Role of marangoni tension effects on the melt convection in directional solidification process for multi-crystalline silicon ingots

We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional solidification process for multi-crystalline silicon ingots. The argon flow rate was varied to provide different solidification conditions and to change...

Full description

Saved in:
Bibliographic Details
Published inJournal of crystal growth Vol. 346; no. 1; pp. 40 - 44
Main Authors Li, Zaoyang, Liu, Lijun, Nan, Xiaohong, Kakimoto, Koichi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional solidification process for multi-crystalline silicon ingots. The argon flow rate was varied to provide different solidification conditions and to change the relative values between the argon shear stress and the marangoni tension at the melt free surface. We found that the marangoni tension together with the shear stress mainly influences the upper layer melt convection while the thermal buoyancy force dominates the bulk flow of the melt. At low argon flow rates, the argon shear stress can be neglected and the marangoni tension alone enhances the melt convection intensity near the gas–melt–crucible triple junction point. The marangoni tension is so weak that it cannot modify the melt flow pattern in this case. For medium flow rate, the marangoni tension can significantly weaken the shear stress effect at the outer part of the melt free surface, leading to a distinctive flow pattern in the silicon melt. With further increase in argon flow rate, the shear stress sharply increases and dominates the upper layer melt flow, limiting the marangoni tension effect to the triple point. The numerical results are helpful for better understanding and controlling of the directional solidification process for high quality multi-crystalline silicon ingots. ► Numerically investigated the Ma tension effects on the melt convection. ► Ma tension affects the melt convection at the outer part of the melt surface. ► Ma tension induces distinctive melt flow pattern at medium argon flow rate. ► Ma tension effect is limited to the triple point at large argon flow rate. ► Ma tension should be incorporated in accurate simulations of DS processes.
AbstractList We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional solidification process for multi-crystalline silicon ingots. The argon flow rate was varied to provide different solidification conditions and to change the relative values between the argon shear stress and the marangoni tension at the melt free surface. We found that the marangoni tension together with the shear stress mainly influences the upper layer melt convection while the thermal buoyancy force dominates the bulk flow of the melt. At low argon flow rates, the argon shear stress can be neglected and the marangoni tension alone enhances the melt convection intensity near the gas–melt–crucible triple junction point. The marangoni tension is so weak that it cannot modify the melt flow pattern in this case. For medium flow rate, the marangoni tension can significantly weaken the shear stress effect at the outer part of the melt free surface, leading to a distinctive flow pattern in the silicon melt. With further increase in argon flow rate, the shear stress sharply increases and dominates the upper layer melt flow, limiting the marangoni tension effect to the triple point. The numerical results are helpful for better understanding and controlling of the directional solidification process for high quality multi-crystalline silicon ingots. ► Numerically investigated the Ma tension effects on the melt convection. ► Ma tension affects the melt convection at the outer part of the melt surface. ► Ma tension induces distinctive melt flow pattern at medium argon flow rate. ► Ma tension effect is limited to the triple point at large argon flow rate. ► Ma tension should be incorporated in accurate simulations of DS processes.
We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional solidification process for multi-crystalline silicon ingots. The argon flow rate was varied to provide different solidification conditions and to change the relative values between the argon shear stress and the marangoni tension at the melt free surface. We found that the marangoni tension together with the shear stress mainly influences the upper layer melt convection while the thermal buoyancy force dominates the bulk flow of the melt. At low argon flow rates, the argon shear stress can be neglected and the marangoni tension alone enhances the melt convection intensity near the gasameltacrucible triple junction point. The marangoni tension is so weak that it cannot modify the melt flow pattern in this case. For medium flow rate, the marangoni tension can significantly weaken the shear stress effect at the outer part of the melt free surface, leading to a distinctive flow pattern in the silicon melt. With further increase in argon flow rate, the shear stress sharply increases and dominates the upper layer melt flow, limiting the marangoni tension effect to the triple point. The numerical results are helpful for better understanding and controlling of the directional solidification process for high quality multi-crystalline silicon ingots.
Author Li, Zaoyang
Kakimoto, Koichi
Nan, Xiaohong
Liu, Lijun
Author_xml – sequence: 1
  givenname: Zaoyang
  surname: Li
  fullname: Li, Zaoyang
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 2
  givenname: Lijun
  surname: Liu
  fullname: Liu, Lijun
  email: ljliu@mail.xjtu.edu.cn, lijun_liu70@hotmail.com
  organization: School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
– sequence: 3
  givenname: Xiaohong
  surname: Nan
  fullname: Nan, Xiaohong
  organization: School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
– sequence: 4
  givenname: Koichi
  surname: Kakimoto
  fullname: Kakimoto, Koichi
  organization: Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25815644$$DView record in Pascal Francis
BookMark eNqFkF1rVDEQhoO04Lb6FyQ3gjdnnSTn804pVgsFQex1yOZM1izZpGayhV77x83pab0VhnzN885M3gt2FlNExt4J2AoQ_cfD9mDzI-1z2koQcgs1lHjFNmIcVNMByDO2qatsQLbja3ZBdACoSgEb9udHCsiT40eTTdyn6HnBSD5Fjs6hLcTrsfxCfsRQuE3xoT4uaR_57PN6MYFTCn72zlvzlL3PySIRdynz4ykU3ywzFhOCj8jJB2-fauxToTfs3JlA-PZ5v2R3119-Xn1rbr9_vbn6fNtYNXSlMf3QjtBPUo6unWGU_ayg3aleWYGgpk6oeTe0nZvGYaeERBwrLneumwDm1qpL9mGtW4f7fUIq-ujJYggmYjqRFqBq0WmaREX7FbU5EWV0-j77atFjhfTiuj7oF9f14rqGGmoRvn_uYcia4Kqp1tM_texG0fVtW7lPK4f1ww8esybrMVpcPdVz8v9r9Rezj5_T
CODEN JCRGAE
CitedBy_id crossref_primary_10_1007_s12633_019_00339_7
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_018
crossref_primary_10_1016_j_jcrysgro_2013_08_022
crossref_primary_10_1016_j_ijheatfluidflow_2018_03_007
crossref_primary_10_1007_s00161_017_0586_6
crossref_primary_10_1016_j_applthermaleng_2015_08_023
crossref_primary_10_1021_cg500736j
crossref_primary_10_1002_crat_201300123
crossref_primary_10_1007_s12633_020_00843_1
crossref_primary_10_1088_1755_1315_113_1_012146
crossref_primary_10_1007_s12633_022_02217_1
crossref_primary_10_1007_s12633_017_9575_4
crossref_primary_10_1088_2053_1591_ab3ecb
crossref_primary_10_1063_1_4874941
crossref_primary_10_1111_jace_17394
crossref_primary_10_1007_s12633_016_9423_y
crossref_primary_10_1515_revce_2015_0067
crossref_primary_10_1007_s00366_016_0465_y
crossref_primary_10_1155_2013_670315
crossref_primary_10_1016_j_mssp_2018_11_015
crossref_primary_10_1016_j_jcrysgro_2015_01_032
crossref_primary_10_1016_j_jcrysgro_2013_12_062
Cites_doi 10.1002/(SICI)1521-396X(199901)171:1<175::AID-PSSA175>3.0.CO;2-Q
10.1016/j.jcrysgro.2009.11.020
10.1016/j.jcrysgro.2006.11.274
10.1016/S0022-0248(01)02383-1
10.1016/j.jcrysgro.2010.02.003
10.1016/j.physb.2005.12.062
10.1016/S0022-0248(02)02109-7
10.1016/j.jcrysgro.2010.11.040
10.1016/S0022-0248(97)00491-0
10.1021/cg201123x
10.1149/1.3360749
10.1016/j.jcrysgro.2009.09.016
10.1016/j.jcrysgro.2004.02.085
10.1021/cg100275v
10.1016/S0022-0248(01)01567-6
10.1016/j.jcrysgro.2010.07.052
10.1016/j.jcrysgro.2010.11.030
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jcrysgro.2012.02.031
DatabaseName Pascal-Francis
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Physics
EISSN 1873-5002
EndPage 44
ExternalDocumentID 10_1016_j_jcrysgro_2012_02_031
25815644
S0022024812001716
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
08R
29K
AAQXK
ABPIF
ABPTK
AFFNX
AI.
ASPBG
AVWKF
AZFZN
BBWZM
D-I
EJD
FEDTE
FGOYB
G-2
HMV
IQODW
NDZJH
R2-
SEW
SMS
SPG
VH1
WUQ
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
HVGLF
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c375t-a6748069228f4d0826d304b363c1e039513db745f987b312ee88062bf5900d4c3
IEDL.DBID AIKHN
ISSN 0022-0248
IngestDate Fri Aug 16 01:07:36 EDT 2024
Thu Sep 26 17:23:46 EDT 2024
Sun Oct 22 16:07:22 EDT 2023
Fri Feb 23 02:24:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords A1. Computer simulation
A1. Directional solidification
B3. Solar cells
A1. Marangoni tension
A1. Melt convection
Solar cells
Fluid mechanics
A1 Marangoni tension
Calcium selenides
A1 Computer simulation
A1 Directional solidification
Directional solidification
Digital simulation
Crucibles
Flow pattern
Computerized simulation
B3 Solar cells
Marangoni effect
A1 Melt convection
Shear stress
Stress effects
Silicon
Crystal growth from melts
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a6748069228f4d0826d304b363c1e039513db745f987b312ee88062bf5900d4c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1038269991
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1038269991
crossref_primary_10_1016_j_jcrysgro_2012_02_031
pascalfrancis_primary_25815644
elsevier_sciencedirect_doi_10_1016_j_jcrysgro_2012_02_031
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of crystal growth
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Möller, Long, Werner, Yang (bib1) 1999; 171
Liu, Nakano, Kakimoto (bib3) 2007; 303
Nakanishi, Watanabe, Terashima (bib15) 2002; 236
Li, Liu, Ma, Kakimoto (bib10) 2011; 318
Dropka, Miller, Menzel, Rehse (bib9) 2010; 312
Li, Liu, Kakimoto (bib16) 2010; 27
Teng, Chen, Lu, Chen (bib17) 2010; 312
Reimann, Trempa, Friedrich, Muller (bib6) 2010; 312
Popescu, Vizman (bib8) 2011; 12
Kalaev, Evstratov, Makarov (bib12) 2003; 249
Azami, Nakamura, Eguchi, Hibiya (bib13) 2001; 233
Bellmann, Meese, Arnberg (bib5) 2010; 312
Li, Liu, Ma, Kakimoto (bib7) 2011; 318
Machida, Suzuki, Abe, Ono, Kida, Shimizu (bib11) 1998; 186
(bib4) 2010; 1270
Arafune, Sasaki, Wakabayashi, Terada, Ohshita, Yamaguchi (bib2) 2006; 376–377
Li, Imaishi, Akiyama, Peng, Wu, Tsukada (bib14) 2004; 266
Li, Liu, Liu, Zhang, Xiong (bib18) 2011; 11
Möller (10.1016/j.jcrysgro.2012.02.031_bib1) 1999; 171
(10.1016/j.jcrysgro.2012.02.031_bib4) 2010; 1270
Liu (10.1016/j.jcrysgro.2012.02.031_bib3) 2007; 303
Li (10.1016/j.jcrysgro.2012.02.031_bib16) 2010; 27
Bellmann (10.1016/j.jcrysgro.2012.02.031_bib5) 2010; 312
Popescu (10.1016/j.jcrysgro.2012.02.031_bib8) 2011; 12
Li (10.1016/j.jcrysgro.2012.02.031_bib10) 2011; 318
Arafune (10.1016/j.jcrysgro.2012.02.031_bib2) 2006; 376–377
Dropka (10.1016/j.jcrysgro.2012.02.031_bib9) 2010; 312
Kalaev (10.1016/j.jcrysgro.2012.02.031_bib12) 2003; 249
Azami (10.1016/j.jcrysgro.2012.02.031_bib13) 2001; 233
Li (10.1016/j.jcrysgro.2012.02.031_bib7) 2011; 318
Teng (10.1016/j.jcrysgro.2012.02.031_bib17) 2010; 312
Li (10.1016/j.jcrysgro.2012.02.031_bib14) 2004; 266
Reimann (10.1016/j.jcrysgro.2012.02.031_bib6) 2010; 312
Machida (10.1016/j.jcrysgro.2012.02.031_bib11) 1998; 186
Li (10.1016/j.jcrysgro.2012.02.031_bib18) 2011; 11
Nakanishi (10.1016/j.jcrysgro.2012.02.031_bib15) 2002; 236
References_xml – volume: 312
  start-page: 1510
  year: 2010
  ident: bib6
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Muller
– volume: 27
  start-page: 1047
  year: 2010
  ident: bib16
  publication-title: ECS Transactions
  contributor:
    fullname: Kakimoto
– volume: 11
  start-page: 053
  year: 2011
  ident: bib18
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Xiong
– volume: 376–377
  start-page: 236
  year: 2006
  ident: bib2
  publication-title: Physica B
  contributor:
    fullname: Yamaguchi
– volume: 236
  start-page: 523
  year: 2002
  ident: bib15
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Terashima
– volume: 312
  start-page: 1282
  year: 2010
  ident: bib17
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Chen
– volume: 303
  start-page: 165
  year: 2007
  ident: bib3
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Kakimoto
– volume: 318
  start-page: 298
  year: 2011
  ident: bib10
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Kakimoto
– volume: 1270
  start-page: 107
  year: 2010
  ident: bib4
  publication-title: Selected Topics on Crystal Growth
– volume: 171
  start-page: 175
  year: 1999
  ident: bib1
  publication-title: Physica Status Solidi A—Applied Materials
  contributor:
    fullname: Yang
– volume: 186
  start-page: 362
  year: 1998
  ident: bib11
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Shimizu
– volume: 233
  start-page: 99
  year: 2001
  ident: bib13
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Hibiya
– volume: 12
  start-page: 320
  year: 2011
  ident: bib8
  publication-title: Crystal Growth and Design
  contributor:
    fullname: Vizman
– volume: 249
  start-page: 87
  year: 2003
  ident: bib12
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Makarov
– volume: 266
  start-page: 48
  year: 2004
  ident: bib14
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Tsukada
– volume: 312
  start-page: 1407
  year: 2010
  ident: bib9
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Rehse
– volume: 312
  start-page: 3091
  year: 2010
  ident: bib5
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Arnberg
– volume: 318
  start-page: 304
  year: 2011
  ident: bib7
  publication-title: Journal of Crystal Growth
  contributor:
    fullname: Kakimoto
– volume: 171
  start-page: 175
  year: 1999
  ident: 10.1016/j.jcrysgro.2012.02.031_bib1
  publication-title: Physica Status Solidi A—Applied Materials
  doi: 10.1002/(SICI)1521-396X(199901)171:1<175::AID-PSSA175>3.0.CO;2-Q
  contributor:
    fullname: Möller
– volume: 312
  start-page: 1282
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib17
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2009.11.020
  contributor:
    fullname: Teng
– volume: 303
  start-page: 165
  year: 2007
  ident: 10.1016/j.jcrysgro.2012.02.031_bib3
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2006.11.274
  contributor:
    fullname: Liu
– volume: 236
  start-page: 523
  year: 2002
  ident: 10.1016/j.jcrysgro.2012.02.031_bib15
  publication-title: Journal of Crystal Growth
  doi: 10.1016/S0022-0248(01)02383-1
  contributor:
    fullname: Nakanishi
– volume: 312
  start-page: 1510
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib6
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2010.02.003
  contributor:
    fullname: Reimann
– volume: 376–377
  start-page: 236
  year: 2006
  ident: 10.1016/j.jcrysgro.2012.02.031_bib2
  publication-title: Physica B
  doi: 10.1016/j.physb.2005.12.062
  contributor:
    fullname: Arafune
– volume: 249
  start-page: 87
  year: 2003
  ident: 10.1016/j.jcrysgro.2012.02.031_bib12
  publication-title: Journal of Crystal Growth
  doi: 10.1016/S0022-0248(02)02109-7
  contributor:
    fullname: Kalaev
– volume: 318
  start-page: 298
  year: 2011
  ident: 10.1016/j.jcrysgro.2012.02.031_bib10
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2010.11.040
  contributor:
    fullname: Li
– volume: 1270
  start-page: 107
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib4
– volume: 186
  start-page: 362
  year: 1998
  ident: 10.1016/j.jcrysgro.2012.02.031_bib11
  publication-title: Journal of Crystal Growth
  doi: 10.1016/S0022-0248(97)00491-0
  contributor:
    fullname: Machida
– volume: 12
  start-page: 320
  year: 2011
  ident: 10.1016/j.jcrysgro.2012.02.031_bib8
  publication-title: Crystal Growth and Design
  doi: 10.1021/cg201123x
  contributor:
    fullname: Popescu
– volume: 27
  start-page: 1047
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib16
  publication-title: ECS Transactions
  doi: 10.1149/1.3360749
  contributor:
    fullname: Li
– volume: 312
  start-page: 1407
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib9
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2009.09.016
  contributor:
    fullname: Dropka
– volume: 266
  start-page: 48
  year: 2004
  ident: 10.1016/j.jcrysgro.2012.02.031_bib14
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2004.02.085
  contributor:
    fullname: Li
– volume: 11
  start-page: 053
  year: 2011
  ident: 10.1016/j.jcrysgro.2012.02.031_bib18
  publication-title: Journal of Crystal Growth
  doi: 10.1021/cg100275v
  contributor:
    fullname: Li
– volume: 233
  start-page: 99
  year: 2001
  ident: 10.1016/j.jcrysgro.2012.02.031_bib13
  publication-title: Journal of Crystal Growth
  doi: 10.1016/S0022-0248(01)01567-6
  contributor:
    fullname: Azami
– volume: 312
  start-page: 3091
  year: 2010
  ident: 10.1016/j.jcrysgro.2012.02.031_bib5
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2010.07.052
  contributor:
    fullname: Bellmann
– volume: 318
  start-page: 304
  year: 2011
  ident: 10.1016/j.jcrysgro.2012.02.031_bib7
  publication-title: Journal of Crystal Growth
  doi: 10.1016/j.jcrysgro.2010.11.030
  contributor:
    fullname: Li
SSID ssj0001610
Score 2.220233
Snippet We carried out global simulations to investigate the marangoni tension effect on the thermal and flow fields in the silicon melt of the directional...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 40
SubjectTerms A1. Computer simulation
A1. Directional solidification
A1. Marangoni tension
A1. Melt convection
Applied sciences
Argon
B3. Solar cells
Convection
Cross-disciplinary physics: materials science; rheology
Directional solidification
Energy
Exact sciences and technology
Flow rate
Growth from melts; zone melting and refining
Ingots
Materials science
Melts
Methods of crystal growth; physics of crystal growth
Natural energy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Photovoltaic conversion
Physics
Shear stress
Silicon
Solar cells. Photoelectrochemical cells
Solar energy
Solidification
Title Role of marangoni tension effects on the melt convection in directional solidification process for multi-crystalline silicon ingots
URI https://dx.doi.org/10.1016/j.jcrysgro.2012.02.031
https://search.proquest.com/docview/1038269991
Volume 346
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-wwEB50PTxFRH0-3vpjifCuddskbbdHWZRV0YMoeAtNm0iXtV3cevDixX_cmbQVReQdhB7aQtI2k858ab_5BuCfwZgnDC5ybBCOPKlFhn5Qcy_FeKL9xGaxoeTky6tocivP78K7JRh3uTBEq2x9f-PTnbduzwzb0RzOi4JyfDknRa6AN6Ivy7CC4UjKHqwcn11Mrt4dMoIavxMNpwYfEoWnR9Ps8ZkyKIjlxZ18pwi-i1Hr83SBI2ebkhdfvLcLSaebsNFiSXbc3O4WLJlyG36NuxJu27D2QW3wN7xeVzPDKsseUuz6Hl9m5ujrVclaVgfDXQSE7MHMaub46C7rgRUla4bJfTdkOF2LnChGzqps3uQaMIS_zPETPXpYBPWEYNmimOFkoz7uq3qxA7enJzfjidfWYPAyEYe1l1IxEj9KOB9ZmSNeiHLho0kjkQXGF4jPSKBZhjYZxVoE3Bh0CBHXlqqR5jITf6BXVqX5CwyPcOWu8zi2Wsok1Qn9lE0yExue5dbvw7AbdTVvpDZUx0Gbqs5OiuykfNxE0IekM476NGkUxoP_th18sub7JXnoBHRkHw478yo0G_1HSUtTPS0UacrziJD17g9uYA9W6aghT-5Dr358MgcIcGo9gOWjl2DQTuM3G1f-Rg
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JToRAEK24HNQY4xrHtU284kA3y3A0E824Howm3jo0dBsmI0wcPHjx4o9b1YBLjPFgwoG1ga6m6gGvXgEcaox5QuNLjvGCnuMrkaIfVNxJMJ4oNzZppCk5-eo6HNz55_fB_RT021wYolU2vr_26dZbN2u6TW92x3lOOb6ckyKXx2vRl2mYJTRAvK6j10-eB0Iat5UMp92_pAkPj4bp0wvlTxDHi1vxTuH9FqEWx8kE-83UBS9--G4bkE6XYalBkuy4vtgVmNLFKsz12wJuq7DwRWtwDd5uypFmpWGPCTb9gI8ys-T1smANp4PhLMJB9qhHFbNsdJvzwPKC1Z1kvxoyHKx5RgQja1M2rjMNGIJfZtmJDt0sQnrCr2ySj3CoURsPZTVZh7vTk9v-wGkqMDipiILKSagUiRvGnPeMnyFaCDPhokFDkXraFYjOSJ7ZD0zci5TwuNboDkKuDNUizfxUbMBMURZ6Exgu4Xu7yqLIKN-PExXTL9k41ZHmaWbcDnTbXpfjWmhDtgy0oWztJMlO0sVJeB2IW-PIb0NGYjT489i9b9b8OCUPrHyO34GD1rwSzUZ_UZJCl88TSYryPCRcvfWPC9iHucHt1aW8PLu-2IZ52lLTKHdgpnp61rsIdSq1Z4fyO2bA_xs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+marangoni+tension+effects+on+the+melt+convection+in+directional+solidification+process+for+multi-crystalline+silicon+ingots&rft.jtitle=Journal+of+crystal+growth&rft.au=ZAOYANG+LI&rft.au=LIJUN+LIU&rft.au=XIAOHONG+NAN&rft.au=KAKIMOTO%2C+Koichi&rft.date=2012-05-01&rft.pub=Elsevier&rft.issn=0022-0248&rft.eissn=1873-5002&rft.volume=346&rft.issue=1&rft.spage=40&rft.epage=44&rft_id=info:doi/10.1016%2Fj.jcrysgro.2012.02.031&rft.externalDBID=n%2Fa&rft.externalDocID=25815644
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0248&client=summon