3D-printed electrically conductive silicon carbide

The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structur...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 59; no. PA; p. 103109
Main Authors Guo, Zipeng, An, Lu, Khuje, Saurabh, Chivate, Aditya, Li, Jiao, Wu, Yiquan, Hu, Yong, Armstrong, Jason, Ren, Shenqiang, Zhou, Chi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structures inevitably hindering the thermal management capability, thus resulting in a temperature-dependent electrical behavior in high-temperature environments. We report an additive manufacturing protocol through vat photopolymerization 3D printing to fabricate the architectured conductive silicon carbide (SiC) ceramics that simultaneously possess high electrical conductivity as well as low thermal conductivity, and demonstrate electric reliability under high-temperature environments above 600°C. The percolation of graphene into the ceramic scaffold establishes a uniform conductive network, exhibiting its electrical conductivity up to 1000 S m−1. The bulk density of the 3D-printed ceramic is measured from 0.366 g cm−3 to 0.897 g cm−3, with thermal conductivity ranging from 62 mW m−1 K−1 to 88 mW m−1 K−1. Furthermore, the mechanical performance of conductive ceramic can be effectively reinforced by densifying the microstructures via spark plasma sintering treatment. The proposed additive manufacturing strategy widens the potential of ceramics as a structural and functional material, offering a promising pathway toward high-temperature electronics applications.
AbstractList The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in structural electrodes, conductors, catalyst supports, etc. However, its operating temperature is limited due to the intrinsic dense structures inevitably hindering the thermal management capability, thus resulting in a temperature-dependent electrical behavior in high-temperature environments. We report an additive manufacturing protocol through vat photopolymerization 3D printing to fabricate the architectured conductive silicon carbide (SiC) ceramics that simultaneously possess high electrical conductivity as well as low thermal conductivity, and demonstrate electric reliability under high-temperature environments above 600°C. The percolation of graphene into the ceramic scaffold establishes a uniform conductive network, exhibiting its electrical conductivity up to 1000 S m−1. The bulk density of the 3D-printed ceramic is measured from 0.366 g cm−3 to 0.897 g cm−3, with thermal conductivity ranging from 62 mW m−1 K−1 to 88 mW m−1 K−1. Furthermore, the mechanical performance of conductive ceramic can be effectively reinforced by densifying the microstructures via spark plasma sintering treatment. The proposed additive manufacturing strategy widens the potential of ceramics as a structural and functional material, offering a promising pathway toward high-temperature electronics applications.
ArticleNumber 103109
Author Wu, Yiquan
Hu, Yong
Armstrong, Jason
Zhou, Chi
Chivate, Aditya
Guo, Zipeng
An, Lu
Ren, Shenqiang
Li, Jiao
Khuje, Saurabh
Author_xml – sequence: 1
  givenname: Zipeng
  surname: Guo
  fullname: Guo, Zipeng
  organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 2
  givenname: Lu
  surname: An
  fullname: An, Lu
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 3
  givenname: Saurabh
  surname: Khuje
  fullname: Khuje, Saurabh
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 4
  givenname: Aditya
  surname: Chivate
  fullname: Chivate, Aditya
  organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 5
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
  organization: Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA
– sequence: 6
  givenname: Yiquan
  surname: Wu
  fullname: Wu, Yiquan
  organization: Kazuo Inamori School of Engineering, New York State College of Ceramics, Alfred University, Alfred, New York 14802, USA
– sequence: 7
  givenname: Yong
  surname: Hu
  fullname: Hu, Yong
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 8
  givenname: Jason
  surname: Armstrong
  fullname: Armstrong, Jason
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 9
  givenname: Shenqiang
  surname: Ren
  fullname: Ren, Shenqiang
  email: shenren@buffalo.edu
  organization: Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
– sequence: 10
  givenname: Chi
  surname: Zhou
  fullname: Zhou, Chi
  email: chizhou@buffalo.edu
  organization: Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
BackLink https://www.osti.gov/biblio/1885090$$D View this record in Osti.gov
BookMark eNqFkDtPwzAUhS1UJErpL2CJ2FP8iJ1kYECFAlIlFpitG_tGuEoTZJtK_fc4pBMDTPeh-12dcy7JrB96JOSa0RWjTN3uVmDtHlaccp42gtH6jMw5Z0VeVozOTn2laHFBliHsKKVMirKu-Jxw8ZB_etdHtBl2aKJ3BrrumJmht18mugNmwXUujZkB3ziLV-S8hS7g8lQX5H3z-LZ-zrevTy_r-21uRClj3jCloGK2sbK0qkVgLciSgmxQSUBeVrYFo2re8KIVKAtRFCiKVokSJQMpFuRm-juE6HQwLqL5SDr6pFKzqpK0pulITEfGDyF4bHVyswd_1IzqMR690z_x6DEePcWTqPoXlb5DdEMfPbjuH_ZuYjF5Pzj0ozTsDVrnR2V2cH_y35t9goU
CitedBy_id crossref_primary_10_1002_advs_202411951
crossref_primary_10_1080_17452759_2023_2276250
crossref_primary_10_1002_adfm_202213252
Cites_doi 10.1080/21870764.2018.1446490
10.1021/acsami.8b12933
10.1021/acsnano.8b00304
10.1039/C6TC01163B
10.1111/j.1551-2916.2008.02778.x
10.1126/science.1255908
10.1002/adma.201906652
10.1023/A:1004813305237
10.1016/j.carbon.2015.12.103
10.1016/j.jeurceramsoc.2019.04.043
10.1108/13552541311312148
10.1002/adma.201605506
10.1002/adma.201405046
10.1016/j.apcatb.2018.04.066
10.1016/j.ceramint.2019.12.278
10.1111/jace.16888
10.1002/admt.202101462
10.1002/smll.201503524
10.2109/jcersj.109.S7
10.1039/C8MH00668G
10.1111/j.1151-2916.2000.tb01327.x
10.1016/j.jeurceramsoc.2003.10.016
10.1080/01614940600631348
10.1016/j.ceramint.2021.11.091
10.1007/s10853-011-6140-1
10.1038/ncomms7962
10.1088/2053-1583/aac055
10.1002/adem.201500298
10.2109/jcersj2.116.1167
10.1038/s41467-022-32027-3
10.1111/jace.16785
10.1016/S0167-2738(97)00315-9
10.1021/acsanm.1c04354
10.1016/j.ceramint.2017.11.133
10.1016/j.scriptamat.2020.09.008
10.1016/j.ceramint.2017.09.212
10.1016/j.actamat.2011.10.010
10.1039/C6CC05910D
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.addma.2022.103109
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
ExternalDocumentID 1885090
10_1016_j_addma_2022_103109
S2214860422004985
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
OTOTI
ID FETCH-LOGICAL-c375t-b166a81dbd57d6fea1fa570a5be65ae278dfac692b24f3e54344e34f637e51a53
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Thu May 18 22:31:51 EDT 2023
Thu Apr 24 23:10:25 EDT 2025
Tue Jul 01 01:47:12 EDT 2025
Fri Feb 23 02:39:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue PA
Keywords Multiscale structures
Spark plasma sintering
Electrically conductive ceramics
Additive manufacturing
Thermal insulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-b166a81dbd57d6fea1fa570a5be65ae278dfac692b24f3e54344e34f637e51a53
Notes EE0008675
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OpenAccessLink https://www.osti.gov/biblio/1885090
ParticipantIDs osti_scitechconnect_1885090
crossref_primary_10_1016_j_addma_2022_103109
crossref_citationtrail_10_1016_j_addma_2022_103109
elsevier_sciencedirect_doi_10_1016_j_addma_2022_103109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Additive manufacturing
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References An (bib39) 2022; 5
Liu, Tan, Li (bib2) 2006; 48
An (bib12) 2022; 13
García‐Tuñon (bib26) 2015; 27
Yuchang (bib10) 2016; 4
de Faoite (bib8) 2012; 47
Ru (bib29) 2018; 10
Zhang (bib7) 2008; 91
Turcer, Sengupta, Padture (bib5) 2021; 191
Watari (bib6) 2001; 109
Zhang, Yang, Cao (bib9) 2012; 60
Larson (bib17) 2016; 18
Zhang (bib13) 2020; 34
Harshe, Balan, Riedel (bib32) 2004; 24
Tong (bib33) 2022; 48
Murayama (bib1) 2008; 116
Huang, Wan, Goodenough (bib4) 2001; 36
An (bib23) 2016; 52
Meza, Das, Greer (bib11) 2014; 345
Van De Goor, Sägesser, Berroth (bib3) 1997; 101
Hensleigh (bib38) 2018; 5
Zhou (bib31) 2013
Zhang, Carloni, Wu (bib40) 2020; 103
Clegg (bib35) 2000; 83
Yao (bib37) 2020; 32
Lv (bib15) 2019; 39
Terrani, Jolly, Trammell (bib16) 2020; 103
Zhang (bib25) 2016; 12
Guo, Zhou (bib19) 2021; 48
Quintanilla (bib18) 2018; 235
Zhang (bib22) 2017; 29
Du (bib34) 2018; 44
Marsden (bib36) 2018; 5
Tu, Jiang (bib20) 2018; 44
Huang (bib21) 2020; 46
Roman-Manso (bib14) 2016; 100
Taki (bib24) 2018; 6
Tang (bib27) 2018; 12
Wang (bib30) 2022
Zhu (bib28) 2015; 6
Taki (10.1016/j.addma.2022.103109_bib24) 2018; 6
Zhang (10.1016/j.addma.2022.103109_bib40) 2020; 103
Clegg (10.1016/j.addma.2022.103109_bib35) 2000; 83
Huang (10.1016/j.addma.2022.103109_bib4) 2001; 36
Lv (10.1016/j.addma.2022.103109_bib15) 2019; 39
Harshe (10.1016/j.addma.2022.103109_bib32) 2004; 24
Zhang (10.1016/j.addma.2022.103109_bib13) 2020; 34
Hensleigh (10.1016/j.addma.2022.103109_bib38) 2018; 5
Yao (10.1016/j.addma.2022.103109_bib37) 2020; 32
Quintanilla (10.1016/j.addma.2022.103109_bib18) 2018; 235
Turcer (10.1016/j.addma.2022.103109_bib5) 2021; 191
Murayama (10.1016/j.addma.2022.103109_bib1) 2008; 116
García‐Tuñon (10.1016/j.addma.2022.103109_bib26) 2015; 27
Guo (10.1016/j.addma.2022.103109_bib19) 2021; 48
An (10.1016/j.addma.2022.103109_bib12) 2022; 13
Huang (10.1016/j.addma.2022.103109_bib21) 2020; 46
Tong (10.1016/j.addma.2022.103109_bib33) 2022; 48
Terrani (10.1016/j.addma.2022.103109_bib16) 2020; 103
Marsden (10.1016/j.addma.2022.103109_bib36) 2018; 5
Yuchang (10.1016/j.addma.2022.103109_bib10) 2016; 4
Larson (10.1016/j.addma.2022.103109_bib17) 2016; 18
Ru (10.1016/j.addma.2022.103109_bib29) 2018; 10
Zhu (10.1016/j.addma.2022.103109_bib28) 2015; 6
Zhang (10.1016/j.addma.2022.103109_bib22) 2017; 29
Zhang (10.1016/j.addma.2022.103109_bib25) 2016; 12
Zhang (10.1016/j.addma.2022.103109_bib9) 2012; 60
Meza (10.1016/j.addma.2022.103109_bib11) 2014; 345
Watari (10.1016/j.addma.2022.103109_bib6) 2001; 109
Zhang (10.1016/j.addma.2022.103109_bib7) 2008; 91
Zhou (10.1016/j.addma.2022.103109_bib31) 2013
Tu (10.1016/j.addma.2022.103109_bib20) 2018; 44
Tang (10.1016/j.addma.2022.103109_bib27) 2018; 12
Roman-Manso (10.1016/j.addma.2022.103109_bib14) 2016; 100
An (10.1016/j.addma.2022.103109_bib23) 2016; 52
Wang (10.1016/j.addma.2022.103109_bib30) 2022
Van De Goor (10.1016/j.addma.2022.103109_bib3) 1997; 101
Liu (10.1016/j.addma.2022.103109_bib2) 2006; 48
de Faoite (10.1016/j.addma.2022.103109_bib8) 2012; 47
Du (10.1016/j.addma.2022.103109_bib34) 2018; 44
An (10.1016/j.addma.2022.103109_bib39) 2022; 5
References_xml – start-page: 2101462
  year: 2022
  ident: bib30
  article-title: Multimaterial additive manufacturing of LTCC matrix and silver conductors for 3D ceramic electronics
  publication-title: Adv. Mater. Technol.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 7
  ident: bib12
  article-title: Tailoring thermal insulation architectures from additive manufacturing
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1702
  year: 2016
  end-page: 1708
  ident: bib25
  article-title: 3D printing of graphene aerogels
  publication-title: Small
– volume: 4
  start-page: 4853
  year: 2016
  end-page: 4862
  ident: bib10
  article-title: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band
  publication-title: J. Mater. Chem. C.
– volume: 103
  start-page: 1575
  year: 2020
  end-page: 1581
  ident: bib16
  article-title: 3D printing of high‐purity silicon carbide
  publication-title: J. Am. Ceram. Soc.
– volume: 27
  start-page: 1688
  year: 2015
  end-page: 1693
  ident: bib26
  article-title: Printing in three dimensions with graphene
  publication-title: Adv. Mater.
– volume: 103
  start-page: 839
  year: 2020
  end-page: 848
  ident: bib40
  article-title: Ultraviolet emission transparent Gd: YAG ceramics processed by solid‐state reaction spark plasma sintering
  publication-title: J. Am. Ceram. Soc.
– volume: 44
  start-page: 3400
  year: 2018
  end-page: 3405
  ident: bib20
  article-title: SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying
  publication-title: Ceram. Int.
– volume: 29
  start-page: 1605506
  year: 2017
  ident: bib22
  article-title: Flyweight, superelastic, electrically conductive, and flame‐retardant 3D multi‐nanolayer graphene/ceramic metamaterial
  publication-title: Adv. Mater.
– volume: 18
  start-page: 39
  year: 2016
  end-page: 45
  ident: bib17
  article-title: Direct ink writing of silicon carbide for microwave optics
  publication-title: Adv. Eng. Mater.
– volume: 5
  year: 2018
  ident: bib36
  article-title: Electrical percolation in graphene–polymer composites
  publication-title: 2D Mater.
– volume: 235
  start-page: 246
  year: 2018
  end-page: 255
  ident: bib18
  article-title: 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes
  publication-title: Appl. Catal. B: Environ.
– volume: 101
  start-page: 1163
  year: 1997
  end-page: 1170
  ident: bib3
  article-title: Electrically conductive ceramic composites
  publication-title: Solid State Ion.
– volume: 48
  start-page: 145
  year: 2006
  end-page: 198
  ident: bib2
  article-title: Mixed conducting ceramics for catalytic membrane processing
  publication-title: Catal. Rev.
– volume: 39
  start-page: 3380
  year: 2019
  end-page: 3386
  ident: bib15
  article-title: Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology
  publication-title: J. Eur. Ceram. Soc.
– volume: 91
  start-page: 3950
  year: 2008
  end-page: 3954
  ident: bib7
  article-title: Temperature‐dependent electrical properties of 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 ceramics
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  start-page: 1035
  year: 2018
  end-page: 1041
  ident: bib38
  article-title: Additive manufacturing of complex micro-architected graphene aerogels
  publication-title: Mater. Horiz.
– volume: 48
  start-page: 5468
  year: 2022
  end-page: 5475
  ident: bib33
  article-title: Preparation and textural evolution: from organosilane aerogel to SiOC aerogels
  publication-title: Ceram. Int.
– volume: 12
  start-page: 3502
  year: 2018
  end-page: 3511
  ident: bib27
  article-title: Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels
  publication-title: ACS nano
– volume: 46
  start-page: 10096
  year: 2020
  end-page: 10104
  ident: bib21
  article-title: 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering
  publication-title: Ceram. Int.
– volume: 100
  start-page: 318
  year: 2016
  end-page: 328
  ident: bib14
  article-title: Electrically functional 3D-architectured graphene/SiC composites
  publication-title: Carbon
– volume: 345
  start-page: 1322
  year: 2014
  end-page: 1326
  ident: bib11
  article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices
  publication-title: Science
– volume: 83
  start-page: 1039
  year: 2000
  end-page: 1043
  ident: bib35
  article-title: Role of carbon in the sintering of boron‐doped silicon carbide
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 95
  year: 2018
  end-page: 101
  ident: bib24
  article-title: Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering
  publication-title: J. Asian Ceram. Soc.
– volume: 24
  start-page: 3471
  year: 2004
  end-page: 3482
  ident: bib32
  article-title: Amorphous Si (Al) OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications
  publication-title: J. Eur. Ceram. Soc.
– volume: 109
  start-page: S7
  year: 2001
  end-page: S16
  ident: bib6
  article-title: High thermal conductivity non-oxide ceramics
  publication-title: J. Ceram. Soc. Jpn.
– volume: 44
  start-page: 563
  year: 2018
  end-page: 570
  ident: bib34
  article-title: Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment
  publication-title: Ceram. Int.
– volume: 116
  start-page: 1167
  year: 2008
  end-page: 1174
  ident: bib1
  article-title: Nanostructural design of electrically conductive ceramics and its application in gas sensors
  publication-title: J. Ceram. Soc. Jpn.
– volume: 47
  start-page: 4211
  year: 2012
  end-page: 4235
  ident: bib8
  article-title: A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics
  publication-title: J. Mater. Sci.
– year: 2013
  ident: bib31
  article-title: Digital material fabrication using mask‐image‐projection‐based stereolithography
  publication-title: Rapid Prototyp. J.
– volume: 191
  start-page: 40
  year: 2021
  end-page: 45
  ident: bib5
  article-title: Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings
  publication-title: Scr. Mater.
– volume: 36
  start-page: 1093
  year: 2001
  end-page: 1098
  ident: bib4
  article-title: Oxide-ion conducting ceramics for solid oxide fuel cells
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 2655
  year: 2022
  end-page: 2663
  ident: bib39
  article-title: Nanoengineering porous silica for thermal management
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib28
  article-title: Highly compressible 3D periodic graphene aerogel microlattices
  publication-title: Nat. Commun.
– volume: 10
  start-page: 39245
  year: 2018
  end-page: 39256
  ident: bib29
  article-title: Electrically conductive and mechanically strong graphene/mullite ceramic composites for high-performance electromagnetic interference shielding
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 10948
  year: 2016
  end-page: 10951
  ident: bib23
  article-title: Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing
  publication-title: Chem. Commun.
– volume: 34
  year: 2020
  ident: bib13
  article-title: Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics
  publication-title: Addit. Manuf.
– volume: 60
  start-page: 469
  year: 2012
  end-page: 475
  ident: bib9
  article-title: The temperature-dependent electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–Bi0. 5K0. 5TiO3 near the morphotropic phase boundary
  publication-title: Acta Mater.
– volume: 32
  start-page: 1906652
  year: 2020
  ident: bib37
  article-title: 3D‐printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels
  publication-title: Adv. Mater.
– volume: 48
  year: 2021
  ident: bib19
  article-title: Recent advances in ink-based additive manufacturing for porous structures
  publication-title: Addit. Manuf.
– volume: 6
  start-page: 95
  issue: 1
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib24
  article-title: Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering
  publication-title: J. Asian Ceram. Soc.
  doi: 10.1080/21870764.2018.1446490
– volume: 10
  start-page: 39245
  issue: 45
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib29
  article-title: Electrically conductive and mechanically strong graphene/mullite ceramic composites for high-performance electromagnetic interference shielding
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12933
– volume: 48
  year: 2021
  ident: 10.1016/j.addma.2022.103109_bib19
  article-title: Recent advances in ink-based additive manufacturing for porous structures
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 3502
  issue: 4
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib27
  article-title: Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels
  publication-title: ACS nano
  doi: 10.1021/acsnano.8b00304
– volume: 4
  start-page: 4853
  issue: 22
  year: 2016
  ident: 10.1016/j.addma.2022.103109_bib10
  article-title: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/C6TC01163B
– volume: 91
  start-page: 3950
  issue: 12
  year: 2008
  ident: 10.1016/j.addma.2022.103109_bib7
  article-title: Temperature‐dependent electrical properties of 0.94 Bi0. 5Na0. 5TiO3–0.06 BaTiO3 ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02778.x
– volume: 345
  start-page: 1322
  issue: 6202
  year: 2014
  ident: 10.1016/j.addma.2022.103109_bib11
  article-title: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices
  publication-title: Science
  doi: 10.1126/science.1255908
– volume: 32
  start-page: 1906652
  issue: 8
  year: 2020
  ident: 10.1016/j.addma.2022.103109_bib37
  article-title: 3D‐printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906652
– volume: 36
  start-page: 1093
  issue: 5
  year: 2001
  ident: 10.1016/j.addma.2022.103109_bib4
  article-title: Oxide-ion conducting ceramics for solid oxide fuel cells
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004813305237
– volume: 100
  start-page: 318
  year: 2016
  ident: 10.1016/j.addma.2022.103109_bib14
  article-title: Electrically functional 3D-architectured graphene/SiC composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.103
– volume: 39
  start-page: 3380
  issue: 11
  year: 2019
  ident: 10.1016/j.addma.2022.103109_bib15
  article-title: Fabrication of SiC whisker-reinforced SiC ceramic matrix composites based on 3D printing and chemical vapor infiltration technology
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2019.04.043
– year: 2013
  ident: 10.1016/j.addma.2022.103109_bib31
  article-title: Digital material fabrication using mask‐image‐projection‐based stereolithography
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541311312148
– volume: 29
  start-page: 1605506
  issue: 28
  year: 2017
  ident: 10.1016/j.addma.2022.103109_bib22
  article-title: Flyweight, superelastic, electrically conductive, and flame‐retardant 3D multi‐nanolayer graphene/ceramic metamaterial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605506
– volume: 27
  start-page: 1688
  issue: 10
  year: 2015
  ident: 10.1016/j.addma.2022.103109_bib26
  article-title: Printing in three dimensions with graphene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405046
– volume: 235
  start-page: 246
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib18
  article-title: 3D-Printed Fe-doped silicon carbide monolithic catalysts for wet peroxide oxidation processes
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.04.066
– volume: 46
  start-page: 10096
  issue: 8
  year: 2020
  ident: 10.1016/j.addma.2022.103109_bib21
  article-title: 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.12.278
– volume: 103
  start-page: 1575
  issue: 3
  year: 2020
  ident: 10.1016/j.addma.2022.103109_bib16
  article-title: 3D printing of high‐purity silicon carbide
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16888
– start-page: 2101462
  year: 2022
  ident: 10.1016/j.addma.2022.103109_bib30
  article-title: Multimaterial additive manufacturing of LTCC matrix and silver conductors for 3D ceramic electronics
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202101462
– volume: 12
  start-page: 1702
  issue: 13
  year: 2016
  ident: 10.1016/j.addma.2022.103109_bib25
  article-title: 3D printing of graphene aerogels
  publication-title: Small
  doi: 10.1002/smll.201503524
– volume: 109
  start-page: S7
  issue: 1265
  year: 2001
  ident: 10.1016/j.addma.2022.103109_bib6
  article-title: High thermal conductivity non-oxide ceramics
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj.109.S7
– volume: 5
  start-page: 1035
  issue: 6
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib38
  article-title: Additive manufacturing of complex micro-architected graphene aerogels
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00668G
– volume: 83
  start-page: 1039
  issue: 5
  year: 2000
  ident: 10.1016/j.addma.2022.103109_bib35
  article-title: Role of carbon in the sintering of boron‐doped silicon carbide
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.2000.tb01327.x
– volume: 24
  start-page: 3471
  issue: 12
  year: 2004
  ident: 10.1016/j.addma.2022.103109_bib32
  article-title: Amorphous Si (Al) OC ceramic from polysiloxanes: bulk ceramic processing, crystallization behavior and applications
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2003.10.016
– volume: 48
  start-page: 145
  issue: 02
  year: 2006
  ident: 10.1016/j.addma.2022.103109_bib2
  article-title: Mixed conducting ceramics for catalytic membrane processing
  publication-title: Catal. Rev.
  doi: 10.1080/01614940600631348
– volume: 34
  year: 2020
  ident: 10.1016/j.addma.2022.103109_bib13
  article-title: Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics
  publication-title: Addit. Manuf.
– volume: 48
  start-page: 5468
  issue: 4
  year: 2022
  ident: 10.1016/j.addma.2022.103109_bib33
  article-title: Preparation and textural evolution: from organosilane aerogel to SiOC aerogels
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.11.091
– volume: 47
  start-page: 4211
  issue: 10
  year: 2012
  ident: 10.1016/j.addma.2022.103109_bib8
  article-title: A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-6140-1
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.addma.2022.103109_bib28
  article-title: Highly compressible 3D periodic graphene aerogel microlattices
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7962
– volume: 5
  issue: 3
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib36
  article-title: Electrical percolation in graphene–polymer composites
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aac055
– volume: 18
  start-page: 39
  issue: 1
  year: 2016
  ident: 10.1016/j.addma.2022.103109_bib17
  article-title: Direct ink writing of silicon carbide for microwave optics
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201500298
– volume: 116
  start-page: 1167
  issue: 1359
  year: 2008
  ident: 10.1016/j.addma.2022.103109_bib1
  article-title: Nanostructural design of electrically conductive ceramics and its application in gas sensors
  publication-title: J. Ceram. Soc. Jpn.
  doi: 10.2109/jcersj2.116.1167
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.addma.2022.103109_bib12
  article-title: Tailoring thermal insulation architectures from additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32027-3
– volume: 103
  start-page: 839
  issue: 2
  year: 2020
  ident: 10.1016/j.addma.2022.103109_bib40
  article-title: Ultraviolet emission transparent Gd: YAG ceramics processed by solid‐state reaction spark plasma sintering
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.16785
– volume: 101
  start-page: 1163
  year: 1997
  ident: 10.1016/j.addma.2022.103109_bib3
  article-title: Electrically conductive ceramic composites
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(97)00315-9
– volume: 5
  start-page: 2655
  issue: 2
  year: 2022
  ident: 10.1016/j.addma.2022.103109_bib39
  article-title: Nanoengineering porous silica for thermal management
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c04354
– volume: 44
  start-page: 3400
  issue: 3
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib20
  article-title: SiC reticulated porous ceramics by 3D printing, gelcasting and liquid drying
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.133
– volume: 191
  start-page: 40
  year: 2021
  ident: 10.1016/j.addma.2022.103109_bib5
  article-title: Low thermal conductivity in high-entropy rare-earth pyrosilicate solid-solutions for thermal environmental barrier coatings
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2020.09.008
– volume: 44
  start-page: 563
  issue: 1
  year: 2018
  ident: 10.1016/j.addma.2022.103109_bib34
  article-title: Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.09.212
– volume: 60
  start-page: 469
  issue: 2
  year: 2012
  ident: 10.1016/j.addma.2022.103109_bib9
  article-title: The temperature-dependent electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–Bi0. 5K0. 5TiO3 near the morphotropic phase boundary
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.10.010
– volume: 52
  start-page: 10948
  issue: 73
  year: 2016
  ident: 10.1016/j.addma.2022.103109_bib23
  article-title: Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05910D
SSID ssj0001537982
Score 2.328528
Snippet The development of electrically conductive ceramics could achieve robust mechanical strength as well as practically high conductivity, offering applications in...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 103109
SubjectTerms Additive manufacturing
Electrically conductive ceramics
Multiscale structures
Spark plasma sintering
Thermal insulation
Title 3D-printed electrically conductive silicon carbide
URI https://dx.doi.org/10.1016/j.addma.2022.103109
https://www.osti.gov/biblio/1885090
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpSqDIwYtr4GY9VoSogukClbpGdOFJQ1ValDCz8du7ygCKhDoyJfFH0nX2-s---I-RKaWGQ14lCqGCo4M5TkzlGHYsSI1SqTIoFzk9jNZqIh6mcNsigroXBtMrK9pc2vbDW1ZtuhWZ3mefdZ8ZC7KAkGCraRFhoLoTGWX7zGf6cs0iuTdEzCsdTFKjJh4o0L1jfBf8QY1h_XiQm_r1BNRew5jb2nuEB2a-cxqBf_tchafj5EdnboBI8JozfUjyjAwcyKFvbIPqzjwDiXaR0BaMWvOUz0Ps8SOzK5ak_IZPh3ctgRKt-CDThWq6pC5Wy4F-6VOpUZd6GmZW6Z6XzSlrPdJRmNlGGOSYy7rFoVHguMsW1l6GV_JQ054u5PyOBjLwVeKcK4EDIAk6JMJ6lypqQZUb6FmE1CHFSkYVjz4pZXGeFvcYFcjEiF5fItcj1t9Cy5MrYPlzV6Ma_VB6DNd8u2EZdoBAS3SaYEQRSYRSB99M7_-9n22QXn8pCwwvSXK_e_SV4HGvXKaZUh-z07x9H4y8OyNGq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOU8sjAiNXGsZ14rApVSx8LrdQtshNHCqrSqpSBf48vDygSYmBNclH0XXz-bN99B3AvfCZR14nYpYIkzNOGyERTomkQSSZiIWMscJ5MxWDOnhd8UYNeVQuDaZVl7C9ieh6tyyvtEs32Ok3bL5S62EGJUXS0DPgeNFCditeh0R2OBtPvrRbu-TJvG4UmBG0q_aE808sO8VyCiFIsQc9zE3-fo-orO-x2pp_-MRyVvNHpFp92AjWTncLhjprgGVDvkeA2neWQTtHdBh2w_HDskhdVXW1cc97SpXV95kRqo9PYnMO8_zTrDUjZEoFEns-3RLtCKEsxdcz9WCRGuYnifkdxbQRXhvpBnKhISKopSzyDdaPMeCwRnm-4q7h3AfVslZlLcHhgFMNjVQuOXbVYXsKkobFQ0qWJ5KYJtAIhjEq9cGxbsQyrxLDXMEcuROTCArkmPHwZrQu5jL8fFxW64Q-vhzag_23YQl-gEWrdRpgUZK3cILAEqHP139fewf5gNhmH4-F01IIDvFPUHV5Dfbt5NzeWgGz1bfmDfQJWFNRb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed+electrically+conductive+silicon+carbide&rft.jtitle=Additive+manufacturing&rft.au=Guo%2C+Zipeng&rft.au=An%2C+Lu&rft.au=Khuje%2C+Saurabh&rft.au=Chivate%2C+Aditya&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=59&rft_id=info:doi/10.1016%2Fj.addma.2022.103109&rft.externalDocID=S2214860422004985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon