A low-power stretchable neuromorphic nerve with proprioceptive feedback
By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid...
Saved in:
Published in | Nature biomedical engineering Vol. 7; no. 4; pp. 511 - 519 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.
A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. |
---|---|
AbstractList | By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation. By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation. A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation. |
Author | Seo, Dae-Gyo Lee, Tae-Woo Kim, Yeongin Li, Jinxing Liu, Yuxin Kang, Jiheong Bao, Zhenan Oh, Jin Young Foudeh, Amir M. Mun, Jaewan Kim, Jaemin Lee, Yeongjun |
Author_xml | – sequence: 1 givenname: Yeongjun surname: Lee fullname: Lee, Yeongjun organization: Department of Materials Science and Engineering, Seoul National University, Department of Chemical Engineering, Stanford University – sequence: 2 givenname: Yuxin orcidid: 0000-0003-0623-9402 surname: Liu fullname: Liu, Yuxin organization: Department of Bioengineering, Stanford University, Department of Biomedical Engineering, National University of Singapore – sequence: 3 givenname: Dae-Gyo surname: Seo fullname: Seo, Dae-Gyo organization: Department of Materials Science and Engineering, Seoul National University – sequence: 4 givenname: Jin Young surname: Oh fullname: Oh, Jin Young organization: Department of Chemical Engineering, Stanford University – sequence: 5 givenname: Yeongin orcidid: 0000-0002-9495-3165 surname: Kim fullname: Kim, Yeongin organization: Department of Electrical Engineering, Stanford University – sequence: 6 givenname: Jinxing surname: Li fullname: Li, Jinxing organization: Department of Chemical Engineering, Stanford University – sequence: 7 givenname: Jiheong surname: Kang fullname: Kang, Jiheong organization: Department of Chemical Engineering, Stanford University – sequence: 8 givenname: Jaemin surname: Kim fullname: Kim, Jaemin organization: Department of Chemical Engineering, Stanford University – sequence: 9 givenname: Jaewan surname: Mun fullname: Mun, Jaewan organization: Department of Chemical Engineering, Stanford University – sequence: 10 givenname: Amir M. surname: Foudeh fullname: Foudeh, Amir M. organization: Department of Chemical Engineering, Stanford University – sequence: 11 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan email: zbao@stanford.edu organization: Department of Chemical Engineering, Stanford University – sequence: 12 givenname: Tae-Woo orcidid: 0000-0002-6449-6725 surname: Lee fullname: Lee, Tae-Woo email: twlees@snu.ac.kr organization: Department of Materials Science and Engineering, Seoul National University, School of Chemical and Biological Engineering, Seoul National University, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35970931$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMojq8_4EIKbtxU82iaZjkMvmDAjYK7kKa3TsdOU5PU0X9vtA6KC1e5uXzncu49-2i7sx0gdEzwOcGsuPAZ4ZykmNIUY0mK9G0L7VHCRVpk-eP2r3qCjrxfYoyJZJkUfBdNGJcCS0b20PU0ae067e0aXOKDg2AWumwh6WBwdmVdv2hM_LhXSNZNWCS9s71rrIE-NLFXA1SlNs-HaKfWrYej7_cAPVxd3s9u0vnd9e1sOk8NEzykWkDOK5rXOs-ZpByE4ZRLQ7DMhKEFA1pySnFFNC-ymuWEUwLYACm5yFnGDtDZODf6eBnAB7VqvIG21R3YwSsqMI07ZoxF9PQPurSD66I7RQucU0lwwSN18k0N5QoqFZdbafeuNieKQDECxlnvHdTKNEGHxnbB6aZVBKvPQNQYiIqBqK9A1FuU0j_SzfR_RWwU-Qh3T-B-bP-j-gAnoZw2 |
CitedBy_id | crossref_primary_10_1016_j_device_2023_100113 crossref_primary_10_1016_j_wees_2024_09_004 crossref_primary_10_1038_s41467_024_44723_3 crossref_primary_10_1073_pnas_2407971121 crossref_primary_10_1038_s41467_022_35092_w crossref_primary_10_1039_D4MH00522H crossref_primary_10_1021_acssuschemeng_3c00184 crossref_primary_10_1002_adfm_202500048 crossref_primary_10_1021_acs_chemrev_2c00720 crossref_primary_10_1002_advs_202304763 crossref_primary_10_1016_j_xcrp_2024_101877 crossref_primary_10_1038_s41746_024_01002_1 crossref_primary_10_3390_ijms24065182 crossref_primary_10_1063_5_0228989 crossref_primary_10_6023_A23050213 crossref_primary_10_1002_adma_202303125 crossref_primary_10_20517_ss_2024_12 crossref_primary_10_3390_app13084688 crossref_primary_10_1038_s44287_024_00081_2 crossref_primary_10_1016_j_mattod_2024_08_027 crossref_primary_10_1016_j_nanoen_2024_110062 crossref_primary_10_1021_acs_chemrev_3c00317 crossref_primary_10_1002_aisy_202300016 crossref_primary_10_1002_adma_202311255 crossref_primary_10_1021_acsnano_2c08042 crossref_primary_10_1021_acsnano_3c10028 crossref_primary_10_1007_s11814_024_00284_1 crossref_primary_10_1016_j_device_2024_100574 crossref_primary_10_1088_1748_605X_ad1f78 crossref_primary_10_1021_acs_accounts_4c00215 crossref_primary_10_1021_acsnano_3c02513 crossref_primary_10_1021_acsnano_5c01406 crossref_primary_10_1002_adma_202311288 crossref_primary_10_1016_j_matt_2024_10_022 crossref_primary_10_1021_acsnano_3c03212 crossref_primary_10_1002_adfm_202307729 crossref_primary_10_1002_adma_202406977 crossref_primary_10_1002_sstr_202500134 crossref_primary_10_1021_acsami_4c02303 crossref_primary_10_1038_s41578_023_00622_5 crossref_primary_10_1038_s41928_025_01357_7 crossref_primary_10_1002_advs_202306191 crossref_primary_10_1002_admt_202301458 crossref_primary_10_1038_s41467_023_44064_7 crossref_primary_10_1002_adhm_202400562 crossref_primary_10_1038_s41928_025_01354_w crossref_primary_10_1063_5_0153082 crossref_primary_10_1126_sciadv_adm9322 crossref_primary_10_1002_advs_202409568 crossref_primary_10_1002_admt_202400338 crossref_primary_10_1002_smm2_1261 crossref_primary_10_1038_s44222_024_00194_1 crossref_primary_10_1021_acs_chemrev_4c00571 crossref_primary_10_1016_j_pmatsci_2023_101139 crossref_primary_10_1186_s42234_023_00118_1 crossref_primary_10_1088_2516_1091_ad0b19 crossref_primary_10_1016_j_cossms_2024_101142 crossref_primary_10_1063_5_0160168 crossref_primary_10_1016_j_device_2024_100284 crossref_primary_10_1039_D3NR05488H crossref_primary_10_1002_adma_202303311 crossref_primary_10_1016_j_bios_2024_116444 crossref_primary_10_1002_bio_70148 crossref_primary_10_1039_D4TC04150J crossref_primary_10_1038_s41928_024_01200_5 crossref_primary_10_1002_advs_202309735 crossref_primary_10_1002_adhm_202303797 crossref_primary_10_1002_adma_202403444 crossref_primary_10_1038_s41467_024_47630_9 crossref_primary_10_1038_s41467_023_43542_2 crossref_primary_10_1002_apxr_202400165 crossref_primary_10_1016_j_adna_2024_08_001 crossref_primary_10_1016_j_actbio_2023_12_025 crossref_primary_10_1016_j_xcrp_2024_101957 crossref_primary_10_1088_1674_4926_24090013 crossref_primary_10_3390_bios14030150 crossref_primary_10_3390_ma16062346 crossref_primary_10_1002_adfm_202303970 crossref_primary_10_1002_adhm_202303289 crossref_primary_10_1088_1741_2552_ad5935 crossref_primary_10_1088_2634_4386_ad5eb5 crossref_primary_10_1021_jacsau_3c00220 crossref_primary_10_1088_2058_8585_ad0a37 crossref_primary_10_1002_advs_202303728 crossref_primary_10_1002_adma_202201864 crossref_primary_10_1038_s41467_024_47532_w crossref_primary_10_1021_acs_chemrev_3c00527 crossref_primary_10_1002_aisy_202300402 crossref_primary_10_1038_s41467_023_42240_3 crossref_primary_10_1038_s41578_023_00587_5 crossref_primary_10_1126_science_adg0059 crossref_primary_10_3390_electronics13061076 crossref_primary_10_1002_aisy_202200371 crossref_primary_10_1016_j_nanoen_2024_109891 crossref_primary_10_46670_JSST_2023_32_6_386 crossref_primary_10_1016_j_biomaterials_2024_122861 crossref_primary_10_1088_2631_7990_acfd69 crossref_primary_10_1038_s41467_024_45590_8 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1002_advs_202402175 crossref_primary_10_1021_acsami_4c11976 crossref_primary_10_1007_s12274_022_5357_1 crossref_primary_10_1063_5_0205138 crossref_primary_10_1039_D3TC00752A |
Cites_doi | 10.1126/science.aba5132 10.1002/adma.202007350 10.1038/ncomms11425 10.1021/acs.accounts.8b00488 10.1152/advan.00155.2012 10.1126/sciadv.abe3996 10.1002/adbi.201800281 10.1002/adma.201800572 10.1038/s41586-018-0536-x 10.1016/S1474-4422(18)30499-X 10.1002/adma.201503288 10.1126/science.aao0098 10.1016/j.medengphy.2008.06.001 10.1016/j.nanoen.2019.104035 10.1016/j.joule.2021.01.005 10.1021/acs.accounts.8b00553 10.1002/adma.201905399 10.1038/s41551-018-0335-6 10.1002/adma.201903558 10.1002/adhm.201901570 10.1038/s41593-018-0262-6 10.1002/admt.201900856 10.1038/s41587-020-0495-2 10.1002/adma.201704401 10.1002/adma.201906899 10.1093/brain/awy340 10.1038/nature20118 10.1002/adma.202002653 10.1016/j.actbio.2013.10.031 10.1002/adma.201801291 10.1126/sciadv.1501326 10.1002/adfm.201808783 10.1126/sciadv.aax4961 10.1038/s41467-020-17850-w 10.1126/sciadv.aat7387 10.1126/scitranslmed.3005968 10.1016/j.medengphy.2010.01.006 10.1038/nature10987 10.1111/j.1525-1594.2005.29039.x 10.1126/scirobotics.aax2198 10.1038/s41467-021-21319-9 10.1038/s41467-020-18025-3 10.1038/s41928-020-00493-6 10.1038/s41563-019-0548-4 10.6080/K0FT8J72 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41551-022-00918-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database (ProQuest) Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 519 |
ExternalDocumentID | 35970931 10_1038_s41551_022_00918_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Seoul National University grantid: Creative-Pioneering Researchers Program funderid: https://doi.org/10.13039/501100002551 – fundername: National Research Foundation of Korea (NRF) grantid: NRF-2016R1A3B1908431 funderid: https://doi.org/10.13039/501100003725 – fundername: Agency for Science, Technology and Research (A*STAR) funderid: https://doi.org/10.13039/501100001348 |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-a7e65d26fa663925e7c5259c10947c283e2b5220d1a584f361521e0ce1b576343 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Thu Jul 10 23:09:49 EDT 2025 Wed Jul 16 16:31:59 EDT 2025 Mon Jul 21 06:01:54 EDT 2025 Sun Aug 31 08:57:44 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Sun Aug 31 08:58:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-a7e65d26fa663925e7c5259c10947c283e2b5220d1a584f361521e0ce1b576343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6449-6725 0000-0003-0623-9402 0000-0002-9495-3165 0000-0002-0972-1715 |
PMID | 35970931 |
PQID | 2806291085 |
PQPubID | 4669717 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2702975433 proquest_journals_2806291085 pubmed_primary_35970931 crossref_citationtrail_10_1038_s41551_022_00918_x crossref_primary_10_1038_s41551_022_00918_x springer_journals_10_1038_s41551_022_00918_x |
PublicationCentury | 2000 |
PublicationDate | 2023-04-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat. Biomed. Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Liu (CR42) 2015; 27 Cai (CR30) 2018; 30 You, Kong, Jeong (CR34) 2019; 52 Park (CR27) 2018; 561 Hukins, Mahomed, Kukureka (CR44) 2008; 30 Hu (CR3) 2020; 9 Wan (CR16) 2018; 30 Kim (CR25) 2021; 7 You (CR26) 2020; 370 Tan (CR28) 2020; 19 Broderick, O’Briain, Breen, Kearns, ÓLaighin (CR9) 2010; 32 Park (CR12) 2020; 32 Li, Anwar Ali, Cheng, Yang, Tee (CR29) 2020; 5 Lee, Park, Kim, Lee (CR33) 2021; 5 Shim (CR24) 2019; 5 Sim (CR36) 2020; 3 Seo (CR20) 2019; 65 Head, Arber (CR38) 2013; 37 Choi, Oh, Qian, Park, Cho (CR18) 2020; 11 Zhang (CR19) 2019; 29 Feigin (CR1) 2019; 18 Lee (CR21) 2018; 4 Ethier, Oby, Bauman, Miller (CR6) 2012; 485 Lee (CR13) 2019; 4 Lee, Lee (CR11) 2019; 52 Song (CR7) 2020; 11 Kim (CR31) 2018; 360 Lee (CR37) 2018; 30 Park (CR15) 2020; 32 Borton, Micera, Millan, Courtine (CR4) 2013; 5 Sekitani (CR35) 2016; 7 Liu (CR39) 2019; 3 Eggers (CR2) 2019; 142 Formento (CR41) 2018; 21 Minnikanti (CR43) 2014; 10 Xu, Min, Hwang, Lee (CR32) 2016; 2 Capogrosso (CR5) 2016; 539 Zhang (CR14) 2021; 33 Wei (CR23) 2021; 12 CR45 He (CR22) 2020; 32 Wang, Wang, Lee (CR8) 2019; 3 Qian (CR17) 2020; 32 Bijak (CR10) 2005; 29 Liu (CR40) 2020; 38 Y Lee (918_CR21) 2018; 4 I You (918_CR26) 2020; 370 D-G Seo (918_CR20) 2019; 65 Y Lee (918_CR11) 2019; 52 S Zhang (918_CR14) 2021; 33 Y Liu (918_CR40) 2020; 38 J Wang (918_CR8) 2019; 3 K He (918_CR22) 2020; 32 S Kim (918_CR25) 2021; 7 H-L Park (918_CR12) 2020; 32 Y Lee (918_CR37) 2018; 30 SI Head (918_CR38) 2013; 37 K-I Song (918_CR7) 2020; 11 BJ Broderick (918_CR9) 2010; 32 Y Kim (918_CR31) 2018; 360 D Borton (918_CR4) 2013; 5 R Eggers (918_CR2) 2019; 142 Y Lee (918_CR33) 2021; 5 K Sim (918_CR36) 2020; 3 Z Liu (918_CR42) 2015; 27 P Li (918_CR29) 2020; 5 WW Lee (918_CR13) 2019; 4 E Formento (918_CR41) 2018; 21 M Capogrosso (918_CR5) 2016; 539 S Park (918_CR27) 2018; 561 P Cai (918_CR30) 2018; 30 X Hu (918_CR3) 2020; 9 I You (918_CR34) 2019; 52 C Wan (918_CR16) 2018; 30 C Zhang (918_CR19) 2019; 29 H Shim (918_CR24) 2019; 5 T Sekitani (918_CR35) 2016; 7 Y Liu (918_CR39) 2019; 3 DWL Hukins (918_CR44) 2008; 30 918_CR45 H Park (918_CR15) 2020; 32 M Bijak (918_CR10) 2005; 29 S Minnikanti (918_CR43) 2014; 10 C Qian (918_CR17) 2020; 32 VL Feigin (918_CR1) 2019; 18 H Wei (918_CR23) 2021; 12 C Ethier (918_CR6) 2012; 485 W Xu (918_CR32) 2016; 2 Y Choi (918_CR18) 2020; 11 YJ Tan (918_CR28) 2020; 19 36076076 - Nat Biomed Eng. 2022 Sep;6(9):1085 |
References_xml | – ident: CR45 – volume: 370 start-page: 961 year: 2020 end-page: 965 ident: CR26 article-title: Artificial multimodal receptors based on ion relaxation dynamics publication-title: Science doi: 10.1126/science.aba5132 – volume: 33 start-page: 2007350 year: 2021 ident: CR14 article-title: Selective release of different neurotransmitters emulated by a p–i–n junction synaptic transistor for environment‐responsive action control publication-title: Adv. Mater. doi: 10.1002/adma.202007350 – volume: 7 year: 2016 ident: CR35 article-title: Ultraflexible organic amplifier with biocompatible gel electrodes publication-title: Nat. Commun. doi: 10.1038/ncomms11425 – volume: 52 start-page: 63 year: 2019 end-page: 72 ident: CR34 article-title: Block copolymer elastomers for stretchable electronics publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00488 – volume: 37 start-page: 405 year: 2013 end-page: 414 ident: CR38 article-title: An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle publication-title: Adv. Physiol. Educ. doi: 10.1152/advan.00155.2012 – volume: 7 start-page: eabe3996 year: 2021 ident: CR25 article-title: Artificial stimulus-response system capable of conscious response publication-title: Sci. Adv. doi: 10.1126/sciadv.abe3996 – volume: 3 start-page: 1800281 year: 2019 ident: CR8 article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode publication-title: Adv. Biosyst. doi: 10.1002/adbi.201800281 – volume: 30 start-page: 1800572 year: 2018 ident: CR30 article-title: Biomechano-interactive materials and interfaces publication-title: Adv. Mater. doi: 10.1002/adma.201800572 – volume: 561 start-page: 516 year: 2018 end-page: 521 ident: CR27 article-title: Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics publication-title: Nature doi: 10.1038/s41586-018-0536-x – volume: 18 start-page: 459 year: 2019 end-page: 480 ident: CR1 article-title: Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30499-X – volume: 27 start-page: 6230 year: 2015 end-page: 6237 ident: CR42 article-title: Thickness-gradient films for high gauge factor stretchable strain sensors publication-title: Adv. Mater. doi: 10.1002/adma.201503288 – volume: 360 start-page: 998 year: 2018 end-page: 1003 ident: CR31 article-title: A bioinspired flexible organic artificial afferent nerve publication-title: Science doi: 10.1126/science.aao0098 – volume: 30 start-page: 1270 year: 2008 end-page: 1274 ident: CR44 article-title: Accelerated aging for testing polymeric biomaterials and medical devices publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.06.001 – volume: 65 start-page: 104035 year: 2019 ident: CR20 article-title: Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104035 – volume: 5 start-page: 1 year: 2021 end-page: 17 ident: CR33 article-title: Organic electronic synapses with low energy consumption publication-title: Joule doi: 10.1016/j.joule.2021.01.005 – volume: 52 start-page: 964 year: 2019 end-page: 974 ident: CR11 article-title: Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00553 – volume: 32 start-page: 1905399 year: 2020 ident: CR22 article-title: An artificial somatic reflex arc publication-title: Adv. Mater. doi: 10.1002/adma.201905399 – volume: 3 start-page: 58 year: 2019 end-page: 68 ident: CR39 article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0335-6 – volume: 32 start-page: 1903558 year: 2020 ident: CR12 article-title: Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics publication-title: Adv. Mater. doi: 10.1002/adma.201903558 – volume: 9 start-page: 1901570 year: 2020 ident: CR3 article-title: Electric conductivity on aligned nanofibers facilitates the transdifferentiation of mesenchymal stem cells into schwann cells and regeneration of injured peripheral nerve publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201901570 – volume: 21 start-page: 1728 year: 2018 end-page: 1741 ident: CR41 article-title: Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0262-6 – volume: 5 start-page: 1900856 year: 2020 ident: CR29 article-title: Bioinspired prosthetic interfaces publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900856 – volume: 38 start-page: 1031 year: 2020 end-page: 1036 ident: CR40 article-title: Morphing electronics enable neuromodulation in growing tissue publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0495-2 – volume: 30 start-page: 1704401 year: 2018 ident: CR37 article-title: Deformable organic nanowire field-effect transistors publication-title: Adv. Mater. doi: 10.1002/adma.201704401 – volume: 32 start-page: 1906899 year: 2020 ident: CR15 article-title: Retina‐inspired carbon nitride‐based photonic synapses for selective detection of UV light publication-title: Adv. Mater. doi: 10.1002/adma.201906899 – volume: 142 start-page: 295 year: 2019 end-page: 311 ident: CR2 article-title: Timed GDNF gene therapy using an immune-evasive gene switch promotes long distance axon regeneration publication-title: Brain doi: 10.1093/brain/awy340 – volume: 539 start-page: 284 year: 2016 end-page: 288 ident: CR5 article-title: A brain–spine interface alleviating gait deficits after spinal cord injury in primates publication-title: Nature doi: 10.1038/nature20118 – volume: 32 start-page: 2002653 year: 2020 ident: CR17 article-title: Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis publication-title: Adv. Mater. doi: 10.1002/adma.202002653 – volume: 10 start-page: 960 year: 2014 end-page: 967 ident: CR43 article-title: Lifetime assessment of atomic-layer-deposited Al O –parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.031 – volume: 30 start-page: 1801291 year: 2018 ident: CR16 article-title: An artificial sensory neuron with tactile perceptual learning publication-title: Adv. Mater. doi: 10.1002/adma.201801291 – volume: 2 start-page: e1501326 year: 2016 ident: CR32 article-title: Organic core–sheath nanowire artificial synapses with femtojoule energy consumption publication-title: Sci. Adv. doi: 10.1126/sciadv.1501326 – volume: 29 start-page: 1808783 year: 2019 ident: CR19 article-title: Bioinspired artificial sensory nerve based on nafion memristor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808783 – volume: 5 start-page: eaax4961 year: 2019 ident: CR24 article-title: Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems publication-title: Sci. Adv. doi: 10.1126/sciadv.aax4961 – volume: 11 year: 2020 ident: CR18 article-title: Vertical organic synapse expandable to 3D crossbar array publication-title: Nat. Commun. doi: 10.1038/s41467-020-17850-w – volume: 4 start-page: eaat7387 year: 2018 ident: CR21 article-title: Stretchable organic optoelectronic sensorimotor synapse publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7387 – volume: 5 start-page: 210rv2 year: 2013 ident: CR4 article-title: Personalized neuroprosthetics publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005968 – volume: 32 start-page: 349 year: 2010 end-page: 355 ident: CR9 article-title: A pilot evaluation of a neuromuscular electrical stimulation (NMES) based methodology for the prevention of venous stasis during bed rest publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.01.006 – volume: 485 start-page: 368 year: 2012 end-page: 371 ident: CR6 article-title: Restoration of grasp following paralysis through brain-controlled stimulation of muscles publication-title: Nature doi: 10.1038/nature10987 – volume: 29 start-page: 220 year: 2005 end-page: 223 ident: CR10 article-title: Stimulation parameter optimization for FES supported standing up and walking in SCI patients publication-title: Artif. Organs doi: 10.1111/j.1525-1594.2005.29039.x – volume: 4 start-page: eaax2198 year: 2019 ident: CR13 article-title: A neuro-inspired artificial peripheral nervous system for scalable electronic skins publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax2198 – volume: 12 year: 2021 ident: CR23 article-title: Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-021-21319-9 – volume: 11 year: 2020 ident: CR7 article-title: Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces publication-title: Nat. Commun. doi: 10.1038/s41467-020-18025-3 – volume: 3 start-page: 775 year: 2020 end-page: 784 ident: CR36 article-title: An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity publication-title: Nat. Electron. doi: 10.1038/s41928-020-00493-6 – volume: 19 start-page: 182 year: 2020 end-page: 188 ident: CR28 article-title: A transparent, self-healing and high- dielectric for low-field-emission stretchable optoelectronics publication-title: Nat. Mater. doi: 10.1038/s41563-019-0548-4 – volume: 9 start-page: 1901570 year: 2020 ident: 918_CR3 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201901570 – volume: 360 start-page: 998 year: 2018 ident: 918_CR31 publication-title: Science doi: 10.1126/science.aao0098 – volume: 18 start-page: 459 year: 2019 ident: 918_CR1 publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(18)30499-X – volume: 21 start-page: 1728 year: 2018 ident: 918_CR41 publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0262-6 – volume: 12 year: 2021 ident: 918_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21319-9 – volume: 4 start-page: eaax2198 year: 2019 ident: 918_CR13 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aax2198 – volume: 29 start-page: 1808783 year: 2019 ident: 918_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808783 – volume: 37 start-page: 405 year: 2013 ident: 918_CR38 publication-title: Adv. Physiol. Educ. doi: 10.1152/advan.00155.2012 – volume: 30 start-page: 1801291 year: 2018 ident: 918_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201801291 – volume: 27 start-page: 6230 year: 2015 ident: 918_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201503288 – volume: 370 start-page: 961 year: 2020 ident: 918_CR26 publication-title: Science doi: 10.1126/science.aba5132 – volume: 30 start-page: 1704401 year: 2018 ident: 918_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201704401 – volume: 11 year: 2020 ident: 918_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17850-w – volume: 52 start-page: 964 year: 2019 ident: 918_CR11 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00553 – volume: 52 start-page: 63 year: 2019 ident: 918_CR34 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00488 – volume: 11 year: 2020 ident: 918_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18025-3 – volume: 29 start-page: 220 year: 2005 ident: 918_CR10 publication-title: Artif. Organs doi: 10.1111/j.1525-1594.2005.29039.x – volume: 3 start-page: 1800281 year: 2019 ident: 918_CR8 publication-title: Adv. Biosyst. doi: 10.1002/adbi.201800281 – volume: 4 start-page: eaat7387 year: 2018 ident: 918_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat7387 – volume: 33 start-page: 2007350 year: 2021 ident: 918_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.202007350 – volume: 7 start-page: eabe3996 year: 2021 ident: 918_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe3996 – volume: 3 start-page: 58 year: 2019 ident: 918_CR39 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0335-6 – volume: 142 start-page: 295 year: 2019 ident: 918_CR2 publication-title: Brain doi: 10.1093/brain/awy340 – volume: 32 start-page: 1906899 year: 2020 ident: 918_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201906899 – volume: 5 start-page: 1900856 year: 2020 ident: 918_CR29 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900856 – volume: 32 start-page: 1903558 year: 2020 ident: 918_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201903558 – volume: 65 start-page: 104035 year: 2019 ident: 918_CR20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104035 – volume: 5 start-page: 210rv2 year: 2013 ident: 918_CR4 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3005968 – ident: 918_CR45 doi: 10.6080/K0FT8J72 – volume: 5 start-page: eaax4961 year: 2019 ident: 918_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax4961 – volume: 2 start-page: e1501326 year: 2016 ident: 918_CR32 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501326 – volume: 30 start-page: 1270 year: 2008 ident: 918_CR44 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.06.001 – volume: 485 start-page: 368 year: 2012 ident: 918_CR6 publication-title: Nature doi: 10.1038/nature10987 – volume: 32 start-page: 349 year: 2010 ident: 918_CR9 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.01.006 – volume: 561 start-page: 516 year: 2018 ident: 918_CR27 publication-title: Nature doi: 10.1038/s41586-018-0536-x – volume: 539 start-page: 284 year: 2016 ident: 918_CR5 publication-title: Nature doi: 10.1038/nature20118 – volume: 3 start-page: 775 year: 2020 ident: 918_CR36 publication-title: Nat. Electron. doi: 10.1038/s41928-020-00493-6 – volume: 19 start-page: 182 year: 2020 ident: 918_CR28 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0548-4 – volume: 38 start-page: 1031 year: 2020 ident: 918_CR40 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0495-2 – volume: 32 start-page: 2002653 year: 2020 ident: 918_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.202002653 – volume: 32 start-page: 1905399 year: 2020 ident: 918_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201905399 – volume: 30 start-page: 1800572 year: 2018 ident: 918_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201800572 – volume: 5 start-page: 1 year: 2021 ident: 918_CR33 publication-title: Joule doi: 10.1016/j.joule.2021.01.005 – volume: 7 year: 2016 ident: 918_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms11425 – volume: 10 start-page: 960 year: 2014 ident: 918_CR43 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.10.031 – reference: 36076076 - Nat Biomed Eng. 2022 Sep;6(9):1085 |
SSID | ssj0001934975 |
Score | 2.5578308 |
Snippet | By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 511 |
SubjectTerms | 639/301/1005/1007 639/301/923/1028 Animals Artificial muscles Bioengineering Biomedical and Life Sciences Biomedical engineering Biomedical Engineering/Biotechnology Biomedicine Carbon nanotubes Cortex (motor) Disorders Electrodes Electronics Engineering Feedback Feedback, Sensory Hydrogels Injuries Mice Motor Neurons Movement disorders Muscle spindles Muscles Nanotechnology Nanotubes, Carbon Nanowires Nerves Nervous system Neural prostheses Neurological diseases Neurology Neuromorphic computing Patients Power management Proprioception Prosthetics Quality of life Rehabilitation Sensors Signal processing Spinal cord Spinal cord injuries Synapses - physiology Transistors |
Title | A low-power stretchable neuromorphic nerve with proprioceptive feedback |
URI | https://link.springer.com/article/10.1038/s41551-022-00918-x https://www.ncbi.nlm.nih.gov/pubmed/35970931 https://www.proquest.com/docview/2806291085 https://www.proquest.com/docview/2702975433 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-O10SgXfNNgsTdM8iYpzCA4RBd9KmmYg6jrdpvvzvWuzTRF97GfSuyb3u4_kB3CohMl0ojNmJFGYKaGZSbhlPHZRN1LW6JxCAzeduP0QXT_KRx9wG_iyysmcWE7UeWEpRn5CGcCmplr50_4bI9Yoyq56Co15WMApOEHna-H8snN7N4uyaBFpJf1qmVAkJwOyoOhBow-G8IInbPzTIv2Cmb9SpKXlaa3AsoeMwVml41WYc701WPq2keA6XJ0FL8Un6xPlWUDLP1AXtCYqKLerfC1QmE8WD94_XECR1wDbx9aKsqYFz3XRhmXGPm_AQ-vy_qLNPEUCs0LJITPKxTJvxl2DyEE3pVNWokNjOXptyiJ0cM0MEVaYc4NIoytiMtcutI5n6GiISGxCrVf03DYEGTonOU907nCIciE1Ap0wi6huU4R5yOvAJ2JKrd8_nGgsXtIyjy2StBJtiqJNS9Gm4zocTZ_pV7tn_Ht3YyL91I-kQTrTex0OppdxDFBiw_RcMcJ7FFFwyUiIOmxVWps2hx-iQi2w-8cTNc5e_ndfdv7vyy4sEu98VcLTgNrwfeT2EJ0Ms32YT1pX-_5H_ALnvuAB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcEThQDlUBfrY8goSnKhFHMdxfKgQApbleQKJm-s4XqkqbLbsUuCn-EZm8tgFIbhxTOLEzszY854BWFPCZjrVGbOSWpgpoZlNuWM88XE3Vs7qnEwDJ6dJ5zw-vJAXE_DQ5MJQWGVzJpYHdV44spFvkgcw0hQrv9X_x6hrFHlXmxYaFVkc-ftbVNkGvw52Eb_rUdTeO9vpsLqrAHNCySGzyicyj5KuRWarI-mVk6gDOI6KjnLIbX2UoVAS5twic-6KhDicD53nGcrmIhb43Q8wFQuhaUel7f2xTUeLWCtZ5-aEIt0cEL9GfR01PhRmeMrunvO_F0LtC4dsyefan-FTLaAG2xVFzcKE783BzJOyhfOwvx1cFresTw3WAko2QcxTBlZQFse8KhB1fxxeXP_3Adl5A5wfZyvKCBq810WOmVn39wucvwvovsJkr-j57xBkqArlPNW5xwOBC6lRrAqzmKJERZiHvAW8AZNxdbVyappxaUqvuUhNBVqDoDUlaM1dCzZG7_SrWh1vjl5soG_qfTswYyprweroMe44cqPYni9ucIyihl8SCaAF3yqsjabDH1GhFrj8nw0axx9_fS0_3l7LCkx3zk6OzfHB6dECfKSO91Xw0CJMDq9v_BLKRcNsuSTGAH6_N_U_AhDMGCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low-power+stretchable+neuromorphic+nerve+with+proprioceptive+feedback&rft.jtitle=Nature+biomedical+engineering&rft.au=Lee%2C+Yeongjun&rft.au=Liu%2C+Yuxin&rft.au=Seo%2C+Dae-Gyo&rft.au=Oh%2C+Jin+Young&rft.date=2023-04-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-846X&rft.volume=7&rft.issue=4&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1038%2Fs41551-022-00918-x&rft.externalDocID=10_1038_s41551_022_00918_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |