Forecasting seasonal influenza with a state-space SIR model
Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides inv...
Saved in:
Published in | The annals of applied statistics Vol. 11; no. 1; p. 202 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics. |
---|---|
AbstractList | Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics. |
Author | Higdon, Dave Hickmann, Kyle S Caragea, Petruţa C Del Valle, Sara Y Osthus, Dave |
Author_xml | – sequence: 1 givenname: Dave surname: Osthus fullname: Osthus, Dave organization: Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA – sequence: 2 givenname: Kyle S surname: Hickmann fullname: Hickmann, Kyle S organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA – sequence: 3 givenname: Petruţa C surname: Caragea fullname: Caragea, Petruţa C organization: Department of Statistics, Iowa State University, 2409 Snedecor Hall, Ames, Iowa 50011, USA – sequence: 4 givenname: Dave surname: Higdon fullname: Higdon, Dave organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA – sequence: 5 givenname: Sara Y surname: Del Valle fullname: Del Valle, Sara Y organization: Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28979611$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tKxDAUQLMYcR66ci_5gei9ebQJrsrg6MDAgKPrIWkSrbRpaTqIfr2Cujqbw4GzJLPUp0DIFcINcpS3WLBqXx0QAGZkgUZwVqAq52SZ8zuAklriOZlzbUpTIC7I3aYfQ23z1KRXmoPNfbItbVJsTyF9WfrRTG_U0jzZKbA82DrQw_aJdr0P7QU5i7bN4fKPK_KyuX9eP7Ld_mG7rnasFqWamC1AOtQlBqGFA-0RMIJXzkhpRF17500EU_w4Cp3U0SonrJAi8Mi1Br4i17_d4eS64I_D2HR2_Dz-X_BvTEtHgA |
CitedBy_id | crossref_primary_10_1016_j_physa_2024_130302 crossref_primary_10_1016_j_cct_2020_106146 crossref_primary_10_1111_insr_12402 crossref_primary_10_3390_ijerph17134743 crossref_primary_10_3389_fpubh_2022_1108886 crossref_primary_10_1214_18_BA1117 crossref_primary_10_1039_D4SM00864B crossref_primary_10_1371_journal_pcbi_1008539 crossref_primary_10_3934_dcdsb_2025005 crossref_primary_10_1371_journal_pcbi_1008301 crossref_primary_10_1016_j_epidem_2019_01_002 crossref_primary_10_6000_1929_6029_2023_12_03 crossref_primary_10_1109_TAC_2023_3344871 crossref_primary_10_1186_s12879_024_09718_x crossref_primary_10_3390_fractalfract7050407 crossref_primary_10_1002_sim_9382 crossref_primary_10_1016_j_physd_2023_133741 crossref_primary_10_1038_s41598_020_77468_2 crossref_primary_10_1371_journal_pcbi_1009230 crossref_primary_10_3390_app10175895 crossref_primary_10_3389_fpubh_2022_999210 crossref_primary_10_1214_22_AOAS1671 crossref_primary_10_1098_rsif_2018_0174 crossref_primary_10_3390_epidemiologia2030021 crossref_primary_10_1111_biom_13901 crossref_primary_10_3934_mbe_2021381 crossref_primary_10_1002_psp4_12732 crossref_primary_10_1007_s00500_023_07823_8 crossref_primary_10_1007_s10651_023_00570_x crossref_primary_10_1214_23_AOAS1744 crossref_primary_10_1038_s41598_020_76257_1 crossref_primary_10_3390_axioms11030109 crossref_primary_10_1002_sim_8467 crossref_primary_10_1371_journal_pcbi_1008651 crossref_primary_10_1371_journal_pone_0249037 crossref_primary_10_1016_j_epidem_2024_100756 crossref_primary_10_1038_s41467_021_23234_5 crossref_primary_10_1109_TCNS_2023_3306491 crossref_primary_10_2139_ssrn_4165188 crossref_primary_10_1002_cjs_11698 crossref_primary_10_1016_j_idm_2020_09_005 crossref_primary_10_3389_fpubh_2022_994949 crossref_primary_10_1142_S0218202522500464 crossref_primary_10_1214_22_AOAS1601 crossref_primary_10_1016_j_cmpb_2021_106399 crossref_primary_10_1109_JBHI_2024_3377529 crossref_primary_10_1371_journal_pcbi_1005844 crossref_primary_10_5582_bst_2020_03133 crossref_primary_10_1016_j_mbs_2025_109383 crossref_primary_10_1371_journal_pcbi_1007623 crossref_primary_10_1145_3481044 crossref_primary_10_1109_ACCESS_2020_3021952 crossref_primary_10_1186_s13662_023_03792_2 crossref_primary_10_1016_j_ijforecast_2022_06_005 crossref_primary_10_1371_journal_pcbi_1006742 crossref_primary_10_1007_s10441_021_09431_1 crossref_primary_10_3390_vaccines10060932 crossref_primary_10_1109_ACCESS_2025_3526146 crossref_primary_10_1371_journal_pcbi_1006783 crossref_primary_10_1007_s11009_022_09971_0 crossref_primary_10_1186_s13662_020_02995_1 crossref_primary_10_3390_jpm15010010 crossref_primary_10_1016_j_csda_2024_107977 crossref_primary_10_1371_journal_pcbi_1010910 crossref_primary_10_1038_s41746_021_00511_7 crossref_primary_10_51387_21_NEJSDS2 crossref_primary_10_1016_j_rinp_2021_104182 crossref_primary_10_1007_s40995_024_01663_3 crossref_primary_10_1146_annurev_publhealth_010720_021049 crossref_primary_10_1002_qre_2594 crossref_primary_10_1016_j_mbs_2021_108655 crossref_primary_10_3390_analytics1020014 crossref_primary_10_7717_peerj_cs_980 crossref_primary_10_1109_TNSE_2021_3085866 crossref_primary_10_1186_s12879_022_07510_3 crossref_primary_10_1371_journal_pcbi_1012523 crossref_primary_10_1016_j_scitotenv_2020_141686 crossref_primary_10_1038_s41559_024_02594_3 crossref_primary_10_1016_j_physd_2023_133996 crossref_primary_10_1109_JBHI_2021_3093897 crossref_primary_10_1016_j_apm_2023_05_027 crossref_primary_10_1214_17_AOAS1090 crossref_primary_10_1214_16_AOAS1000 crossref_primary_10_1038_s41598_023_45177_1 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1214/16-AOAS1000 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 28979611 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM097658 |
GroupedDBID | 123 23M 2AX 6J9 AAWIL ABAWQ ABBHK ABFAN ABQDR ABXSQ ABYWD ABZEH ACDIW ACGFO ACHJO ACMTB ACTMH ADODI ADULT AELLO AENEX AETVE AEUPB AFFOW AFVYC AGLNM AIHAF AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AS~ CS3 DQDLB DSRWC EBS ECEWR EJD F5P FEDTE GIFXF GR0 HDK HQ6 HVGLF IPSME J9A JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST NPM OK1 P2P PUASD RBU RNS RPE SA0 SJN TN5 WHG WS9 |
ID | FETCH-LOGICAL-c375t-a604b1871e383b08d101f0d5b94493ccdbd9f096b1851b48fa5b3a343e2f28802 |
ISSN | 1932-6157 |
IngestDate | Mon Jul 21 06:05:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | influenza state-space modeling time-series Bayesian modeling SIR model forecasting |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-a604b1871e383b08d101f0d5b94493ccdbd9f096b1851b48fa5b3a343e2f28802 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5623938 |
PMID | 28979611 |
ParticipantIDs | pubmed_primary_28979611 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The annals of applied statistics |
PublicationTitleAlternate | Ann Appl Stat |
PublicationYear | 2017 |
SSID | ssj0054841 |
Score | 2.4881506 |
Snippet | Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 202 |
Title | Forecasting seasonal influenza with a state-space SIR model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28979611 |
Volume | 11 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5cLnoQ913moCcZTTKTtMFTEaUqKriAN5lVi7SKrQf99b5ZOgluqJcQMumQzPf15b03b0FoU-XKJLkuCNNFSeCfKIlQWpKS8qRpEqBQwyY4n54V7Wt2fJPfVDu6LrtkIHbk25d5Jf9BFa4BrjZL9g_IxknhApwDvnAEhOH4K4xtX03J-y5y2Tr7nFev49uOvPGQt7btcoYISA5bdPPowje_qSullio8FlLmQS-1P_NVnKMjtj-4f-mHSPiKEB350A2tlk9ebWhita_xDNKKhzDg55et_XyrRXnlmG137kIvkThhcEDARy1GYAWZCSogWKC-znQUqukn8gQJ6RKsP0vuLGXWiVCQ1nnr0m461O-CZX_qOhDBPmyUhZ_959EPZbSHQ6NoFAwK2yHVunX8JxusNtfiNL5JSOSEZ9qtPZEtHB1m-WCEOGXkahpNBSsCtzwlZtCI7s2iydNYgrc_h_Zq5MBDcuBIDmzJgTmukQMDObAjxzy6Pjy42m-T0CmDSNrIB4QXCRMp2L6aNqlImgoErUlULkrGSiqlEqo0YKzCPXkqWNPwXFBOGdWZyUCCZwtorPfY00sIAz6lhCUotWKsAPvBJIZKnmaZaGRUmWW06N_89smXQ7kdrsnKtyOraKIizhoaN0BovQ7K3EBsOCDeAWLzRV8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+seasonal+influenza+with+a+state-space+SIR+model&rft.jtitle=The+annals+of+applied+statistics&rft.au=Osthus%2C+Dave&rft.au=Hickmann%2C+Kyle+S&rft.au=Caragea%2C+Petru%C5%A3a+C&rft.au=Higdon%2C+Dave&rft.date=2017-03-01&rft.issn=1932-6157&rft.volume=11&rft.issue=1&rft.spage=202&rft_id=info:doi/10.1214%2F16-AOAS1000&rft_id=info%3Apmid%2F28979611&rft_id=info%3Apmid%2F28979611&rft.externalDocID=28979611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6157&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6157&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6157&client=summon |