Glenohumeral joint reconstruction using statistical shape modeling
Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and...
Saved in:
Published in | Biomechanics and modeling in mechanobiology Vol. 21; no. 1; pp. 249 - 259 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1617-7959 1617-7940 1617-7940 |
DOI | 10.1007/s10237-021-01533-6 |
Cover
Loading…
Abstract | Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models. |
---|---|
AbstractList | Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models.Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models. Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models. Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and simulation. The three-dimensional geometry of bones is traditionally obtained by segmenting medical image datasets, but this can be time-consuming and may not be practical in the clinical setting. The aims of this study were twofold. Firstly, to develop and validate a statistical shape modeling approach to rapidly reconstruct the complete scapular and humeral geometries using discrete morphometric measurements that can be quickly and easily measured directly from CT, and secondly, to assess the effectiveness of statistical shape modeling in reconstruction of the entire humerus using just the landmarks in the immediate vicinity of the glenohumeral joint. The most representative shape prediction models presented in this study achieved complete scapular and humeral geometry prediction from seven or fewer morphometric measurements and yielded a mean surface root mean square (RMS) error under 2 mm. Reconstruction of the entire humerus was achieved using information of only proximal humerus bony landmarks and yielding mean surface RMS errors under 3 mm. The proposed statistical shape modeling facilitates rapid generation of 3D anatomical models of the shoulder, which may be useful in rapid development of personalized musculoskeletal models. |
Author | Lee, Peter Vee Sin Pitocchi, Jonathan Ackland, David C. Huang, Yichen Robinson, Dale L. |
Author_xml | – sequence: 1 givenname: Yichen surname: Huang fullname: Huang, Yichen organization: Department of Biomedical Engineering, University of Melbourne – sequence: 2 givenname: Dale L. surname: Robinson fullname: Robinson, Dale L. organization: Department of Biomedical Engineering, University of Melbourne – sequence: 3 givenname: Jonathan surname: Pitocchi fullname: Pitocchi, Jonathan organization: Materialise – sequence: 4 givenname: Peter Vee Sin surname: Lee fullname: Lee, Peter Vee Sin organization: Department of Biomedical Engineering, University of Melbourne – sequence: 5 givenname: David C. orcidid: 0000-0002-0559-7569 surname: Ackland fullname: Ackland, David C. email: dackland@unimelb.edu.au organization: Department of Biomedical Engineering, University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34837584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOxCAUhonReBl9ARemiRs31QO0lC514i2ZxI2uCcVTZdLCCHTh28s4XhIXriDh-zgn_39Atp13SMgxhXMK0FxECow3JTBaAq05L8UW2aeCNmXTVrD9c6_bPXIQ4xKAAZd8l-zxSvKmltU-ubod0PnXacSgh2LprUtFQONdTGEyyXpXTNG6lyImnWxM1mQsvuoVFqN_xiE_HZKdXg8Rj77OGXm6uX6c35WLh9v7-eWiNHlWKrXsqobxjkGPjWSc1l1LTYt1jxWKFoELMG2te9E3bYsGJAhhOpk5ymtq-Iycbf5dBf82YUxqtNHgMGiHfoqKCaiAci6rjJ7-QZd-Ci5vlylWCVgnl6mTL2rqRnxWq2BHHd7VdzoZYBvABB9jwP4HoaDWFahNBSpXoD4rUCJL8o9k7Do771LQdvhf5Rs15jnuBcPv2v9YHzqqmUc |
CitedBy_id | crossref_primary_10_1007_s12008_022_00882_5 crossref_primary_10_1055_a_2195_0914 crossref_primary_10_1080_10255842_2024_2384481 crossref_primary_10_1053_j_sart_2023_04_014 crossref_primary_10_1016_j_compbiomed_2024_108653 crossref_primary_10_1080_15397734_2024_2414764 crossref_primary_10_1177_03635465231179711 crossref_primary_10_1111_os_13492 crossref_primary_10_1016_j_medengphy_2023_104088 crossref_primary_10_3390_bioengineering10101185 crossref_primary_10_1080_15397734_2025_2468730 |
Cites_doi | 10.1016/J.Jse.2014.01.051 10.1016/J.Jse.2017.07.026 10.1080/10255842.2018.1484914 10.5603/Fm.A2015.0072 10.1016/J.Jse.2018.04.023 10.1007/S10278-013-9622-7 10.2106/Jbjs.G.01341 10.16965/Ijar.2017.368 10.1007/S10237-019-01133-5 10.1016/J.Knee.2009.01.001 10.1016/J.Jbiomech.2012.02.023 10.7717/Peerj.2057 10.1016/J.Jbiomech.2004.05.042 10.1016/J.Jse.2018.06.001 10.1080/10255842.2018.1556260 10.1016/J.Legalmed.2016.06.004 10.1097/00003086-200102000-00015 10.1016/J.Jbiomech.2016.09.025 10.1002/Ajpa.22520 10.1016/S0021-9290(01)00097-5 10.1016/J.Forsciint.2009.04.013 10.1111/J.2517-6161.1996.Tb02080.X 10.1016/J.Jbiomech.2003.08.005 10.2106/Jbjs.K.01209 10.1016/J.Jbiomech.2013.12.010 10.1016/J.Gaitpost.2008.04.010 10.1016/J.Jse.2004.09.025 10.1080/10255842.2020.1757082 10.1016/J.Jbiomech.2019.01.031 10.1016/J.Jse.2020.07.007 10.1080/10255842.2016.1263301 10.1002/Jor.24070 10.1016/J.Jbiomech.2016.10.021 10.1016/J.Jse.2006.09.016 10.1016/J.Jse.2009.02.013 10.1007/978-3-319-12057-7_21 10.1007/978-1-4757-1904-8_7 10.7937/K9/TCIA.2015.K0F5CGLI 10.1117/12.57955 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U S0W 7X8 |
DOI | 10.1007/s10237-021-01533-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (ProQuest) Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1617-7940 |
EndPage | 259 |
ExternalDocumentID | 34837584 10_1007_s10237_021_01533_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Australian Research Council Future Fellowship grantid: FT200100098 – fundername: Australian Research Council Industry Transformation Training Centre grantid: IC180100024 |
GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK ABRTQ FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-a8b4723b20fe782315b91c9e5fe4e69e0360c95af6f799ec08066cb815b1351c3 |
IEDL.DBID | U2A |
ISSN | 1617-7959 1617-7940 |
IngestDate | Mon Jul 21 10:44:05 EDT 2025 Fri Jul 25 19:04:55 EDT 2025 Wed Feb 19 02:25:53 EST 2025 Thu Apr 24 23:10:47 EDT 2025 Tue Jul 01 00:54:40 EDT 2025 Fri Feb 21 02:46:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Statistical shape model Shoulder joint Biomechanical model Scapula Surgical planning Humerus |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-a8b4723b20fe782315b91c9e5fe4e69e0360c95af6f799ec08066cb815b1351c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0559-7569 |
PMID | 34837584 |
PQID | 2624601023 |
PQPubID | 54766 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2604013384 proquest_journals_2624601023 pubmed_primary_34837584 crossref_primary_10_1007_s10237_021_01533_6 crossref_citationtrail_10_1007_s10237_021_01533_6 springer_journals_10_1007_s10237_021_01533_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-00 2022-Feb 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
PublicationTitle | Biomechanics and modeling in mechanobiology |
PublicationTitleAbbrev | Biomech Model Mechanobiol |
PublicationTitleAlternate | Biomech Model Mechanobiol |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Clark (CR9) 2013; 26 Levy, Everding, Frankle, Keppler (CR17) 2014; 23 Tibshirani (CR28) 1996; 58 Chatterjee, Sinha, Poddar, Ghosal (CR8) 2017; 5 Sintini, Burton, Sade, Chavarria, Laz (CR27) 2018; 36 Pitocchi, Wirix-Speetjens, Van Lenthe, Perez (CR20) 2020; 23 CR39 Hendel, Bryan, Barsoum, Rodriguez, Brems, Evans, Iannotti (CR13) 2012; 94 Zhang (CR36) 2016; 21 CR38 Kaptein, Van Der Helm (CR15) 2004; 37 CR14 Pearl (CR18) 2005; 14 Zhang, Besier (CR34) 2017; 20 Plessers, Vanden Berghe, Van Dijck, Wirix-Speetjens, Debeer, Jonkers, Vander Sloten (CR22) 2018; 27 Bahl (CR4) 2019; 85 Pellikaan (CR19) 2014; 47 KraniotiBastir, Sanchez-Meseguer, Rosas (CR16) 2009; 189 Zhang, Ackland, Fernandez (CR37) 2018; 21 Burton, Sintini, Chavarria, Brownhill, Laz (CR6) 2019; 22 Zhang, Fernandez, Hislop-Jambrich, Besier (CR35) 2016; 49 Ackland, Lin, Pandy (CR2) 2012; 45 Pitocchi (CR21) 2021; 30 Wu, Lee, Bryant, Galea, Ackland (CR33) 2016; 49 CR5 Raikova, Prilutsky (CR24) 2001; 34 Scheys, Spaepen, Suetens, Jonkers (CR26) 2008; 28 Abler, Berger, Terrier, Becce, Farron, Buchler (CR1) 2018; 27 Wu (CR32) 2005; 38 Arias-Martorell, Potau, Bello-Hellegouarch, Pérez-Pérez (CR3) 2014; 154 Von Schroeder (CR31) 2001; 383 Polguj, Majos, Waszczykowski, Fabis, Stefanczyk, Podgorski, Topol (CR23) 2016; 75 Victor, Van Doninck, Labey, Innocenti, Parizel, Bellemans (CR30) 2009; 16 Scalise, Codsi, Bryan, Brems, Iannotti (CR25) 2008; 90 Fedorov (CR11) 2016; 4 Vallabh, Zhang, Fernandez, Dimitroulis, Ackland (CR29) 2019 Casier, Van Den Broecke, Van Houcke, Audenaert, De Wilde, Van Tongel (CR7) 2018; 27 Delude (CR10) 2007; 16 Frankle, Teramoto, Luo, Levy, Pupello (CR12) 2009; 18 A Fedorov (1533_CR11) 2016; 4 M Polguj (1533_CR23) 2016; 75 WS Burton (1533_CR6) 2019; 22 K Plessers (1533_CR22) 2018; 27 I Sintini (1533_CR27) 2018; 36 J Zhang (1533_CR34) 2017; 20 RR Raikova (1533_CR24) 2001; 34 1533_CR39 MD Hendel (1533_CR13) 2012; 94 HP Von Schroeder (1533_CR31) 2001; 383 MA Frankle (1533_CR12) 2009; 18 J Zhang (1533_CR35) 2016; 49 D Abler (1533_CR1) 2018; 27 SJ Casier (1533_CR7) 2018; 27 K Clark (1533_CR9) 2013; 26 L Scheys (1533_CR26) 2008; 28 J Pitocchi (1533_CR20) 2020; 23 J Zhang (1533_CR37) 2018; 21 1533_CR38 G Wu (1533_CR32) 2005; 38 1533_CR14 P Pellikaan (1533_CR19) 2014; 47 W Wu (1533_CR33) 2016; 49 Ml Pearl (1533_CR18) 2005; 14 R Vallabh (1533_CR29) 2019 EFM KraniotiBastir (1533_CR16) 2009; 189 DC Ackland (1533_CR2) 2012; 45 1533_CR5 JC Levy (1533_CR17) 2014; 23 J Victor (1533_CR30) 2009; 16 JS Bahl (1533_CR4) 2019; 85 BL Kaptein (1533_CR15) 2004; 37 JA Delude (1533_CR10) 2007; 16 J Arias-Martorell (1533_CR3) 2014; 154 R Tibshirani (1533_CR28) 1996; 58 K Zhang (1533_CR36) 2016; 21 M Chatterjee (1533_CR8) 2017; 5 J Pitocchi (1533_CR21) 2021; 30 JJ Scalise (1533_CR25) 2008; 90 |
References_xml | – volume: 23 start-page: 1563 year: 2014 end-page: 1567 ident: CR17 article-title: Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2014.01.051 – volume: 27 start-page: 160 year: 2018 end-page: 166 ident: CR22 article-title: Virtual reconstruction of glenoid bone defects using a statistical shape model publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2017.07.026 – volume: 21 start-page: 498 year: 2018 end-page: 502 ident: CR37 article-title: Point-cloud registration using adaptive radial basis functions publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2018.1484914 – volume: 75 start-page: 87 year: 2016 end-page: 92 ident: CR23 article-title: A computed tomography study on the correlation between the morphometry of the suprascapular notch and anthropometric measurements of the scapula publication-title: Folia Morphol doi: 10.5603/Fm.A2015.0072 – volume: 27 start-page: 1800 year: 2018 end-page: 1808 ident: CR1 article-title: A statistical shape model to predict the premorbid glenoid cavity publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2018.04.023 – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: CR9 article-title: The cancer imaging archive (Tcia): maintaining and operating a public information repository publication-title: J Dig Imag doi: 10.1007/S10278-013-9622-7 – volume: 90 start-page: 2438 year: 2008 end-page: 2445 ident: CR25 article-title: The influence of three-dimensional computed tomography images of the shoulder in preoperative planning for total shoulder arthroplasty publication-title: J Bone Joint Surg Am doi: 10.2106/Jbjs.G.01341 – ident: CR39 – ident: CR14 – volume: 5 start-page: 4454 year: 2017 end-page: 4459 ident: CR8 article-title: Humeral morphometrics: a study in eastern Indian population publication-title: Int J Anat Res doi: 10.16965/Ijar.2017.368 – year: 2019 ident: CR29 article-title: The morphology of the human mandible: a computational modelling study publication-title: Biomech Model Mechanobiol doi: 10.1007/S10237-019-01133-5 – volume: 16 start-page: 358 year: 2009 end-page: 365 ident: CR30 article-title: How precise can bony landmarks be determined on a ct scan of the knee? publication-title: Knee doi: 10.1016/J.Knee.2009.01.001 – volume: 45 start-page: 1463 year: 2012 end-page: 1471 ident: CR2 article-title: Sensitivity of model predictions of muscle function to changes in moment arms and muscle–tendon properties: a monte-carlo analysis publication-title: J Biomech doi: 10.1016/J.Jbiomech.2012.02.023 – volume: 4 start-page: E2057 year: 2016 ident: CR11 article-title: Dicom for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured pet/ct analysis results in head and neck cancer research publication-title: PeerJ doi: 10.7717/Peerj.2057 – volume: 38 start-page: 981 year: 2005 end-page: 992 ident: CR32 article-title: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-part Ii: shoulder publication-title: Elbow Wrist Hand J Biomech doi: 10.1016/J.Jbiomech.2004.05.042 – volume: 27 start-page: 2224 year: 2018 end-page: 2231 ident: CR7 article-title: Morphologic variations of the scapula in 3-dimensions: a statistical shape model approach publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2018.06.001 – volume: 22 start-page: 341 year: 2019 end-page: 351 ident: CR6 article-title: Assessment of scapular morphology and bone quality with statistical models publication-title: Comp Method Biomech Biomed Eng doi: 10.1080/10255842.2018.1556260 – volume: 21 start-page: 58 year: 2016 end-page: 63 ident: CR36 article-title: Estimation of stature and sex from scapular measurements by three-dimensional volume-rendering technique using in chinese publication-title: Leg Med doi: 10.1016/J.Legalmed.2016.06.004 – volume: 383 start-page: 131 year: 2001 ident: CR31 article-title: Osseous anatomy of the scapula publication-title: Clin Orthopaed Relat Res doi: 10.1097/00003086-200102000-00015 – volume: 49 start-page: 3626 year: 2016 end-page: 3634 ident: CR33 article-title: Subject-specific musculoskeletal modeling in the evaluation of shoulder muscle and joint function publication-title: J Biomech doi: 10.1016/J.Jbiomech.2016.09.025 – volume: 154 start-page: 459 year: 2014 end-page: 465 ident: CR3 article-title: Brief communication: developmental versus functional three-dimensional geometric morphometric-based modularity of the human proximal humerus publication-title: Am J Phys Anthrop doi: 10.1002/Ajpa.22520 – volume: 34 start-page: 1243 year: 2001 end-page: 1255 ident: CR24 article-title: Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses publication-title: J Biomech doi: 10.1016/S0021-9290(01)00097-5 – volume: 189 start-page: E111 issue: 111 year: 2009 end-page: 118 ident: CR16 article-title: A geometric-morphometric study of the cretan humerus for sex identification publication-title: Forensic Sci Int doi: 10.1016/J.Forsciint.2009.04.013 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR28 article-title: Regression shrinkage and selection via the lasso publication-title: J Roy Stat Soc Ser B doi: 10.1111/J.2517-6161.1996.Tb02080.X – volume: 37 start-page: 263 year: 2004 end-page: 273 ident: CR15 article-title: Estimating muscle attachment contours by transforming geometrical bone models publication-title: J Biomech doi: 10.1016/J.Jbiomech.2003.08.005 – ident: CR38 – volume: 94 start-page: 2167 year: 2012 end-page: 2175 ident: CR13 article-title: Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial publication-title: J Bone Joint Surg Am doi: 10.2106/Jbjs.K.01209 – volume: 47 start-page: 1144 year: 2014 end-page: 1150 ident: CR19 article-title: Evaluation of a morphing based method to estimate muscle attachment sites of the lower extremity publication-title: J Biomech doi: 10.1016/J.Jbiomech.2013.12.010 – volume: 28 start-page: 640 year: 2008 end-page: 648 ident: CR26 article-title: Calculated moment-arm and muscle-tendon lengths during gait differ substantially using Mr based versus rescaled generic lower-limb musculoskeletal models publication-title: Gait Posture doi: 10.1016/J.Gaitpost.2008.04.010 – volume: 14 start-page: 99s year: 2005 end-page: 104s ident: CR18 article-title: Proximal humeral anatomy in shoulder arthroplasty: implications for prosthetic design and surgical technique publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2004.09.025 – volume: 23 start-page: 642 year: 2020 end-page: 648 ident: CR20 article-title: Integration of cortical thickness data in a statistical shape model of the scapula publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2020.1757082 – volume: 85 start-page: 164 year: 2019 end-page: 172 ident: CR4 article-title: Statistical shape modelling versus linear scaling: effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis publication-title: J Biomech doi: 10.1016/J.Jbiomech.2019.01.031 – volume: 30 start-page: 561 year: 2021 end-page: 571 ident: CR21 article-title: Automated muscle elongation measurement during reverse shoulder arthroplasty planning publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2020.07.007 – ident: CR5 – volume: 20 start-page: 566 year: 2017 end-page: 576 ident: CR34 article-title: Accuracy of femur reconstruction from sparse geometric data using a statistical shape model publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2016.1263301 – volume: 36 start-page: 3043 year: 2018 end-page: 3052 ident: CR27 article-title: Investigating gender and ethnicity differences in proximal humeral morphology using a statistical shape model publication-title: J Orthop Res doi: 10.1002/Jor.24070 – volume: 49 start-page: 3875 year: 2016 end-page: 3881 ident: CR35 article-title: Lower limb estimation from sparse landmarks using an articulated shape model publication-title: J Biomech doi: 10.1016/J.Jbiomech.2016.10.021 – volume: 16 start-page: 477 year: 2007 end-page: 483 ident: CR10 article-title: An anthropometric study of the bilateral anatomy of the humerus publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2006.09.016 – volume: 18 start-page: 874 year: 2009 end-page: 885 ident: CR12 article-title: Glenoid morphology in reverse shoulder arthroplasty: classification and surgical implications publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2009.02.013 – volume: 21 start-page: 498 year: 2018 ident: 1533_CR37 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2018.1484914 – volume: 23 start-page: 1563 year: 2014 ident: 1533_CR17 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2014.01.051 – volume: 75 start-page: 87 year: 2016 ident: 1533_CR23 publication-title: Folia Morphol doi: 10.5603/Fm.A2015.0072 – volume: 5 start-page: 4454 year: 2017 ident: 1533_CR8 publication-title: Int J Anat Res doi: 10.16965/Ijar.2017.368 – ident: 1533_CR38 doi: 10.1007/978-3-319-12057-7_21 – volume: 26 start-page: 1045 year: 2013 ident: 1533_CR9 publication-title: J Dig Imag doi: 10.1007/S10278-013-9622-7 – volume: 27 start-page: 2224 year: 2018 ident: 1533_CR7 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2018.06.001 – volume: 23 start-page: 642 year: 2020 ident: 1533_CR20 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2020.1757082 – volume: 37 start-page: 263 year: 2004 ident: 1533_CR15 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2003.08.005 – volume: 30 start-page: 561 year: 2021 ident: 1533_CR21 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2020.07.007 – volume: 383 start-page: 131 year: 2001 ident: 1533_CR31 publication-title: Clin Orthopaed Relat Res doi: 10.1097/00003086-200102000-00015 – volume: 47 start-page: 1144 year: 2014 ident: 1533_CR19 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2013.12.010 – volume: 34 start-page: 1243 year: 2001 ident: 1533_CR24 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00097-5 – ident: 1533_CR14 doi: 10.1007/978-1-4757-1904-8_7 – volume: 28 start-page: 640 year: 2008 ident: 1533_CR26 publication-title: Gait Posture doi: 10.1016/J.Gaitpost.2008.04.010 – volume: 36 start-page: 3043 year: 2018 ident: 1533_CR27 publication-title: J Orthop Res doi: 10.1002/Jor.24070 – volume: 18 start-page: 874 year: 2009 ident: 1533_CR12 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2009.02.013 – volume: 49 start-page: 3626 year: 2016 ident: 1533_CR33 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2016.09.025 – volume: 45 start-page: 1463 year: 2012 ident: 1533_CR2 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2012.02.023 – volume: 189 start-page: E111 issue: 111 year: 2009 ident: 1533_CR16 publication-title: Forensic Sci Int doi: 10.1016/J.Forsciint.2009.04.013 – year: 2019 ident: 1533_CR29 publication-title: Biomech Model Mechanobiol doi: 10.1007/S10237-019-01133-5 – volume: 94 start-page: 2167 year: 2012 ident: 1533_CR13 publication-title: J Bone Joint Surg Am doi: 10.2106/Jbjs.K.01209 – volume: 16 start-page: 358 year: 2009 ident: 1533_CR30 publication-title: Knee doi: 10.1016/J.Knee.2009.01.001 – volume: 90 start-page: 2438 year: 2008 ident: 1533_CR25 publication-title: J Bone Joint Surg Am doi: 10.2106/Jbjs.G.01341 – ident: 1533_CR39 doi: 10.7937/K9/TCIA.2015.K0F5CGLI – volume: 22 start-page: 341 year: 2019 ident: 1533_CR6 publication-title: Comp Method Biomech Biomed Eng doi: 10.1080/10255842.2018.1556260 – volume: 49 start-page: 3875 year: 2016 ident: 1533_CR35 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2016.10.021 – volume: 27 start-page: 160 year: 2018 ident: 1533_CR22 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2017.07.026 – volume: 20 start-page: 566 year: 2017 ident: 1533_CR34 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2016.1263301 – ident: 1533_CR5 doi: 10.1117/12.57955 – volume: 27 start-page: 1800 year: 2018 ident: 1533_CR1 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2018.04.023 – volume: 21 start-page: 58 year: 2016 ident: 1533_CR36 publication-title: Leg Med doi: 10.1016/J.Legalmed.2016.06.004 – volume: 16 start-page: 477 year: 2007 ident: 1533_CR10 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2006.09.016 – volume: 154 start-page: 459 year: 2014 ident: 1533_CR3 publication-title: Am J Phys Anthrop doi: 10.1002/Ajpa.22520 – volume: 38 start-page: 981 year: 2005 ident: 1533_CR32 publication-title: Elbow Wrist Hand J Biomech doi: 10.1016/J.Jbiomech.2004.05.042 – volume: 14 start-page: 99s year: 2005 ident: 1533_CR18 publication-title: J Shoulder Elbow Surg doi: 10.1016/J.Jse.2004.09.025 – volume: 58 start-page: 267 year: 1996 ident: 1533_CR28 publication-title: J Roy Stat Soc Ser B doi: 10.1111/J.2517-6161.1996.Tb02080.X – volume: 85 start-page: 164 year: 2019 ident: 1533_CR4 publication-title: J Biomech doi: 10.1016/J.Jbiomech.2019.01.031 – volume: 4 start-page: E2057 year: 2016 ident: 1533_CR11 publication-title: PeerJ doi: 10.7717/Peerj.2057 |
SSID | ssj0020383 |
Score | 2.360757 |
Snippet | Evaluation of the bony anatomy of the glenohumeral joint is frequently required for surgical planning and subject-specific computational modeling and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 249 |
SubjectTerms | Age Algorithms Biological and Medical Physics Biomechanical Phenomena Biomedical Engineering and Bioengineering Biophysics Bones Computer applications Datasets Engineering Ethnicity Females Geometry Humerus Humerus - anatomy & histology Humerus - diagnostic imaging Image reconstruction Joints (anatomy) Mathematical models Medical imaging Models, Anatomic Models, Statistical Original Paper Prediction models Registration Scapula - anatomy & histology Shoulder Joint - anatomy & histology Shoulder Joint - diagnostic imaging Shoulder Joint - surgery Statistical analysis Theoretical and Applied Mechanics Three dimensional models |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA86EXwRv61OqeCbBrvmq3kSFecQ9MnB3kqapU6RdrLtwf_eXJq2yHDPubbhrsnd5S6_H0KXyiRSqUhhSnQECYrAkjCKbX7LSK7GUe54yF5e-WBIn0ds5A_cZr6tst4T3UY9LjWckd_EPKaQPMTkdvqNgTUKqqueQmMdbQB0GbR0iVGbcEUVDCeE8Bg4tf2lGX91LiYCQ4NCBCEP5n8d01K0uVQpdQ6ov4O2feQY3lWm3kVrpthDmxWX5M8-un-y_qOcLNwhU_hZfhTz0GW7DUJsCD3u7yFcIXLozFZsNlFTEzo2HDt0gIb9x7eHAfYECVgTweZYJRkVMcniKDcC6nkskz0tDcsNNVwa650iLZnKeS6kNAAqzrnOEisHxHyaHKJOURbmGIXMeiUrR5SNuGyOJzNhmKDahmeaKjnuBahXayfVHj0cSCy-0hb3GDSaWo2mTqMpD9BV88y0ws5YKd2tlZ76dTRLW6sH6KIZtisAyhqqMOUCZCJIEklCA3RUGav5HAHAfAYj17X12pf_P5eT1XM5RVsx3IJwzdtd1LF2NGc2Npln5-4H_AVXOduS priority: 102 providerName: ProQuest |
Title | Glenohumeral joint reconstruction using statistical shape modeling |
URI | https://link.springer.com/article/10.1007/s10237-021-01533-6 https://www.ncbi.nlm.nih.gov/pubmed/34837584 https://www.proquest.com/docview/2624601023 https://www.proquest.com/docview/2604013384 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-ahEH3MNZ27dJlwYW-dQLHkizrMRn5oGVhlAayJyMr8roynELSh_33vZM_0pFtsBfrQWfZ3Em-O9_d7wAujUu0MaFhgtuQHBTFNJeCoX8reW5WYe77kH2Zx7OFuF7KZVUUtqmz3euQpP9Svyh2i7hilFIQkpHC4hZ0JPnuuIsX0bBxs8ISfJMMd0adtKtSmT-v8bs62rMx9-KjXu1M3sKbyl4MhqWAj-DAFcfwquwg-esYXr_AEzyB0RR1yPr-yf9oCh7WP4pt4D3eBiU2oDz37wGVEXmEZiTb3JtHF_iOODj1DhaT8d3nGauaJDDLldwyk2RCRTyLwtwpiunJTA-sdjJ3wsXaoYYKrZYmj3OltSNg8Ti2WYJ01JzP8lNoF-vCvYdAomZCOm7Q6kI_T2fKSSUsmmhWGL0adGFQ8yq1FYI4NbL4me6wj4m_KfI39fxN4y5cNfc8lvgZ_6Tu1SJIq7O0SaM4EuQ2RrwLF800ngIKbZjCrZ-IJiRHkSeiC2el6JrHcQLNlzTzqZblbvG_v8v5_5F_gMOIKiN8QncP2ihX9xHtlW3Wh5ZaKrwmk2kfOsPJaDSncfrtZozjaDz_etv3W_gZCeTjgw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEKKXqlAeSykEqZzAIutHEh9Q1QLL8jyBxC04XgdaVcmiXVTxp_obmXEeqwrBjbMnjjUe2_N5PPMBfDMu0caEhklhQwIoMdNCSYb4VoncDMLc85BdXEb9a3l6o26m4F-TC0PPKps90W_Ug9LSHfkej7gk8MDF9-EDI9Yoiq42FBqVWZy5p78I2Ub7J4c4v9uc946uDvqsZhVgVsRqzEySyZiLjIe5iykIpjLdtdqp3EkXaYdbemi1MnmUx1o7qsQdRTZLUI7Y7KzAfqdhVgqhaUUlveMW4IVV2U-CDIw4vOsknTpVj4uY0YOIkFwsFv1_EL7wbl9EZv2B1_sEH2tPNfhRmdYCTLliEeYq7sqnz_DzGM-r8v7RX2oFv8tfxTjw6LqtSBvQm_q7gFKWfDVoFBvdm6ELPPsONi3B9buobhlmirJwqxAoPAVRThj08BBT6ix2KpYW3UErjR50O9BttJPaulo5kWb8SSd1lkmjKWo09RpNow7stN8Mq1odb0qvN0pP63U7SidW1oGtthlXHIVRTOHKR5IJCZSKRHZgpZqs9neCCvQratltZm_S-etjWXt7LJsw37-6OE_PTy7PvsAHThkY_uH4OszgnLqv6BeNsw1vjAHcvrf1PwMIwRep |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAQHBOM1nkXiBtG6JmmX43iM8Zo4MGm3Ks1SBkLtpG0H_j1x2nVDAyTOcdPKTmt_tf0Z4EzqupDSlYRR5SJACYignBGDbzmNZc-N7Ryyp7bf6rD7Lu_OdPHbavdJSjLraUCWpmRUHfTi6kzjm0cDguUFLgYsxF-EJfM5ruG57niNAnK5GREnBvEEp2rnbTM_7_HdNc3Fm3O5UuuCmhuwnseOTiMz9iYs6KQMy9k0yc8yrM1wC27B5a3xJ2l_bH86Oe_pWzJyLPotGGMdrHl_dbClyLI1G7FhXw60Y6fjmKVt6DRvXq5aJB-YQBQN-IjIesQCj0aeG-sA83s8EjUlNI81077Qxlu5SnAZ-3EghEaScd9XUd3I4aA-RXeglKSJ3gOHGy9l5Kg0EZjBfCIKNA-YMuGaYlL0ahWoTXQVqpxNHIdafIRTHmTUb2j0G1r9hn4FzotrBhmXxp_ShxMThPl7NQw932MIIT1agdNi2bwRmOaQiU7HKOMiaKR1VoHdzHTF7SgS6HNcuZjYcrr578-y_z_xE1h5vm6Gj3fthwNY9bBhwtZ5H0LJmFgfmTBmFB3bk_oFVCrkOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glenohumeral+joint+reconstruction+using+statistical+shape+modeling&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Huang%2C+Yichen&rft.au=Robinson%2C+Dale+L&rft.au=Pitocchi%2C+Jonathan&rft.au=Lee%2C+Peter+Vee+Sin&rft.date=2022-02-01&rft.issn=1617-7940&rft.eissn=1617-7940&rft.volume=21&rft.issue=1&rft.spage=249&rft_id=info:doi/10.1007%2Fs10237-021-01533-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |