Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo
Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plas...
Saved in:
Published in | Journal of controlled release Vol. 350; pp. 298 - 307 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T.
[Display omitted]
•New technology is required for CAR-T cells to avoid its complex preparation process and control CRS.•The LNPs modified by CD3 antibody transfected T cells and produced CAR-T cells in vivo.•The CAR-T cells produced by LNPs showed an anti-tumor effect and reduced the incidence of CRS. |
---|---|
AbstractList | Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T. Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T. [Display omitted] •New technology is required for CAR-T cells to avoid its complex preparation process and control CRS.•The LNPs modified by CD3 antibody transfected T cells and produced CAR-T cells in vivo.•The CAR-T cells produced by LNPs showed an anti-tumor effect and reduced the incidence of CRS. Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T.Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine release syndrome (CRS). In this study, we constructed a lipid nanoparticle system modified by CD3 antibody on the surface, loading with the plasmid containing the combination gene of interleukin 6 short hairpin RNA (IL-6 shRNA) and CD19-CAR (AntiCD3-LNP/CAR19 + shIL6). The system targeted T cells by the mediation of CD3 antibody and stably transfected T cells to transform them into CAR-T cells with IL-6 knockdown, thus killing CD19-highly expressed leukemia tumor cells and reducing CRS caused by IL-6. In vivo experiments showed that AntiCD3-LNP/CAR19 + shIL6 could stably transfect T cells and produce CAR-T within 90 days to kill the tumor. This significantly prolonged the survival time of leukemia model mice and demonstrated the prepared LNP exhibited the same anti-tumor effect as the traditional CAR-T cells prepared ex vivo. In this study, CAR-T cells were directly produced in vivo after intravenous injection of the lipid nanoparticles, without the need of using the current complex process ex vivo. Additionally, IL-6 expression was silenced, which would be helpful to reduce the CRS and improve the safety of CAR-T therapy. This method improves the convenience of using CAR-T technology and is helpful in further promoting the clinical application of CAR-T. |
Author | Zhou, Jing-e Wang, Zhehao Tan, Jingwen Fang, Xiaoyan Yan, Zhiqiang Luo, Tengshuo Zhu, Hongjia Sun, Lei Jia, Yujie Wang, Jing Yu, Lei |
Author_xml | – sequence: 1 givenname: Jing-e surname: Zhou fullname: Zhou, Jing-e – sequence: 2 givenname: Lei surname: Sun fullname: Sun, Lei – sequence: 3 givenname: Yujie surname: Jia fullname: Jia, Yujie – sequence: 4 givenname: Zhehao surname: Wang fullname: Wang, Zhehao – sequence: 5 givenname: Tengshuo surname: Luo fullname: Luo, Tengshuo – sequence: 6 givenname: Jingwen surname: Tan fullname: Tan, Jingwen – sequence: 7 givenname: Xiaoyan surname: Fang fullname: Fang, Xiaoyan – sequence: 8 givenname: Hongjia surname: Zhu fullname: Zhu, Hongjia – sequence: 9 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 10 givenname: Lei surname: Yu fullname: Yu, Lei email: yulei@nbic.ecnu.edu.cn – sequence: 11 givenname: Zhiqiang surname: Yan fullname: Yan, Zhiqiang email: zqyan@sat.ecnu.edu.cn |
BookMark | eNqNkU2L2zAQhkXZQrNpf0JBx17sSpZlS_RQytIvCPSyPQtZGncncSRXUrL031che-plO5eB4X2GYZ5bchNiAELectZyxof3-3bvYkiwtB3rupaplgnxgmy4GkXTay1vyKbmVCMGqV-R25z3jDEp-nFDph2u6GmwIa42FXQLZLqm6E8OqHvAIyR01IaCvyDQBA7WEhO9pw6WJdNHLA8UQ4G0wOmAoRnoIUR38PEx1Dk94zm-Ji9nu2R489S35OeXz_d335rdj6_f7z7tGidGWRqr2CQnPwirrLNyGvQIXDFuJ6n90Hej6rRyDHiv7eR7q7me-5nXEp57NosteXfdW8__fYJczBHz5UwbIJ6y6UauRCc5G_8jyoaRj30FtuTDNepSzDnBbBwWWzCGkiwuhjNzkWD25kmCuUgwTJkqodLyH3pNeLTpz7PcxysH9WFnhGSyQwgOPFYHxfiIz2z4C4PPp7s |
CitedBy_id | crossref_primary_10_1186_s12967_024_06052_3 crossref_primary_10_3389_fphar_2024_1466337 crossref_primary_10_1002_adhm_202301062 crossref_primary_10_3389_fbioe_2023_1211687 crossref_primary_10_1039_D3NR05768B crossref_primary_10_1016_j_copbio_2024_103179 crossref_primary_10_1038_s41571_023_00811_9 crossref_primary_10_1016_j_ebiom_2024_105266 crossref_primary_10_3390_ijms242015230 crossref_primary_10_1002_biot_202300123 crossref_primary_10_1002_cbf_3955 crossref_primary_10_52601_bpr_2023_230022 crossref_primary_10_1002_wnan_2005 crossref_primary_10_1016_j_biopha_2024_117229 crossref_primary_10_1186_s12951_024_02630_1 crossref_primary_10_1039_D4QM00479E crossref_primary_10_1186_s13045_024_01574_1 crossref_primary_10_3390_cimb46050288 crossref_primary_10_1039_D4NR05371K crossref_primary_10_1002_smll_202409635 crossref_primary_10_1016_j_tcb_2024_11_010 crossref_primary_10_1016_j_tips_2024_03_004 crossref_primary_10_1186_s13045_024_01625_7 crossref_primary_10_1002_smll_202304378 crossref_primary_10_1002_cam4_70726 crossref_primary_10_1016_S2352_3026_24_00273_4 crossref_primary_10_1016_j_apsb_2024_05_010 crossref_primary_10_4274_tjo_galenos_2024_77783 crossref_primary_10_1016_j_blre_2024_101241 crossref_primary_10_1016_j_ymthe_2024_09_019 crossref_primary_10_1038_s41392_024_02002_z crossref_primary_10_1080_17435889_2024_2416377 crossref_primary_10_1360_TB_2023_0802 crossref_primary_10_1089_hum_2024_106 crossref_primary_10_3390_medsci12030043 crossref_primary_10_34133_bmr_0015 crossref_primary_10_1002_1878_0261_13621 crossref_primary_10_1002_advs_202303215 crossref_primary_10_1002_advs_202411162 crossref_primary_10_1016_j_ijbiomac_2023_125185 crossref_primary_10_1128_msphere_00775_24 crossref_primary_10_1016_j_phrs_2024_107352 crossref_primary_10_1007_s11864_023_01049_4 crossref_primary_10_1080_14656566_2024_2340738 crossref_primary_10_1016_j_jconrel_2024_10_014 crossref_primary_10_1002_smtd_202300880 crossref_primary_10_1016_j_ijpharm_2024_124779 crossref_primary_10_1016_j_nantod_2024_102517 crossref_primary_10_1021_acs_nanolett_4c01458 crossref_primary_10_3390_vaccines12020186 crossref_primary_10_1039_D3TB02279J crossref_primary_10_1016_j_nantod_2024_102518 crossref_primary_10_1002_bmm2_12039 crossref_primary_10_1016_j_addr_2024_115448 crossref_primary_10_1002_mog2_67 crossref_primary_10_1016_j_tibtech_2024_07_017 crossref_primary_10_1002_advs_202402329 crossref_primary_10_1016_j_jconrel_2024_09_037 crossref_primary_10_1038_s44286_024_00116_3 crossref_primary_10_1002_adma_202303261 crossref_primary_10_1111_imm_13861 |
Cites_doi | 10.1039/c4nr01110d 10.1038/mto.2016.15 10.1056/NEJMoa1407222 10.1038/s41565-019-0591-y 10.1038/nrclinonc.2018.20 10.1038/nnano.2017.57 10.1038/s41467-020-19486-2 10.1182/blood-2015-11-679134 10.1093/annonc/mdu025 10.1016/j.bbmt.2019.08.015 10.1016/j.jconrel.2006.08.009 10.1172/JCI85309 10.1038/nm.4441 10.1038/nrclinonc.2017.148 10.1007/s00210-013-0837-4 10.1016/j.jconrel.2006.04.014 10.1172/JCI86721 10.1038/am.2017.185 10.1021/acs.nanolett.1c02503 10.1056/NEJMoa1716153 10.1038/s41467-018-05322-1 10.1038/sj.gt.3300821 10.1186/s12943-020-01290-7 10.1158/2159-8290.CD-NB2017-155 10.1016/j.omtm.2016.12.006 10.1002/anie.201203263 10.1634/theoncologist.2018-0028 10.1038/srep02184 10.1038/s41408-021-00459-7 10.1093/annonc/mdr300 10.1038/nbt.1602 10.1038/s41565-020-0669-6 10.1016/j.colsurfb.2004.10.007 10.1016/j.jconrel.2004.04.024 10.1021/acsnano.8b07858 10.1038/nbt0817-691 10.1200/JCO.2015.64.5929 10.1016/j.ymthe.2016.10.020 10.1146/annurev-bioeng-070620-033348 10.1002/adma.202007421 10.1039/C9NR09347H 10.2147/IJN.S27471 10.1016/j.bbamem.2005.02.001 10.1186/s40164-020-00166-2 10.1172/JCI142030 10.1016/0005-2736(95)00219-7 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2022.08.033 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 307 |
ExternalDocumentID | 10_1016_j_jconrel_2022_08_033 S0168365922005387 |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSM SSP SSZ T5K TEORI WUQ ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c375t-a80b5bd63a8aca5b697e1801ab59d64278298c0e149abd4a919f4f11113d1d0f3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Tue Aug 05 11:19:45 EDT 2025 Thu Jul 10 18:52:26 EDT 2025 Tue Jul 01 04:10:08 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Fri Feb 23 02:41:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chimeric antigen receptor T cells Cytokine release syndrome IL-6 shRNA CD3 antibody Lipid nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-a80b5bd63a8aca5b697e1801ab59d64278298c0e149abd4a919f4f11113d1d0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2706717418 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2718325107 proquest_miscellaneous_2706717418 crossref_citationtrail_10_1016_j_jconrel_2022_08_033 crossref_primary_10_1016_j_jconrel_2022_08_033 elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_08_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of controlled release |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Marco, Davila, Wang, Bartido, Park, Curran, Chung, Stefanski, Borquez-Ojeda, Olszewska, Qu, Wasielewska, He, Fink, Shinglot, Youssif, Satter, Wang, Hosey, Quintanilla, Halton, Bernal, Bouhassira, Arcila, Gonen, Roboz, Maslak, Douer, Frattini, Sadelain, Brentjens (bb0045) 2014; 6 Sheridan (bb0015) 2017; 35 Mirska, Schirmer, Funari, Langner, Dobner, Brezesinski (bb0225) 2005; 40 Locke, Neelapu, Bartlett, Siddiqi, Chavez, Hosing, Ghobadi, Budde, Bot, Rossi, Jiang, Xue, Elias, Aycock, Wiezorek, Go (bb0075) 2017; 25 Le, Li, Yuan, Shord, Nie, Habtemariam, Przepiorka, Farrell, Pazdur (bb0080) 2018; 23 Kang, Tang, Zhang, Li, Xu, Qi, Tan, Lou, Yu, Sun, Wang, Dai, Chen, Lin, Wu, Yu (bb0085) 2020; 9 Parayath, Stephan (bb0105) 2021; 23 Jain, Bar, Kansagra, Chong, Hashmi, Neelapu, Byrne, Jacoby, Lazaryan, Jacobson, Ansell, Awan, Burns, Bachanova, Bollard, Carpenter, DiPersio, Hamadani, Heslop, Hill, Komanduri, Kovitz, Lazarus, Serrette, Mohty, Miklos, Nagler, Pavletic, Savani, Schuster, Kharfan-Dabaja, Perales, Lin (bb0090) 2019; 25 Kumar, Shou, Chan, Tay (bb0110) 2021; 33 Sterner, Sterner (bb0040) 2021; 11 Fraietta, Beckwith, Patel, Ruella, Zheng, Barrett, Lacey, Melenhorst, McGettigan, Cook, Zhang, Xu, Do, Hulitt, Kudchodkar, Cogdill, Gill, Porter, Woyach, Long, Johnson, Maddocks, Muthusamy, Levine, June, Byrd, Maus (bb0025) 2016; 127 Roselli, Faramand, Davila (bb0100) 2021; 131 Wang, Riviere (bb0055) 2016; 3 Smith, Stephan, Moffett, McKnight, Ji, Reiman, Bonagofski, Wohlfahrt, Pillai, Stephan (bb0120) 2017; 12 Brudno, Somerville, Shi, Rose, Halverson, Fowler, Gea-Banacloche, Pavletic, Hickstein, Lu, Feldman, Iwamoto, Kurlander, Maric, Goy, Hansen, Wilder, Blacklock-Schuver, Hakim, Rosenberg, Gress, Kochenderfer (bb0020) 2016; 34 Kulkarni, Witzigmann, Leung, Tam, Cullis (bb0150) 2019; 11 Neelapu, Tummala, Kebriaei, Wierda, Gutierrez, Locke, Komanduri, Lin, Jain, Daver, Westin, Gulbis, Loghin, de Groot, Adkins, Davis, Rezvani, Hwu, Shpall (bb0060) 2018; 15 Remaut, Sanders, Fayazpour, Demeester, De Smedt (bb0235) 2006; 115 Kebriaei, Singh, Huls, Figliola, Bassett, Olivares, Jena, Dawson, Kumaresan, Su, Maiti, Dai, Moriarity, Forget, Senyukov, Orozco, Liu, McCarty, Jackson, Moyes, Rondon, Qazilbash, Ciurea, Alousi, Nieto, Rezvani, Marin, Popat, Hosing, Shpall, Kantarjian, Keating, Wierda, Do, Largaespada, Lee, Hackett, Champlin, Cooper (bb0030) 2016; 126 Bonacina, Coe, Wang, Longhi, Baragetti, Moregola, Garlaschelli, Uboldi, Pellegatta, Grigore, Da Dalt, Annoni, Gregori, Xiao, Caruso, Mitro, Catapano, Marelli-Berg, Norata (bb0095) 2018; 9 Levine, Miskin, Wonnacott, Keir (bb0050) 2017; 4 (bb0005) 2018; 8 Semple, Akinc, Chen, Sandhu, Mui, Cho, Sah, Stebbing, Crosley, Yaworski, Hafez, Dorkin, Qin, Lam, Rajeev, Wong, Jeffs, Nechev, Eisenhardt, Jayaraman, Kazem, Maier, Srinivasulu, Weinstein, Chen, Alvarez, Barros, De, Klimuk, Borland, Kosovrasti, Cantley, Tam, Manoharan, Ciufolini, Tracy, de Fougerolles, MacLachlan, Cullis, Madden, Hope (bb0165) 2010; 28 Han, Wang, Han (bb0125) 2018; 4 Ambegia, Ansell, Cullis, Heyes, Palmer, MacLachlan (bb0155) 2005; 1669 Narayanan, Yen, Dou, Padmanabhan, Sudhaharan, Ahmed, Ying, Selvan (bb0140) 2013; 3 Zhang, Wang, Feng, Wang, Chen, Huang, Zheng, Jiang (bb0175) 2017; 9 Akinc, Maier, Manoharan, Fitzgerald, Jayaraman, Barros, Ansell, Du, Hope, Madden, Mui, Semple, Tam, Ciufolini, Witzigmann, Kulkarni, van der Meel, Cullis (bb0185) 2019; 14 Muthusamy Jayaraman, Mui, Tam, Chen, Du, Butler, Eltepu, Matsuda, Narayanannair, Rajeev, Hafez, Akinc, Maier, Tracy, Cullis, Madden, Manoharan, Michael (bb0230) 2012; 51 Billingsley, Hamilton, Mai, Patel, Swingle, Sheppard, June, Mitchell (bb0115) 2021; 22 Daniel, Friend, Robert, Debs (bb0220) 1996; 1278 Fasol, Frost, Buchert, Arends, Fiedler, Scharr, Scheuenpflug, Mross (bb0210) 2012; 23 Ballotti, Cheli, Bertolotto (bb0130) 2020; 19 Skandrani, Barras, Legrand, Gharbi, Boulahdour, Boukherroub (bb0170) 2014; 6 Buck, Grossen, Cullis, Huwyler, Witzigmann (bb0180) 2019; 13 Qiang Cheng, Daniel, Siegwart, Farbiak, Dilliard (bb0190) 2020; 15 Turtle, Hanafi, Berger, Gooley, Cherian, Hudecek, Sommermeyer, Melville, Pender, Budiarto, Robinson, Steevens, Chaney, Soma, Chen, Yeung, Wood, Li, Cao, Heimfeld, Jensen, Riddell, Maloney (bb0035) 2016; 126 Kogure, Moriguchi, Sasaki, Ueno, Futaki, Harashima (bb0145) 2004; 98 Brgles, Santak, Halassy, Forcic, Tomasic (bb0240) 2012; 7 Neelapu, Tummala, Kebriaei, Wierda, Locke, Lin, Jain, Daver, Gulbis, Adkins, Rezvani, Hwu, Shpall (bb0065) 2018; 15 Wheeler, Ossanlou, Cullis (bb0160) 1999; 6 Awada, Bondarenko, Bonneterre, Nowara, Ferrero, Bakshi, Wilke, Piccart (bb0205) 2014; 25 Adams, Gonzalez-Duarte, O’Riordan, Yang, Ueda, Kristen, Tournev, Schmidt, Coelho, Berk, Lin, Vita, Attarian, Plante-Bordeneuve, Mezei, Campistol, Buades, Brannagan, Kim, Oh, Parman, Sekijima, Hawkins, Solomon, Polydefkis, Dyck, Gandhi, Goyal, Chen, Strahs, Nochur, Sweetser, Garg, Vaishnaw, Gollob, Suhr (bb0200) 2018; 379 Fry, Shah, Orentas, Stetler-Stevenson, Yuan, Ramakrishna, Wolters, Martin, Delbrook, Yates, Shalabi, Fountaine, Shern, Majzner, Stroncek, Sabatino, Feng, Dimitrov, Zhang, Nguyen, Qin, Dropulic, Lee, Mackall (bb0010) 2018; 24 Maude, Frey, Shaw, Aplenc, Barrett, Bunin, Chew, Gonzalez, Zheng, Lacey, Mahnke, Melenhorst, Rheingold, Shen, Teachey, Levine, June, Porter, Grupp (bb0070) 2014; 371 Parayath, Stephan, Koehne, Nelson, Stephan (bb0135) 2020; 11 de Antonellis, Liguori, Falanga, Carotenuto, Ferrucci, Andolfo, Marinaro, Scognamiglio, Virgilio, De Rosa, Galeone, Galdiero, Zollo (bb0195) 2013; 386 Lv, Zhang, Wang, Cui, Yan (bb0215) 2006; 114 Neelapu (10.1016/j.jconrel.2022.08.033_bb0065) 2018; 15 Locke (10.1016/j.jconrel.2022.08.033_bb0075) 2017; 25 Jain (10.1016/j.jconrel.2022.08.033_bb0090) 2019; 25 Parayath (10.1016/j.jconrel.2022.08.033_bb0105) 2021; 23 Parayath (10.1016/j.jconrel.2022.08.033_bb0135) 2020; 11 Daniel (10.1016/j.jconrel.2022.08.033_bb0220) 1996; 1278 Turtle (10.1016/j.jconrel.2022.08.033_bb0035) 2016; 126 Skandrani (10.1016/j.jconrel.2022.08.033_bb0170) 2014; 6 Neelapu (10.1016/j.jconrel.2022.08.033_bb0060) 2018; 15 Billingsley (10.1016/j.jconrel.2022.08.033_bb0115) 2021; 22 Narayanan (10.1016/j.jconrel.2022.08.033_bb0140) 2013; 3 Marco (10.1016/j.jconrel.2022.08.033_bb0045) 2014; 6 Lv (10.1016/j.jconrel.2022.08.033_bb0215) 2006; 114 Kulkarni (10.1016/j.jconrel.2022.08.033_bb0150) 2019; 11 Smith (10.1016/j.jconrel.2022.08.033_bb0120) 2017; 12 Buck (10.1016/j.jconrel.2022.08.033_bb0180) 2019; 13 Kumar (10.1016/j.jconrel.2022.08.033_bb0110) 2021; 33 Maude (10.1016/j.jconrel.2022.08.033_bb0070) 2014; 371 Akinc (10.1016/j.jconrel.2022.08.033_bb0185) 2019; 14 Qiang Cheng (10.1016/j.jconrel.2022.08.033_bb0190) 2020; 15 Wang (10.1016/j.jconrel.2022.08.033_bb0055) 2016; 3 Sheridan (10.1016/j.jconrel.2022.08.033_bb0015) 2017; 35 Ambegia (10.1016/j.jconrel.2022.08.033_bb0155) 2005; 1669 Han (10.1016/j.jconrel.2022.08.033_bb0125) 2018; 4 Fry (10.1016/j.jconrel.2022.08.033_bb0010) 2018; 24 Sterner (10.1016/j.jconrel.2022.08.033_bb0040) 2021; 11 Kang (10.1016/j.jconrel.2022.08.033_bb0085) 2020; 9 Bonacina (10.1016/j.jconrel.2022.08.033_bb0095) 2018; 9 Roselli (10.1016/j.jconrel.2022.08.033_bb0100) 2021; 131 Adams (10.1016/j.jconrel.2022.08.033_bb0200) 2018; 379 (10.1016/j.jconrel.2022.08.033_bb0005) 2018; 8 Brgles (10.1016/j.jconrel.2022.08.033_bb0240) 2012; 7 Kebriaei (10.1016/j.jconrel.2022.08.033_bb0030) 2016; 126 Muthusamy Jayaraman (10.1016/j.jconrel.2022.08.033_bb0230) 2012; 51 Semple (10.1016/j.jconrel.2022.08.033_bb0165) 2010; 28 Zhang (10.1016/j.jconrel.2022.08.033_bb0175) 2017; 9 Wheeler (10.1016/j.jconrel.2022.08.033_bb0160) 1999; 6 Fasol (10.1016/j.jconrel.2022.08.033_bb0210) 2012; 23 Remaut (10.1016/j.jconrel.2022.08.033_bb0235) 2006; 115 Levine (10.1016/j.jconrel.2022.08.033_bb0050) 2017; 4 Fraietta (10.1016/j.jconrel.2022.08.033_bb0025) 2016; 127 Mirska (10.1016/j.jconrel.2022.08.033_bb0225) 2005; 40 de Antonellis (10.1016/j.jconrel.2022.08.033_bb0195) 2013; 386 Brudno (10.1016/j.jconrel.2022.08.033_bb0020) 2016; 34 Kogure (10.1016/j.jconrel.2022.08.033_bb0145) 2004; 98 Le (10.1016/j.jconrel.2022.08.033_bb0080) 2018; 23 Awada (10.1016/j.jconrel.2022.08.033_bb0205) 2014; 25 Ballotti (10.1016/j.jconrel.2022.08.033_bb0130) 2020; 19 |
References_xml | – volume: 8 start-page: 5 year: 2018 end-page: 6 ident: bb0005 publication-title: FDA approves second CAR T-cell therapy – volume: 6 year: 2014 ident: bb0045 article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia publication-title: Cancer – volume: 25 start-page: 285 year: 2017 end-page: 295 ident: bb0075 article-title: Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma publication-title: Mol. Ther. – volume: 9 start-page: 3083 year: 2018 ident: bb0095 article-title: Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation publication-title: Nat. Commun. – volume: 13 start-page: 3754 year: 2019 end-page: 3782 ident: bb0180 article-title: Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery publication-title: ACS Nano – volume: 15 start-page: 47 year: 2018 end-page: 62 ident: bb0060 article-title: Chimeric antigen receptor T-cell therapy - assessment and management of toxicities publication-title: Nat. Rev. Clin. Oncol. – volume: 12 start-page: 813 year: 2017 end-page: 820 ident: bb0120 article-title: In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers publication-title: Nat. Nanotechnol. – volume: 9 start-page: e441 year: 2017 ident: bb0175 article-title: Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy publication-title: NPG Asia Mater. – volume: 127 start-page: 1117 year: 2016 end-page: 1127 ident: bb0025 article-title: Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia publication-title: Blood – volume: 126 start-page: 2123 year: 2016 end-page: 2138 ident: bb0035 article-title: CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients publication-title: J. Clin. Invest. – volume: 386 start-page: 287 year: 2013 end-page: 302 ident: bb0195 article-title: MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol. – volume: 23 start-page: 943 year: 2018 end-page: 947 ident: bb0080 article-title: FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome publication-title: Oncologist – volume: 3 start-page: 16015 year: 2016 ident: bb0055 article-title: Clinical manufacturing of CAR T cells: foundation of a promising therapy publication-title: Mol. Ther. Oncolytics – volume: 34 start-page: 1112 year: 2016 end-page: 1121 ident: bb0020 article-title: Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that Progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease publication-title: J. Clin. Oncol. – volume: 35 start-page: 691 year: 2017 end-page: 693 ident: bb0015 article-title: First approval in sight for Novartis’ CAR-T therapy after panel vote publication-title: Nat. Biotechnol. – volume: 4 start-page: 92 year: 2017 end-page: 101 ident: bb0050 article-title: Global manufacturing of CAR T cell therapy publication-title: Mol. Ther. Methods Clin. Dev. – volume: 11 start-page: 21733 year: 2019 end-page: 21739 ident: bb0150 article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA publication-title: Nanoscale – volume: 98 start-page: 317 year: 2004 end-page: 323 ident: bb0145 article-title: Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method publication-title: J. Control. Release – volume: 9 start-page: 11 year: 2020 ident: bb0085 article-title: Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes publication-title: Exp. Hematol. Oncol. – volume: 22 start-page: 533 year: 2021 end-page: 542 ident: bb0115 article-title: Orthogonal Design of Experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells publication-title: Nano Lett. – volume: 6 start-page: 7379 year: 2014 end-page: 7390 ident: bb0170 article-title: Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging publication-title: Nanoscale – volume: 15 start-page: 218 year: 2018 ident: bb0065 article-title: Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’ publication-title: Nat. Rev. Clin. Oncol. – volume: 4 start-page: 225 year: 2018 end-page: 243 ident: bb0125 article-title: Chimeric antigen receptor modified T-cells for cancer treatment publication-title: Chronic. Dis. Transl. Med. – volume: 11 start-page: 6080 year: 2020 ident: bb0135 article-title: In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo publication-title: Nat. Commun. – volume: 25 start-page: 2305 year: 2019 end-page: 2321 ident: bb0090 article-title: Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy publication-title: Biol. Blood Marrow Transpl. – volume: 1669 start-page: 155 year: 2005 end-page: 163 ident: bb0155 article-title: Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 824 year: 2014 end-page: 831 ident: bb0205 article-title: C.T.s. group, a randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC) publication-title: Ann. Oncol. – volume: 24 start-page: 20 year: 2018 end-page: 28 ident: bb0010 article-title: CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy publication-title: Nat. Med. – volume: 33 year: 2021 ident: bb0110 article-title: Materials for improving immune cell transfection publication-title: Adv. Mater. – volume: 11 start-page: 69 year: 2021 ident: bb0040 article-title: CAR-T cell therapy: current limitations and potential strategies publication-title: Blood Cancer J. – volume: 40 start-page: 51 year: 2005 end-page: 59 ident: bb0225 article-title: Biophysical and biochemical properties of a binary lipid mixture for DNA transfection publication-title: Colloids Surf. B: Biointerfaces – volume: 371 start-page: 1507 year: 2014 end-page: 1517 ident: bb0070 article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia publication-title: N. Engl. J. Med. – volume: 23 start-page: 385 year: 2021 end-page: 405 ident: bb0105 article-title: In situ programming of CAR T cells publication-title: Annu. Rev. Biomed. Eng. – volume: 115 start-page: 335 year: 2006 end-page: 343 ident: bb0235 article-title: Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes publication-title: J. Control. Release – volume: 7 start-page: 393 year: 2012 end-page: 401 ident: bb0240 article-title: Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency publication-title: Int. J. Nanomedicine – volume: 14 start-page: 1084 year: 2019 end-page: 1087 ident: bb0185 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. – volume: 19 start-page: 170 year: 2020 ident: bb0130 article-title: The complex relationship between MITF and the immune system: a melanoma ImmunoTherapy (response) factor? publication-title: Mol. Cancer – volume: 51 start-page: 8529 year: 2012 ident: bb0230 article-title: Hope, maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 2184 year: 2013 ident: bb0140 article-title: Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots publication-title: Sci. Rep. – volume: 1278 start-page: 41 year: 1996 end-page: 50 ident: bb0220 article-title: Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes publication-title: Biochim. Biophys. Acta – volume: 15 start-page: 313 year: 2020 end-page: 320 ident: bb0190 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. – volume: 126 start-page: 3363 year: 2016 end-page: 3376 ident: bb0030 article-title: Phase I trials using sleeping beauty to generate CD19-specific CAR T cells publication-title: J. Clin. Invest. – volume: 114 start-page: 100 year: 2006 end-page: 109 ident: bb0215 article-title: Toxicity of cationic lipids and cationic polymers in gene delivery publication-title: J. Control. Release – volume: 131 year: 2021 ident: bb0100 article-title: Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes publication-title: J. Clin. Invest. – volume: 28 start-page: 172 year: 2010 end-page: 176 ident: bb0165 article-title: Rational design of cationic lipids for siRNA delivery publication-title: Nat. Biotechnol. – volume: 379 start-page: 11 year: 2018 end-page: 21 ident: bb0200 article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis publication-title: N. Engl. J. Med. – volume: 6 start-page: 271 year: 1999 end-page: 281 ident: bb0160 article-title: Stabilized plasmid-lipid particles: construction and characterization publication-title: Gene Ther. – volume: 23 start-page: 1030 year: 2012 end-page: 1036 ident: bb0210 article-title: Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis publication-title: Ann. Oncol. – volume: 6 start-page: 7379 year: 2014 ident: 10.1016/j.jconrel.2022.08.033_bb0170 article-title: Lipid nanocapsules functionalized with polyethyleneimine for plasmid DNA and drug co-delivery and cell imaging publication-title: Nanoscale doi: 10.1039/c4nr01110d – volume: 3 start-page: 16015 year: 2016 ident: 10.1016/j.jconrel.2022.08.033_bb0055 article-title: Clinical manufacturing of CAR T cells: foundation of a promising therapy publication-title: Mol. Ther. Oncolytics doi: 10.1038/mto.2016.15 – volume: 371 start-page: 1507 year: 2014 ident: 10.1016/j.jconrel.2022.08.033_bb0070 article-title: Chimeric antigen receptor T cells for sustained remissions in leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1407222 – volume: 14 start-page: 1084 year: 2019 ident: 10.1016/j.jconrel.2022.08.033_bb0185 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y – volume: 15 start-page: 218 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0065 article-title: Toxicity management after chimeric antigen receptor T cell therapy: one size does not fit ‘ALL’ publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2018.20 – volume: 12 start-page: 813 year: 2017 ident: 10.1016/j.jconrel.2022.08.033_bb0120 article-title: In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.57 – volume: 11 start-page: 6080 year: 2020 ident: 10.1016/j.jconrel.2022.08.033_bb0135 article-title: In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-020-19486-2 – volume: 127 start-page: 1117 year: 2016 ident: 10.1016/j.jconrel.2022.08.033_bb0025 article-title: Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia publication-title: Blood doi: 10.1182/blood-2015-11-679134 – volume: 25 start-page: 824 year: 2014 ident: 10.1016/j.jconrel.2022.08.033_bb0205 article-title: C.T.s. group, a randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC) publication-title: Ann. Oncol. doi: 10.1093/annonc/mdu025 – volume: 25 start-page: 2305 year: 2019 ident: 10.1016/j.jconrel.2022.08.033_bb0090 article-title: Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: an expert panel opinion from the American Society for Transplantation and Cellular Therapy publication-title: Biol. Blood Marrow Transpl. doi: 10.1016/j.bbmt.2019.08.015 – volume: 115 start-page: 335 year: 2006 ident: 10.1016/j.jconrel.2022.08.033_bb0235 article-title: Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2006.08.009 – volume: 126 start-page: 2123 year: 2016 ident: 10.1016/j.jconrel.2022.08.033_bb0035 article-title: CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients publication-title: J. Clin. Invest. doi: 10.1172/JCI85309 – volume: 24 start-page: 20 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0010 article-title: CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy publication-title: Nat. Med. doi: 10.1038/nm.4441 – volume: 15 start-page: 47 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0060 article-title: Chimeric antigen receptor T-cell therapy - assessment and management of toxicities publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2017.148 – volume: 386 start-page: 287 year: 2013 ident: 10.1016/j.jconrel.2022.08.033_bb0195 article-title: MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines publication-title: Naunyn Schmiedeberg’s Arch. Pharmacol. doi: 10.1007/s00210-013-0837-4 – volume: 114 start-page: 100 year: 2006 ident: 10.1016/j.jconrel.2022.08.033_bb0215 article-title: Toxicity of cationic lipids and cationic polymers in gene delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2006.04.014 – volume: 126 start-page: 3363 year: 2016 ident: 10.1016/j.jconrel.2022.08.033_bb0030 article-title: Phase I trials using sleeping beauty to generate CD19-specific CAR T cells publication-title: J. Clin. Invest. doi: 10.1172/JCI86721 – volume: 9 start-page: e441 year: 2017 ident: 10.1016/j.jconrel.2022.08.033_bb0175 article-title: Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy publication-title: NPG Asia Mater. doi: 10.1038/am.2017.185 – volume: 22 start-page: 533 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.08.033_bb0115 article-title: Orthogonal Design of Experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02503 – volume: 379 start-page: 11 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0200 article-title: Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1716153 – volume: 4 start-page: 225 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0125 article-title: Chimeric antigen receptor modified T-cells for cancer treatment publication-title: Chronic. Dis. Transl. Med. – volume: 9 start-page: 3083 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0095 article-title: Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation publication-title: Nat. Commun. doi: 10.1038/s41467-018-05322-1 – volume: 6 start-page: 271 year: 1999 ident: 10.1016/j.jconrel.2022.08.033_bb0160 article-title: Stabilized plasmid-lipid particles: construction and characterization publication-title: Gene Ther. doi: 10.1038/sj.gt.3300821 – volume: 19 start-page: 170 year: 2020 ident: 10.1016/j.jconrel.2022.08.033_bb0130 article-title: The complex relationship between MITF and the immune system: a melanoma ImmunoTherapy (response) factor? publication-title: Mol. Cancer doi: 10.1186/s12943-020-01290-7 – volume: 8 start-page: 5 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0005 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-NB2017-155 – volume: 4 start-page: 92 year: 2017 ident: 10.1016/j.jconrel.2022.08.033_bb0050 article-title: Global manufacturing of CAR T cell therapy publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2016.12.006 – volume: 51 start-page: 8529 year: 2012 ident: 10.1016/j.jconrel.2022.08.033_bb0230 article-title: Hope, maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201203263 – volume: 23 start-page: 943 year: 2018 ident: 10.1016/j.jconrel.2022.08.033_bb0080 article-title: FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome publication-title: Oncologist doi: 10.1634/theoncologist.2018-0028 – volume: 3 start-page: 2184 year: 2013 ident: 10.1016/j.jconrel.2022.08.033_bb0140 article-title: Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots publication-title: Sci. Rep. doi: 10.1038/srep02184 – volume: 11 start-page: 69 year: 2021 ident: 10.1016/j.jconrel.2022.08.033_bb0040 article-title: CAR-T cell therapy: current limitations and potential strategies publication-title: Blood Cancer J. doi: 10.1038/s41408-021-00459-7 – volume: 6 year: 2014 ident: 10.1016/j.jconrel.2022.08.033_bb0045 article-title: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia publication-title: Cancer – volume: 23 start-page: 1030 year: 2012 ident: 10.1016/j.jconrel.2022.08.033_bb0210 article-title: Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis publication-title: Ann. Oncol. doi: 10.1093/annonc/mdr300 – volume: 28 start-page: 172 year: 2010 ident: 10.1016/j.jconrel.2022.08.033_bb0165 article-title: Rational design of cationic lipids for siRNA delivery publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1602 – volume: 15 start-page: 313 year: 2020 ident: 10.1016/j.jconrel.2022.08.033_bb0190 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 – volume: 40 start-page: 51 year: 2005 ident: 10.1016/j.jconrel.2022.08.033_bb0225 article-title: Biophysical and biochemical properties of a binary lipid mixture for DNA transfection publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2004.10.007 – volume: 98 start-page: 317 year: 2004 ident: 10.1016/j.jconrel.2022.08.033_bb0145 article-title: Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method publication-title: J. Control. Release doi: 10.1016/j.jconrel.2004.04.024 – volume: 13 start-page: 3754 year: 2019 ident: 10.1016/j.jconrel.2022.08.033_bb0180 article-title: Lipid-based DNA therapeutics: hallmarks of non-viral gene delivery publication-title: ACS Nano doi: 10.1021/acsnano.8b07858 – volume: 35 start-page: 691 year: 2017 ident: 10.1016/j.jconrel.2022.08.033_bb0015 article-title: First approval in sight for Novartis’ CAR-T therapy after panel vote publication-title: Nat. Biotechnol. doi: 10.1038/nbt0817-691 – volume: 34 start-page: 1112 year: 2016 ident: 10.1016/j.jconrel.2022.08.033_bb0020 article-title: Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that Progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2015.64.5929 – volume: 25 start-page: 285 year: 2017 ident: 10.1016/j.jconrel.2022.08.033_bb0075 article-title: Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2016.10.020 – volume: 23 start-page: 385 year: 2021 ident: 10.1016/j.jconrel.2022.08.033_bb0105 article-title: In situ programming of CAR T cells publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-070620-033348 – volume: 33 year: 2021 ident: 10.1016/j.jconrel.2022.08.033_bb0110 article-title: Materials for improving immune cell transfection publication-title: Adv. Mater. doi: 10.1002/adma.202007421 – volume: 11 start-page: 21733 year: 2019 ident: 10.1016/j.jconrel.2022.08.033_bb0150 article-title: On the role of helper lipids in lipid nanoparticle formulations of siRNA publication-title: Nanoscale doi: 10.1039/C9NR09347H – volume: 7 start-page: 393 year: 2012 ident: 10.1016/j.jconrel.2022.08.033_bb0240 article-title: Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S27471 – volume: 1669 start-page: 155 year: 2005 ident: 10.1016/j.jconrel.2022.08.033_bb0155 article-title: Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2005.02.001 – volume: 9 start-page: 11 year: 2020 ident: 10.1016/j.jconrel.2022.08.033_bb0085 article-title: Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes publication-title: Exp. Hematol. Oncol. doi: 10.1186/s40164-020-00166-2 – volume: 131 year: 2021 ident: 10.1016/j.jconrel.2022.08.033_bb0100 article-title: Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes publication-title: J. Clin. Invest. doi: 10.1172/JCI142030 – volume: 1278 start-page: 41 year: 1996 ident: 10.1016/j.jconrel.2022.08.033_bb0220 article-title: Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(95)00219-7 |
SSID | ssj0005347 |
Score | 2.610863 |
Snippet | Chimeric receptor T cells (CAR-T) can effectively cure leukemia; however, there are two limitations: a complicated preparation process ex vivo and cytokine... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 298 |
SubjectTerms | antibodies antigens antineoplastic activity CD3 antibody Chimeric antigen receptor T cells Cytokine release syndrome genes IL-6 shRNA interleukin-6 intravenous injection leukemia Lipid nanoparticles lipids nanoparticles plasmids small interfering RNA |
Title | Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo |
URI | https://dx.doi.org/10.1016/j.jconrel.2022.08.033 https://www.proquest.com/docview/2706717418 https://www.proquest.com/docview/2718325107 |
Volume | 350 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iL76Ipyd6nkuEwyez2zZpmj7Koqx3IIIr-BaSJuW6SnfZL_DFv92ZfrgqqOBjQwJhJv3NTDLzG0L-KB_b1IeWOelzJqQKmMl9xqI8iWVigzRwVYLslRzcir938d0a6be1MJhW2WB_jekVWjcjvUaavUlR9G7AWVEcXwXxYoQrrCgXIsFT3n16lebBRV0yLRXD2asqnt6oO4KYc-rxBSKKKiZPzj-yT--QujI_F9tkq_Eb6Vm9tR9kzZc75OS6Jp5-PKXDVR3V7JSe0OsVJfXjLrHYotrR0pQQIzepcHRSkb16mv0vqmcbCkJGbk4KAvETiMXpkOK9_oziZS1FYonpg1_cFyWT9L4EIHUQwsM4XRbL8U9ye3E-7A9Y012BZTyJ58yowMbWSW6UyUxsZZr4EOyVsXHqJHbgiFKVBR5CKGOdMGmY5iJHhOUudEHO98h6OS79PqE-w96EochSrgR4LEbEFsLuyEsegnsVHRDRylRnDfU4dsB40G2O2Ug3qtCoCo2dMTk_IN2XZZOae-OrBapVmH5ziDTYh6-WHrcK1vCDoXRN6ceLmY4SMOghkvx8NgeREeAt-fX9LRySTfyqMwV_k_X5dOGPwOOZ2051pDtk4-zy3-DqGYTDAjE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbp5tBeSpu2NH1FgZJTlLWth-VjCA2bJl0C3UBuQrJk4k3wLvsI5N93xpa7tNAEerU9IGbkb2akmW8I-aqDdEVIHfMqVEwonTBbhZJlVS5V7pIi8W2B7FiNrsT3a3m9RU76Xhgsq4zY32F6i9bxyTBqcziv6-FPCFY0x1tBPBjhOn9GtpGdSg7I9vHZ-Wi8qfTgouuaVpqhwKaRZzg9mkLauQh4CZFlLZkn5_9yUX-BdeuBTl-RlzF0pMfd6l6TrdDskIPLjnv64ZBONq1Uy0N6QC83rNQPb4jDKdWeNraBNDlWw9F5y_caaHlTtzc3FPSM9JwUdBLmkI7TCcWj_SXF81qK3BKLu7C-rRum6G0DWOohi4fn9L6-n70lV6ffJicjFgcssJLncsWsTpx0XnGrbWmlU0UeUnBZ1snCKxzCkRW6TAJkUdZ5YYu0qESFIMt96pOKvyODZtaE94SGEscTpqIsuBYQtFghHWTeWVA8hQgr2yWi16kpI_s4DsG4M32Z2dREUxg0hcHhmJzvkqPfYvOOfuMpAd0bzPyxjwy4iKdE93sDG_jHULu2CbP10mQ5-PQUeX4e-wbBERAu__D_S9gjz0eTHxfm4mx8_pG8wDdd4eAnMlgt1uEzBEAr9yVu8F9URwTi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipid+nanoparticles+produce+chimeric+antigen+receptor+T+cells+with+interleukin-6+knockdown+in+vivo&rft.jtitle=Journal+of+controlled+release&rft.au=Zhou%2C+Jing-e&rft.au=Sun%2C+Lei&rft.au=Jia%2C+Yujie&rft.au=Wang%2C+Zhehao&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=350&rft.spage=298&rft.epage=307&rft_id=info:doi/10.1016%2Fj.jconrel.2022.08.033&rft.externalDocID=S0168365922005387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |