Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change
Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinctio...
Saved in:
Published in | Nature ecology & evolution Vol. 6; no. 6; pp. 720 - 729 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.
Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure. |
---|---|
AbstractList | Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions. Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure. Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions. Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions. Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure. |
Author | Sonne, Jesper Bascompte, Jordi Martín González, Ana M. Rahbek, Carsten Dalsgaard, Bo Maruyama, Pietro K. |
Author_xml | – sequence: 1 givenname: Jesper orcidid: 0000-0002-8570-7288 surname: Sonne fullname: Sonne, Jesper email: jesper.sonne@sund.ku.dk organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen – sequence: 2 givenname: Pietro K. orcidid: 0000-0001-5492-2324 surname: Maruyama fullname: Maruyama, Pietro K. organization: Centre for Ecological Synthesis and Conservation, Department of Genetics, Ecology and Evolution—ICB, Federal University of Minas Gerais (UFMG) – sequence: 3 givenname: Ana M. orcidid: 0000-0001-9429-7180 surname: Martín González fullname: Martín González, Ana M. organization: Pacific Ecoinformatics and Computational Ecology Lab – sequence: 4 givenname: Carsten orcidid: 0000-0003-4585-0300 surname: Rahbek fullname: Rahbek, Carsten organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Institute of Ecology, Peking University, Danish Institute for Advanced Study, University of Southern Denmark – sequence: 5 givenname: Jordi orcidid: 0000-0002-0108-6411 surname: Bascompte fullname: Bascompte, Jordi organization: Department of Evolutionary Biology and Environmental Studies, University of Zurich – sequence: 6 givenname: Bo orcidid: 0000-0003-2867-2805 surname: Dalsgaard fullname: Dalsgaard, Bo organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35347259$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOHDEYha0IFC7hBSiikdJQMMF3r8sIEYKElAakdJbt8SyGGXtje8SlyjvwhjwJzi43UVDZ_vWdX8fnbIG1EIMDYBfB7wiS2UGmiDHZQoxbiLgkLfkENjGRoiWE_ll7c98AOzlfQgiREExy_hlsEEaowExugvnRTfHBFh_DfmOje3k1OnR1MMTg7_Ry0N0GPXqbGx-axaBDefh3fzGNow9z41PXBFeuY7rKzRQ6lxo7-FEX19gLHebuC1jv9ZDdztO5Dc5_Hp0d_mpPfx-fHP44bS0RrLSaIYwNl4hQYxkn1FnJ7KzXsueuN9bYriNGI0mpgIZDjlmHNdTCIC2h6ck22FvtXaT4d3K5qNFn64bq18UpK8wplWRWs6jot3foZZxSqO4qJSjCUkBeqa9P1GRG16lFqt9Kt-o5wgrMVoBNMefkemV9WSZWkvaDQlD9L0ytClO1MLUsTJEqxe-kz9s_FJGVKFe4JptebX-gegRIzKpx |
CitedBy_id | crossref_primary_10_1098_rstb_2022_0368 crossref_primary_10_3389_fevo_2022_951547 crossref_primary_10_1007_s10584_022_03447_3 crossref_primary_10_1111_ele_14150 crossref_primary_10_1016_j_biocon_2025_111050 crossref_primary_10_1146_annurev_ento_120120_102424 crossref_primary_10_3389_fevo_2022_1012809 crossref_primary_10_1111_1365_2656_13972 crossref_primary_10_1111_jbi_14804 crossref_primary_10_1016_j_avrs_2022_100051 crossref_primary_10_3389_fevo_2022_987204 crossref_primary_10_1098_rspb_2023_1372 crossref_primary_10_1111_ele_70073 crossref_primary_10_1073_pnas_2322347121 crossref_primary_10_1007_s00035_024_00308_w crossref_primary_10_1038_s41558_022_01378_6 |
Cites_doi | 10.1098/rspb.2016.1564 10.1016/j.cub.2014.03.016 10.1111/2041-210X.13306 10.1016/j.biocon.2009.12.004 10.1126/science.1072779 10.1146/annurev.ecolsys.39.110707.173430 10.2307/1934856 10.1073/pnas.1014353108 10.2307/2937300 10.1016/j.tree.2010.03.002 10.1126/science.1237184 10.1073/pnas.1803908115 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 10.1111/j.1600-0587.2013.00201.x 10.1038/ncomms13965 10.1086/345459 10.1098/rspb.2019.2873 10.1126/science.1228282 10.1016/j.jtbi.2007.07.030 10.1111/j.1461-0248.2008.01250.x 10.1111/j.1365-2699.2010.02407.x 10.1111/j.1558-5646.1980.tb04822.x 10.1126/science.1210173 10.1016/j.tree.2016.01.003 10.1111/1365-2435.13784 10.1073/pnas.0500424102 10.1038/nclimate2007 10.1111/j.1472-4642.2010.00642.x 10.7289/V5J1012Q 10.1016/j.ecolmodel.2013.03.002 10.1890/14-0589.1 10.1890/04-0922 10.1126/science.aax0149 10.1111/j.0030-1299.2008.16644.x 10.1371/journal.pone.0025891 10.1126/science.1188321 10.1890/07-1748.1 10.1111/j.1461-0248.2008.01269.x 10.1111/j.1461-0248.2009.01437.x 10.1016/j.ecocom.2009.03.008 10.1080/11956860.1999.11682541 10.1111/ecog.02604 10.1098/rsos.140536 10.1073/pnas.1633576100 10.1098/rspb.2017.2754 10.1098/rspb.2004.2909 10.1098/rspb.2000.1277 10.2307/40168278 10.1073/pnas.071034898 10.1098/rstb.2010.0021 10.1038/s41559-018-0631-2 10.1111/j.1461-0248.2007.01061.x 10.1111/1365-2656.12831 10.1038/sdata.2017.122 10.1111/j.1654-1103.2010.01198.x 10.1126/sciadv.aav2539 10.1111/2041-210X.12139 10.1186/1472-6785-6-9 10.1002/bimj.200810425 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION NPM 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7X8 |
DOI | 10.1038/s41559-022-01693-3 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Ecology Geography |
EISSN | 2397-334X |
EndPage | 729 |
ExternalDocumentID | 35347259 10_1038_s41559_022_01693_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Villum Fonden (Villum Foundation) grantid: 25925; 25925 funderid: https://doi.org/10.13039/100008398 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 310030_197201 funderid: https://doi.org/10.13039/501100001711 – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation) grantid: DNRF96; DNRF96 funderid: https://doi.org/10.13039/501100001732 – fundername: Villum Fonden (Villum Foundation) grantid: 25925 – fundername: Danmarks Grundforskningsfond (Danish National Research Foundation) grantid: DNRF96 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: 310030_197201 |
GroupedDBID | 0R~ 53G AAEEF AAHBH AARCD AAYZH ABJNI ABLJU ACBWK ACGFS ADBBV AEUYN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ATCPS AXYYD BBNVY BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P NNMJJ O9- ODYON PATMY PCBAR PYCSY RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX AFANA ATHPR CITATION PHGZM PHGZT NPM 8FE 8FH AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c375t-a5122b69134bc5634ec95c8fa9f6efbcbcdd3ba194470b60625d2a0a7b1a90bf3 |
IEDL.DBID | BENPR |
ISSN | 2397-334X |
IngestDate | Fri Jul 11 00:21:53 EDT 2025 Wed Jul 16 16:41:21 EDT 2025 Wed Feb 19 02:25:54 EST 2025 Tue Jul 01 00:52:49 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Fri Feb 21 02:38:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-a5122b69134bc5634ec95c8fa9f6efbcbcdd3ba194470b60625d2a0a7b1a90bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8570-7288 0000-0001-5492-2324 0000-0003-4585-0300 0000-0002-0108-6411 0000-0001-9429-7180 0000-0003-2867-2805 |
PMID | 35347259 |
PQID | 2674129706 |
PQPubID | 4669716 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2644938017 proquest_journals_2674129706 pubmed_primary_35347259 crossref_citationtrail_10_1038_s41559_022_01693_3 crossref_primary_10_1038_s41559_022_01693_3 springer_journals_10_1038_s41559_022_01693_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature ecology & evolution |
PublicationTitleAbbrev | Nat Ecol Evol |
PublicationTitleAlternate | Nat Ecol Evol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SimmonsBIMoving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networksJ. Anim. Ecol.201887995100729603211684952710.1111/1365-2656.12831 BeckettSJImproved community detection in weighted bipartite networksR. Soc. Open Sci.2016314053626909160473691510.1098/rsos.140536 Martín GonzálezAMDalsgaardBOlesenJMCentrality measures and the importance of generalist species in pollination networksEcol. Complex.20107364310.1016/j.ecocom.2009.03.008 ThébaultEFontaineCStability of ecological communities and the architecture of mutualistic and trophic networksScience20103298538562070586110.1126/science.1188321 BlüthgenNMenzelFBlüthgenNMeasuring specialization in species interaction networksBMC Ecol.2006616907983157033710.1186/1472-6785-6-9 PatefieldWAlgorithm AS 159: an efficient method of generating random R × C tables with given row and column totalsJ. R. Stat. Soc. C1981309197 McGuireJAMolecular phylogenetics and the diversification of hummingbirdsCurr. Biol.2014249109161:CAS:528:DC%2BC2cXls1entrw%3D2470407810.1016/j.cub.2014.03.016 TylianakisJMLalibertéENielsenABascompteJConservation of species interaction networksBiol. Conserv.20101432270227910.1016/j.biocon.2009.12.004 Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996). Vizentin-BugoniJDebastianiVJBastaziniVAGMaruyamaPKSperryJHIncluding rewiring in the estimation of the robustness of mutualistic networksMethods Ecol. Evol.20201110611610.1111/2041-210X.13306 SchleuningMEcological networks are more sensitive to plant than to animal extinction under climate changeNat. Commun.201671:CAS:528:DC%2BC28XitFGitrfM28008919519643010.1038/ncomms13965 SonneJEcological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudesProc. R. Soc. B20202872019287332156208712606410.1098/rspb.2019.2873 Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018). GrassIJaukerBSteffan-DewenterITscharntkeTJaukerFPast and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networksNat. Ecol. Evol.20182140814173008273510.1038/s41559-018-0631-2 RahbekCHumboldt’s enigma: what causes global patterns of mountain biodiversity?Science2019365110811131:CAS:528:DC%2BC1MXhslGksbfE3151538310.1126/science.aax0149 HurlbertThe effect of energy and seasonality on avian species richness and community compositionAm. Nat.200316183971265046410.1086/345459 DalsgaardBThe influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networksFunct. Ecol.2021351120113310.1111/1365-2435.13784 HazziNAMorenoJSOrtiz-MovliavCPalacioRDBiogeographic regions and events of isolation and diversification of the endemic biota of the tropical AndesProc. Natl Acad. Sci. USA2018115798579901:CAS:528:DC%2BC1cXitlWqs7%2FP30018064607770510.1073/pnas.1803908115 GilmanSEUrbanMCTewksburyJGilchristGWHoltRDA framework for community interactions under climate changeTrends Ecol. Evol.2010253253312039251710.1016/j.tree.2010.03.002 DáttiloWUnravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction typesProc. R. Soc. B20162832016156427881755513657910.1098/rspb.2016.1564 HothornTBretzFWestfallPSimultaneous inference in general parametric modelsBiom. J.2008503463631848136310.1002/bimj.200810425 HooperDUEffects of biodiversity on ecosystem functioning: a consensus of current knowledgeEcol. Monogr.20057533510.1890/04-0922 SimberloffDSWilsonEOExperimental zoogeography of islands: the colonization of empty islandsEcology19695027829610.2307/1934856 SandelBThe influence of Late Quaternary climate-change velocity on species endemismScience20113346606641:CAS:528:DC%2BC3MXhtlyqu7jP2197993710.1126/science.1210173 IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014). BersierL-FBanašek-RichterCCattinM-FQuantitative descriptors of food-web matricesEcology2002832394240710.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 Almeida-NetoMGuimarãesPGuimarãesPRJrLoyolaRDUlrichWA consistent metric for nestedness analysis in ecological systems: reconciling concept and measurementOikos20081171227123910.1111/j.0030-1299.2008.16644.x JetzWRahbekCGeographic range size and determinants of avian species richnessScience2002297154815511:CAS:528:DC%2BD38XmslSjtL0%3D1220282910.1126/science.1072779 MemmottJWaserNMPriceMVTolerance of pollination networks to species extinctionsProc. R. Soc. Lond. B20042712605261110.1098/rspb.2004.2909 KargerDNClimatologies at high resolution for the Earth’s land surface areasSci. Data2017417012228872642558439610.1038/sdata.2017.122 BloisJLZarnetskePLFitzpatrickMCFinneganSClimate change and the past, present and future of biotic interactionsScience20133414995041:CAS:528:DC%2BC3sXhtFyjsr3E2390822710.1126/science.1237184 RahbekCGravesGRDetection of macro-ecological patterns in South American hummingbirds is affected by spatial scaleProc. R. Soc. Lond. B2000267225922651:STN:280:DC%2BD3MzltFSlsg%3D%3D10.1098/rspb.2000.1277 ScherrerDKörnerCTopographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warmingJ. Biogeogr.20113840641610.1111/j.1365-2699.2010.02407.x SchemskeDWMittelbachGGCornellHVSobelJMRoyKIs there a latitudinal gradient in the importance of biotic interactions?Annu. Rev. Ecol. Evol. Syst.20094024526910.1146/annurev.ecolsys.39.110707.173430 ConnorEFSimberloffDSpecies number and compositional similarity of the Galapagos flora and avifaunaEcol. Monogr.19784821924810.2307/2937300 BenadiGBlüthgenNHovestadtTPoethkeH-JContrasting specialization–stability relationships in plant–animal mutualistic systemsEcol. Model.2013258657310.1016/j.ecolmodel.2013.03.002 Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi WaltherG-RCommunity and ecosystem responses to recent climate changePhilos. Trans. R. Soc. B20103652019202410.1098/rstb.2010.0021 BurgosEWhy nestedness in mutualistic networks?J. Theor. Biol.20072493073131789767910.1016/j.jtbi.2007.07.030 Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012Q BlonderBLinking environmental filtering and disequilibrium to biogeography with a community climate frameworkEcology2015969729852623001810.1890/14-0589.1 TylianakisJMDidhamRKBascompteJWardleDAGlobal change and species interactions in terrestrial ecosystemsEcol. Lett.200811135113631906236310.1111/j.1461-0248.2008.01250.x MateoRGFelicísimoÁMMuñozJEffects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneityJ. Veg. Sci.20102190892210.1111/j.1654-1103.2010.01198.x ThomasCDClimate, climate change and range boundariesDivers. Distrib.20101648849510.1111/j.1472-4642.2010.00642.x MemmottJCrazePGWaserNMPriceMVGlobal warming and the disruption of plant–pollinator interactionsEcol. Lett.2007107107171759442610.1111/j.1461-0248.2007.01061.x Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News8, 8–11 (2008). CracraftJHistorical biogeography and patterns of differentiation within the South American avifauna: areas of endemismOrnithol. Monogr.198536498410.2307/40168278 DalsgaardBOpposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systemsEcography2017401395140110.1111/ecog.02604 Kaiser-BunburyCNMuffSMemmottJMüllerCBCaflischAThe robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviourEcol. Lett.2010134424522010024410.1111/j.1461-0248.2009.01437.x RahbekCGravesGRMultiscale assessment of patterns of avian species richnessProc. Natl Acad. Sci. USA200198453445391:CAS:528:DC%2BD3MXjtVagtL0%3D112962923186910.1073/pnas.071034898 DalsgaardBSpecialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocityPLoS ONE20116e258911:CAS:528:DC%2BC3MXhtlOitrfJ21998716318783510.1371/journal.pone.0025891 CurrieDJFrancisAPKerrJTSome general propositions about the study of spatial patterns of species richnessÉcoscience1999639239910.1080/11956860.1999.11682541 BascompteJGarcíaMBOrtegaRRezendeELPirononSMutualistic interactions reshuffle the effects of climate change on plants across the tree of lifeSci. Adv.20195eaav253931106269652002110.1126/sciadv.aav2539 GravesGRRahbekCSource pool geometry and the assembly of continental avifaunasProc. Natl Acad. Sci. USA2005102787178761:CAS:528:DC%2BD2MXkvF2jur8%3D15911769114236410.1073/pnas.0500424102 DormannCFStraussRA method for detecting modules in quantitative bipartite networksMethods Ecol. Evol.20145909810.1111/2041-210X.12139 WatsonJEMIwamuraTButtNMapping vulnerability and conservation adaptation strategies under climate changeNat. Clim. Change2013398999410.1038/nclimate2007 JønssonKATracking animal dispersal: from individual movement to community assembly and global range dynamicsTrends Ecol. Evol.2016312042142685217110.1016/j.tree.2016.01.003 SchweigerOSetteleJKudrnaOKlotzSKühnIClimate change can cause spatial mismatch of trophically interacting speciesEcology200889347234791913795210.1890/07-1748.1 Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002). GrantPRAbbottIInterspecific competition, island biogeography and null hypothesesEvolution19803433 JA McGuire (1693_CR42) 2014; 24 BG Holt (1693_CR56) 2013; 339 SJ Beckett (1693_CR51) 2016; 3 AM Martín González (1693_CR28) 2010; 7 B Blonder (1693_CR64) 2015; 96 B Dalsgaard (1693_CR17) 2018; 285 JL Blois (1693_CR7) 2013; 341 B Dalsgaard (1693_CR13) 2013; 36 BI Simmons (1693_CR49) 2018; 87 1693_CR1 SE Gilman (1693_CR18) 2010; 25 1693_CR26 L-F Bersier (1693_CR30) 2002; 83 NA Hazzi (1693_CR40) 2018; 115 1693_CR25 B Dalsgaard (1693_CR21) 2021; 35 I Grass (1693_CR33) 2018; 2 1693_CR66 J Bascompte (1693_CR9) 2019; 5 B Dalsgaard (1693_CR54) 2017; 40 C Rahbek (1693_CR20) 2000; 267 JM Tylianakis (1693_CR11) 2008; 11 CN Kaiser-Bunbury (1693_CR15) 2010; 13 DU Hooper (1693_CR2) 2005; 75 J Bascompte (1693_CR37) 2003; 100 T Dobzhansky (1693_CR59) 1950; 38 J Memmott (1693_CR14) 2004; 271 E Thébault (1693_CR31) 2010; 329 DB Stouffer (1693_CR34) 2011; 108 J Cracraft (1693_CR39) 1985; 36 CD Thomas (1693_CR47) 2010; 16 J Vizentin-Bugoni (1693_CR65) 2020; 11 DJ Currie (1693_CR60) 1999; 6 1693_CR57 GR Graves (1693_CR24) 2005; 102 1693_CR55 G-R Walther (1693_CR6) 2010; 365 DW Schemske (1693_CR3) 2009; 40 E Burgos (1693_CR29) 2007; 249 J Memmott (1693_CR10) 2007; 10 J Sonne (1693_CR52) 2020; 287 M Almeida-Neto (1693_CR48) 2008; 117 Hurlbert (1693_CR61) 2003; 161 M Schleuning (1693_CR8) 2016; 7 W Patefield (1693_CR53) 1981; 30 B Dalsgaard (1693_CR12) 2011; 6 DS Simberloff (1693_CR44) 1969; 50 JEM Watson (1693_CR27) 2013; 3 W Dáttilo (1693_CR16) 2016; 283 1693_CR43 N Blüthgen (1693_CR35) 2006; 6 B Sandel (1693_CR22) 2011; 334 JM Tylianakis (1693_CR32) 2010; 143 O Schweiger (1693_CR4) 2008; 89 C Rahbek (1693_CR19) 2001; 98 RG Mateo (1693_CR63) 2010; 21 SJ Hegland (1693_CR5) 2009; 12 PR Grant (1693_CR46) 1980; 34 DN Karger (1693_CR62) 2017; 4 T Hothorn (1693_CR67) 2008; 50 W Jetz (1693_CR58) 2002; 297 D Scherrer (1693_CR23) 2011; 38 KA Jønsson (1693_CR41) 2016; 31 EF Connor (1693_CR45) 1978; 48 G Benadi (1693_CR50) 2013; 258 C Rahbek (1693_CR38) 2019; 365 CF Dormann (1693_CR36) 2014; 5 |
References_xml | – reference: CracraftJHistorical biogeography and patterns of differentiation within the South American avifauna: areas of endemismOrnithol. Monogr.198536498410.2307/40168278 – reference: DalsgaardBTrait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirdsProc. R. Soc. B20182852017275429563263589763610.1098/rspb.2017.2754 – reference: StoufferDBBascompteJCompartmentalization increases food-web persistenceProc. Natl Acad. Sci. USA2011108364836521:CAS:528:DC%2BC3MXivFKqsLg%3D21307311304815210.1073/pnas.1014353108 – reference: DalsgaardBOpposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systemsEcography2017401395140110.1111/ecog.02604 – reference: DormannCFStraussRA method for detecting modules in quantitative bipartite networksMethods Ecol. Evol.20145909810.1111/2041-210X.12139 – reference: ConnorEFSimberloffDSpecies number and compositional similarity of the Galapagos flora and avifaunaEcol. Monogr.19784821924810.2307/2937300 – reference: HothornTBretzFWestfallPSimultaneous inference in general parametric modelsBiom. J.2008503463631848136310.1002/bimj.200810425 – reference: Almeida-NetoMGuimarãesPGuimarãesPRJrLoyolaRDUlrichWA consistent metric for nestedness analysis in ecological systems: reconciling concept and measurementOikos20081171227123910.1111/j.0030-1299.2008.16644.x – reference: ScherrerDKörnerCTopographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warmingJ. Biogeogr.20113840641610.1111/j.1365-2699.2010.02407.x – reference: SimberloffDSWilsonEOExperimental zoogeography of islands: the colonization of empty islandsEcology19695027829610.2307/1934856 – reference: RahbekCHumboldt’s enigma: what causes global patterns of mountain biodiversity?Science2019365110811131:CAS:528:DC%2BC1MXhslGksbfE3151538310.1126/science.aax0149 – reference: JetzWRahbekCGeographic range size and determinants of avian species richnessScience2002297154815511:CAS:528:DC%2BD38XmslSjtL0%3D1220282910.1126/science.1072779 – reference: HeglandSJNielsenALázaroABjerknesA-LTotlandØHow does climate warming affect plant–pollinator interactions?Ecol. Lett.2009121841951904950910.1111/j.1461-0248.2008.01269.x – reference: WaltherG-RCommunity and ecosystem responses to recent climate changePhilos. Trans. R. Soc. B20103652019202410.1098/rstb.2010.0021 – reference: RahbekCGravesGRMultiscale assessment of patterns of avian species richnessProc. Natl Acad. Sci. USA200198453445391:CAS:528:DC%2BD3MXjtVagtL0%3D112962923186910.1073/pnas.071034898 – reference: Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012Q – reference: BlonderBLinking environmental filtering and disequilibrium to biogeography with a community climate frameworkEcology2015969729852623001810.1890/14-0589.1 – reference: Kaiser-BunburyCNMuffSMemmottJMüllerCBCaflischAThe robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviourEcol. Lett.2010134424522010024410.1111/j.1461-0248.2009.01437.x – reference: SandelBThe influence of Late Quaternary climate-change velocity on species endemismScience20113346606641:CAS:528:DC%2BC3MXhtlyqu7jP2197993710.1126/science.1210173 – reference: BenadiGBlüthgenNHovestadtTPoethkeH-JContrasting specialization–stability relationships in plant–animal mutualistic systemsEcol. Model.2013258657310.1016/j.ecolmodel.2013.03.002 – reference: SimmonsBIMoving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networksJ. Anim. Ecol.201887995100729603211684952710.1111/1365-2656.12831 – reference: TylianakisJMDidhamRKBascompteJWardleDAGlobal change and species interactions in terrestrial ecosystemsEcol. Lett.200811135113631906236310.1111/j.1461-0248.2008.01250.x – reference: GilmanSEUrbanMCTewksburyJGilchristGWHoltRDA framework for community interactions under climate changeTrends Ecol. Evol.2010253253312039251710.1016/j.tree.2010.03.002 – reference: MemmottJWaserNMPriceMVTolerance of pollination networks to species extinctionsProc. R. Soc. Lond. B20042712605261110.1098/rspb.2004.2909 – reference: BeckettSJImproved community detection in weighted bipartite networksR. Soc. Open Sci.2016314053626909160473691510.1098/rsos.140536 – reference: GravesGRRahbekCSource pool geometry and the assembly of continental avifaunasProc. Natl Acad. Sci. USA2005102787178761:CAS:528:DC%2BD2MXkvF2jur8%3D15911769114236410.1073/pnas.0500424102 – reference: Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002). – reference: BurgosEWhy nestedness in mutualistic networks?J. Theor. Biol.20072493073131789767910.1016/j.jtbi.2007.07.030 – reference: TylianakisJMLalibertéENielsenABascompteJConservation of species interaction networksBiol. Conserv.20101432270227910.1016/j.biocon.2009.12.004 – reference: HazziNAMorenoJSOrtiz-MovliavCPalacioRDBiogeographic regions and events of isolation and diversification of the endemic biota of the tropical AndesProc. Natl Acad. Sci. USA2018115798579901:CAS:528:DC%2BC1cXitlWqs7%2FP30018064607770510.1073/pnas.1803908115 – reference: ThébaultEFontaineCStability of ecological communities and the architecture of mutualistic and trophic networksScience20103298538562070586110.1126/science.1188321 – reference: SchweigerOSetteleJKudrnaOKlotzSKühnIClimate change can cause spatial mismatch of trophically interacting speciesEcology200889347234791913795210.1890/07-1748.1 – reference: GrantPRAbbottIInterspecific competition, island biogeography and null hypothesesEvolution1980343323411:STN:280:DC%2BC1cnjtFOjuw%3D%3D2856343310.1111/j.1558-5646.1980.tb04822.x – reference: IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014). – reference: Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996). – reference: KargerDNClimatologies at high resolution for the Earth’s land surface areasSci. Data2017417012228872642558439610.1038/sdata.2017.122 – reference: SchemskeDWMittelbachGGCornellHVSobelJMRoyKIs there a latitudinal gradient in the importance of biotic interactions?Annu. Rev. Ecol. Evol. Syst.20094024526910.1146/annurev.ecolsys.39.110707.173430 – reference: HooperDUEffects of biodiversity on ecosystem functioning: a consensus of current knowledgeEcol. Monogr.20057533510.1890/04-0922 – reference: Martín GonzálezAMDalsgaardBOlesenJMCentrality measures and the importance of generalist species in pollination networksEcol. Complex.20107364310.1016/j.ecocom.2009.03.008 – reference: WatsonJEMIwamuraTButtNMapping vulnerability and conservation adaptation strategies under climate changeNat. Clim. Change2013398999410.1038/nclimate2007 – reference: JønssonKATracking animal dispersal: from individual movement to community assembly and global range dynamicsTrends Ecol. Evol.2016312042142685217110.1016/j.tree.2016.01.003 – reference: DalsgaardBThe influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networksFunct. Ecol.2021351120113310.1111/1365-2435.13784 – reference: DobzhanskyTEvolution in the tropicsAm. Sci.195038209221 – reference: HurlbertThe effect of energy and seasonality on avian species richness and community compositionAm. Nat.200316183971265046410.1086/345459 – reference: SchleuningMEcological networks are more sensitive to plant than to animal extinction under climate changeNat. Commun.201671:CAS:528:DC%2BC28XitFGitrfM28008919519643010.1038/ncomms13965 – reference: Vizentin-BugoniJDebastianiVJBastaziniVAGMaruyamaPKSperryJHIncluding rewiring in the estimation of the robustness of mutualistic networksMethods Ecol. Evol.20201110611610.1111/2041-210X.13306 – reference: MemmottJCrazePGWaserNMPriceMVGlobal warming and the disruption of plant–pollinator interactionsEcol. Lett.2007107107171759442610.1111/j.1461-0248.2007.01061.x – reference: RahbekCGravesGRDetection of macro-ecological patterns in South American hummingbirds is affected by spatial scaleProc. R. Soc. Lond. B2000267225922651:STN:280:DC%2BD3MzltFSlsg%3D%3D10.1098/rspb.2000.1277 – reference: BascompteJGarcíaMBOrtegaRRezendeELPirononSMutualistic interactions reshuffle the effects of climate change on plants across the tree of lifeSci. Adv.20195eaav253931106269652002110.1126/sciadv.aav2539 – reference: SonneJEcological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudesProc. R. Soc. B20202872019287332156208712606410.1098/rspb.2019.2873 – reference: Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News8, 8–11 (2008). – reference: Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi/ – reference: DáttiloWUnravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction typesProc. R. Soc. B20162832016156427881755513657910.1098/rspb.2016.1564 – reference: MateoRGFelicísimoÁMMuñozJEffects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneityJ. Veg. Sci.20102190892210.1111/j.1654-1103.2010.01198.x – reference: BloisJLZarnetskePLFitzpatrickMCFinneganSClimate change and the past, present and future of biotic interactionsScience20133414995041:CAS:528:DC%2BC3sXhtFyjsr3E2390822710.1126/science.1237184 – reference: BlüthgenNMenzelFBlüthgenNMeasuring specialization in species interaction networksBMC Ecol.2006616907983157033710.1186/1472-6785-6-9 – reference: CurrieDJFrancisAPKerrJTSome general propositions about the study of spatial patterns of species richnessÉcoscience1999639239910.1080/11956860.1999.11682541 – reference: McGuireJAMolecular phylogenetics and the diversification of hummingbirdsCurr. Biol.2014249109161:CAS:528:DC%2BC2cXls1entrw%3D2470407810.1016/j.cub.2014.03.016 – reference: HoltBGAn update of Wallace’s zoogeographic regions of the worldScience201333974781:CAS:528:DC%2BC3sXnt1Ol2325840810.1126/science.1228282 – reference: BascompteJJordanoPMeliánCJOlesenJMThe nested assembly of plant–animal mutualistic networksProc. Natl Acad. Sci. USA2003100938393871:CAS:528:DC%2BD3sXmtlyktLY%3D1288148817092710.1073/pnas.1633576100 – reference: DalsgaardBSpecialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocityPLoS ONE20116e258911:CAS:528:DC%2BC3MXhtlOitrfJ21998716318783510.1371/journal.pone.0025891 – reference: BersierL-FBanašek-RichterCCattinM-FQuantitative descriptors of food-web matricesEcology2002832394240710.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 – reference: ThomasCDClimate, climate change and range boundariesDivers. Distrib.20101648849510.1111/j.1472-4642.2010.00642.x – reference: PatefieldWAlgorithm AS 159: an efficient method of generating random R × C tables with given row and column totalsJ. R. Stat. Soc. C1981309197 – reference: GrassIJaukerBSteffan-DewenterITscharntkeTJaukerFPast and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networksNat. Ecol. Evol.20182140814173008273510.1038/s41559-018-0631-2 – reference: DalsgaardBHistorical climate-change influences modularity and nestedness of pollination networksEcography2013361331134010.1111/j.1600-0587.2013.00201.x – reference: Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018). – volume: 283 start-page: 20161564 year: 2016 ident: 1693_CR16 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2016.1564 – ident: 1693_CR55 – volume: 24 start-page: 910 year: 2014 ident: 1693_CR42 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.03.016 – volume: 11 start-page: 106 year: 2020 ident: 1693_CR65 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.13306 – volume: 143 start-page: 2270 year: 2010 ident: 1693_CR32 publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2009.12.004 – ident: 1693_CR1 – volume: 297 start-page: 1548 year: 2002 ident: 1693_CR58 publication-title: Science doi: 10.1126/science.1072779 – volume: 40 start-page: 245 year: 2009 ident: 1693_CR3 publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.39.110707.173430 – volume: 50 start-page: 278 year: 1969 ident: 1693_CR44 publication-title: Ecology doi: 10.2307/1934856 – volume: 108 start-page: 3648 year: 2011 ident: 1693_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1014353108 – volume: 48 start-page: 219 year: 1978 ident: 1693_CR45 publication-title: Ecol. Monogr. doi: 10.2307/2937300 – volume: 25 start-page: 325 year: 2010 ident: 1693_CR18 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2010.03.002 – volume: 341 start-page: 499 year: 2013 ident: 1693_CR7 publication-title: Science doi: 10.1126/science.1237184 – volume: 115 start-page: 7985 year: 2018 ident: 1693_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1803908115 – volume: 83 start-page: 2394 year: 2002 ident: 1693_CR30 publication-title: Ecology doi: 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2 – volume: 36 start-page: 1331 year: 2013 ident: 1693_CR13 publication-title: Ecography doi: 10.1111/j.1600-0587.2013.00201.x – volume: 7 year: 2016 ident: 1693_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms13965 – volume: 161 start-page: 83 year: 2003 ident: 1693_CR61 publication-title: Am. Nat. doi: 10.1086/345459 – volume: 287 start-page: 20192873 year: 2020 ident: 1693_CR52 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2019.2873 – volume: 339 start-page: 74 year: 2013 ident: 1693_CR56 publication-title: Science doi: 10.1126/science.1228282 – volume: 249 start-page: 307 year: 2007 ident: 1693_CR29 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2007.07.030 – volume: 11 start-page: 1351 year: 2008 ident: 1693_CR11 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01250.x – volume: 38 start-page: 406 year: 2011 ident: 1693_CR23 publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2010.02407.x – volume: 34 start-page: 332 year: 1980 ident: 1693_CR46 publication-title: Evolution doi: 10.1111/j.1558-5646.1980.tb04822.x – volume: 334 start-page: 660 year: 2011 ident: 1693_CR22 publication-title: Science doi: 10.1126/science.1210173 – volume: 31 start-page: 204 year: 2016 ident: 1693_CR41 publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2016.01.003 – volume: 35 start-page: 1120 year: 2021 ident: 1693_CR21 publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13784 – volume: 102 start-page: 7871 year: 2005 ident: 1693_CR24 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500424102 – volume: 3 start-page: 989 year: 2013 ident: 1693_CR27 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2007 – volume: 16 start-page: 488 year: 2010 ident: 1693_CR47 publication-title: Divers. Distrib. doi: 10.1111/j.1472-4642.2010.00642.x – ident: 1693_CR26 – ident: 1693_CR43 – ident: 1693_CR57 doi: 10.7289/V5J1012Q – volume: 258 start-page: 65 year: 2013 ident: 1693_CR50 publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2013.03.002 – volume: 96 start-page: 972 year: 2015 ident: 1693_CR64 publication-title: Ecology doi: 10.1890/14-0589.1 – volume: 75 start-page: 3 year: 2005 ident: 1693_CR2 publication-title: Ecol. Monogr. doi: 10.1890/04-0922 – volume: 365 start-page: 1108 year: 2019 ident: 1693_CR38 publication-title: Science doi: 10.1126/science.aax0149 – volume: 117 start-page: 1227 year: 2008 ident: 1693_CR48 publication-title: Oikos doi: 10.1111/j.0030-1299.2008.16644.x – volume: 6 start-page: e25891 year: 2011 ident: 1693_CR12 publication-title: PLoS ONE doi: 10.1371/journal.pone.0025891 – volume: 329 start-page: 853 year: 2010 ident: 1693_CR31 publication-title: Science doi: 10.1126/science.1188321 – volume: 89 start-page: 3472 year: 2008 ident: 1693_CR4 publication-title: Ecology doi: 10.1890/07-1748.1 – volume: 12 start-page: 184 year: 2009 ident: 1693_CR5 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01269.x – volume: 13 start-page: 442 year: 2010 ident: 1693_CR15 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2009.01437.x – volume: 7 start-page: 36 year: 2010 ident: 1693_CR28 publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2009.03.008 – volume: 6 start-page: 392 year: 1999 ident: 1693_CR60 publication-title: Écoscience doi: 10.1080/11956860.1999.11682541 – volume: 40 start-page: 1395 year: 2017 ident: 1693_CR54 publication-title: Ecography doi: 10.1111/ecog.02604 – ident: 1693_CR25 – volume: 3 start-page: 140536 year: 2016 ident: 1693_CR51 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.140536 – volume: 100 start-page: 9383 year: 2003 ident: 1693_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1633576100 – volume: 285 start-page: 20172754 year: 2018 ident: 1693_CR17 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2017.2754 – volume: 271 start-page: 2605 year: 2004 ident: 1693_CR14 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2004.2909 – volume: 267 start-page: 2259 year: 2000 ident: 1693_CR20 publication-title: Proc. R. Soc. Lond. B doi: 10.1098/rspb.2000.1277 – volume: 36 start-page: 49 year: 1985 ident: 1693_CR39 publication-title: Ornithol. Monogr. doi: 10.2307/40168278 – volume: 98 start-page: 4534 year: 2001 ident: 1693_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.071034898 – volume: 365 start-page: 2019 year: 2010 ident: 1693_CR6 publication-title: Philos. Trans. R. Soc. B doi: 10.1098/rstb.2010.0021 – volume: 2 start-page: 1408 year: 2018 ident: 1693_CR33 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0631-2 – volume: 10 start-page: 710 year: 2007 ident: 1693_CR10 publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2007.01061.x – volume: 87 start-page: 995 year: 2018 ident: 1693_CR49 publication-title: J. Anim. Ecol. doi: 10.1111/1365-2656.12831 – volume: 4 start-page: 170122 year: 2017 ident: 1693_CR62 publication-title: Sci. Data doi: 10.1038/sdata.2017.122 – volume: 21 start-page: 908 year: 2010 ident: 1693_CR63 publication-title: J. Veg. Sci. doi: 10.1111/j.1654-1103.2010.01198.x – volume: 5 start-page: eaav2539 year: 2019 ident: 1693_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2539 – volume: 5 start-page: 90 year: 2014 ident: 1693_CR36 publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12139 – volume: 6 year: 2006 ident: 1693_CR35 publication-title: BMC Ecol. doi: 10.1186/1472-6785-6-9 – ident: 1693_CR66 – volume: 50 start-page: 346 year: 2008 ident: 1693_CR67 publication-title: Biom. J. doi: 10.1002/bimj.200810425 – volume: 38 start-page: 209 year: 1950 ident: 1693_CR59 publication-title: Am. Sci. – volume: 30 start-page: 91 year: 1981 ident: 1693_CR53 publication-title: J. R. Stat. Soc. C |
SSID | ssj0001775966 |
Score | 2.3191583 |
Snippet | Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 720 |
SubjectTerms | 631/158/2165 631/158/852 631/158/853 Biological and Physical Anthropology Biomedical and Life Sciences Climate change Colonization Ecology Endangered & extinct species Evolutionary Biology Extinction Geography Life Sciences Networks Paleontology Species extinction Zoology |
Title | Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change |
URI | https://link.springer.com/article/10.1038/s41559-022-01693-3 https://www.ncbi.nlm.nih.gov/pubmed/35347259 https://www.proquest.com/docview/2674129706 https://www.proquest.com/docview/2644938017 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw8MTaB_aCGAwIsMmT9jYs0tiO4ye0TUUVEmiaQOItsh0HKlVpaYoEb_wH_iG_hHPitJrQeLTi-OPu7DvfJ8B3qYxKJee0tIxRrrigWhbYVJlzCZc2ET4a-fwiHV3xs2txHRRudXCr7O7E5qIuptbryI8THBF5k4zTk9kd9VWjvHU1lND4AH28grOsB_1fw4s_f1daFikFCvQhWiZm2XHtOaii3om9SURC2b8c6Y2Y-cZE2nCe003YCCIj-dni-BOsuWoL1kP18tvHbbgZPizGVROgcETs1C1bRFcF8Wmpu2hLUrQF6GsyrshsglB9eXq-xc3hxGY8L0jVeoXXxMeWzYmdjFGidaQND_4MV6fDy98jGgooUMukWFCN3DwxqTeuGytSxp1VwmalVmXqSmONLQpm9EBxLmODT5lEFImOtTQDrWJTsh3oVdPK7QHx6g7jlFDc51izzAyYESjqpdwkpeEqgkEHxNyG7OK-yMUkb6zcLMtbwOcI-LwBfM4i-LH8Z9bm1ni392GHmzycszpfUUUE35af8YR4s4eu3PTe9-FcMeTEMoLdFqfL6ZhgXOILMIKjDsmrwf-_lv3313IAH5OGwLyy5hB6i_m9-4Kyy8J8DQT6CkAz7OE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTSQ7mglleXFjASnKjVjR_r-IAQj1QpbSOEWqm3xfZ6aaRoE7KpoDf-of_Rj-qXMN5HIlTRW4_Wem1rZux5zwC8VtrqRAlBc8c5FVpIalSGQ93zngnlmAzZyEfDZHAivpzK0xW4anNhQlhl-yZWD3U2ccFGvstwReRNKk7eT3_S0DUqeFfbFho1WRz4i1-ospXv9j8jft8wttc__jSgTVcB6riSc2qQxTGbBI-zdTLhwjstXS83Ok98bp11WcatQeVeqNiifM9kxkxslO0aHduc47r3YFXwJGYdWP3YH379trTqKCVRgWiyc2Le2y0Dx9Y0BM1XhU8o_5cD3hBrb7hkK063tw4PGhGVfKhpagNWfPEQ1ppu6WcXj-BH__d8VFQJETvETfxiREyRkVAGu83uJFnd8L4ko4JMx4jF6z-XZwhM3NiOZhkp6ij0koRcthlx4xFK0J7U6ciP4eROQPsEOsWk8JtAgnnFei21CDXdHLddbiWKlomwLLdCR9BtgZi6ppp5aKoxTiuvOu-lNeBTBHxaAT7lEbxd_DOta3ncOnu7xU3a3OsyXVJhBK8Wn_FGBjeLKfzkPMwRQnPk_CqCpzVOF9txyYVCjTOCnRbJy8X_f5Znt5_lJawNjo8O08P94cEW3GcVsQVD0TZ05rNz_xzlprl90RArge93fT_-Au22Kuk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extinction%2C+coextinction+and+colonization+dynamics+in+plant%E2%80%93hummingbird+networks+under+climate+change&rft.jtitle=Nature+ecology+%26+evolution&rft.au=Sonne%2C+Jesper&rft.au=Maruyama%2C+Pietro+K&rft.au=Mart%C3%ADn+Gonz%C3%A1lez%2C+Ana+M&rft.au=Rahbek%2C+Carsten&rft.date=2022-06-01&rft.pub=Nature+Publishing+Group&rft.eissn=2397-334X&rft.volume=6&rft.issue=6&rft.spage=720&rft.epage=729&rft_id=info:doi/10.1038%2Fs41559-022-01693-3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-334X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-334X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-334X&client=summon |