Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo

Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plas...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 350; pp. 298 - 307
Main Authors Zhou, Jing-e, Sun, Lei, Jia, Yujie, Wang, Zhehao, Luo, Tengshuo, Tan, Jingwen, Fang, Xiaoyan, Zhu, Hongjia, Wang, Jing, Yu, Lei, Yan, Zhiqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T. [Display omitted] •New technology is required for CAR-T cells to avoid its complex preparation process and control CRS.•The LNPs modified by CD3 antibody transfected T cells and produced CAR-T cells in vivo.•The CAR-T cells produced by LNPs showed an anti-tumor effect and reduced the incidence of CRS.
AbstractList Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T.
Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T. [Display omitted] •New technology is required for CAR-T cells to avoid its complex preparation process and control CRS.•The LNPs modified by CD3 antibody transfected T cells and produced CAR-T cells in vivo.•The CAR-T cells produced by LNPs showed an anti-tumor effect and reduced the incidence of CRS.
Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T.Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T.
Author Zhou, Jing-e
Wang, Zhehao
Tan, Jingwen
Fang, Xiaoyan
Yan, Zhiqiang
Luo, Tengshuo
Zhu, Hongjia
Sun, Lei
Jia, Yujie
Wang, Jing
Yu, Lei
Author_xml – sequence: 1
  givenname: Jing-e
  surname: Zhou
  fullname: Zhou, Jing-e
– sequence: 2
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
– sequence: 3
  givenname: Yujie
  surname: Jia
  fullname: Jia, Yujie
– sequence: 4
  givenname: Zhehao
  surname: Wang
  fullname: Wang, Zhehao
– sequence: 5
  givenname: Tengshuo
  surname: Luo
  fullname: Luo, Tengshuo
– sequence: 6
  givenname: Jingwen
  surname: Tan
  fullname: Tan, Jingwen
– sequence: 7
  givenname: Xiaoyan
  surname: Fang
  fullname: Fang, Xiaoyan
– sequence: 8
  givenname: Hongjia
  surname: Zhu
  fullname: Zhu, Hongjia
– sequence: 9
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 10
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  email: yulei@nbic.ecnu.edu.cn
– sequence: 11
  givenname: Zhiqiang
  surname: Yan
  fullname: Yan, Zhiqiang
  email: zqyan@sat.ecnu.edu.cn
BookMark eNqNkU2L2zAQhkXZQrNpf0JBx17sSpZlS_RQytIvCPSyPQtZGncncSRXUrL031che-plO5eB4X2GYZ5bchNiAELectZyxof3-3bvYkiwtB3rupaplgnxgmy4GkXTay1vyKbmVCMGqV-R25z3jDEp-nFDph2u6GmwIa42FXQLZLqm6E8OqHvAIyR01IaCvyDQBA7WEhO9pw6WJdNHLA8UQ4G0wOmAoRnoIUR38PEx1Dk94zm-Ji9nu2R489S35OeXz_d335rdj6_f7z7tGidGWRqr2CQnPwirrLNyGvQIXDFuJ6n90Hej6rRyDHiv7eR7q7me-5nXEp57NosteXfdW8__fYJczBHz5UwbIJ6y6UauRCc5G_8jyoaRj30FtuTDNepSzDnBbBwWWzCGkiwuhjNzkWD25kmCuUgwTJkqodLyH3pNeLTpz7PcxysH9WFnhGSyQwgOPFYHxfiIz2z4C4PPp7s
CitedBy_id crossref_primary_10_1186_s12967_024_06052_3
crossref_primary_10_3389_fphar_2024_1466337
crossref_primary_10_1002_adhm_202301062
crossref_primary_10_3389_fbioe_2023_1211687
crossref_primary_10_1039_D3NR05768B
crossref_primary_10_1016_j_copbio_2024_103179
crossref_primary_10_1038_s41571_023_00811_9
crossref_primary_10_1016_j_ebiom_2024_105266
crossref_primary_10_3390_ijms242015230
crossref_primary_10_1002_biot_202300123
crossref_primary_10_1002_cbf_3955
crossref_primary_10_52601_bpr_2023_230022
crossref_primary_10_1002_wnan_2005
crossref_primary_10_1016_j_biopha_2024_117229
crossref_primary_10_1186_s12951_024_02630_1
crossref_primary_10_1039_D4QM00479E
crossref_primary_10_1186_s13045_024_01574_1
crossref_primary_10_3390_cimb46050288
crossref_primary_10_1039_D4NR05371K
crossref_primary_10_1002_smll_202409635
crossref_primary_10_1016_j_tcb_2024_11_010
crossref_primary_10_1016_j_tips_2024_03_004
crossref_primary_10_1186_s13045_024_01625_7
crossref_primary_10_1002_smll_202304378
crossref_primary_10_1002_cam4_70726
crossref_primary_10_1016_S2352_3026_24_00273_4
crossref_primary_10_1016_j_apsb_2024_05_010
crossref_primary_10_4274_tjo_galenos_2024_77783
crossref_primary_10_1016_j_blre_2024_101241
crossref_primary_10_1016_j_ymthe_2024_09_019
crossref_primary_10_1038_s41392_024_02002_z
crossref_primary_10_1080_17435889_2024_2416377
crossref_primary_10_1360_TB_2023_0802
crossref_primary_10_1089_hum_2024_106
crossref_primary_10_3390_medsci12030043
crossref_primary_10_34133_bmr_0015
crossref_primary_10_1002_1878_0261_13621
crossref_primary_10_1002_advs_202303215
crossref_primary_10_1002_advs_202411162
crossref_primary_10_1016_j_ijbiomac_2023_125185
crossref_primary_10_1128_msphere_00775_24
crossref_primary_10_1016_j_phrs_2024_107352
crossref_primary_10_1007_s11864_023_01049_4
crossref_primary_10_1080_14656566_2024_2340738
crossref_primary_10_1016_j_jconrel_2024_10_014
crossref_primary_10_1002_smtd_202300880
crossref_primary_10_1016_j_ijpharm_2024_124779
crossref_primary_10_1016_j_nantod_2024_102517
crossref_primary_10_1021_acs_nanolett_4c01458
crossref_primary_10_3390_vaccines12020186
crossref_primary_10_1039_D3TB02279J
crossref_primary_10_1016_j_nantod_2024_102518
crossref_primary_10_1002_bmm2_12039
crossref_primary_10_1016_j_addr_2024_115448
crossref_primary_10_1002_mog2_67
crossref_primary_10_1016_j_tibtech_2024_07_017
crossref_primary_10_1002_advs_202402329
crossref_primary_10_1016_j_jconrel_2024_09_037
crossref_primary_10_1038_s44286_024_00116_3
crossref_primary_10_1002_adma_202303261
crossref_primary_10_1111_imm_13861
Cites_doi 10.1039/c4nr01110d
10.1038/mto.2016.15
10.1056/NEJMoa1407222
10.1038/s41565-019-0591-y
10.1038/nrclinonc.2018.20
10.1038/nnano.2017.57
10.1038/s41467-020-19486-2
10.1182/blood-2015-11-679134
10.1093/annonc/mdu025
10.1016/j.bbmt.2019.08.015
10.1016/j.jconrel.2006.08.009
10.1172/JCI85309
10.1038/nm.4441
10.1038/nrclinonc.2017.148
10.1007/s00210-013-0837-4
10.1016/j.jconrel.2006.04.014
10.1172/JCI86721
10.1038/am.2017.185
10.1021/acs.nanolett.1c02503
10.1056/NEJMoa1716153
10.1038/s41467-018-05322-1
10.1038/sj.gt.3300821
10.1186/s12943-020-01290-7
10.1158/2159-8290.CD-NB2017-155
10.1016/j.omtm.2016.12.006
10.1002/anie.201203263
10.1634/theoncologist.2018-0028
10.1038/srep02184
10.1038/s41408-021-00459-7
10.1093/annonc/mdr300
10.1038/nbt.1602
10.1038/s41565-020-0669-6
10.1016/j.colsurfb.2004.10.007
10.1016/j.jconrel.2004.04.024
10.1021/acsnano.8b07858
10.1038/nbt0817-691
10.1200/JCO.2015.64.5929
10.1016/j.ymthe.2016.10.020
10.1146/annurev-bioeng-070620-033348
10.1002/adma.202007421
10.1039/C9NR09347H
10.2147/IJN.S27471
10.1016/j.bbamem.2005.02.001
10.1186/s40164-020-00166-2
10.1172/JCI142030
10.1016/0005-2736(95)00219-7
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2022.08.033
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 307
ExternalDocumentID 10_1016_j_jconrel_2022_08_033
S0168365922005387
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c375t-a80b5bd63a8aca5b697e1801ab59d64278298c0e149abd4a919f4f11113d1d0f3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Tue Aug 05 11:19:45 EDT 2025
Thu Jul 10 18:52:26 EDT 2025
Tue Jul 01 04:10:08 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Fri Feb 23 02:41:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chimeric antigen receptor T cells
Cytokine release syndrome
IL-6 shRNA
CD3 antibody
Lipid nanoparticles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a80b5bd63a8aca5b697e1801ab59d64278298c0e149abd4a919f4f11113d1d0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2706717418
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2718325107
proquest_miscellaneous_2706717418
crossref_citationtrail_10_1016_j_jconrel_2022_08_033
crossref_primary_10_1016_j_jconrel_2022_08_033
elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_08_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of controlled release
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Marco, Davila, Wang, Bartido, Park, Curran, Chung, Stefanski, Borquez-Ojeda, Olszewska, Qu, Wasielewska, He, Fink, Shinglot, Youssif, Satter, Wang, Hosey, Quintanilla, Halton, Bernal, Bouhassira, Arcila, Gonen, Roboz, Maslak, Douer, Frattini, Sadelain, Brentjens (bb0045) 2014; 6
Sheridan (bb0015) 2017; 35
Mirska, Schirmer, Funari, Langner, Dobner, Brezesinski (bb0225) 2005; 40
Locke, Neelapu, Bartlett, Siddiqi, Chavez, Hosing, Ghobadi, Budde, Bot, Rossi, Jiang, Xue, Elias, Aycock, Wiezorek, Go (bb0075) 2017; 25
Le, Li, Yuan, Shord, Nie, Habtemariam, Przepiorka, Farrell, Pazdur (bb0080) 2018; 23
Kang, Tang, Zhang, Li, Xu, Qi, Tan, Lou, Yu, Sun, Wang, Dai, Chen, Lin, Wu, Yu (bb0085) 2020; 9
Parayath, Stephan (bb0105) 2021; 23
Jain, Bar, Kansagra, Chong, Hashmi, Neelapu, Byrne, Jacoby, Lazaryan, Jacobson, Ansell, Awan, Burns, Bachanova, Bollard, Carpenter, DiPersio, Hamadani, Heslop, Hill, Komanduri, Kovitz, Lazarus, Serrette, Mohty, Miklos, Nagler, Pavletic, Savani, Schuster, Kharfan-Dabaja, Perales, Lin (bb0090) 2019; 25
Kumar, Shou, Chan, Tay (bb0110) 2021; 33
Sterner, Sterner (bb0040) 2021; 11
Fraietta, Beckwith, Patel, Ruella, Zheng, Barrett, Lacey, Melenhorst, McGettigan, Cook, Zhang, Xu, Do, Hulitt, Kudchodkar, Cogdill, Gill, Porter, Woyach, Long, Johnson, Maddocks, Muthusamy, Levine, June, Byrd, Maus (bb0025) 2016; 127
Roselli, Faramand, Davila (bb0100) 2021; 131
Wang, Riviere (bb0055) 2016; 3
Smith, Stephan, Moffett, McKnight, Ji, Reiman, Bonagofski, Wohlfahrt, Pillai, Stephan (bb0120) 2017; 12
Brudno, Somerville, Shi, Rose, Halverson, Fowler, Gea-Banacloche, Pavletic, Hickstein, Lu, Feldman, Iwamoto, Kurlander, Maric, Goy, Hansen, Wilder, Blacklock-Schuver, Hakim, Rosenberg, Gress, Kochenderfer (bb0020) 2016; 34
Kulkarni, Witzigmann, Leung, Tam, Cullis (bb0150) 2019; 11
Neelapu, Tummala, Kebriaei, Wierda, Gutierrez, Locke, Komanduri, Lin, Jain, Daver, Westin, Gulbis, Loghin, de Groot, Adkins, Davis, Rezvani, Hwu, Shpall (bb0060) 2018; 15
Remaut, Sanders, Fayazpour, Demeester, De Smedt (bb0235) 2006; 115
Kebriaei, Singh, Huls, Figliola, Bassett, Olivares, Jena, Dawson, Kumaresan, Su, Maiti, Dai, Moriarity, Forget, Senyukov, Orozco, Liu, McCarty, Jackson, Moyes, Rondon, Qazilbash, Ciurea, Alousi, Nieto, Rezvani, Marin, Popat, Hosing, Shpall, Kantarjian, Keating, Wierda, Do, Largaespada, Lee, Hackett, Champlin, Cooper (bb0030) 2016; 126
Bonacina, Coe, Wang, Longhi, Baragetti, Moregola, Garlaschelli, Uboldi, Pellegatta, Grigore, Da Dalt, Annoni, Gregori, Xiao, Caruso, Mitro, Catapano, Marelli-Berg, Norata (bb0095) 2018; 9
Levine, Miskin, Wonnacott, Keir (bb0050) 2017; 4
(bb0005) 2018; 8
Semple, Akinc, Chen, Sandhu, Mui, Cho, Sah, Stebbing, Crosley, Yaworski, Hafez, Dorkin, Qin, Lam, Rajeev, Wong, Jeffs, Nechev, Eisenhardt, Jayaraman, Kazem, Maier, Srinivasulu, Weinstein, Chen, Alvarez, Barros, De, Klimuk, Borland, Kosovrasti, Cantley, Tam, Manoharan, Ciufolini, Tracy, de Fougerolles, MacLachlan, Cullis, Madden, Hope (bb0165) 2010; 28
Han, Wang, Han (bb0125) 2018; 4
Ambegia, Ansell, Cullis, Heyes, Palmer, MacLachlan (bb0155) 2005; 1669
Narayanan, Yen, Dou, Padmanabhan, Sudhaharan, Ahmed, Ying, Selvan (bb0140) 2013; 3
Zhang, Wang, Feng, Wang, Chen, Huang, Zheng, Jiang (bb0175) 2017; 9
Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros, Ansell, Du, Hope, Madden, Mui, Semple, Tam, Ciufolini, Witzigmann, Kulkarni, van der Meel, Cullis (bb0185) 2019; 14
Muthusamy Jayaraman, Mui, Tam, Chen, Du, Butler, Eltepu, Matsuda, Narayanannair, Rajeev, Hafez, Akinc, Maier, Tracy, Cullis, Madden, Manoharan, Michael (bb0230) 2012; 51
Billingsley, Hamilton, Mai, Patel, Swingle, Sheppard, June, Mitchell (bb0115) 2021; 22
Daniel, Friend, Robert, Debs (bb0220) 1996; 1278
Fasol, Frost, Buchert, Arends, Fiedler, Scharr, Scheuenpflug, Mross (bb0210) 2012; 23
Ballotti, Cheli, Bertolotto (bb0130) 2020; 19
Skandrani, Barras, Legrand, Gharbi, Boulahdour, Boukherroub (bb0170) 2014; 6
Buck, Grossen, Cullis, Huwyler, Witzigmann (bb0180) 2019; 13
Qiang Cheng, Daniel, Siegwart, Farbiak, Dilliard (bb0190) 2020; 15
Turtle, Hanafi, Berger, Gooley, Cherian, Hudecek, Sommermeyer, Melville, Pender, Budiarto, Robinson, Steevens, Chaney, Soma, Chen, Yeung, Wood, Li, Cao, Heimfeld, Jensen, Riddell, Maloney (bb0035) 2016; 126
Kogure, Moriguchi, Sasaki, Ueno, Futaki, Harashima (bb0145) 2004; 98
Brgles, Santak, Halassy, Forcic, Tomasic (bb0240) 2012; 7
Neelapu, Tummala, Kebriaei, Wierda, Locke, Lin, Jain, Daver, Gulbis, Adkins, Rezvani, Hwu, Shpall (bb0065) 2018; 15
Wheeler, Ossanlou, Cullis (bb0160) 1999; 6
Awada, Bondarenko, Bonneterre, Nowara, Ferrero, Bakshi, Wilke, Piccart (bb0205) 2014; 25
Adams, Gonzalez-Duarte, O’Riordan, Yang, Ueda, Kristen, Tournev, Schmidt, Coelho, Berk, Lin, Vita, Attarian, Plante-Bordeneuve, Mezei, Campistol, Buades, Brannagan, Kim, Oh, Parman, Sekijima, Hawkins, Solomon, Polydefkis, Dyck, Gandhi, Goyal, Chen, Strahs, Nochur, Sweetser, Garg, Vaishnaw, Gollob, Suhr (bb0200) 2018; 379
Fry, Shah, Orentas, Stetler-Stevenson, Yuan, Ramakrishna, Wolters, Martin, Delbrook, Yates, Shalabi, Fountaine, Shern, Majzner, Stroncek, Sabatino, Feng, Dimitrov, Zhang, Nguyen, Qin, Dropulic, Lee, Mackall (bb0010) 2018; 24
Maude, Frey, Shaw, Aplenc, Barrett, Bunin, Chew, Gonzalez, Zheng, Lacey, Mahnke, Melenhorst, Rheingold, Shen, Teachey, Levine, June, Porter, Grupp (bb0070) 2014; 371
Parayath, Stephan, Koehne, Nelson, Stephan (bb0135) 2020; 11
de Antonellis, Liguori, Falanga, Carotenuto, Ferrucci, Andolfo, Marinaro, Scognamiglio, Virgilio, De Rosa, Galeone, Galdiero, Zollo (bb0195) 2013; 386
Lv, Zhang, Wang, Cui, Yan (bb0215) 2006; 114
Neelapu (10.1016/j.jconrel.2022.08.033_bb0065) 2018; 15
Locke (10.1016/j.jconrel.2022.08.033_bb0075) 2017; 25
Jain (10.1016/j.jconrel.2022.08.033_bb0090) 2019; 25
Parayath (10.1016/j.jconrel.2022.08.033_bb0105) 2021; 23
Parayath (10.1016/j.jconrel.2022.08.033_bb0135) 2020; 11
Daniel (10.1016/j.jconrel.2022.08.033_bb0220) 1996; 1278
Turtle (10.1016/j.jconrel.2022.08.033_bb0035) 2016; 126
Skandrani (10.1016/j.jconrel.2022.08.033_bb0170) 2014; 6
Neelapu (10.1016/j.jconrel.2022.08.033_bb0060) 2018; 15
Billingsley (10.1016/j.jconrel.2022.08.033_bb0115) 2021; 22
Narayanan (10.1016/j.jconrel.2022.08.033_bb0140) 2013; 3
Marco (10.1016/j.jconrel.2022.08.033_bb0045) 2014; 6
Lv (10.1016/j.jconrel.2022.08.033_bb0215) 2006; 114
Kulkarni (10.1016/j.jconrel.2022.08.033_bb0150) 2019; 11
Smith (10.1016/j.jconrel.2022.08.033_bb0120) 2017; 12
Buck (10.1016/j.jconrel.2022.08.033_bb0180) 2019; 13
Kumar (10.1016/j.jconrel.2022.08.033_bb0110) 2021; 33
Maude (10.1016/j.jconrel.2022.08.033_bb0070) 2014; 371
Akinc (10.1016/j.jconrel.2022.08.033_bb0185) 2019; 14
Qiang Cheng (10.1016/j.jconrel.2022.08.033_bb0190) 2020; 15
Wang (10.1016/j.jconrel.2022.08.033_bb0055) 2016; 3
Sheridan (10.1016/j.jconrel.2022.08.033_bb0015) 2017; 35
Ambegia (10.1016/j.jconrel.2022.08.033_bb0155) 2005; 1669
Han (10.1016/j.jconrel.2022.08.033_bb0125) 2018; 4
Fry (10.1016/j.jconrel.2022.08.033_bb0010) 2018; 24
Sterner (10.1016/j.jconrel.2022.08.033_bb0040) 2021; 11
Kang (10.1016/j.jconrel.2022.08.033_bb0085) 2020; 9
Bonacina (10.1016/j.jconrel.2022.08.033_bb0095) 2018; 9
Roselli (10.1016/j.jconrel.2022.08.033_bb0100) 2021; 131
Adams (10.1016/j.jconrel.2022.08.033_bb0200) 2018; 379
(10.1016/j.jconrel.2022.08.033_bb0005) 2018; 8
Brgles (10.1016/j.jconrel.2022.08.033_bb0240) 2012; 7
Kebriaei (10.1016/j.jconrel.2022.08.033_bb0030) 2016; 126
Muthusamy Jayaraman (10.1016/j.jconrel.2022.08.033_bb0230) 2012; 51
Semple (10.1016/j.jconrel.2022.08.033_bb0165) 2010; 28
Zhang (10.1016/j.jconrel.2022.08.033_bb0175) 2017; 9
Wheeler (10.1016/j.jconrel.2022.08.033_bb0160) 1999; 6
Fasol (10.1016/j.jconrel.2022.08.033_bb0210) 2012; 23
Remaut (10.1016/j.jconrel.2022.08.033_bb0235) 2006; 115
Levine (10.1016/j.jconrel.2022.08.033_bb0050) 2017; 4
Fraietta (10.1016/j.jconrel.2022.08.033_bb0025) 2016; 127
Mirska (10.1016/j.jconrel.2022.08.033_bb0225) 2005; 40
de Antonellis (10.1016/j.jconrel.2022.08.033_bb0195) 2013; 386
Brudno (10.1016/j.jconrel.2022.08.033_bb0020) 2016; 34
Kogure (10.1016/j.jconrel.2022.08.033_bb0145) 2004; 98
Le (10.1016/j.jconrel.2022.08.033_bb0080) 2018; 23
Awada (10.1016/j.jconrel.2022.08.033_bb0205) 2014; 25
Ballotti (10.1016/j.jconrel.2022.08.033_bb0130) 2020; 19
References_xml – volume: 8
  start-page: 5
  year: 2018
  end-page: 6
  ident: bb0005
  publication-title: FDA approves second CAR T-cell therapy
– volume: 6
  year: 2014
  ident: bb0045
  article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
  publication-title: Cancer
– volume: 25
  start-page: 285
  year: 2017
  end-page: 295
  ident: bb0075
  article-title: Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma
  publication-title: Mol. Ther.
– volume: 9
  start-page: 3083
  year: 2018
  ident: bb0095
  article-title: Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation
  publication-title: Nat. Commun.
– volume: 13
  start-page: 3754
  year: 2019
  end-page: 3782
  ident: bb0180
  article-title: Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery
  publication-title: ACS Nano
– volume: 15
  start-page: 47
  year: 2018
  end-page: 62
  ident: bb0060
  article-title: Chimeric antigen receptor T-cell therapy - assessment and management of toxicities
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 12
  start-page: 813
  year: 2017
  end-page: 820
  ident: bb0120
  article-title: In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: e441
  year: 2017
  ident: bb0175
  article-title: Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy
  publication-title: NPG Asia Mater.
– volume: 127
  start-page: 1117
  year: 2016
  end-page: 1127
  ident: bb0025
  article-title: Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia
  publication-title: Blood
– volume: 126
  start-page: 2123
  year: 2016
  end-page: 2138
  ident: bb0035
  article-title: CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
  publication-title: J. Clin. Invest.
– volume: 386
  start-page: 287
  year: 2013
  end-page: 302
  ident: bb0195
  article-title: MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines
  publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol.
– volume: 23
  start-page: 943
  year: 2018
  end-page: 947
  ident: bb0080
  article-title: FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome
  publication-title: Oncologist
– volume: 3
  start-page: 16015
  year: 2016
  ident: bb0055
  article-title: Clinical manufacturing of CAR T cells: foundation of a promising therapy
  publication-title: Mol. Ther. Oncolytics
– volume: 34
  start-page: 1112
  year: 2016
  end-page: 1121
  ident: bb0020
  article-title: Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that Progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease
  publication-title: J. Clin. Oncol.
– volume: 35
  start-page: 691
  year: 2017
  end-page: 693
  ident: bb0015
  article-title: First approval in sight for Novartis’ CAR-T therapy after panel vote
  publication-title: Nat. Biotechnol.
– volume: 4
  start-page: 92
  year: 2017
  end-page: 101
  ident: bb0050
  article-title: Global manufacturing of CAR T cell therapy
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 11
  start-page: 21733
  year: 2019
  end-page: 21739
  ident: bb0150
  article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA
  publication-title: Nanoscale
– volume: 98
  start-page: 317
  year: 2004
  end-page: 323
  ident: bb0145
  article-title: Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method
  publication-title: J. Control. Release
– volume: 9
  start-page: 11
  year: 2020
  ident: bb0085
  article-title: Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes
  publication-title: Exp. Hematol. Oncol.
– volume: 22
  start-page: 533
  year: 2021
  end-page: 542
  ident: bb0115
  article-title: Orthogonal Design of Experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells
  publication-title: Nano Lett.
– volume: 6
  start-page: 7379
  year: 2014
  end-page: 7390
  ident: bb0170
  article-title: Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging
  publication-title: Nanoscale
– volume: 15
  start-page: 218
  year: 2018
  ident: bb0065
  article-title: Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 4
  start-page: 225
  year: 2018
  end-page: 243
  ident: bb0125
  article-title: Chimeric antigen receptor modified T-cells for cancer treatment
  publication-title: Chronic. Dis. Transl. Med.
– volume: 11
  start-page: 6080
  year: 2020
  ident: bb0135
  article-title: In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo
  publication-title: Nat. Commun.
– volume: 25
  start-page: 2305
  year: 2019
  end-page: 2321
  ident: bb0090
  article-title: Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy
  publication-title: Biol. Blood Marrow Transpl.
– volume: 1669
  start-page: 155
  year: 2005
  end-page: 163
  ident: bb0155
  article-title: Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression
  publication-title: Biochim. Biophys. Acta
– volume: 25
  start-page: 824
  year: 2014
  end-page: 831
  ident: bb0205
  article-title: C.T.s. group, a randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC)
  publication-title: Ann. Oncol.
– volume: 24
  start-page: 20
  year: 2018
  end-page: 28
  ident: bb0010
  article-title: CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
  publication-title: Nat. Med.
– volume: 33
  year: 2021
  ident: bb0110
  article-title: Materials for improving immune cell transfection
  publication-title: Adv. Mater.
– volume: 11
  start-page: 69
  year: 2021
  ident: bb0040
  article-title: CAR-T cell therapy: current limitations and potential strategies
  publication-title: Blood Cancer J.
– volume: 40
  start-page: 51
  year: 2005
  end-page: 59
  ident: bb0225
  article-title: Biophysical and biochemical properties of a binary lipid mixture for DNA transfection
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 371
  start-page: 1507
  year: 2014
  end-page: 1517
  ident: bb0070
  article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia
  publication-title: N. Engl. J. Med.
– volume: 23
  start-page: 385
  year: 2021
  end-page: 405
  ident: bb0105
  article-title: In situ programming of CAR T cells
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 115
  start-page: 335
  year: 2006
  end-page: 343
  ident: bb0235
  article-title: Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes
  publication-title: J. Control. Release
– volume: 7
  start-page: 393
  year: 2012
  end-page: 401
  ident: bb0240
  article-title: Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency
  publication-title: Int. J. Nanomedicine
– volume: 14
  start-page: 1084
  year: 2019
  end-page: 1087
  ident: bb0185
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 170
  year: 2020
  ident: bb0130
  article-title: The complex relationship between MITF and the immune system: a melanoma ImmunoTherapy (response) factor?
  publication-title: Mol. Cancer
– volume: 51
  start-page: 8529
  year: 2012
  ident: bb0230
  article-title: Hope, maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 2184
  year: 2013
  ident: bb0140
  article-title: Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots
  publication-title: Sci. Rep.
– volume: 1278
  start-page: 41
  year: 1996
  end-page: 50
  ident: bb0220
  article-title: Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes
  publication-title: Biochim. Biophys. Acta
– volume: 15
  start-page: 313
  year: 2020
  end-page: 320
  ident: bb0190
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
– volume: 126
  start-page: 3363
  year: 2016
  end-page: 3376
  ident: bb0030
  article-title: Phase I trials using sleeping beauty to generate CD19-specific CAR T cells
  publication-title: J. Clin. Invest.
– volume: 114
  start-page: 100
  year: 2006
  end-page: 109
  ident: bb0215
  article-title: Toxicity of cationic lipids and cationic polymers in gene delivery
  publication-title: J. Control. Release
– volume: 131
  year: 2021
  ident: bb0100
  article-title: Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: 172
  year: 2010
  end-page: 176
  ident: bb0165
  article-title: Rational design of cationic lipids for siRNA delivery
  publication-title: Nat. Biotechnol.
– volume: 379
  start-page: 11
  year: 2018
  end-page: 21
  ident: bb0200
  article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 271
  year: 1999
  end-page: 281
  ident: bb0160
  article-title: Stabilized plasmid-lipid particles: construction and characterization
  publication-title: Gene Ther.
– volume: 23
  start-page: 1030
  year: 2012
  end-page: 1036
  ident: bb0210
  article-title: Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis
  publication-title: Ann. Oncol.
– volume: 6
  start-page: 7379
  year: 2014
  ident: 10.1016/j.jconrel.2022.08.033_bb0170
  article-title: Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging
  publication-title: Nanoscale
  doi: 10.1039/c4nr01110d
– volume: 3
  start-page: 16015
  year: 2016
  ident: 10.1016/j.jconrel.2022.08.033_bb0055
  article-title: Clinical manufacturing of CAR T cells: foundation of a promising therapy
  publication-title: Mol. Ther. Oncolytics
  doi: 10.1038/mto.2016.15
– volume: 371
  start-page: 1507
  year: 2014
  ident: 10.1016/j.jconrel.2022.08.033_bb0070
  article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1407222
– volume: 14
  start-page: 1084
  year: 2019
  ident: 10.1016/j.jconrel.2022.08.033_bb0185
  article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0591-y
– volume: 15
  start-page: 218
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0065
  article-title: Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2018.20
– volume: 12
  start-page: 813
  year: 2017
  ident: 10.1016/j.jconrel.2022.08.033_bb0120
  article-title: In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.57
– volume: 11
  start-page: 6080
  year: 2020
  ident: 10.1016/j.jconrel.2022.08.033_bb0135
  article-title: In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19486-2
– volume: 127
  start-page: 1117
  year: 2016
  ident: 10.1016/j.jconrel.2022.08.033_bb0025
  article-title: Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia
  publication-title: Blood
  doi: 10.1182/blood-2015-11-679134
– volume: 25
  start-page: 824
  year: 2014
  ident: 10.1016/j.jconrel.2022.08.033_bb0205
  article-title: C.T.s. group, a randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC)
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu025
– volume: 25
  start-page: 2305
  year: 2019
  ident: 10.1016/j.jconrel.2022.08.033_bb0090
  article-title: Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy
  publication-title: Biol. Blood Marrow Transpl.
  doi: 10.1016/j.bbmt.2019.08.015
– volume: 115
  start-page: 335
  year: 2006
  ident: 10.1016/j.jconrel.2022.08.033_bb0235
  article-title: Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2006.08.009
– volume: 126
  start-page: 2123
  year: 2016
  ident: 10.1016/j.jconrel.2022.08.033_bb0035
  article-title: CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI85309
– volume: 24
  start-page: 20
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0010
  article-title: CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.4441
– volume: 15
  start-page: 47
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0060
  article-title: Chimeric antigen receptor T-cell therapy - assessment and management of toxicities
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2017.148
– volume: 386
  start-page: 287
  year: 2013
  ident: 10.1016/j.jconrel.2022.08.033_bb0195
  article-title: MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines
  publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol.
  doi: 10.1007/s00210-013-0837-4
– volume: 114
  start-page: 100
  year: 2006
  ident: 10.1016/j.jconrel.2022.08.033_bb0215
  article-title: Toxicity of cationic lipids and cationic polymers in gene delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2006.04.014
– volume: 126
  start-page: 3363
  year: 2016
  ident: 10.1016/j.jconrel.2022.08.033_bb0030
  article-title: Phase I trials using sleeping beauty to generate CD19-specific CAR T cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI86721
– volume: 9
  start-page: e441
  year: 2017
  ident: 10.1016/j.jconrel.2022.08.033_bb0175
  article-title: Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.185
– volume: 22
  start-page: 533
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.08.033_bb0115
  article-title: Orthogonal Design of Experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02503
– volume: 379
  start-page: 11
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0200
  article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1716153
– volume: 4
  start-page: 225
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0125
  article-title: Chimeric antigen receptor modified T-cells for cancer treatment
  publication-title: Chronic. Dis. Transl. Med.
– volume: 9
  start-page: 3083
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0095
  article-title: Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05322-1
– volume: 6
  start-page: 271
  year: 1999
  ident: 10.1016/j.jconrel.2022.08.033_bb0160
  article-title: Stabilized plasmid-lipid particles: construction and characterization
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3300821
– volume: 19
  start-page: 170
  year: 2020
  ident: 10.1016/j.jconrel.2022.08.033_bb0130
  article-title: The complex relationship between MITF and the immune system: a melanoma ImmunoTherapy (response) factor?
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-020-01290-7
– volume: 8
  start-page: 5
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0005
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-NB2017-155
– volume: 4
  start-page: 92
  year: 2017
  ident: 10.1016/j.jconrel.2022.08.033_bb0050
  article-title: Global manufacturing of CAR T cell therapy
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2016.12.006
– volume: 51
  start-page: 8529
  year: 2012
  ident: 10.1016/j.jconrel.2022.08.033_bb0230
  article-title: Hope, maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201203263
– volume: 23
  start-page: 943
  year: 2018
  ident: 10.1016/j.jconrel.2022.08.033_bb0080
  article-title: FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2018-0028
– volume: 3
  start-page: 2184
  year: 2013
  ident: 10.1016/j.jconrel.2022.08.033_bb0140
  article-title: Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots
  publication-title: Sci. Rep.
  doi: 10.1038/srep02184
– volume: 11
  start-page: 69
  year: 2021
  ident: 10.1016/j.jconrel.2022.08.033_bb0040
  article-title: CAR-T cell therapy: current limitations and potential strategies
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-021-00459-7
– volume: 6
  year: 2014
  ident: 10.1016/j.jconrel.2022.08.033_bb0045
  article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
  publication-title: Cancer
– volume: 23
  start-page: 1030
  year: 2012
  ident: 10.1016/j.jconrel.2022.08.033_bb0210
  article-title: Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdr300
– volume: 28
  start-page: 172
  year: 2010
  ident: 10.1016/j.jconrel.2022.08.033_bb0165
  article-title: Rational design of cationic lipids for siRNA delivery
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1602
– volume: 15
  start-page: 313
  year: 2020
  ident: 10.1016/j.jconrel.2022.08.033_bb0190
  article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0669-6
– volume: 40
  start-page: 51
  year: 2005
  ident: 10.1016/j.jconrel.2022.08.033_bb0225
  article-title: Biophysical and biochemical properties of a binary lipid mixture for DNA transfection
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2004.10.007
– volume: 98
  start-page: 317
  year: 2004
  ident: 10.1016/j.jconrel.2022.08.033_bb0145
  article-title: Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2004.04.024
– volume: 13
  start-page: 3754
  year: 2019
  ident: 10.1016/j.jconrel.2022.08.033_bb0180
  article-title: Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07858
– volume: 35
  start-page: 691
  year: 2017
  ident: 10.1016/j.jconrel.2022.08.033_bb0015
  article-title: First approval in sight for Novartis’ CAR-T therapy after panel vote
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0817-691
– volume: 34
  start-page: 1112
  year: 2016
  ident: 10.1016/j.jconrel.2022.08.033_bb0020
  article-title: Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that Progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.64.5929
– volume: 25
  start-page: 285
  year: 2017
  ident: 10.1016/j.jconrel.2022.08.033_bb0075
  article-title: Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2016.10.020
– volume: 23
  start-page: 385
  year: 2021
  ident: 10.1016/j.jconrel.2022.08.033_bb0105
  article-title: In situ programming of CAR T cells
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-070620-033348
– volume: 33
  year: 2021
  ident: 10.1016/j.jconrel.2022.08.033_bb0110
  article-title: Materials for improving immune cell transfection
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007421
– volume: 11
  start-page: 21733
  year: 2019
  ident: 10.1016/j.jconrel.2022.08.033_bb0150
  article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA
  publication-title: Nanoscale
  doi: 10.1039/C9NR09347H
– volume: 7
  start-page: 393
  year: 2012
  ident: 10.1016/j.jconrel.2022.08.033_bb0240
  article-title: Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S27471
– volume: 1669
  start-page: 155
  year: 2005
  ident: 10.1016/j.jconrel.2022.08.033_bb0155
  article-title: Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2005.02.001
– volume: 9
  start-page: 11
  year: 2020
  ident: 10.1016/j.jconrel.2022.08.033_bb0085
  article-title: Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes
  publication-title: Exp. Hematol. Oncol.
  doi: 10.1186/s40164-020-00166-2
– volume: 131
  year: 2021
  ident: 10.1016/j.jconrel.2022.08.033_bb0100
  article-title: Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI142030
– volume: 1278
  start-page: 41
  year: 1996
  ident: 10.1016/j.jconrel.2022.08.033_bb0220
  article-title: Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(95)00219-7
SSID ssj0005347
Score 2.610863
Snippet Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 298
SubjectTerms antibodies
antigens
antineoplastic activity
CD3 antibody
Chimeric antigen receptor T cells
Cytokine release syndrome
genes
IL-6 shRNA
interleukin-6
intravenous injection
leukemia
Lipid nanoparticles
lipids
nanoparticles
plasmids
small interfering RNA
Title Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo
URI https://dx.doi.org/10.1016/j.jconrel.2022.08.033
https://www.proquest.com/docview/2706717418
https://www.proquest.com/docview/2718325107
Volume 350
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iL76Ipyd6nkuEwyez2zZpmj7Koqx3IIIr-BaSJuW6SnfZL_DFv92ZfrgqqOBjQwJhJv3NTDLzG0L-KB_b1IeWOelzJqQKmMl9xqI8iWVigzRwVYLslRzcir938d0a6be1MJhW2WB_jekVWjcjvUaavUlR9G7AWVEcXwXxYoQrrCgXIsFT3n16lebBRV0yLRXD2asqnt6oO4KYc-rxBSKKKiZPzj-yT--QujI_F9tkq_Eb6Vm9tR9kzZc75OS6Jp5-PKXDVR3V7JSe0OsVJfXjLrHYotrR0pQQIzepcHRSkb16mv0vqmcbCkJGbk4KAvETiMXpkOK9_oziZS1FYonpg1_cFyWT9L4EIHUQwsM4XRbL8U9ye3E-7A9Y012BZTyJ58yowMbWSW6UyUxsZZr4EOyVsXHqJHbgiFKVBR5CKGOdMGmY5iJHhOUudEHO98h6OS79PqE-w96EochSrgR4LEbEFsLuyEsegnsVHRDRylRnDfU4dsB40G2O2Ug3qtCoCo2dMTk_IN2XZZOae-OrBapVmH5ziDTYh6-WHrcK1vCDoXRN6ceLmY4SMOghkvx8NgeREeAt-fX9LRySTfyqMwV_k_X5dOGPwOOZ2051pDtk4-zy3-DqGYTDAjE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBeSpu2NH1FgZJTlLWth-VjCA2bJl0C3UBuQrJk4k3wLvsI5N93xpa7tNAEerU9IGbkb2akmW8I-aqDdEVIHfMqVEwonTBbhZJlVS5V7pIi8W2B7FiNrsT3a3m9RU76Xhgsq4zY32F6i9bxyTBqcziv6-FPCFY0x1tBPBjhOn9GtpGdSg7I9vHZ-Wi8qfTgouuaVpqhwKaRZzg9mkLauQh4CZFlLZkn5_9yUX-BdeuBTl-RlzF0pMfd6l6TrdDskIPLjnv64ZBONq1Uy0N6QC83rNQPb4jDKdWeNraBNDlWw9F5y_caaHlTtzc3FPSM9JwUdBLmkI7TCcWj_SXF81qK3BKLu7C-rRum6G0DWOohi4fn9L6-n70lV6ffJicjFgcssJLncsWsTpx0XnGrbWmlU0UeUnBZ1snCKxzCkRW6TAJkUdZ5YYu0qESFIMt96pOKvyODZtaE94SGEscTpqIsuBYQtFghHWTeWVA8hQgr2yWi16kpI_s4DsG4M32Z2dREUxg0hcHhmJzvkqPfYvOOfuMpAd0bzPyxjwy4iKdE93sDG_jHULu2CbP10mQ5-PQUeX4e-wbBERAu__D_S9gjz0eTHxfm4mx8_pG8wDdd4eAnMlgt1uEzBEAr9yVu8F9URwTi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+nanoparticles+produce+chimeric+antigen+receptor+T+cells+with+interleukin-6+knockdown+in+vivo&rft.jtitle=Journal+of+controlled+release&rft.au=Zhou%2C+Jing-e&rft.au=Sun%2C+Lei&rft.au=Jia%2C+Yujie&rft.au=Wang%2C+Zhehao&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=350&rft.spage=298&rft.epage=307&rft_id=info:doi/10.1016%2Fj.jconrel.2022.08.033&rft.externalDocID=S0168365922005387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon