Glenohumeral joint reconstruction using statistical shape modeling

Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 21; no. 1; pp. 249 - 259
Main Authors Huang, Yichen, Robinson, Dale L., Pitocchi, Jonathan, Lee, Peter Vee Sin, Ackland, David C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-7959
1617-7940
1617-7940
DOI10.1007/s10237-021-01533-6

Cover

Loading…
Abstract Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
AbstractList Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.
Author Lee, Peter Vee Sin
Pitocchi, Jonathan
Ackland, David C.
Huang, Yichen
Robinson, Dale L.
Author_xml – sequence: 1
  givenname: Yichen
  surname: Huang
  fullname: Huang, Yichen
  organization: Department of Biomedical Engineering, University of Melbourne
– sequence: 2
  givenname: Dale L.
  surname: Robinson
  fullname: Robinson, Dale L.
  organization: Department of Biomedical Engineering, University of Melbourne
– sequence: 3
  givenname: Jonathan
  surname: Pitocchi
  fullname: Pitocchi, Jonathan
  organization: Materialise
– sequence: 4
  givenname: Peter Vee Sin
  surname: Lee
  fullname: Lee, Peter Vee Sin
  organization: Department of Biomedical Engineering, University of Melbourne
– sequence: 5
  givenname: David C.
  orcidid: 0000-0002-0559-7569
  surname: Ackland
  fullname: Ackland, David C.
  email: dackland@unimelb.edu.au
  organization: Department of Biomedical Engineering, University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34837584$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOxCAUhonReBl9ARemiRs31QO0lC514i2ZxI2uCcVTZdLCCHTh28s4XhIXriDh-zgn_39Atp13SMgxhXMK0FxECow3JTBaAq05L8UW2aeCNmXTVrD9c6_bPXIQ4xKAAZd8l-zxSvKmltU-ubod0PnXacSgh2LprUtFQONdTGEyyXpXTNG6lyImnWxM1mQsvuoVFqN_xiE_HZKdXg8Rj77OGXm6uX6c35WLh9v7-eWiNHlWKrXsqobxjkGPjWSc1l1LTYt1jxWKFoELMG2te9E3bYsGJAhhOpk5ymtq-Iycbf5dBf82YUxqtNHgMGiHfoqKCaiAci6rjJ7-QZd-Ci5vlylWCVgnl6mTL2rqRnxWq2BHHd7VdzoZYBvABB9jwP4HoaDWFahNBSpXoD4rUCJL8o9k7Do771LQdvhf5Rs15jnuBcPv2v9YHzqqmUc
CitedBy_id crossref_primary_10_1007_s12008_022_00882_5
crossref_primary_10_1055_a_2195_0914
crossref_primary_10_1080_10255842_2024_2384481
crossref_primary_10_1053_j_sart_2023_04_014
crossref_primary_10_1016_j_compbiomed_2024_108653
crossref_primary_10_1080_15397734_2024_2414764
crossref_primary_10_1177_03635465231179711
crossref_primary_10_1111_os_13492
crossref_primary_10_1016_j_medengphy_2023_104088
crossref_primary_10_3390_bioengineering10101185
crossref_primary_10_1080_15397734_2025_2468730
Cites_doi 10.1016/J.Jse.2014.01.051
10.1016/J.Jse.2017.07.026
10.1080/10255842.2018.1484914
10.5603/Fm.A2015.0072
10.1016/J.Jse.2018.04.023
10.1007/S10278-013-9622-7
10.2106/Jbjs.G.01341
10.16965/Ijar.2017.368
10.1007/S10237-019-01133-5
10.1016/J.Knee.2009.01.001
10.1016/J.Jbiomech.2012.02.023
10.7717/Peerj.2057
10.1016/J.Jbiomech.2004.05.042
10.1016/J.Jse.2018.06.001
10.1080/10255842.2018.1556260
10.1016/J.Legalmed.2016.06.004
10.1097/00003086-200102000-00015
10.1016/J.Jbiomech.2016.09.025
10.1002/Ajpa.22520
10.1016/S0021-9290(01)00097-5
10.1016/J.Forsciint.2009.04.013
10.1111/J.2517-6161.1996.Tb02080.X
10.1016/J.Jbiomech.2003.08.005
10.2106/Jbjs.K.01209
10.1016/J.Jbiomech.2013.12.010
10.1016/J.Gaitpost.2008.04.010
10.1016/J.Jse.2004.09.025
10.1080/10255842.2020.1757082
10.1016/J.Jbiomech.2019.01.031
10.1016/J.Jse.2020.07.007
10.1080/10255842.2016.1263301
10.1002/Jor.24070
10.1016/J.Jbiomech.2016.10.021
10.1016/J.Jse.2006.09.016
10.1016/J.Jse.2009.02.013
10.1007/978-3-319-12057-7_21
10.1007/978-1-4757-1904-8_7
10.7937/K9/TCIA.2015.K0F5CGLI
10.1117/12.57955
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TB
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0W
7X8
DOI 10.1007/s10237-021-01533-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database (ProQuest)
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 259
ExternalDocumentID 34837584
10_1007_s10237_021_01533_6
Genre Journal Article
GrantInformation_xml – fundername: Australian Research Council Future Fellowship
  grantid: FT200100098
– fundername: Australian Research Council Industry Transformation Training Centre
  grantid: IC180100024
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7Y
Z83
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TB
7TK
7XB
8FD
8FK
ABRTQ
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c375t-a8b4723b20fe782315b91c9e5fe4e69e0360c95af6f799ec08066cb815b1351c3
IEDL.DBID U2A
ISSN 1617-7959
1617-7940
IngestDate Mon Jul 21 10:44:05 EDT 2025
Fri Jul 25 19:04:55 EDT 2025
Wed Feb 19 02:25:53 EST 2025
Thu Apr 24 23:10:47 EDT 2025
Tue Jul 01 00:54:40 EDT 2025
Fri Feb 21 02:46:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Statistical shape model
Shoulder joint
Biomechanical model
Scapula
Surgical planning
Humerus
Language English
License 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a8b4723b20fe782315b91c9e5fe4e69e0360c95af6f799ec08066cb815b1351c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0559-7569
PMID 34837584
PQID 2624601023
PQPubID 54766
PageCount 11
ParticipantIDs proquest_miscellaneous_2604013384
proquest_journals_2624601023
pubmed_primary_34837584
crossref_primary_10_1007_s10237_021_01533_6
crossref_citationtrail_10_1007_s10237_021_01533_6
springer_journals_10_1007_s10237_021_01533_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Dordrecht
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Clark (CR9) 2013; 26
Levy, Everding, Frankle, Keppler (CR17) 2014; 23
Tibshirani (CR28) 1996; 58
Chatterjee, Sinha, Poddar, Ghosal (CR8) 2017; 5
Sintini, Burton, Sade, Chavarria, Laz (CR27) 2018; 36
Pitocchi, Wirix-Speetjens, Van Lenthe, Perez (CR20) 2020; 23
CR39
Hendel, Bryan, Barsoum, Rodriguez, Brems, Evans, Iannotti (CR13) 2012; 94
Zhang (CR36) 2016; 21
CR38
Kaptein, Van Der Helm (CR15) 2004; 37
CR14
Pearl (CR18) 2005; 14
Zhang, Besier (CR34) 2017; 20
Plessers, Vanden Berghe, Van Dijck, Wirix-Speetjens, Debeer, Jonkers, Vander Sloten (CR22) 2018; 27
Bahl (CR4) 2019; 85
Pellikaan (CR19) 2014; 47
KraniotiBastir, Sanchez-Meseguer, Rosas (CR16) 2009; 189
Zhang, Ackland, Fernandez (CR37) 2018; 21
Burton, Sintini, Chavarria, Brownhill, Laz (CR6) 2019; 22
Zhang, Fernandez, Hislop-Jambrich, Besier (CR35) 2016; 49
Ackland, Lin, Pandy (CR2) 2012; 45
Pitocchi (CR21) 2021; 30
Wu, Lee, Bryant, Galea, Ackland (CR33) 2016; 49
CR5
Raikova, Prilutsky (CR24) 2001; 34
Scheys, Spaepen, Suetens, Jonkers (CR26) 2008; 28
Abler, Berger, Terrier, Becce, Farron, Buchler (CR1) 2018; 27
Wu (CR32) 2005; 38
Arias-Martorell, Potau, Bello-Hellegouarch, Pérez-Pérez (CR3) 2014; 154
Von Schroeder (CR31) 2001; 383
Polguj, Majos, Waszczykowski, Fabis, Stefanczyk, Podgorski, Topol (CR23) 2016; 75
Victor, Van Doninck, Labey, Innocenti, Parizel, Bellemans (CR30) 2009; 16
Scalise, Codsi, Bryan, Brems, Iannotti (CR25) 2008; 90
Fedorov (CR11) 2016; 4
Vallabh, Zhang, Fernandez, Dimitroulis, Ackland (CR29) 2019
Casier, Van Den Broecke, Van Houcke, Audenaert, De Wilde, Van Tongel (CR7) 2018; 27
Delude (CR10) 2007; 16
Frankle, Teramoto, Luo, Levy, Pupello (CR12) 2009; 18
A Fedorov (1533_CR11) 2016; 4
M Polguj (1533_CR23) 2016; 75
WS Burton (1533_CR6) 2019; 22
K Plessers (1533_CR22) 2018; 27
I Sintini (1533_CR27) 2018; 36
J Zhang (1533_CR34) 2017; 20
RR Raikova (1533_CR24) 2001; 34
1533_CR39
MD Hendel (1533_CR13) 2012; 94
HP Von Schroeder (1533_CR31) 2001; 383
MA Frankle (1533_CR12) 2009; 18
J Zhang (1533_CR35) 2016; 49
D Abler (1533_CR1) 2018; 27
SJ Casier (1533_CR7) 2018; 27
K Clark (1533_CR9) 2013; 26
L Scheys (1533_CR26) 2008; 28
J Pitocchi (1533_CR20) 2020; 23
J Zhang (1533_CR37) 2018; 21
1533_CR38
G Wu (1533_CR32) 2005; 38
1533_CR14
P Pellikaan (1533_CR19) 2014; 47
W Wu (1533_CR33) 2016; 49
Ml Pearl (1533_CR18) 2005; 14
R Vallabh (1533_CR29) 2019
EFM KraniotiBastir (1533_CR16) 2009; 189
DC Ackland (1533_CR2) 2012; 45
1533_CR5
JC Levy (1533_CR17) 2014; 23
J Victor (1533_CR30) 2009; 16
JS Bahl (1533_CR4) 2019; 85
BL Kaptein (1533_CR15) 2004; 37
JA Delude (1533_CR10) 2007; 16
J Arias-Martorell (1533_CR3) 2014; 154
R Tibshirani (1533_CR28) 1996; 58
K Zhang (1533_CR36) 2016; 21
M Chatterjee (1533_CR8) 2017; 5
J Pitocchi (1533_CR21) 2021; 30
JJ Scalise (1533_CR25) 2008; 90
References_xml – volume: 23
  start-page: 1563
  year: 2014
  end-page: 1567
  ident: CR17
  article-title: Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2014.01.051
– volume: 27
  start-page: 160
  year: 2018
  end-page: 166
  ident: CR22
  article-title: Virtual reconstruction of glenoid bone defects using a statistical shape model
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2017.07.026
– volume: 21
  start-page: 498
  year: 2018
  end-page: 502
  ident: CR37
  article-title: Point-cloud registration using adaptive radial basis functions
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2018.1484914
– volume: 75
  start-page: 87
  year: 2016
  end-page: 92
  ident: CR23
  article-title: A computed tomography study on the correlation between the morphometry of the suprascapular notch and anthropometric measurements of the scapula
  publication-title: Folia Morphol
  doi: 10.5603/Fm.A2015.0072
– volume: 27
  start-page: 1800
  year: 2018
  end-page: 1808
  ident: CR1
  article-title: A statistical shape model to predict the premorbid glenoid cavity
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2018.04.023
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: CR9
  article-title: The cancer imaging archive (Tcia): maintaining and operating a public information repository
  publication-title: J Dig Imag
  doi: 10.1007/S10278-013-9622-7
– volume: 90
  start-page: 2438
  year: 2008
  end-page: 2445
  ident: CR25
  article-title: The influence of three-dimensional computed tomography images of the shoulder in preoperative planning for total shoulder arthroplasty
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/Jbjs.G.01341
– ident: CR39
– ident: CR14
– volume: 5
  start-page: 4454
  year: 2017
  end-page: 4459
  ident: CR8
  article-title: Humeral morphometrics: a study in eastern Indian population
  publication-title: Int J Anat Res
  doi: 10.16965/Ijar.2017.368
– year: 2019
  ident: CR29
  article-title: The morphology of the human mandible: a computational modelling study
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/S10237-019-01133-5
– volume: 16
  start-page: 358
  year: 2009
  end-page: 365
  ident: CR30
  article-title: How precise can bony landmarks be determined on a ct scan of the knee?
  publication-title: Knee
  doi: 10.1016/J.Knee.2009.01.001
– volume: 45
  start-page: 1463
  year: 2012
  end-page: 1471
  ident: CR2
  article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a monte-carlo analysis
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2012.02.023
– volume: 4
  start-page: E2057
  year: 2016
  ident: CR11
  article-title: Dicom for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured pet/ct analysis results in head and neck cancer research
  publication-title: PeerJ
  doi: 10.7717/Peerj.2057
– volume: 38
  start-page: 981
  year: 2005
  end-page: 992
  ident: CR32
  article-title: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-part Ii: shoulder
  publication-title: Elbow Wrist Hand J Biomech
  doi: 10.1016/J.Jbiomech.2004.05.042
– volume: 27
  start-page: 2224
  year: 2018
  end-page: 2231
  ident: CR7
  article-title: Morphologic variations of the scapula in 3-dimensions: a statistical shape model approach
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2018.06.001
– volume: 22
  start-page: 341
  year: 2019
  end-page: 351
  ident: CR6
  article-title: Assessment of scapular morphology and bone quality with statistical models
  publication-title: Comp Method Biomech Biomed Eng
  doi: 10.1080/10255842.2018.1556260
– volume: 21
  start-page: 58
  year: 2016
  end-page: 63
  ident: CR36
  article-title: Estimation of stature and sex from scapular measurements by three-dimensional volume-rendering technique using in chinese
  publication-title: Leg Med
  doi: 10.1016/J.Legalmed.2016.06.004
– volume: 383
  start-page: 131
  year: 2001
  ident: CR31
  article-title: Osseous anatomy of the scapula
  publication-title: Clin Orthopaed Relat Res
  doi: 10.1097/00003086-200102000-00015
– volume: 49
  start-page: 3626
  year: 2016
  end-page: 3634
  ident: CR33
  article-title: Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2016.09.025
– volume: 154
  start-page: 459
  year: 2014
  end-page: 465
  ident: CR3
  article-title: Brief communication: developmental versus functional three-dimensional geometric morphometric-based modularity of the human proximal humerus
  publication-title: Am J Phys Anthrop
  doi: 10.1002/Ajpa.22520
– volume: 34
  start-page: 1243
  year: 2001
  end-page: 1255
  ident: CR24
  article-title: Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00097-5
– volume: 189
  start-page: E111
  issue: 111
  year: 2009
  end-page: 118
  ident: CR16
  article-title: A geometric-morphometric study of the cretan humerus for sex identification
  publication-title: Forensic Sci Int
  doi: 10.1016/J.Forsciint.2009.04.013
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR28
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Stat Soc Ser B
  doi: 10.1111/J.2517-6161.1996.Tb02080.X
– volume: 37
  start-page: 263
  year: 2004
  end-page: 273
  ident: CR15
  article-title: Estimating muscle attachment contours by transforming geometrical bone models
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2003.08.005
– ident: CR38
– volume: 94
  start-page: 2167
  year: 2012
  end-page: 2175
  ident: CR13
  article-title: Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/Jbjs.K.01209
– volume: 47
  start-page: 1144
  year: 2014
  end-page: 1150
  ident: CR19
  article-title: Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2013.12.010
– volume: 28
  start-page: 640
  year: 2008
  end-page: 648
  ident: CR26
  article-title: Calculated moment-arm and muscle-tendon lengths during gait differ substantially using Mr based versus rescaled generic lower-limb musculoskeletal models
  publication-title: Gait Posture
  doi: 10.1016/J.Gaitpost.2008.04.010
– volume: 14
  start-page: 99s
  year: 2005
  end-page: 104s
  ident: CR18
  article-title: Proximal humeral anatomy in shoulder arthroplasty: implications for prosthetic design and surgical technique
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2004.09.025
– volume: 23
  start-page: 642
  year: 2020
  end-page: 648
  ident: CR20
  article-title: Integration of cortical thickness data in a statistical shape model of the scapula
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2020.1757082
– volume: 85
  start-page: 164
  year: 2019
  end-page: 172
  ident: CR4
  article-title: Statistical shape modelling versus linear scaling: effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2019.01.031
– volume: 30
  start-page: 561
  year: 2021
  end-page: 571
  ident: CR21
  article-title: Automated muscle elongation measurement during reverse shoulder arthroplasty planning
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2020.07.007
– ident: CR5
– volume: 20
  start-page: 566
  year: 2017
  end-page: 576
  ident: CR34
  article-title: Accuracy of femur reconstruction from sparse geometric data using a statistical shape model
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2016.1263301
– volume: 36
  start-page: 3043
  year: 2018
  end-page: 3052
  ident: CR27
  article-title: Investigating gender and ethnicity differences in proximal humeral morphology using a statistical shape model
  publication-title: J Orthop Res
  doi: 10.1002/Jor.24070
– volume: 49
  start-page: 3875
  year: 2016
  end-page: 3881
  ident: CR35
  article-title: Lower limb estimation from sparse landmarks using an articulated shape model
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2016.10.021
– volume: 16
  start-page: 477
  year: 2007
  end-page: 483
  ident: CR10
  article-title: An anthropometric study of the bilateral anatomy of the humerus
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2006.09.016
– volume: 18
  start-page: 874
  year: 2009
  end-page: 885
  ident: CR12
  article-title: Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2009.02.013
– volume: 21
  start-page: 498
  year: 2018
  ident: 1533_CR37
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2018.1484914
– volume: 23
  start-page: 1563
  year: 2014
  ident: 1533_CR17
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2014.01.051
– volume: 75
  start-page: 87
  year: 2016
  ident: 1533_CR23
  publication-title: Folia Morphol
  doi: 10.5603/Fm.A2015.0072
– volume: 5
  start-page: 4454
  year: 2017
  ident: 1533_CR8
  publication-title: Int J Anat Res
  doi: 10.16965/Ijar.2017.368
– ident: 1533_CR38
  doi: 10.1007/978-3-319-12057-7_21
– volume: 26
  start-page: 1045
  year: 2013
  ident: 1533_CR9
  publication-title: J Dig Imag
  doi: 10.1007/S10278-013-9622-7
– volume: 27
  start-page: 2224
  year: 2018
  ident: 1533_CR7
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2018.06.001
– volume: 23
  start-page: 642
  year: 2020
  ident: 1533_CR20
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2020.1757082
– volume: 37
  start-page: 263
  year: 2004
  ident: 1533_CR15
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2003.08.005
– volume: 30
  start-page: 561
  year: 2021
  ident: 1533_CR21
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2020.07.007
– volume: 383
  start-page: 131
  year: 2001
  ident: 1533_CR31
  publication-title: Clin Orthopaed Relat Res
  doi: 10.1097/00003086-200102000-00015
– volume: 47
  start-page: 1144
  year: 2014
  ident: 1533_CR19
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2013.12.010
– volume: 34
  start-page: 1243
  year: 2001
  ident: 1533_CR24
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(01)00097-5
– ident: 1533_CR14
  doi: 10.1007/978-1-4757-1904-8_7
– volume: 28
  start-page: 640
  year: 2008
  ident: 1533_CR26
  publication-title: Gait Posture
  doi: 10.1016/J.Gaitpost.2008.04.010
– volume: 36
  start-page: 3043
  year: 2018
  ident: 1533_CR27
  publication-title: J Orthop Res
  doi: 10.1002/Jor.24070
– volume: 18
  start-page: 874
  year: 2009
  ident: 1533_CR12
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2009.02.013
– volume: 49
  start-page: 3626
  year: 2016
  ident: 1533_CR33
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2016.09.025
– volume: 45
  start-page: 1463
  year: 2012
  ident: 1533_CR2
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2012.02.023
– volume: 189
  start-page: E111
  issue: 111
  year: 2009
  ident: 1533_CR16
  publication-title: Forensic Sci Int
  doi: 10.1016/J.Forsciint.2009.04.013
– year: 2019
  ident: 1533_CR29
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/S10237-019-01133-5
– volume: 94
  start-page: 2167
  year: 2012
  ident: 1533_CR13
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/Jbjs.K.01209
– volume: 16
  start-page: 358
  year: 2009
  ident: 1533_CR30
  publication-title: Knee
  doi: 10.1016/J.Knee.2009.01.001
– volume: 90
  start-page: 2438
  year: 2008
  ident: 1533_CR25
  publication-title: J Bone Joint Surg Am
  doi: 10.2106/Jbjs.G.01341
– ident: 1533_CR39
  doi: 10.7937/K9/TCIA.2015.K0F5CGLI
– volume: 22
  start-page: 341
  year: 2019
  ident: 1533_CR6
  publication-title: Comp Method Biomech Biomed Eng
  doi: 10.1080/10255842.2018.1556260
– volume: 49
  start-page: 3875
  year: 2016
  ident: 1533_CR35
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2016.10.021
– volume: 27
  start-page: 160
  year: 2018
  ident: 1533_CR22
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2017.07.026
– volume: 20
  start-page: 566
  year: 2017
  ident: 1533_CR34
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2016.1263301
– ident: 1533_CR5
  doi: 10.1117/12.57955
– volume: 27
  start-page: 1800
  year: 2018
  ident: 1533_CR1
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2018.04.023
– volume: 21
  start-page: 58
  year: 2016
  ident: 1533_CR36
  publication-title: Leg Med
  doi: 10.1016/J.Legalmed.2016.06.004
– volume: 16
  start-page: 477
  year: 2007
  ident: 1533_CR10
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2006.09.016
– volume: 154
  start-page: 459
  year: 2014
  ident: 1533_CR3
  publication-title: Am J Phys Anthrop
  doi: 10.1002/Ajpa.22520
– volume: 38
  start-page: 981
  year: 2005
  ident: 1533_CR32
  publication-title: Elbow Wrist Hand J Biomech
  doi: 10.1016/J.Jbiomech.2004.05.042
– volume: 14
  start-page: 99s
  year: 2005
  ident: 1533_CR18
  publication-title: J Shoulder Elbow Surg
  doi: 10.1016/J.Jse.2004.09.025
– volume: 58
  start-page: 267
  year: 1996
  ident: 1533_CR28
  publication-title: J Roy Stat Soc Ser B
  doi: 10.1111/J.2517-6161.1996.Tb02080.X
– volume: 85
  start-page: 164
  year: 2019
  ident: 1533_CR4
  publication-title: J Biomech
  doi: 10.1016/J.Jbiomech.2019.01.031
– volume: 4
  start-page: E2057
  year: 2016
  ident: 1533_CR11
  publication-title: PeerJ
  doi: 10.7717/Peerj.2057
SSID ssj0020383
Score 2.360757
Snippet Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 249
SubjectTerms Age
Algorithms
Biological and Medical Physics
Biomechanical Phenomena
Biomedical Engineering and Bioengineering
Biophysics
Bones
Computer applications
Datasets
Engineering
Ethnicity
Females
Geometry
Humerus
Humerus - anatomy & histology
Humerus - diagnostic imaging
Image reconstruction
Joints (anatomy)
Mathematical models
Medical imaging
Models, Anatomic
Models, Statistical
Original Paper
Prediction models
Registration
Scapula - anatomy & histology
Shoulder Joint - anatomy & histology
Shoulder Joint - diagnostic imaging
Shoulder Joint - surgery
Statistical analysis
Theoretical and Applied Mechanics
Three dimensional models
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRv61OqeCbBrvmq3kSFecQ9MnB3kqapU6RdrLtwf_eXJq2yHDPubbhrsnd5S6_H0KXyiRSqUhhSnQECYrAkjCKbX7LSK7GUe54yF5e-WBIn0ds5A_cZr6tst4T3UY9LjWckd_EPKaQPMTkdvqNgTUKqqueQmMdbQB0GbR0iVGbcEUVDCeE8Bg4tf2lGX91LiYCQ4NCBCEP5n8d01K0uVQpdQ6ov4O2feQY3lWm3kVrpthDmxWX5M8-un-y_qOcLNwhU_hZfhTz0GW7DUJsCD3u7yFcIXLozFZsNlFTEzo2HDt0gIb9x7eHAfYECVgTweZYJRkVMcniKDcC6nkskz0tDcsNNVwa650iLZnKeS6kNAAqzrnOEisHxHyaHKJOURbmGIXMeiUrR5SNuGyOJzNhmKDahmeaKjnuBahXayfVHj0cSCy-0hb3GDSaWo2mTqMpD9BV88y0ws5YKd2tlZ76dTRLW6sH6KIZtisAyhqqMOUCZCJIEklCA3RUGav5HAHAfAYj17X12pf_P5eT1XM5RVsx3IJwzdtd1LF2NGc2Npln5-4H_AVXOduS
  priority: 102
  providerName: ProQuest
Title Glenohumeral joint reconstruction using statistical shape modeling
URI https://link.springer.com/article/10.1007/s10237-021-01533-6
https://www.ncbi.nlm.nih.gov/pubmed/34837584
https://www.proquest.com/docview/2624601023
https://www.proquest.com/docview/2604013384
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-ahEH3MNZ27dJlwYW-dQLHkizrMRn5oGVhlAayJyMr8roynELSh_33vZM_0pFtsBfrQWfZ3Em-O9_d7wAujUu0MaFhgtuQHBTFNJeCoX8reW5WYe77kH2Zx7OFuF7KZVUUtqmz3euQpP9Svyh2i7hilFIQkpHC4hZ0JPnuuIsX0bBxs8ISfJMMd0adtKtSmT-v8bs62rMx9-KjXu1M3sKbyl4MhqWAj-DAFcfwquwg-esYXr_AEzyB0RR1yPr-yf9oCh7WP4pt4D3eBiU2oDz37wGVEXmEZiTb3JtHF_iOODj1DhaT8d3nGauaJDDLldwyk2RCRTyLwtwpiunJTA-sdjJ3wsXaoYYKrZYmj3OltSNg8Ti2WYJ01JzP8lNoF-vCvYdAomZCOm7Q6kI_T2fKSSUsmmhWGL0adGFQ8yq1FYI4NbL4me6wj4m_KfI39fxN4y5cNfc8lvgZ_6Tu1SJIq7O0SaM4EuQ2RrwLF800ngIKbZjCrZ-IJiRHkSeiC2el6JrHcQLNlzTzqZblbvG_v8v5_5F_gMOIKiN8QncP2ihX9xHtlW3Wh5ZaKrwmk2kfOsPJaDSncfrtZozjaDz_etv3W_gZCeTjgw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXqlAeSykEqZzAIutHEh9Q1QLL8jyBxC04XgdaVcmiXVTxp_obmXEeqwrBjbMnjjUe2_N5PPMBfDMu0caEhklhQwIoMdNCSYb4VoncDMLc85BdXEb9a3l6o26m4F-TC0PPKps90W_Ug9LSHfkej7gk8MDF9-EDI9Yoiq42FBqVWZy5p78I2Ub7J4c4v9uc946uDvqsZhVgVsRqzEySyZiLjIe5iykIpjLdtdqp3EkXaYdbemi1MnmUx1o7qsQdRTZLUI7Y7KzAfqdhVgqhaUUlveMW4IVV2U-CDIw4vOsknTpVj4uY0YOIkFwsFv1_EL7wbl9EZv2B1_sEH2tPNfhRmdYCTLliEeYq7sqnz_DzGM-r8v7RX2oFv8tfxTjw6LqtSBvQm_q7gFKWfDVoFBvdm6ELPPsONi3B9buobhlmirJwqxAoPAVRThj08BBT6ix2KpYW3UErjR50O9BttJPaulo5kWb8SSd1lkmjKWo09RpNow7stN8Mq1odb0qvN0pP63U7SidW1oGtthlXHIVRTOHKR5IJCZSKRHZgpZqs9neCCvQratltZm_S-etjWXt7LJsw37-6OE_PTy7PvsAHThkY_uH4OszgnLqv6BeNsw1vjAHcvrf1PwMIwRep
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAQHBOM1nkXiBtG6JmmX43iM8Zo4MGm3Ks1SBkLtpG0H_j1x2nVDAyTOcdPKTmt_tf0Z4EzqupDSlYRR5SJACYignBGDbzmNZc-N7Ryyp7bf6rD7Lu_OdPHbavdJSjLraUCWpmRUHfTi6kzjm0cDguUFLgYsxF-EJfM5ruG57niNAnK5GREnBvEEp2rnbTM_7_HdNc3Fm3O5UuuCmhuwnseOTiMz9iYs6KQMy9k0yc8yrM1wC27B5a3xJ2l_bH86Oe_pWzJyLPotGGMdrHl_dbClyLI1G7FhXw60Y6fjmKVt6DRvXq5aJB-YQBQN-IjIesQCj0aeG-sA83s8EjUlNI81077Qxlu5SnAZ-3EghEaScd9XUd3I4aA-RXeglKSJ3gOHGy9l5Kg0EZjBfCIKNA-YMuGaYlL0ahWoTXQVqpxNHIdafIRTHmTUb2j0G1r9hn4FzotrBhmXxp_ShxMThPl7NQw932MIIT1agdNi2bwRmOaQiU7HKOMiaKR1VoHdzHTF7SgS6HNcuZjYcrr578-y_z_xE1h5vm6Gj3fthwNY9bBhwtZ5H0LJmFgfmTBmFB3bk_oFVCrkOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glenohumeral+joint+reconstruction+using+statistical+shape+modeling&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Huang%2C+Yichen&rft.au=Robinson%2C+Dale+L&rft.au=Pitocchi%2C+Jonathan&rft.au=Lee%2C+Peter+Vee+Sin&rft.date=2022-02-01&rft.issn=1617-7940&rft.eissn=1617-7940&rft.volume=21&rft.issue=1&rft.spage=249&rft_id=info:doi/10.1007%2Fs10237-021-01533-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon