Forecasting seasonal influenza with a state-space SIR model

Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides inv...

Full description

Saved in:
Bibliographic Details
Published inThe annals of applied statistics Vol. 11; no. 1; p. 202
Main Authors Osthus, Dave, Hickmann, Kyle S, Caragea, Petruţa C, Higdon, Dave, Del Valle, Sara Y
Format Journal Article
LanguageEnglish
Published United States 01.03.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.
AbstractList Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.
Author Higdon, Dave
Hickmann, Kyle S
Caragea, Petruţa C
Del Valle, Sara Y
Osthus, Dave
Author_xml – sequence: 1
  givenname: Dave
  surname: Osthus
  fullname: Osthus, Dave
  organization: Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA
– sequence: 2
  givenname: Kyle S
  surname: Hickmann
  fullname: Hickmann, Kyle S
  organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
– sequence: 3
  givenname: Petruţa C
  surname: Caragea
  fullname: Caragea, Petruţa C
  organization: Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA
– sequence: 4
  givenname: Dave
  surname: Higdon
  fullname: Higdon, Dave
  organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
– sequence: 5
  givenname: Sara Y
  surname: Del Valle
  fullname: Del Valle, Sara Y
  organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28979611$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tKxDAUQLMYcR66ci_5gei9ebQJrsrg6MDAgKPrIWkSrbRpaTqIfr2Cujqbw4GzJLPUp0DIFcINcpS3WLBqXx0QAGZkgUZwVqAq52SZ8zuAklriOZlzbUpTIC7I3aYfQ23z1KRXmoPNfbItbVJsTyF9WfrRTG_U0jzZKbA82DrQw_aJdr0P7QU5i7bN4fKPK_KyuX9eP7Ld_mG7rnasFqWamC1AOtQlBqGFA-0RMIJXzkhpRF17500EU_w4Cp3U0SonrJAi8Mi1Br4i17_d4eS64I_D2HR2_Dz-X_BvTEtHgA
CitedBy_id crossref_primary_10_1016_j_physa_2024_130302
crossref_primary_10_1016_j_cct_2020_106146
crossref_primary_10_1111_insr_12402
crossref_primary_10_3390_ijerph17134743
crossref_primary_10_3389_fpubh_2022_1108886
crossref_primary_10_1214_18_BA1117
crossref_primary_10_1039_D4SM00864B
crossref_primary_10_1371_journal_pcbi_1008539
crossref_primary_10_3934_dcdsb_2025005
crossref_primary_10_1371_journal_pcbi_1008301
crossref_primary_10_1016_j_epidem_2019_01_002
crossref_primary_10_6000_1929_6029_2023_12_03
crossref_primary_10_1109_TAC_2023_3344871
crossref_primary_10_1186_s12879_024_09718_x
crossref_primary_10_3390_fractalfract7050407
crossref_primary_10_1002_sim_9382
crossref_primary_10_1016_j_physd_2023_133741
crossref_primary_10_1038_s41598_020_77468_2
crossref_primary_10_1371_journal_pcbi_1009230
crossref_primary_10_3390_app10175895
crossref_primary_10_3389_fpubh_2022_999210
crossref_primary_10_1214_22_AOAS1671
crossref_primary_10_1098_rsif_2018_0174
crossref_primary_10_3390_epidemiologia2030021
crossref_primary_10_1111_biom_13901
crossref_primary_10_3934_mbe_2021381
crossref_primary_10_1002_psp4_12732
crossref_primary_10_1007_s00500_023_07823_8
crossref_primary_10_1007_s10651_023_00570_x
crossref_primary_10_1214_23_AOAS1744
crossref_primary_10_1038_s41598_020_76257_1
crossref_primary_10_3390_axioms11030109
crossref_primary_10_1002_sim_8467
crossref_primary_10_1371_journal_pcbi_1008651
crossref_primary_10_1371_journal_pone_0249037
crossref_primary_10_1016_j_epidem_2024_100756
crossref_primary_10_1038_s41467_021_23234_5
crossref_primary_10_1109_TCNS_2023_3306491
crossref_primary_10_2139_ssrn_4165188
crossref_primary_10_1002_cjs_11698
crossref_primary_10_1016_j_idm_2020_09_005
crossref_primary_10_3389_fpubh_2022_994949
crossref_primary_10_1142_S0218202522500464
crossref_primary_10_1214_22_AOAS1601
crossref_primary_10_1016_j_cmpb_2021_106399
crossref_primary_10_1109_JBHI_2024_3377529
crossref_primary_10_1371_journal_pcbi_1005844
crossref_primary_10_5582_bst_2020_03133
crossref_primary_10_1016_j_mbs_2025_109383
crossref_primary_10_1371_journal_pcbi_1007623
crossref_primary_10_1145_3481044
crossref_primary_10_1109_ACCESS_2020_3021952
crossref_primary_10_1186_s13662_023_03792_2
crossref_primary_10_1016_j_ijforecast_2022_06_005
crossref_primary_10_1371_journal_pcbi_1006742
crossref_primary_10_1007_s10441_021_09431_1
crossref_primary_10_3390_vaccines10060932
crossref_primary_10_1109_ACCESS_2025_3526146
crossref_primary_10_1371_journal_pcbi_1006783
crossref_primary_10_1007_s11009_022_09971_0
crossref_primary_10_1186_s13662_020_02995_1
crossref_primary_10_3390_jpm15010010
crossref_primary_10_1016_j_csda_2024_107977
crossref_primary_10_1371_journal_pcbi_1010910
crossref_primary_10_1038_s41746_021_00511_7
crossref_primary_10_51387_21_NEJSDS2
crossref_primary_10_1016_j_rinp_2021_104182
crossref_primary_10_1007_s40995_024_01663_3
crossref_primary_10_1146_annurev_publhealth_010720_021049
crossref_primary_10_1002_qre_2594
crossref_primary_10_1016_j_mbs_2021_108655
crossref_primary_10_3390_analytics1020014
crossref_primary_10_7717_peerj_cs_980
crossref_primary_10_1109_TNSE_2021_3085866
crossref_primary_10_1186_s12879_022_07510_3
crossref_primary_10_1371_journal_pcbi_1012523
crossref_primary_10_1016_j_scitotenv_2020_141686
crossref_primary_10_1038_s41559_024_02594_3
crossref_primary_10_1016_j_physd_2023_133996
crossref_primary_10_1109_JBHI_2021_3093897
crossref_primary_10_1016_j_apm_2023_05_027
crossref_primary_10_1214_17_AOAS1090
crossref_primary_10_1214_16_AOAS1000
crossref_primary_10_1038_s41598_023_45177_1
ContentType Journal Article
DBID NPM
DOI 10.1214/16-AOAS1000
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 28979611
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U01 GM097658
GroupedDBID 123
23M
2AX
6J9
AAWIL
ABAWQ
ABBHK
ABFAN
ABQDR
ABXSQ
ABYWD
ABZEH
ACDIW
ACGFO
ACHJO
ACMTB
ACTMH
ADODI
ADULT
AELLO
AENEX
AETVE
AEUPB
AFFOW
AFVYC
AGLNM
AIHAF
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AS~
CS3
DQDLB
DSRWC
EBS
ECEWR
EJD
F5P
FEDTE
GIFXF
GR0
HDK
HQ6
HVGLF
IPSME
J9A
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
NPM
OK1
P2P
PUASD
RBU
RNS
RPE
SA0
SJN
TN5
WHG
WS9
ID FETCH-LOGICAL-c375t-a604b1871e383b08d101f0d5b94493ccdbd9f096b1851b48fa5b3a343e2f28802
ISSN 1932-6157
IngestDate Mon Jul 21 06:05:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords influenza
state-space modeling
time-series
Bayesian modeling
SIR model
forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-a604b1871e383b08d101f0d5b94493ccdbd9f096b1851b48fa5b3a343e2f28802
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5623938
PMID 28979611
ParticipantIDs pubmed_primary_28979611
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The annals of applied statistics
PublicationTitleAlternate Ann Appl Stat
PublicationYear 2017
SSID ssj0054841
Score 2.4881506
Snippet Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The...
SourceID pubmed
SourceType Index Database
StartPage 202
Title Forecasting seasonal influenza with a state-space SIR model
URI https://www.ncbi.nlm.nih.gov/pubmed/28979611
Volume 11
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cLnoQ913moCcZTTKTtMFTEaUqKriAN5lVi7SKrQf99b5ZOgluqJcQMumQzPf15b03b0FoU-XKJLkuCNNFSeCfKIlQWpKS8qRpEqBQwyY4n54V7Wt2fJPfVDu6LrtkIHbk25d5Jf9BFa4BrjZL9g_IxknhApwDvnAEhOH4K4xtX03J-y5y2Tr7nFev49uOvPGQt7btcoYISA5bdPPowje_qSullio8FlLmQS-1P_NVnKMjtj-4f-mHSPiKEB350A2tlk9ebWhita_xDNKKhzDg55et_XyrRXnlmG137kIvkThhcEDARy1GYAWZCSogWKC-znQUqukn8gQJ6RKsP0vuLGXWiVCQ1nnr0m461O-CZX_qOhDBPmyUhZ_959EPZbSHQ6NoFAwK2yHVunX8JxusNtfiNL5JSOSEZ9qtPZEtHB1m-WCEOGXkahpNBSsCtzwlZtCI7s2iydNYgrc_h_Zq5MBDcuBIDmzJgTmukQMDObAjxzy6Pjy42m-T0CmDSNrIB4QXCRMp2L6aNqlImgoErUlULkrGSiqlEqo0YKzCPXkqWNPwXFBOGdWZyUCCZwtorPfY00sIAz6lhCUotWKsAPvBJIZKnmaZaGRUmWW06N_89smXQ7kdrsnKtyOraKIizhoaN0BovQ7K3EBsOCDeAWLzRV8
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+seasonal+influenza+with+a+state-space+SIR+model&rft.jtitle=The+annals+of+applied+statistics&rft.au=Osthus%2C+Dave&rft.au=Hickmann%2C+Kyle+S&rft.au=Caragea%2C+Petru%C5%A3a+C&rft.au=Higdon%2C+Dave&rft.date=2017-03-01&rft.issn=1932-6157&rft.volume=11&rft.issue=1&rft.spage=202&rft_id=info:doi/10.1214%2F16-AOAS1000&rft_id=info%3Apmid%2F28979611&rft_id=info%3Apmid%2F28979611&rft.externalDocID=28979611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon