022.103109_bib10 article-title: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC01163B – volume: 91 start-page: 3950 issue: 12 year: 2008 ident: 10.1016/j.addma.2022.103109_bib7 article-title: Temperature‐dependent electrical properties of 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 ceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02778.x – volume: 345 start-page: 1322 issue: 6202 year: 2014 ident: 10.1016/j.addma.2022.103109_bib11 article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices publication-title: Science doi: 10.1126/science.1255908 – volume: 32 start-page: 1906652 issue: 8 year: 2020 ident: 10.1016/j.addma.2022.103109_bib37 article-title: 3D‐printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels publication-title: Adv. Mater. doi: 10.1002/adma.201906652 – volume: 36 start-page: 1093 issue: 5 year: 2001 ident: 10.1016/j.addma.2022.103109_bib4 article-title: Oxide-ion conducting ceramics for solid oxide fuel cells publication-title: J. Mater. Sci. doi: 10.1023/A:1004813305237 – volume: 100 start-page: 318 year: 2016 ident: 10.1016/j.addma.2022.103109_bib14 article-title: Electrically functional 3D-architectured graphene/SiC composites publication-title: Carbon doi: 10.1016/j.carbon.2015.12.103 – volume: 39 start-page: 3380 issue: 11 year: 2019 ident: 10.1016/j.addma.2022.103109_bib15 article-title: Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2019.04.043 – year: 2013 ident: 10.1016/j.addma.2022.103109_bib31 article-title: Digital material fabrication using mask‐image‐projection‐based stereolithography publication-title: Rapid Prototyp. J. doi: 10.1108/13552541311312148 – volume: 29 start-page: 1605506 issue: 28 year: 2017 ident: 10.1016/j.addma.2022.103109_bib22 article-title: Flyweight, superelastic, electrically conductive, and flame‐retardant 3D multi‐nanolayer graphene/ceramic metamaterial publication-title: Adv. Mater. doi: 10.1002/adma.201605506 – volume: 27 start-page: 1688 issue: 10 year: 2015 ident: 10.1016/j.addma.2022.103109_bib26 article-title: Printing in three dimensions with graphene publication-title: Adv. Mater. doi: 10.1002/adma.201405046 – volume: 235 start-page: 246 year: 2018 ident: 10.1016/j.addma.2022.103109_bib18 article-title: 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.04.066 – volume: 46 start-page: 10096 issue: 8 year: 2020 ident: 10.1016/j.addma.2022.103109_bib21 article-title: 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.12.278 – volume: 103 start-page: 1575 issue: 3 year: 2020 ident: 10.1016/j.addma.2022.103109_bib16 article-title: 3D printing of high‐purity silicon carbide publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16888 – start-page: 2101462 year: 2022 ident: 10.1016/j.addma.2022.103109_bib30 article-title: Multimaterial additive manufacturing of LTCC matrix and silver conductors for 3D ceramic electronics publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202101462 – volume: 12 start-page: 1702 issue: 13 year: 2016 ident: 10.1016/j.addma.2022.103109_bib25 article-title: 3D printing of graphene aerogels publication-title: Small doi: 10.1002/smll.201503524 – volume: 109 start-page: S7 issue: 1265 year: 2001 ident: 10.1016/j.addma.2022.103109_bib6 article-title: High thermal conductivity non-oxide ceramics publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj.109.S7 – volume: 5 start-page: 1035 issue: 6 year: 2018 ident: 10.1016/j.addma.2022.103109_bib38 article-title: Additive manufacturing of complex micro-architected graphene aerogels publication-title: Mater. Horiz. doi: 10.1039/C8MH00668G – volume: 83 start-page: 1039 issue: 5 year: 2000 ident: 10.1016/j.addma.2022.103109_bib35 article-title: Role of carbon in the sintering of boron‐doped silicon carbide publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.2000.tb01327.x – volume: 24 start-page: 3471 issue: 12 year: 2004 ident: 10.1016/j.addma.2022.103109_bib32 article-title: Amorphous Si (Al) OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2003.10.016 – volume: 48 start-page: 145 issue: 02 year: 2006 ident: 10.1016/j.addma.2022.103109_bib2 article-title: Mixed conducting ceramics for catalytic membrane processing publication-title: Catal. Rev. doi: 10.1080/01614940600631348 – volume: 34 year: 2020 ident: 10.1016/j.addma.2022.103109_bib13 article-title: Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics publication-title: Addit. Manuf. – volume: 48 start-page: 5468 issue: 4 year: 2022 ident: 10.1016/j.addma.2022.103109_bib33 article-title: Preparation and textural evolution: from organosilane aerogel to SiOC aerogels publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.11.091 – volume: 47 start-page: 4211 issue: 10 year: 2012 ident: 10.1016/j.addma.2022.103109_bib8 article-title: A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-6140-1 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.addma.2022.103109_bib28 article-title: Highly compressible 3D periodic graphene aerogel microlattices publication-title: Nat. Commun. doi: 10.1038/ncomms7962 – volume: 5 issue: 3 year: 2018 ident: 10.1016/j.addma.2022.103109_bib36 article-title: Electrical percolation in graphene–polymer composites publication-title: 2D Mater. doi: 10.1088/2053-1583/aac055 – volume: 18 start-page: 39 issue: 1 year: 2016 ident: 10.1016/j.addma.2022.103109_bib17 article-title: Direct ink writing of silicon carbide for microwave optics publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201500298 – volume: 116 start-page: 1167 issue: 1359 year: 2008 ident: 10.1016/j.addma.2022.103109_bib1 article-title: Nanostructural design of electrically conductive ceramics and its application in gas sensors publication-title: J. Ceram. Soc. Jpn. doi: 10.2109/jcersj2.116.1167 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.addma.2022.103109_bib12 article-title: Tailoring thermal insulation architectures from additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-022-32027-3 – volume: 103 start-page: 839 issue: 2 year: 2020 ident: 10.1016/j.addma.2022.103109_bib40 article-title: Ultraviolet emission transparent Gd: YAG ceramics processed by solid‐state reaction spark plasma sintering publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.16785 – volume: 101 start-page: 1163 year: 1997 ident: 10.1016/j.addma.2022.103109_bib3 article-title: Electrically conductive ceramic composites publication-title: Solid State Ion. doi: 10.1016/S0167-2738(97)00315-9 – volume: 5 start-page: 2655 issue: 2 year: 2022 ident: 10.1016/j.addma.2022.103109_bib39 article-title: Nanoengineering porous silica for thermal management publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c04354 – volume: 44 start-page: 3400 issue: 3 year: 2018 ident: 10.1016/j.addma.2022.103109_bib20 article-title: SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.133 – volume: 191 start-page: 40 year: 2021 ident: 10.1016/j.addma.2022.103109_bib5 article-title: Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2020.09.008 – volume: 44 start-page: 563 issue: 1 year: 2018 ident: 10.1016/j.addma.2022.103109_bib34 article-title: Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.09.212 – volume: 60 start-page: 469 issue: 2 year: 2012 ident: 10.1016/j.addma.2022.103109_bib9 article-title: The temperature-dependent electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–Bi0. 5K0. 5TiO3 near the morphotropic phase boundary publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.10.010 – volume: 52 start-page: 10948 issue: 73 year: 2016 ident: 10.1016/j.addma.2022.103109_bib23 article-title: Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing publication-title: Chem. Commun. doi: 10.1039/C6CC05910D |
SSID | ssj0001537982 |
Score | 2.328528 |
Snippet | The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 103109 |
SubjectTerms | Additive manufacturing Electrically conductive ceramics Multiscale structures Spark plasma sintering Thermal insulation |
Title | 3D-printed electrically conductive silicon carbide |
URI | https://dx.doi.org/10.1016/j.addma.2022.103109 https://www.osti.gov/biblio/1885090 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpSqDIwYtr4GY9VoSogukClbpGdOFJQ1ValDCz8du7ygCKhDoyJfFH0nX2-s---I-RKaWGQ14lCqGCo4M5TkzlGHYsSI1SqTIoFzk9jNZqIh6mcNsigroXBtMrK9pc2vbDW1ZtuhWZ3mefdZ8ZC7KAkGCraRFhoLoTGWX7zGf6cs0iuTdEzCsdTFKjJh4o0L1jfBf8QY1h_XiQm_r1BNRew5jb2nuEB2a-cxqBf_tchafj5EdnboBI8JozfUjyjAwcyKFvbIPqzjwDiXaR0BaMWvOUz0Ps8SOzK5ak_IZPh3ctgRKt-CDThWq6pC5Wy4F-6VOpUZd6GmZW6Z6XzSlrPdJRmNlGGOSYy7rFoVHguMsW1l6GV_JQ054u5PyOBjLwVeKcK4EDIAk6JMJ6lypqQZUb6FmE1CHFSkYVjz4pZXGeFvcYFcjEiF5fItcj1t9Cy5MrYPlzV6Ma_VB6DNd8u2EZdoBAS3SaYEQRSYRSB99M7_-9n22QXn8pCwwvSXK_e_SV4HGvXKaZUh-z07x9H4y8OyNGq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOU8sjAiNXGsZ14rApVSx8LrdQtshNHCqrSqpSBf48vDygSYmBNclH0XXz-bN99B3AvfCZR14nYpYIkzNOGyERTomkQSSZiIWMscJ5MxWDOnhd8UYNeVQuDaZVl7C9ieh6tyyvtEs32Ok3bL5S62EGJUXS0DPgeNFCditeh0R2OBtPvrRbu-TJvG4UmBG0q_aE808sO8VyCiFIsQc9zE3-fo-orO-x2pp_-MRyVvNHpFp92AjWTncLhjprgGVDvkeA2neWQTtHdBh2w_HDskhdVXW1cc97SpXV95kRqo9PYnMO8_zTrDUjZEoFEns-3RLtCKEsxdcz9WCRGuYnifkdxbQRXhvpBnKhISKopSzyDdaPMeCwRnm-4q7h3AfVslZlLcHhgFMNjVQuOXbVYXsKkobFQ0qWJ5KYJtAIhjEq9cGxbsQyrxLDXMEcuROTCArkmPHwZrQu5jL8fFxW64Q-vhzag_23YQl-gEWrdRpgUZK3cILAEqHP139fewf5gNhmH4-F01IIDvFPUHV5Dfbt5NzeWgGz1bfmDfQJWFNRb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+electrically+conductive+silicon+carbide&rft.jtitle=Additive+manufacturing&rft.au=Guo%2C+Zipeng&rft.au=An%2C+Lu&rft.au=Khuje%2C+Saurabh&rft.au=Chivate%2C+Aditya&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=59&rft_id=info:doi/10.1016%2Fj.addma.2022.103109&rft.externalDocID=S2214860422004985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |