A low-power stretchable neuromorphic nerve with proprioceptive feedback

By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 7; no. 4; pp. 511 - 519
Main Authors Lee, Yeongjun, Liu, Yuxin, Seo, Dae-Gyo, Oh, Jin Young, Kim, Yeongin, Li, Jinxing, Kang, Jiheong, Kim, Jaemin, Mun, Jaewan, Foudeh, Amir M., Bao, Zhenan, Lee, Tae-Woo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation. A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run.
AbstractList By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run.
By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.
By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation. A stretchable neuromorphic ‘nerve’ restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run.
By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been damaged as a consequence of injuries affecting the spinal cord or the lower motor neurons. However, conventional neuroprosthetic devices are rigid and power-hungry. Here we report a stretchable neuromorphic implant that restores coordinated and smooth motions in the legs of mice with neurological motor disorders, enabling the animals to kick a ball, walk or run. The neuromorphic implant acts as an artificial efferent nerve by generating electrophysiological signals from excitatory post-synaptic signals and by providing proprioceptive feedback. The device operates at low power (~1/150 that of a typical microprocessor system), and consists of hydrogel electrodes connected to a stretchable transistor incorporating an organic semiconducting nanowire (acting as an artificial synapse), connected via an ion gel to an artificial proprioceptor incorporating a carbon nanotube strain sensor (acting as an artificial muscle spindle). Stretchable electronics with proprioceptive feedback may inspire the further development of advanced neuromorphic devices for neurorehabilitation.
Author Seo, Dae-Gyo
Lee, Tae-Woo
Kim, Yeongin
Li, Jinxing
Liu, Yuxin
Kang, Jiheong
Bao, Zhenan
Oh, Jin Young
Foudeh, Amir M.
Mun, Jaewan
Kim, Jaemin
Lee, Yeongjun
Author_xml – sequence: 1
  givenname: Yeongjun
  surname: Lee
  fullname: Lee, Yeongjun
  organization: Department of Materials Science and Engineering, Seoul National University, Department of Chemical Engineering, Stanford University
– sequence: 2
  givenname: Yuxin
  orcidid: 0000-0003-0623-9402
  surname: Liu
  fullname: Liu, Yuxin
  organization: Department of Bioengineering, Stanford University, Department of Biomedical Engineering, National University of Singapore
– sequence: 3
  givenname: Dae-Gyo
  surname: Seo
  fullname: Seo, Dae-Gyo
  organization: Department of Materials Science and Engineering, Seoul National University
– sequence: 4
  givenname: Jin Young
  surname: Oh
  fullname: Oh, Jin Young
  organization: Department of Chemical Engineering, Stanford University
– sequence: 5
  givenname: Yeongin
  orcidid: 0000-0002-9495-3165
  surname: Kim
  fullname: Kim, Yeongin
  organization: Department of Electrical Engineering, Stanford University
– sequence: 6
  givenname: Jinxing
  surname: Li
  fullname: Li, Jinxing
  organization: Department of Chemical Engineering, Stanford University
– sequence: 7
  givenname: Jiheong
  surname: Kang
  fullname: Kang, Jiheong
  organization: Department of Chemical Engineering, Stanford University
– sequence: 8
  givenname: Jaemin
  surname: Kim
  fullname: Kim, Jaemin
  organization: Department of Chemical Engineering, Stanford University
– sequence: 9
  givenname: Jaewan
  surname: Mun
  fullname: Mun, Jaewan
  organization: Department of Chemical Engineering, Stanford University
– sequence: 10
  givenname: Amir M.
  surname: Foudeh
  fullname: Foudeh, Amir M.
  organization: Department of Chemical Engineering, Stanford University
– sequence: 11
  givenname: Zhenan
  orcidid: 0000-0002-0972-1715
  surname: Bao
  fullname: Bao, Zhenan
  email: zbao@stanford.edu
  organization: Department of Chemical Engineering, Stanford University
– sequence: 12
  givenname: Tae-Woo
  orcidid: 0000-0002-6449-6725
  surname: Lee
  fullname: Lee, Tae-Woo
  email: twlees@snu.ac.kr
  organization: Department of Materials Science and Engineering, Seoul National University, School of Chemical and Biological Engineering, Seoul National University, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35970931$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMojq8_4EIKbtxU82iaZjkMvmDAjYK7kKa3TsdOU5PU0X9vtA6KC1e5uXzncu49-2i7sx0gdEzwOcGsuPAZ4ZykmNIUY0mK9G0L7VHCRVpk-eP2r3qCjrxfYoyJZJkUfBdNGJcCS0b20PU0ae067e0aXOKDg2AWumwh6WBwdmVdv2hM_LhXSNZNWCS9s71rrIE-NLFXA1SlNs-HaKfWrYej7_cAPVxd3s9u0vnd9e1sOk8NEzykWkDOK5rXOs-ZpByE4ZRLQ7DMhKEFA1pySnFFNC-ymuWEUwLYACm5yFnGDtDZODf6eBnAB7VqvIG21R3YwSsqMI07ZoxF9PQPurSD66I7RQucU0lwwSN18k0N5QoqFZdbafeuNieKQDECxlnvHdTKNEGHxnbB6aZVBKvPQNQYiIqBqK9A1FuU0j_SzfR_RWwU-Qh3T-B-bP-j-gAnoZw2
CitedBy_id crossref_primary_10_1016_j_device_2023_100113
crossref_primary_10_1016_j_wees_2024_09_004
crossref_primary_10_1038_s41467_024_44723_3
crossref_primary_10_1073_pnas_2407971121
crossref_primary_10_1038_s41467_022_35092_w
crossref_primary_10_1039_D4MH00522H
crossref_primary_10_1021_acssuschemeng_3c00184
crossref_primary_10_1002_adfm_202500048
crossref_primary_10_1021_acs_chemrev_2c00720
crossref_primary_10_1002_advs_202304763
crossref_primary_10_1016_j_xcrp_2024_101877
crossref_primary_10_1038_s41746_024_01002_1
crossref_primary_10_3390_ijms24065182
crossref_primary_10_1063_5_0228989
crossref_primary_10_6023_A23050213
crossref_primary_10_1002_adma_202303125
crossref_primary_10_20517_ss_2024_12
crossref_primary_10_3390_app13084688
crossref_primary_10_1038_s44287_024_00081_2
crossref_primary_10_1016_j_mattod_2024_08_027
crossref_primary_10_1016_j_nanoen_2024_110062
crossref_primary_10_1021_acs_chemrev_3c00317
crossref_primary_10_1002_aisy_202300016
crossref_primary_10_1002_adma_202311255
crossref_primary_10_1021_acsnano_2c08042
crossref_primary_10_1021_acsnano_3c10028
crossref_primary_10_1007_s11814_024_00284_1
crossref_primary_10_1016_j_device_2024_100574
crossref_primary_10_1088_1748_605X_ad1f78
crossref_primary_10_1021_acs_accounts_4c00215
crossref_primary_10_1021_acsnano_3c02513
crossref_primary_10_1021_acsnano_5c01406
crossref_primary_10_1002_adma_202311288
crossref_primary_10_1016_j_matt_2024_10_022
crossref_primary_10_1021_acsnano_3c03212
crossref_primary_10_1002_adfm_202307729
crossref_primary_10_1002_adma_202406977
crossref_primary_10_1002_sstr_202500134
crossref_primary_10_1021_acsami_4c02303
crossref_primary_10_1038_s41578_023_00622_5
crossref_primary_10_1038_s41928_025_01357_7
crossref_primary_10_1002_advs_202306191
crossref_primary_10_1002_admt_202301458
crossref_primary_10_1038_s41467_023_44064_7
crossref_primary_10_1002_adhm_202400562
crossref_primary_10_1038_s41928_025_01354_w
crossref_primary_10_1063_5_0153082
crossref_primary_10_1126_sciadv_adm9322
crossref_primary_10_1002_advs_202409568
crossref_primary_10_1002_admt_202400338
crossref_primary_10_1002_smm2_1261
crossref_primary_10_1038_s44222_024_00194_1
crossref_primary_10_1021_acs_chemrev_4c00571
crossref_primary_10_1016_j_pmatsci_2023_101139
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_1088_2516_1091_ad0b19
crossref_primary_10_1016_j_cossms_2024_101142
crossref_primary_10_1063_5_0160168
crossref_primary_10_1016_j_device_2024_100284
crossref_primary_10_1039_D3NR05488H
crossref_primary_10_1002_adma_202303311
crossref_primary_10_1016_j_bios_2024_116444
crossref_primary_10_1002_bio_70148
crossref_primary_10_1039_D4TC04150J
crossref_primary_10_1038_s41928_024_01200_5
crossref_primary_10_1002_advs_202309735
crossref_primary_10_1002_adhm_202303797
crossref_primary_10_1002_adma_202403444
crossref_primary_10_1038_s41467_024_47630_9
crossref_primary_10_1038_s41467_023_43542_2
crossref_primary_10_1002_apxr_202400165
crossref_primary_10_1016_j_adna_2024_08_001
crossref_primary_10_1016_j_actbio_2023_12_025
crossref_primary_10_1016_j_xcrp_2024_101957
crossref_primary_10_1088_1674_4926_24090013
crossref_primary_10_3390_bios14030150
crossref_primary_10_3390_ma16062346
crossref_primary_10_1002_adfm_202303970
crossref_primary_10_1002_adhm_202303289
crossref_primary_10_1088_1741_2552_ad5935
crossref_primary_10_1088_2634_4386_ad5eb5
crossref_primary_10_1021_jacsau_3c00220
crossref_primary_10_1088_2058_8585_ad0a37
crossref_primary_10_1002_advs_202303728
crossref_primary_10_1002_adma_202201864
crossref_primary_10_1038_s41467_024_47532_w
crossref_primary_10_1021_acs_chemrev_3c00527
crossref_primary_10_1002_aisy_202300402
crossref_primary_10_1038_s41467_023_42240_3
crossref_primary_10_1038_s41578_023_00587_5
crossref_primary_10_1126_science_adg0059
crossref_primary_10_3390_electronics13061076
crossref_primary_10_1002_aisy_202200371
crossref_primary_10_1016_j_nanoen_2024_109891
crossref_primary_10_46670_JSST_2023_32_6_386
crossref_primary_10_1016_j_biomaterials_2024_122861
crossref_primary_10_1088_2631_7990_acfd69
crossref_primary_10_1038_s41467_024_45590_8
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1002_advs_202402175
crossref_primary_10_1021_acsami_4c11976
crossref_primary_10_1007_s12274_022_5357_1
crossref_primary_10_1063_5_0205138
crossref_primary_10_1039_D3TC00752A
Cites_doi 10.1126/science.aba5132
10.1002/adma.202007350
10.1038/ncomms11425
10.1021/acs.accounts.8b00488
10.1152/advan.00155.2012
10.1126/sciadv.abe3996
10.1002/adbi.201800281
10.1002/adma.201800572
10.1038/s41586-018-0536-x
10.1016/S1474-4422(18)30499-X
10.1002/adma.201503288
10.1126/science.aao0098
10.1016/j.medengphy.2008.06.001
10.1016/j.nanoen.2019.104035
10.1016/j.joule.2021.01.005
10.1021/acs.accounts.8b00553
10.1002/adma.201905399
10.1038/s41551-018-0335-6
10.1002/adma.201903558
10.1002/adhm.201901570
10.1038/s41593-018-0262-6
10.1002/admt.201900856
10.1038/s41587-020-0495-2
10.1002/adma.201704401
10.1002/adma.201906899
10.1093/brain/awy340
10.1038/nature20118
10.1002/adma.202002653
10.1016/j.actbio.2013.10.031
10.1002/adma.201801291
10.1126/sciadv.1501326
10.1002/adfm.201808783
10.1126/sciadv.aax4961
10.1038/s41467-020-17850-w
10.1126/sciadv.aat7387
10.1126/scitranslmed.3005968
10.1016/j.medengphy.2010.01.006
10.1038/nature10987
10.1111/j.1525-1594.2005.29039.x
10.1126/scirobotics.aax2198
10.1038/s41467-021-21319-9
10.1038/s41467-020-18025-3
10.1038/s41928-020-00493-6
10.1038/s41563-019-0548-4
10.6080/K0FT8J72
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. corrected publication 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41551-022-00918-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 519
ExternalDocumentID 35970931
10_1038_s41551_022_00918_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Seoul National University
  grantid: Creative-Pioneering Researchers Program
  funderid: https://doi.org/10.13039/501100002551
– fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2016R1A3B1908431
  funderid: https://doi.org/10.13039/501100003725
– fundername: Agency for Science, Technology and Research (A*STAR)
  funderid: https://doi.org/10.13039/501100001348
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-a7e65d26fa663925e7c5259c10947c283e2b5220d1a584f361521e0ce1b576343
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Thu Jul 10 23:09:49 EDT 2025
Wed Jul 16 16:31:59 EDT 2025
Mon Jul 21 06:01:54 EDT 2025
Sun Aug 31 08:57:44 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Sun Aug 31 08:58:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a7e65d26fa663925e7c5259c10947c283e2b5220d1a584f361521e0ce1b576343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6449-6725
0000-0003-0623-9402
0000-0002-9495-3165
0000-0002-0972-1715
PMID 35970931
PQID 2806291085
PQPubID 4669717
PageCount 9
ParticipantIDs proquest_miscellaneous_2702975433
proquest_journals_2806291085
pubmed_primary_35970931
crossref_citationtrail_10_1038_s41551_022_00918_x
crossref_primary_10_1038_s41551_022_00918_x
springer_journals_10_1038_s41551_022_00918_x
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat. Biomed. Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Liu (CR42) 2015; 27
Cai (CR30) 2018; 30
You, Kong, Jeong (CR34) 2019; 52
Park (CR27) 2018; 561
Hukins, Mahomed, Kukureka (CR44) 2008; 30
Hu (CR3) 2020; 9
Wan (CR16) 2018; 30
Kim (CR25) 2021; 7
You (CR26) 2020; 370
Tan (CR28) 2020; 19
Broderick, O’Briain, Breen, Kearns, ÓLaighin (CR9) 2010; 32
Park (CR12) 2020; 32
Li, Anwar Ali, Cheng, Yang, Tee (CR29) 2020; 5
Lee, Park, Kim, Lee (CR33) 2021; 5
Shim (CR24) 2019; 5
Sim (CR36) 2020; 3
Seo (CR20) 2019; 65
Head, Arber (CR38) 2013; 37
Choi, Oh, Qian, Park, Cho (CR18) 2020; 11
Zhang (CR19) 2019; 29
Feigin (CR1) 2019; 18
Lee (CR21) 2018; 4
Ethier, Oby, Bauman, Miller (CR6) 2012; 485
Lee (CR13) 2019; 4
Lee, Lee (CR11) 2019; 52
Song (CR7) 2020; 11
Kim (CR31) 2018; 360
Lee (CR37) 2018; 30
Park (CR15) 2020; 32
Borton, Micera, Millan, Courtine (CR4) 2013; 5
Sekitani (CR35) 2016; 7
Liu (CR39) 2019; 3
Eggers (CR2) 2019; 142
Formento (CR41) 2018; 21
Minnikanti (CR43) 2014; 10
Xu, Min, Hwang, Lee (CR32) 2016; 2
Capogrosso (CR5) 2016; 539
Zhang (CR14) 2021; 33
Wei (CR23) 2021; 12
CR45
He (CR22) 2020; 32
Wang, Wang, Lee (CR8) 2019; 3
Qian (CR17) 2020; 32
Bijak (CR10) 2005; 29
Liu (CR40) 2020; 38
Y Lee (918_CR21) 2018; 4
I You (918_CR26) 2020; 370
D-G Seo (918_CR20) 2019; 65
Y Lee (918_CR11) 2019; 52
S Zhang (918_CR14) 2021; 33
Y Liu (918_CR40) 2020; 38
J Wang (918_CR8) 2019; 3
K He (918_CR22) 2020; 32
S Kim (918_CR25) 2021; 7
H-L Park (918_CR12) 2020; 32
Y Lee (918_CR37) 2018; 30
SI Head (918_CR38) 2013; 37
K-I Song (918_CR7) 2020; 11
BJ Broderick (918_CR9) 2010; 32
Y Kim (918_CR31) 2018; 360
D Borton (918_CR4) 2013; 5
R Eggers (918_CR2) 2019; 142
Y Lee (918_CR33) 2021; 5
K Sim (918_CR36) 2020; 3
Z Liu (918_CR42) 2015; 27
P Li (918_CR29) 2020; 5
WW Lee (918_CR13) 2019; 4
E Formento (918_CR41) 2018; 21
M Capogrosso (918_CR5) 2016; 539
S Park (918_CR27) 2018; 561
P Cai (918_CR30) 2018; 30
X Hu (918_CR3) 2020; 9
I You (918_CR34) 2019; 52
C Wan (918_CR16) 2018; 30
C Zhang (918_CR19) 2019; 29
H Shim (918_CR24) 2019; 5
T Sekitani (918_CR35) 2016; 7
Y Liu (918_CR39) 2019; 3
DWL Hukins (918_CR44) 2008; 30
918_CR45
H Park (918_CR15) 2020; 32
M Bijak (918_CR10) 2005; 29
S Minnikanti (918_CR43) 2014; 10
C Qian (918_CR17) 2020; 32
VL Feigin (918_CR1) 2019; 18
H Wei (918_CR23) 2021; 12
C Ethier (918_CR6) 2012; 485
W Xu (918_CR32) 2016; 2
Y Choi (918_CR18) 2020; 11
YJ Tan (918_CR28) 2020; 19
36076076 - Nat Biomed Eng. 2022 Sep;6(9):1085
References_xml – ident: CR45
– volume: 370
  start-page: 961
  year: 2020
  end-page: 965
  ident: CR26
  article-title: Artificial multimodal receptors based on ion relaxation dynamics
  publication-title: Science
  doi: 10.1126/science.aba5132
– volume: 33
  start-page: 2007350
  year: 2021
  ident: CR14
  article-title: Selective release of different neurotransmitters emulated by a p–i–n junction synaptic transistor for environment‐responsive action control
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007350
– volume: 7
  year: 2016
  ident: CR35
  article-title: Ultraflexible organic amplifier with biocompatible gel electrodes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11425
– volume: 52
  start-page: 63
  year: 2019
  end-page: 72
  ident: CR34
  article-title: Block copolymer elastomers for stretchable electronics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00488
– volume: 37
  start-page: 405
  year: 2013
  end-page: 414
  ident: CR38
  article-title: An active learning mammalian skeletal muscle lab demonstrating contractile and kinetic properties of fast- and slow-twitch muscle
  publication-title: Adv. Physiol. Educ.
  doi: 10.1152/advan.00155.2012
– volume: 7
  start-page: eabe3996
  year: 2021
  ident: CR25
  article-title: Artificial stimulus-response system capable of conscious response
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe3996
– volume: 3
  start-page: 1800281
  year: 2019
  ident: CR8
  article-title: Mechanism and applications of electrical stimulation disturbance on motoneuron excitability studied using flexible intramuscular electrode
  publication-title: Adv. Biosyst.
  doi: 10.1002/adbi.201800281
– volume: 30
  start-page: 1800572
  year: 2018
  ident: CR30
  article-title: Biomechano-interactive materials and interfaces
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800572
– volume: 561
  start-page: 516
  year: 2018
  end-page: 521
  ident: CR27
  article-title: Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics
  publication-title: Nature
  doi: 10.1038/s41586-018-0536-x
– volume: 18
  start-page: 459
  year: 2019
  end-page: 480
  ident: CR1
  article-title: Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30499-X
– volume: 27
  start-page: 6230
  year: 2015
  end-page: 6237
  ident: CR42
  article-title: Thickness-gradient films for high gauge factor stretchable strain sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503288
– volume: 360
  start-page: 998
  year: 2018
  end-page: 1003
  ident: CR31
  article-title: A bioinspired flexible organic artificial afferent nerve
  publication-title: Science
  doi: 10.1126/science.aao0098
– volume: 30
  start-page: 1270
  year: 2008
  end-page: 1274
  ident: CR44
  article-title: Accelerated aging for testing polymeric biomaterials and medical devices
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.06.001
– volume: 65
  start-page: 104035
  year: 2019
  ident: CR20
  article-title: Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104035
– volume: 5
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR33
  article-title: Organic electronic synapses with low energy consumption
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.005
– volume: 52
  start-page: 964
  year: 2019
  end-page: 974
  ident: CR11
  article-title: Organic synapses for neuromorphic electronics: from brain-inspired computing to sensorimotor nervetronics
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00553
– volume: 32
  start-page: 1905399
  year: 2020
  ident: CR22
  article-title: An artificial somatic reflex arc
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905399
– volume: 3
  start-page: 58
  year: 2019
  end-page: 68
  ident: CR39
  article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0335-6
– volume: 32
  start-page: 1903558
  year: 2020
  ident: CR12
  article-title: Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903558
– volume: 9
  start-page: 1901570
  year: 2020
  ident: CR3
  article-title: Electric conductivity on aligned nanofibers facilitates the transdifferentiation of mesenchymal stem cells into schwann cells and regeneration of injured peripheral nerve
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201901570
– volume: 21
  start-page: 1728
  year: 2018
  end-page: 1741
  ident: CR41
  article-title: Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0262-6
– volume: 5
  start-page: 1900856
  year: 2020
  ident: CR29
  article-title: Bioinspired prosthetic interfaces
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900856
– volume: 38
  start-page: 1031
  year: 2020
  end-page: 1036
  ident: CR40
  article-title: Morphing electronics enable neuromodulation in growing tissue
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0495-2
– volume: 30
  start-page: 1704401
  year: 2018
  ident: CR37
  article-title: Deformable organic nanowire field-effect transistors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704401
– volume: 32
  start-page: 1906899
  year: 2020
  ident: CR15
  article-title: Retina‐inspired carbon nitride‐based photonic synapses for selective detection of UV light
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906899
– volume: 142
  start-page: 295
  year: 2019
  end-page: 311
  ident: CR2
  article-title: Timed GDNF gene therapy using an immune-evasive gene switch promotes long distance axon regeneration
  publication-title: Brain
  doi: 10.1093/brain/awy340
– volume: 539
  start-page: 284
  year: 2016
  end-page: 288
  ident: CR5
  article-title: A brain–spine interface alleviating gait deficits after spinal cord injury in primates
  publication-title: Nature
  doi: 10.1038/nature20118
– volume: 32
  start-page: 2002653
  year: 2020
  ident: CR17
  article-title: Oxygen-detecting synaptic device for realization of artificial autonomic nervous system for maintaining oxygen homeostasis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002653
– volume: 10
  start-page: 960
  year: 2014
  end-page: 967
  ident: CR43
  article-title: Lifetime assessment of atomic-layer-deposited Al O –parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.031
– volume: 30
  start-page: 1801291
  year: 2018
  ident: CR16
  article-title: An artificial sensory neuron with tactile perceptual learning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801291
– volume: 2
  start-page: e1501326
  year: 2016
  ident: CR32
  article-title: Organic core–sheath nanowire artificial synapses with femtojoule energy consumption
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501326
– volume: 29
  start-page: 1808783
  year: 2019
  ident: CR19
  article-title: Bioinspired artificial sensory nerve based on nafion memristor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808783
– volume: 5
  start-page: eaax4961
  year: 2019
  ident: CR24
  article-title: Stretchable elastic synaptic transistors for neurologically integrated soft engineering systems
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax4961
– volume: 11
  year: 2020
  ident: CR18
  article-title: Vertical organic synapse expandable to 3D crossbar array
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17850-w
– volume: 4
  start-page: eaat7387
  year: 2018
  ident: CR21
  article-title: Stretchable organic optoelectronic sensorimotor synapse
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat7387
– volume: 5
  start-page: 210rv2
  year: 2013
  ident: CR4
  article-title: Personalized neuroprosthetics
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005968
– volume: 32
  start-page: 349
  year: 2010
  end-page: 355
  ident: CR9
  article-title: A pilot evaluation of a neuromuscular electrical stimulation (NMES) based methodology for the prevention of venous stasis during bed rest
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.01.006
– volume: 485
  start-page: 368
  year: 2012
  end-page: 371
  ident: CR6
  article-title: Restoration of grasp following paralysis through brain-controlled stimulation of muscles
  publication-title: Nature
  doi: 10.1038/nature10987
– volume: 29
  start-page: 220
  year: 2005
  end-page: 223
  ident: CR10
  article-title: Stimulation parameter optimization for FES supported standing up and walking in SCI patients
  publication-title: Artif. Organs
  doi: 10.1111/j.1525-1594.2005.29039.x
– volume: 4
  start-page: eaax2198
  year: 2019
  ident: CR13
  article-title: A neuro-inspired artificial peripheral nervous system for scalable electronic skins
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax2198
– volume: 12
  year: 2021
  ident: CR23
  article-title: Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21319-9
– volume: 11
  year: 2020
  ident: CR7
  article-title: Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18025-3
– volume: 3
  start-page: 775
  year: 2020
  end-page: 784
  ident: CR36
  article-title: An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00493-6
– volume: 19
  start-page: 182
  year: 2020
  end-page: 188
  ident: CR28
  article-title: A transparent, self-healing and high- dielectric for low-field-emission stretchable optoelectronics
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0548-4
– volume: 9
  start-page: 1901570
  year: 2020
  ident: 918_CR3
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201901570
– volume: 360
  start-page: 998
  year: 2018
  ident: 918_CR31
  publication-title: Science
  doi: 10.1126/science.aao0098
– volume: 18
  start-page: 459
  year: 2019
  ident: 918_CR1
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30499-X
– volume: 21
  start-page: 1728
  year: 2018
  ident: 918_CR41
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0262-6
– volume: 12
  year: 2021
  ident: 918_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21319-9
– volume: 4
  start-page: eaax2198
  year: 2019
  ident: 918_CR13
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aax2198
– volume: 29
  start-page: 1808783
  year: 2019
  ident: 918_CR19
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808783
– volume: 37
  start-page: 405
  year: 2013
  ident: 918_CR38
  publication-title: Adv. Physiol. Educ.
  doi: 10.1152/advan.00155.2012
– volume: 30
  start-page: 1801291
  year: 2018
  ident: 918_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801291
– volume: 27
  start-page: 6230
  year: 2015
  ident: 918_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503288
– volume: 370
  start-page: 961
  year: 2020
  ident: 918_CR26
  publication-title: Science
  doi: 10.1126/science.aba5132
– volume: 30
  start-page: 1704401
  year: 2018
  ident: 918_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704401
– volume: 11
  year: 2020
  ident: 918_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17850-w
– volume: 52
  start-page: 964
  year: 2019
  ident: 918_CR11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00553
– volume: 52
  start-page: 63
  year: 2019
  ident: 918_CR34
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00488
– volume: 11
  year: 2020
  ident: 918_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18025-3
– volume: 29
  start-page: 220
  year: 2005
  ident: 918_CR10
  publication-title: Artif. Organs
  doi: 10.1111/j.1525-1594.2005.29039.x
– volume: 3
  start-page: 1800281
  year: 2019
  ident: 918_CR8
  publication-title: Adv. Biosyst.
  doi: 10.1002/adbi.201800281
– volume: 4
  start-page: eaat7387
  year: 2018
  ident: 918_CR21
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat7387
– volume: 33
  start-page: 2007350
  year: 2021
  ident: 918_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007350
– volume: 7
  start-page: eabe3996
  year: 2021
  ident: 918_CR25
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe3996
– volume: 3
  start-page: 58
  year: 2019
  ident: 918_CR39
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0335-6
– volume: 142
  start-page: 295
  year: 2019
  ident: 918_CR2
  publication-title: Brain
  doi: 10.1093/brain/awy340
– volume: 32
  start-page: 1906899
  year: 2020
  ident: 918_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906899
– volume: 5
  start-page: 1900856
  year: 2020
  ident: 918_CR29
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900856
– volume: 32
  start-page: 1903558
  year: 2020
  ident: 918_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903558
– volume: 65
  start-page: 104035
  year: 2019
  ident: 918_CR20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104035
– volume: 5
  start-page: 210rv2
  year: 2013
  ident: 918_CR4
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3005968
– ident: 918_CR45
  doi: 10.6080/K0FT8J72
– volume: 5
  start-page: eaax4961
  year: 2019
  ident: 918_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax4961
– volume: 2
  start-page: e1501326
  year: 2016
  ident: 918_CR32
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501326
– volume: 30
  start-page: 1270
  year: 2008
  ident: 918_CR44
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.06.001
– volume: 485
  start-page: 368
  year: 2012
  ident: 918_CR6
  publication-title: Nature
  doi: 10.1038/nature10987
– volume: 32
  start-page: 349
  year: 2010
  ident: 918_CR9
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.01.006
– volume: 561
  start-page: 516
  year: 2018
  ident: 918_CR27
  publication-title: Nature
  doi: 10.1038/s41586-018-0536-x
– volume: 539
  start-page: 284
  year: 2016
  ident: 918_CR5
  publication-title: Nature
  doi: 10.1038/nature20118
– volume: 3
  start-page: 775
  year: 2020
  ident: 918_CR36
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-00493-6
– volume: 19
  start-page: 182
  year: 2020
  ident: 918_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0548-4
– volume: 38
  start-page: 1031
  year: 2020
  ident: 918_CR40
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0495-2
– volume: 32
  start-page: 2002653
  year: 2020
  ident: 918_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002653
– volume: 32
  start-page: 1905399
  year: 2020
  ident: 918_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905399
– volume: 30
  start-page: 1800572
  year: 2018
  ident: 918_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800572
– volume: 5
  start-page: 1
  year: 2021
  ident: 918_CR33
  publication-title: Joule
  doi: 10.1016/j.joule.2021.01.005
– volume: 7
  year: 2016
  ident: 918_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11425
– volume: 10
  start-page: 960
  year: 2014
  ident: 918_CR43
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.10.031
– reference: 36076076 - Nat Biomed Eng. 2022 Sep;6(9):1085
SSID ssj0001934975
Score 2.5578308
Snippet By relaying neural signals from the motor cortex to muscles, devices for neurorehabilitation can enhance the movement of limbs in which nerves have been...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 511
SubjectTerms 639/301/1005/1007
639/301/923/1028
Animals
Artificial muscles
Bioengineering
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering/Biotechnology
Biomedicine
Carbon nanotubes
Cortex (motor)
Disorders
Electrodes
Electronics
Engineering
Feedback
Feedback, Sensory
Hydrogels
Injuries
Mice
Motor Neurons
Movement disorders
Muscle spindles
Muscles
Nanotechnology
Nanotubes, Carbon
Nanowires
Nerves
Nervous system
Neural prostheses
Neurological diseases
Neurology
Neuromorphic computing
Patients
Power management
Proprioception
Prosthetics
Quality of life
Rehabilitation
Sensors
Signal processing
Spinal cord
Spinal cord injuries
Synapses - physiology
Transistors
Title A low-power stretchable neuromorphic nerve with proprioceptive feedback
URI https://link.springer.com/article/10.1038/s41551-022-00918-x
https://www.ncbi.nlm.nih.gov/pubmed/35970931
https://www.proquest.com/docview/2806291085
https://www.proquest.com/docview/2702975433
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD-O10SgXfNNgsTdM8iYpzCA4RBd9KmmYg6jrdpvvzvWuzTRF97GfSuyb3u4_kB3CohMl0ojNmJFGYKaGZSbhlPHZRN1LW6JxCAzeduP0QXT_KRx9wG_iyysmcWE7UeWEpRn5CGcCmplr50_4bI9Yoyq56Co15WMApOEHna-H8snN7N4uyaBFpJf1qmVAkJwOyoOhBow-G8IInbPzTIv2Cmb9SpKXlaa3AsoeMwVml41WYc701WPq2keA6XJ0FL8Un6xPlWUDLP1AXtCYqKLerfC1QmE8WD94_XECR1wDbx9aKsqYFz3XRhmXGPm_AQ-vy_qLNPEUCs0LJITPKxTJvxl2DyEE3pVNWokNjOXptyiJ0cM0MEVaYc4NIoytiMtcutI5n6GiISGxCrVf03DYEGTonOU907nCIciE1Ap0wi6huU4R5yOvAJ2JKrd8_nGgsXtIyjy2StBJtiqJNS9Gm4zocTZ_pV7tn_Ht3YyL91I-kQTrTex0OppdxDFBiw_RcMcJ7FFFwyUiIOmxVWps2hx-iQi2w-8cTNc5e_ndfdv7vyy4sEu98VcLTgNrwfeT2EJ0Ms32YT1pX-_5H_ALnvuAB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcEThQDlUBfrY8goSnKhFHMdxfKgQApbleQKJm-s4XqkqbLbsUuCn-EZm8tgFIbhxTOLEzszY854BWFPCZjrVGbOSWpgpoZlNuWM88XE3Vs7qnEwDJ6dJ5zw-vJAXE_DQ5MJQWGVzJpYHdV44spFvkgcw0hQrv9X_x6hrFHlXmxYaFVkc-ftbVNkGvw52Eb_rUdTeO9vpsLqrAHNCySGzyicyj5KuRWarI-mVk6gDOI6KjnLIbX2UoVAS5twic-6KhDicD53nGcrmIhb43Q8wFQuhaUel7f2xTUeLWCtZ5-aEIt0cEL9GfR01PhRmeMrunvO_F0LtC4dsyefan-FTLaAG2xVFzcKE783BzJOyhfOwvx1cFresTw3WAko2QcxTBlZQFse8KhB1fxxeXP_3Adl5A5wfZyvKCBq810WOmVn39wucvwvovsJkr-j57xBkqArlPNW5xwOBC6lRrAqzmKJERZiHvAW8AZNxdbVyappxaUqvuUhNBVqDoDUlaM1dCzZG7_SrWh1vjl5soG_qfTswYyprweroMe44cqPYni9ucIyihl8SCaAF3yqsjabDH1GhFrj8nw0axx9_fS0_3l7LCkx3zk6OzfHB6dECfKSO91Xw0CJMDq9v_BLKRcNsuSTGAH6_N_U_AhDMGCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low-power+stretchable+neuromorphic+nerve+with+proprioceptive+feedback&rft.jtitle=Nature+biomedical+engineering&rft.au=Lee%2C+Yeongjun&rft.au=Liu%2C+Yuxin&rft.au=Seo%2C+Dae-Gyo&rft.au=Oh%2C+Jin+Young&rft.date=2023-04-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2157-846X&rft.volume=7&rft.issue=4&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1038%2Fs41551-022-00918-x&rft.externalDocID=10_1038_s41551_022_00918_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon