Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change

Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinctio...

Full description

Saved in:
Bibliographic Details
Published inNature ecology & evolution Vol. 6; no. 6; pp. 720 - 729
Main Authors Sonne, Jesper, Maruyama, Pietro K., Martín González, Ana M., Rahbek, Carsten, Bascompte, Jordi, Dalsgaard, Bo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions. Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure.
AbstractList Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.
Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure.
Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction-coextinction-colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities' vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions.
Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same time, climate change may facilitate colonizations from regional source pools, balancing out local species loss. At present, how these extinction–coextinction–colonization dynamics affect biological communities under climate change is poorly understood. Using 84 communities of interacting plants and hummingbirds, we simulated patterns in climate-driven extinctions, coextinctions and colonizations under future climate change scenarios. Our simulations showed clear geographic discrepancies in the communities’ vulnerability to climate change. Andean communities were the least affected by future climate change, as they experienced few climate-driven extinctions and coextinctions while having the highest colonization potential. In North America and lowland South America, communities had many climate-driven extinctions and few colonization events. Meanwhile, the pattern of coextinction was highly dependent on the configuration of networks formed by interacting hummingbirds and plants. Notably, North American communities experienced proportionally fewer coextinctions than other regions because climate-driven extinctions here primarily affected species with peripheral network roles. Moreover, coextinctions generally decreased in communities where species have few overlapping interactions, that is, communities with more complementary specialized and modular networks. Together, these results highlight that we should not expect colonizations to adequately balance out local extinctions in the most vulnerable ecoregions. Using 84 plant–hummingbird networks from across the Americas, the authors show that the balance between climate change-induced extinction, coextinction and colonization varies both with geography and network structure.
Author Sonne, Jesper
Bascompte, Jordi
Martín González, Ana M.
Rahbek, Carsten
Dalsgaard, Bo
Maruyama, Pietro K.
Author_xml – sequence: 1
  givenname: Jesper
  orcidid: 0000-0002-8570-7288
  surname: Sonne
  fullname: Sonne, Jesper
  email: jesper.sonne@sund.ku.dk
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen
– sequence: 2
  givenname: Pietro K.
  orcidid: 0000-0001-5492-2324
  surname: Maruyama
  fullname: Maruyama, Pietro K.
  organization: Centre for Ecological Synthesis and Conservation, Department of Genetics, Ecology and Evolution—ICB, Federal University of Minas Gerais (UFMG)
– sequence: 3
  givenname: Ana M.
  orcidid: 0000-0001-9429-7180
  surname: Martín González
  fullname: Martín González, Ana M.
  organization: Pacific Ecoinformatics and Computational Ecology Lab
– sequence: 4
  givenname: Carsten
  orcidid: 0000-0003-4585-0300
  surname: Rahbek
  fullname: Rahbek, Carsten
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Institute of Ecology, Peking University, Danish Institute for Advanced Study, University of Southern Denmark
– sequence: 5
  givenname: Jordi
  orcidid: 0000-0002-0108-6411
  surname: Bascompte
  fullname: Bascompte, Jordi
  organization: Department of Evolutionary Biology and Environmental Studies, University of Zurich
– sequence: 6
  givenname: Bo
  orcidid: 0000-0003-2867-2805
  surname: Dalsgaard
  fullname: Dalsgaard, Bo
  organization: Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35347259$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOHDEYha0IFC7hBSiikdJQMMF3r8sIEYKElAakdJbt8SyGGXtje8SlyjvwhjwJzi43UVDZ_vWdX8fnbIG1EIMDYBfB7wiS2UGmiDHZQoxbiLgkLfkENjGRoiWE_ll7c98AOzlfQgiREExy_hlsEEaowExugvnRTfHBFh_DfmOje3k1OnR1MMTg7_Ry0N0GPXqbGx-axaBDefh3fzGNow9z41PXBFeuY7rKzRQ6lxo7-FEX19gLHebuC1jv9ZDdztO5Dc5_Hp0d_mpPfx-fHP44bS0RrLSaIYwNl4hQYxkn1FnJ7KzXsueuN9bYriNGI0mpgIZDjlmHNdTCIC2h6ck22FvtXaT4d3K5qNFn64bq18UpK8wplWRWs6jot3foZZxSqO4qJSjCUkBeqa9P1GRG16lFqt9Kt-o5wgrMVoBNMefkemV9WSZWkvaDQlD9L0ytClO1MLUsTJEqxe-kz9s_FJGVKFe4JptebX-gegRIzKpx
CitedBy_id crossref_primary_10_1098_rstb_2022_0368
crossref_primary_10_3389_fevo_2022_951547
crossref_primary_10_1007_s10584_022_03447_3
crossref_primary_10_1111_ele_14150
crossref_primary_10_1016_j_biocon_2025_111050
crossref_primary_10_1146_annurev_ento_120120_102424
crossref_primary_10_3389_fevo_2022_1012809
crossref_primary_10_1111_1365_2656_13972
crossref_primary_10_1111_jbi_14804
crossref_primary_10_1016_j_avrs_2022_100051
crossref_primary_10_3389_fevo_2022_987204
crossref_primary_10_1098_rspb_2023_1372
crossref_primary_10_1111_ele_70073
crossref_primary_10_1073_pnas_2322347121
crossref_primary_10_1007_s00035_024_00308_w
crossref_primary_10_1038_s41558_022_01378_6
Cites_doi 10.1098/rspb.2016.1564
10.1016/j.cub.2014.03.016
10.1111/2041-210X.13306
10.1016/j.biocon.2009.12.004
10.1126/science.1072779
10.1146/annurev.ecolsys.39.110707.173430
10.2307/1934856
10.1073/pnas.1014353108
10.2307/2937300
10.1016/j.tree.2010.03.002
10.1126/science.1237184
10.1073/pnas.1803908115
10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2
10.1111/j.1600-0587.2013.00201.x
10.1038/ncomms13965
10.1086/345459
10.1098/rspb.2019.2873
10.1126/science.1228282
10.1016/j.jtbi.2007.07.030
10.1111/j.1461-0248.2008.01250.x
10.1111/j.1365-2699.2010.02407.x
10.1111/j.1558-5646.1980.tb04822.x
10.1126/science.1210173
10.1016/j.tree.2016.01.003
10.1111/1365-2435.13784
10.1073/pnas.0500424102
10.1038/nclimate2007
10.1111/j.1472-4642.2010.00642.x
10.7289/V5J1012Q
10.1016/j.ecolmodel.2013.03.002
10.1890/14-0589.1
10.1890/04-0922
10.1126/science.aax0149
10.1111/j.0030-1299.2008.16644.x
10.1371/journal.pone.0025891
10.1126/science.1188321
10.1890/07-1748.1
10.1111/j.1461-0248.2008.01269.x
10.1111/j.1461-0248.2009.01437.x
10.1016/j.ecocom.2009.03.008
10.1080/11956860.1999.11682541
10.1111/ecog.02604
10.1098/rsos.140536
10.1073/pnas.1633576100
10.1098/rspb.2017.2754
10.1098/rspb.2004.2909
10.1098/rspb.2000.1277
10.2307/40168278
10.1073/pnas.071034898
10.1098/rstb.2010.0021
10.1038/s41559-018-0631-2
10.1111/j.1461-0248.2007.01061.x
10.1111/1365-2656.12831
10.1038/sdata.2017.122
10.1111/j.1654-1103.2010.01198.x
10.1126/sciadv.aav2539
10.1111/2041-210X.12139
10.1186/1472-6785-6-9
10.1002/bimj.200810425
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
DBID AAYXX
CITATION
NPM
8FE
8FH
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
DOI 10.1038/s41559-022-01693-3
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Ecology
Geography
EISSN 2397-334X
EndPage 729
ExternalDocumentID 35347259
10_1038_s41559_022_01693_3
Genre Journal Article
GrantInformation_xml – fundername: Villum Fonden (Villum Foundation)
  grantid: 25925; 25925
  funderid: https://doi.org/10.13039/100008398
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 310030_197201
  funderid: https://doi.org/10.13039/501100001711
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: DNRF96; DNRF96
  funderid: https://doi.org/10.13039/501100001732
– fundername: Villum Fonden (Villum Foundation)
  grantid: 25925
– fundername: Danmarks Grundforskningsfond (Danish National Research Foundation)
  grantid: DNRF96
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 310030_197201
GroupedDBID 0R~
53G
AAEEF
AAHBH
AARCD
AAYZH
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AEUYN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ATCPS
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
NNMJJ
O9-
ODYON
PATMY
PCBAR
PYCSY
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
AFANA
ATHPR
CITATION
PHGZM
PHGZT
NPM
8FE
8FH
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c375t-a5122b69134bc5634ec95c8fa9f6efbcbcdd3ba194470b60625d2a0a7b1a90bf3
IEDL.DBID BENPR
ISSN 2397-334X
IngestDate Fri Jul 11 00:21:53 EDT 2025
Wed Jul 16 16:41:21 EDT 2025
Wed Feb 19 02:25:54 EST 2025
Tue Jul 01 00:52:49 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Fri Feb 21 02:38:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a5122b69134bc5634ec95c8fa9f6efbcbcdd3ba194470b60625d2a0a7b1a90bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8570-7288
0000-0001-5492-2324
0000-0003-4585-0300
0000-0002-0108-6411
0000-0001-9429-7180
0000-0003-2867-2805
PMID 35347259
PQID 2674129706
PQPubID 4669716
PageCount 10
ParticipantIDs proquest_miscellaneous_2644938017
proquest_journals_2674129706
pubmed_primary_35347259
crossref_citationtrail_10_1038_s41559_022_01693_3
crossref_primary_10_1038_s41559_022_01693_3
springer_journals_10_1038_s41559_022_01693_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature ecology & evolution
PublicationTitleAbbrev Nat Ecol Evol
PublicationTitleAlternate Nat Ecol Evol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SimmonsBIMoving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networksJ. Anim. Ecol.201887995100729603211684952710.1111/1365-2656.12831
BeckettSJImproved community detection in weighted bipartite networksR. Soc. Open Sci.2016314053626909160473691510.1098/rsos.140536
Martín GonzálezAMDalsgaardBOlesenJMCentrality measures and the importance of generalist species in pollination networksEcol. Complex.20107364310.1016/j.ecocom.2009.03.008
ThébaultEFontaineCStability of ecological communities and the architecture of mutualistic and trophic networksScience20103298538562070586110.1126/science.1188321
BlüthgenNMenzelFBlüthgenNMeasuring specialization in species interaction networksBMC Ecol.2006616907983157033710.1186/1472-6785-6-9
PatefieldWAlgorithm AS 159: an efficient method of generating random R × C tables with given row and column totalsJ. R. Stat. Soc. C1981309197
McGuireJAMolecular phylogenetics and the diversification of hummingbirdsCurr. Biol.2014249109161:CAS:528:DC%2BC2cXls1entrw%3D2470407810.1016/j.cub.2014.03.016
TylianakisJMLalibertéENielsenABascompteJConservation of species interaction networksBiol. Conserv.20101432270227910.1016/j.biocon.2009.12.004
Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996).
Vizentin-BugoniJDebastianiVJBastaziniVAGMaruyamaPKSperryJHIncluding rewiring in the estimation of the robustness of mutualistic networksMethods Ecol. Evol.20201110611610.1111/2041-210X.13306
SchleuningMEcological networks are more sensitive to plant than to animal extinction under climate changeNat. Commun.201671:CAS:528:DC%2BC28XitFGitrfM28008919519643010.1038/ncomms13965
SonneJEcological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudesProc. R. Soc. B20202872019287332156208712606410.1098/rspb.2019.2873
Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).
GrassIJaukerBSteffan-DewenterITscharntkeTJaukerFPast and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networksNat. Ecol. Evol.20182140814173008273510.1038/s41559-018-0631-2
RahbekCHumboldt’s enigma: what causes global patterns of mountain biodiversity?Science2019365110811131:CAS:528:DC%2BC1MXhslGksbfE3151538310.1126/science.aax0149
HurlbertThe effect of energy and seasonality on avian species richness and community compositionAm. Nat.200316183971265046410.1086/345459
DalsgaardBThe influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networksFunct. Ecol.2021351120113310.1111/1365-2435.13784
HazziNAMorenoJSOrtiz-MovliavCPalacioRDBiogeographic regions and events of isolation and diversification of the endemic biota of the tropical AndesProc. Natl Acad. Sci. USA2018115798579901:CAS:528:DC%2BC1cXitlWqs7%2FP30018064607770510.1073/pnas.1803908115
GilmanSEUrbanMCTewksburyJGilchristGWHoltRDA framework for community interactions under climate changeTrends Ecol. Evol.2010253253312039251710.1016/j.tree.2010.03.002
DáttiloWUnravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction typesProc. R. Soc. B20162832016156427881755513657910.1098/rspb.2016.1564
HothornTBretzFWestfallPSimultaneous inference in general parametric modelsBiom. J.2008503463631848136310.1002/bimj.200810425
HooperDUEffects of biodiversity on ecosystem functioning: a consensus of current knowledgeEcol. Monogr.20057533510.1890/04-0922
SimberloffDSWilsonEOExperimental zoogeography of islands: the colonization of empty islandsEcology19695027829610.2307/1934856
SandelBThe influence of Late Quaternary climate-change velocity on species endemismScience20113346606641:CAS:528:DC%2BC3MXhtlyqu7jP2197993710.1126/science.1210173
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014).
BersierL-FBanašek-RichterCCattinM-FQuantitative descriptors of food-web matricesEcology2002832394240710.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2
Almeida-NetoMGuimarãesPGuimarãesPRJrLoyolaRDUlrichWA consistent metric for nestedness analysis in ecological systems: reconciling concept and measurementOikos20081171227123910.1111/j.0030-1299.2008.16644.x
JetzWRahbekCGeographic range size and determinants of avian species richnessScience2002297154815511:CAS:528:DC%2BD38XmslSjtL0%3D1220282910.1126/science.1072779
MemmottJWaserNMPriceMVTolerance of pollination networks to species extinctionsProc. R. Soc. Lond. B20042712605261110.1098/rspb.2004.2909
KargerDNClimatologies at high resolution for the Earth’s land surface areasSci. Data2017417012228872642558439610.1038/sdata.2017.122
BloisJLZarnetskePLFitzpatrickMCFinneganSClimate change and the past, present and future of biotic interactionsScience20133414995041:CAS:528:DC%2BC3sXhtFyjsr3E2390822710.1126/science.1237184
RahbekCGravesGRDetection of macro-ecological patterns in South American hummingbirds is affected by spatial scaleProc. R. Soc. Lond. B2000267225922651:STN:280:DC%2BD3MzltFSlsg%3D%3D10.1098/rspb.2000.1277
ScherrerDKörnerCTopographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warmingJ. Biogeogr.20113840641610.1111/j.1365-2699.2010.02407.x
SchemskeDWMittelbachGGCornellHVSobelJMRoyKIs there a latitudinal gradient in the importance of biotic interactions?Annu. Rev. Ecol. Evol. Syst.20094024526910.1146/annurev.ecolsys.39.110707.173430
ConnorEFSimberloffDSpecies number and compositional similarity of the Galapagos flora and avifaunaEcol. Monogr.19784821924810.2307/2937300
BenadiGBlüthgenNHovestadtTPoethkeH-JContrasting specialization–stability relationships in plant–animal mutualistic systemsEcol. Model.2013258657310.1016/j.ecolmodel.2013.03.002
Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi
WaltherG-RCommunity and ecosystem responses to recent climate changePhilos. Trans. R. Soc. B20103652019202410.1098/rstb.2010.0021
BurgosEWhy nestedness in mutualistic networks?J. Theor. Biol.20072493073131789767910.1016/j.jtbi.2007.07.030
Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012Q
BlonderBLinking environmental filtering and disequilibrium to biogeography with a community climate frameworkEcology2015969729852623001810.1890/14-0589.1
TylianakisJMDidhamRKBascompteJWardleDAGlobal change and species interactions in terrestrial ecosystemsEcol. Lett.200811135113631906236310.1111/j.1461-0248.2008.01250.x
MateoRGFelicísimoÁMMuñozJEffects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneityJ. Veg. Sci.20102190892210.1111/j.1654-1103.2010.01198.x
ThomasCDClimate, climate change and range boundariesDivers. Distrib.20101648849510.1111/j.1472-4642.2010.00642.x
MemmottJCrazePGWaserNMPriceMVGlobal warming and the disruption of plant–pollinator interactionsEcol. Lett.2007107107171759442610.1111/j.1461-0248.2007.01061.x
Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News8, 8–11 (2008).
CracraftJHistorical biogeography and patterns of differentiation within the South American avifauna: areas of endemismOrnithol. Monogr.198536498410.2307/40168278
DalsgaardBOpposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systemsEcography2017401395140110.1111/ecog.02604
Kaiser-BunburyCNMuffSMemmottJMüllerCBCaflischAThe robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviourEcol. Lett.2010134424522010024410.1111/j.1461-0248.2009.01437.x
RahbekCGravesGRMultiscale assessment of patterns of avian species richnessProc. Natl Acad. Sci. USA200198453445391:CAS:528:DC%2BD3MXjtVagtL0%3D112962923186910.1073/pnas.071034898
DalsgaardBSpecialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocityPLoS ONE20116e258911:CAS:528:DC%2BC3MXhtlOitrfJ21998716318783510.1371/journal.pone.0025891
CurrieDJFrancisAPKerrJTSome general propositions about the study of spatial patterns of species richnessÉcoscience1999639239910.1080/11956860.1999.11682541
BascompteJGarcíaMBOrtegaRRezendeELPirononSMutualistic interactions reshuffle the effects of climate change on plants across the tree of lifeSci. Adv.20195eaav253931106269652002110.1126/sciadv.aav2539
GravesGRRahbekCSource pool geometry and the assembly of continental avifaunasProc. Natl Acad. Sci. USA2005102787178761:CAS:528:DC%2BD2MXkvF2jur8%3D15911769114236410.1073/pnas.0500424102
DormannCFStraussRA method for detecting modules in quantitative bipartite networksMethods Ecol. Evol.20145909810.1111/2041-210X.12139
WatsonJEMIwamuraTButtNMapping vulnerability and conservation adaptation strategies under climate changeNat. Clim. Change2013398999410.1038/nclimate2007
JønssonKATracking animal dispersal: from individual movement to community assembly and global range dynamicsTrends Ecol. Evol.2016312042142685217110.1016/j.tree.2016.01.003
SchweigerOSetteleJKudrnaOKlotzSKühnIClimate change can cause spatial mismatch of trophically interacting speciesEcology200889347234791913795210.1890/07-1748.1
Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002).
GrantPRAbbottIInterspecific competition, island biogeography and null hypothesesEvolution19803433
JA McGuire (1693_CR42) 2014; 24
BG Holt (1693_CR56) 2013; 339
SJ Beckett (1693_CR51) 2016; 3
AM Martín González (1693_CR28) 2010; 7
B Blonder (1693_CR64) 2015; 96
B Dalsgaard (1693_CR17) 2018; 285
JL Blois (1693_CR7) 2013; 341
B Dalsgaard (1693_CR13) 2013; 36
BI Simmons (1693_CR49) 2018; 87
1693_CR1
SE Gilman (1693_CR18) 2010; 25
1693_CR26
L-F Bersier (1693_CR30) 2002; 83
NA Hazzi (1693_CR40) 2018; 115
1693_CR25
B Dalsgaard (1693_CR21) 2021; 35
I Grass (1693_CR33) 2018; 2
1693_CR66
J Bascompte (1693_CR9) 2019; 5
B Dalsgaard (1693_CR54) 2017; 40
C Rahbek (1693_CR20) 2000; 267
JM Tylianakis (1693_CR11) 2008; 11
CN Kaiser-Bunbury (1693_CR15) 2010; 13
DU Hooper (1693_CR2) 2005; 75
J Bascompte (1693_CR37) 2003; 100
T Dobzhansky (1693_CR59) 1950; 38
J Memmott (1693_CR14) 2004; 271
E Thébault (1693_CR31) 2010; 329
DB Stouffer (1693_CR34) 2011; 108
J Cracraft (1693_CR39) 1985; 36
CD Thomas (1693_CR47) 2010; 16
J Vizentin-Bugoni (1693_CR65) 2020; 11
DJ Currie (1693_CR60) 1999; 6
1693_CR57
GR Graves (1693_CR24) 2005; 102
1693_CR55
G-R Walther (1693_CR6) 2010; 365
DW Schemske (1693_CR3) 2009; 40
E Burgos (1693_CR29) 2007; 249
J Memmott (1693_CR10) 2007; 10
J Sonne (1693_CR52) 2020; 287
M Almeida-Neto (1693_CR48) 2008; 117
Hurlbert (1693_CR61) 2003; 161
M Schleuning (1693_CR8) 2016; 7
W Patefield (1693_CR53) 1981; 30
B Dalsgaard (1693_CR12) 2011; 6
DS Simberloff (1693_CR44) 1969; 50
JEM Watson (1693_CR27) 2013; 3
W Dáttilo (1693_CR16) 2016; 283
1693_CR43
N Blüthgen (1693_CR35) 2006; 6
B Sandel (1693_CR22) 2011; 334
JM Tylianakis (1693_CR32) 2010; 143
O Schweiger (1693_CR4) 2008; 89
C Rahbek (1693_CR19) 2001; 98
RG Mateo (1693_CR63) 2010; 21
SJ Hegland (1693_CR5) 2009; 12
PR Grant (1693_CR46) 1980; 34
DN Karger (1693_CR62) 2017; 4
T Hothorn (1693_CR67) 2008; 50
W Jetz (1693_CR58) 2002; 297
D Scherrer (1693_CR23) 2011; 38
KA Jønsson (1693_CR41) 2016; 31
EF Connor (1693_CR45) 1978; 48
G Benadi (1693_CR50) 2013; 258
C Rahbek (1693_CR38) 2019; 365
CF Dormann (1693_CR36) 2014; 5
References_xml – reference: CracraftJHistorical biogeography and patterns of differentiation within the South American avifauna: areas of endemismOrnithol. Monogr.198536498410.2307/40168278
– reference: DalsgaardBTrait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirdsProc. R. Soc. B20182852017275429563263589763610.1098/rspb.2017.2754
– reference: StoufferDBBascompteJCompartmentalization increases food-web persistenceProc. Natl Acad. Sci. USA2011108364836521:CAS:528:DC%2BC3MXivFKqsLg%3D21307311304815210.1073/pnas.1014353108
– reference: DalsgaardBOpposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systemsEcography2017401395140110.1111/ecog.02604
– reference: DormannCFStraussRA method for detecting modules in quantitative bipartite networksMethods Ecol. Evol.20145909810.1111/2041-210X.12139
– reference: ConnorEFSimberloffDSpecies number and compositional similarity of the Galapagos flora and avifaunaEcol. Monogr.19784821924810.2307/2937300
– reference: HothornTBretzFWestfallPSimultaneous inference in general parametric modelsBiom. J.2008503463631848136310.1002/bimj.200810425
– reference: Almeida-NetoMGuimarãesPGuimarãesPRJrLoyolaRDUlrichWA consistent metric for nestedness analysis in ecological systems: reconciling concept and measurementOikos20081171227123910.1111/j.0030-1299.2008.16644.x
– reference: ScherrerDKörnerCTopographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warmingJ. Biogeogr.20113840641610.1111/j.1365-2699.2010.02407.x
– reference: SimberloffDSWilsonEOExperimental zoogeography of islands: the colonization of empty islandsEcology19695027829610.2307/1934856
– reference: RahbekCHumboldt’s enigma: what causes global patterns of mountain biodiversity?Science2019365110811131:CAS:528:DC%2BC1MXhslGksbfE3151538310.1126/science.aax0149
– reference: JetzWRahbekCGeographic range size and determinants of avian species richnessScience2002297154815511:CAS:528:DC%2BD38XmslSjtL0%3D1220282910.1126/science.1072779
– reference: HeglandSJNielsenALázaroABjerknesA-LTotlandØHow does climate warming affect plant–pollinator interactions?Ecol. Lett.2009121841951904950910.1111/j.1461-0248.2008.01269.x
– reference: WaltherG-RCommunity and ecosystem responses to recent climate changePhilos. Trans. R. Soc. B20103652019202410.1098/rstb.2010.0021
– reference: RahbekCGravesGRMultiscale assessment of patterns of avian species richnessProc. Natl Acad. Sci. USA200198453445391:CAS:528:DC%2BD3MXjtVagtL0%3D112962923186910.1073/pnas.071034898
– reference: Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012Q
– reference: BlonderBLinking environmental filtering and disequilibrium to biogeography with a community climate frameworkEcology2015969729852623001810.1890/14-0589.1
– reference: Kaiser-BunburyCNMuffSMemmottJMüllerCBCaflischAThe robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviourEcol. Lett.2010134424522010024410.1111/j.1461-0248.2009.01437.x
– reference: SandelBThe influence of Late Quaternary climate-change velocity on species endemismScience20113346606641:CAS:528:DC%2BC3MXhtlyqu7jP2197993710.1126/science.1210173
– reference: BenadiGBlüthgenNHovestadtTPoethkeH-JContrasting specialization–stability relationships in plant–animal mutualistic systemsEcol. Model.2013258657310.1016/j.ecolmodel.2013.03.002
– reference: SimmonsBIMoving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networksJ. Anim. Ecol.201887995100729603211684952710.1111/1365-2656.12831
– reference: TylianakisJMDidhamRKBascompteJWardleDAGlobal change and species interactions in terrestrial ecosystemsEcol. Lett.200811135113631906236310.1111/j.1461-0248.2008.01250.x
– reference: GilmanSEUrbanMCTewksburyJGilchristGWHoltRDA framework for community interactions under climate changeTrends Ecol. Evol.2010253253312039251710.1016/j.tree.2010.03.002
– reference: MemmottJWaserNMPriceMVTolerance of pollination networks to species extinctionsProc. R. Soc. Lond. B20042712605261110.1098/rspb.2004.2909
– reference: BeckettSJImproved community detection in weighted bipartite networksR. Soc. Open Sci.2016314053626909160473691510.1098/rsos.140536
– reference: GravesGRRahbekCSource pool geometry and the assembly of continental avifaunasProc. Natl Acad. Sci. USA2005102787178761:CAS:528:DC%2BD2MXkvF2jur8%3D15911769114236410.1073/pnas.0500424102
– reference: Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002).
– reference: BurgosEWhy nestedness in mutualistic networks?J. Theor. Biol.20072493073131789767910.1016/j.jtbi.2007.07.030
– reference: TylianakisJMLalibertéENielsenABascompteJConservation of species interaction networksBiol. Conserv.20101432270227910.1016/j.biocon.2009.12.004
– reference: HazziNAMorenoJSOrtiz-MovliavCPalacioRDBiogeographic regions and events of isolation and diversification of the endemic biota of the tropical AndesProc. Natl Acad. Sci. USA2018115798579901:CAS:528:DC%2BC1cXitlWqs7%2FP30018064607770510.1073/pnas.1803908115
– reference: ThébaultEFontaineCStability of ecological communities and the architecture of mutualistic and trophic networksScience20103298538562070586110.1126/science.1188321
– reference: SchweigerOSetteleJKudrnaOKlotzSKühnIClimate change can cause spatial mismatch of trophically interacting speciesEcology200889347234791913795210.1890/07-1748.1
– reference: GrantPRAbbottIInterspecific competition, island biogeography and null hypothesesEvolution1980343323411:STN:280:DC%2BC1cnjtFOjuw%3D%3D2856343310.1111/j.1558-5646.1980.tb04822.x
– reference: IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014).
– reference: Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996).
– reference: KargerDNClimatologies at high resolution for the Earth’s land surface areasSci. Data2017417012228872642558439610.1038/sdata.2017.122
– reference: SchemskeDWMittelbachGGCornellHVSobelJMRoyKIs there a latitudinal gradient in the importance of biotic interactions?Annu. Rev. Ecol. Evol. Syst.20094024526910.1146/annurev.ecolsys.39.110707.173430
– reference: HooperDUEffects of biodiversity on ecosystem functioning: a consensus of current knowledgeEcol. Monogr.20057533510.1890/04-0922
– reference: Martín GonzálezAMDalsgaardBOlesenJMCentrality measures and the importance of generalist species in pollination networksEcol. Complex.20107364310.1016/j.ecocom.2009.03.008
– reference: WatsonJEMIwamuraTButtNMapping vulnerability and conservation adaptation strategies under climate changeNat. Clim. Change2013398999410.1038/nclimate2007
– reference: JønssonKATracking animal dispersal: from individual movement to community assembly and global range dynamicsTrends Ecol. Evol.2016312042142685217110.1016/j.tree.2016.01.003
– reference: DalsgaardBThe influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networksFunct. Ecol.2021351120113310.1111/1365-2435.13784
– reference: DobzhanskyTEvolution in the tropicsAm. Sci.195038209221
– reference: HurlbertThe effect of energy and seasonality on avian species richness and community compositionAm. Nat.200316183971265046410.1086/345459
– reference: SchleuningMEcological networks are more sensitive to plant than to animal extinction under climate changeNat. Commun.201671:CAS:528:DC%2BC28XitFGitrfM28008919519643010.1038/ncomms13965
– reference: Vizentin-BugoniJDebastianiVJBastaziniVAGMaruyamaPKSperryJHIncluding rewiring in the estimation of the robustness of mutualistic networksMethods Ecol. Evol.20201110611610.1111/2041-210X.13306
– reference: MemmottJCrazePGWaserNMPriceMVGlobal warming and the disruption of plant–pollinator interactionsEcol. Lett.2007107107171759442610.1111/j.1461-0248.2007.01061.x
– reference: RahbekCGravesGRDetection of macro-ecological patterns in South American hummingbirds is affected by spatial scaleProc. R. Soc. Lond. B2000267225922651:STN:280:DC%2BD3MzltFSlsg%3D%3D10.1098/rspb.2000.1277
– reference: BascompteJGarcíaMBOrtegaRRezendeELPirononSMutualistic interactions reshuffle the effects of climate change on plants across the tree of lifeSci. Adv.20195eaav253931106269652002110.1126/sciadv.aav2539
– reference: SonneJEcological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudesProc. R. Soc. B20202872019287332156208712606410.1098/rspb.2019.2873
– reference: Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News8, 8–11 (2008).
– reference: Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi/
– reference: DáttiloWUnravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction typesProc. R. Soc. B20162832016156427881755513657910.1098/rspb.2016.1564
– reference: MateoRGFelicísimoÁMMuñozJEffects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneityJ. Veg. Sci.20102190892210.1111/j.1654-1103.2010.01198.x
– reference: BloisJLZarnetskePLFitzpatrickMCFinneganSClimate change and the past, present and future of biotic interactionsScience20133414995041:CAS:528:DC%2BC3sXhtFyjsr3E2390822710.1126/science.1237184
– reference: BlüthgenNMenzelFBlüthgenNMeasuring specialization in species interaction networksBMC Ecol.2006616907983157033710.1186/1472-6785-6-9
– reference: CurrieDJFrancisAPKerrJTSome general propositions about the study of spatial patterns of species richnessÉcoscience1999639239910.1080/11956860.1999.11682541
– reference: McGuireJAMolecular phylogenetics and the diversification of hummingbirdsCurr. Biol.2014249109161:CAS:528:DC%2BC2cXls1entrw%3D2470407810.1016/j.cub.2014.03.016
– reference: HoltBGAn update of Wallace’s zoogeographic regions of the worldScience201333974781:CAS:528:DC%2BC3sXnt1Ol2325840810.1126/science.1228282
– reference: BascompteJJordanoPMeliánCJOlesenJMThe nested assembly of plant–animal mutualistic networksProc. Natl Acad. Sci. USA2003100938393871:CAS:528:DC%2BD3sXmtlyktLY%3D1288148817092710.1073/pnas.1633576100
– reference: DalsgaardBSpecialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocityPLoS ONE20116e258911:CAS:528:DC%2BC3MXhtlOitrfJ21998716318783510.1371/journal.pone.0025891
– reference: BersierL-FBanašek-RichterCCattinM-FQuantitative descriptors of food-web matricesEcology2002832394240710.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2
– reference: ThomasCDClimate, climate change and range boundariesDivers. Distrib.20101648849510.1111/j.1472-4642.2010.00642.x
– reference: PatefieldWAlgorithm AS 159: an efficient method of generating random R × C tables with given row and column totalsJ. R. Stat. Soc. C1981309197
– reference: GrassIJaukerBSteffan-DewenterITscharntkeTJaukerFPast and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networksNat. Ecol. Evol.20182140814173008273510.1038/s41559-018-0631-2
– reference: DalsgaardBHistorical climate-change influences modularity and nestedness of pollination networksEcography2013361331134010.1111/j.1600-0587.2013.00201.x
– reference: Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).
– volume: 283
  start-page: 20161564
  year: 2016
  ident: 1693_CR16
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2016.1564
– ident: 1693_CR55
– volume: 24
  start-page: 910
  year: 2014
  ident: 1693_CR42
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.03.016
– volume: 11
  start-page: 106
  year: 2020
  ident: 1693_CR65
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13306
– volume: 143
  start-page: 2270
  year: 2010
  ident: 1693_CR32
  publication-title: Biol. Conserv.
  doi: 10.1016/j.biocon.2009.12.004
– ident: 1693_CR1
– volume: 297
  start-page: 1548
  year: 2002
  ident: 1693_CR58
  publication-title: Science
  doi: 10.1126/science.1072779
– volume: 40
  start-page: 245
  year: 2009
  ident: 1693_CR3
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.39.110707.173430
– volume: 50
  start-page: 278
  year: 1969
  ident: 1693_CR44
  publication-title: Ecology
  doi: 10.2307/1934856
– volume: 108
  start-page: 3648
  year: 2011
  ident: 1693_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1014353108
– volume: 48
  start-page: 219
  year: 1978
  ident: 1693_CR45
  publication-title: Ecol. Monogr.
  doi: 10.2307/2937300
– volume: 25
  start-page: 325
  year: 2010
  ident: 1693_CR18
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.03.002
– volume: 341
  start-page: 499
  year: 2013
  ident: 1693_CR7
  publication-title: Science
  doi: 10.1126/science.1237184
– volume: 115
  start-page: 7985
  year: 2018
  ident: 1693_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1803908115
– volume: 83
  start-page: 2394
  year: 2002
  ident: 1693_CR30
  publication-title: Ecology
  doi: 10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2
– volume: 36
  start-page: 1331
  year: 2013
  ident: 1693_CR13
  publication-title: Ecography
  doi: 10.1111/j.1600-0587.2013.00201.x
– volume: 7
  year: 2016
  ident: 1693_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13965
– volume: 161
  start-page: 83
  year: 2003
  ident: 1693_CR61
  publication-title: Am. Nat.
  doi: 10.1086/345459
– volume: 287
  start-page: 20192873
  year: 2020
  ident: 1693_CR52
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2019.2873
– volume: 339
  start-page: 74
  year: 2013
  ident: 1693_CR56
  publication-title: Science
  doi: 10.1126/science.1228282
– volume: 249
  start-page: 307
  year: 2007
  ident: 1693_CR29
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2007.07.030
– volume: 11
  start-page: 1351
  year: 2008
  ident: 1693_CR11
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01250.x
– volume: 38
  start-page: 406
  year: 2011
  ident: 1693_CR23
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2010.02407.x
– volume: 34
  start-page: 332
  year: 1980
  ident: 1693_CR46
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1980.tb04822.x
– volume: 334
  start-page: 660
  year: 2011
  ident: 1693_CR22
  publication-title: Science
  doi: 10.1126/science.1210173
– volume: 31
  start-page: 204
  year: 2016
  ident: 1693_CR41
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2016.01.003
– volume: 35
  start-page: 1120
  year: 2021
  ident: 1693_CR21
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13784
– volume: 102
  start-page: 7871
  year: 2005
  ident: 1693_CR24
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0500424102
– volume: 3
  start-page: 989
  year: 2013
  ident: 1693_CR27
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2007
– volume: 16
  start-page: 488
  year: 2010
  ident: 1693_CR47
  publication-title: Divers. Distrib.
  doi: 10.1111/j.1472-4642.2010.00642.x
– ident: 1693_CR26
– ident: 1693_CR43
– ident: 1693_CR57
  doi: 10.7289/V5J1012Q
– volume: 258
  start-page: 65
  year: 2013
  ident: 1693_CR50
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2013.03.002
– volume: 96
  start-page: 972
  year: 2015
  ident: 1693_CR64
  publication-title: Ecology
  doi: 10.1890/14-0589.1
– volume: 75
  start-page: 3
  year: 2005
  ident: 1693_CR2
  publication-title: Ecol. Monogr.
  doi: 10.1890/04-0922
– volume: 365
  start-page: 1108
  year: 2019
  ident: 1693_CR38
  publication-title: Science
  doi: 10.1126/science.aax0149
– volume: 117
  start-page: 1227
  year: 2008
  ident: 1693_CR48
  publication-title: Oikos
  doi: 10.1111/j.0030-1299.2008.16644.x
– volume: 6
  start-page: e25891
  year: 2011
  ident: 1693_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025891
– volume: 329
  start-page: 853
  year: 2010
  ident: 1693_CR31
  publication-title: Science
  doi: 10.1126/science.1188321
– volume: 89
  start-page: 3472
  year: 2008
  ident: 1693_CR4
  publication-title: Ecology
  doi: 10.1890/07-1748.1
– volume: 12
  start-page: 184
  year: 2009
  ident: 1693_CR5
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01269.x
– volume: 13
  start-page: 442
  year: 2010
  ident: 1693_CR15
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2009.01437.x
– volume: 7
  start-page: 36
  year: 2010
  ident: 1693_CR28
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2009.03.008
– volume: 6
  start-page: 392
  year: 1999
  ident: 1693_CR60
  publication-title: Écoscience
  doi: 10.1080/11956860.1999.11682541
– volume: 40
  start-page: 1395
  year: 2017
  ident: 1693_CR54
  publication-title: Ecography
  doi: 10.1111/ecog.02604
– ident: 1693_CR25
– volume: 3
  start-page: 140536
  year: 2016
  ident: 1693_CR51
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.140536
– volume: 100
  start-page: 9383
  year: 2003
  ident: 1693_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1633576100
– volume: 285
  start-page: 20172754
  year: 2018
  ident: 1693_CR17
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2017.2754
– volume: 271
  start-page: 2605
  year: 2004
  ident: 1693_CR14
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2004.2909
– volume: 267
  start-page: 2259
  year: 2000
  ident: 1693_CR20
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.2000.1277
– volume: 36
  start-page: 49
  year: 1985
  ident: 1693_CR39
  publication-title: Ornithol. Monogr.
  doi: 10.2307/40168278
– volume: 98
  start-page: 4534
  year: 2001
  ident: 1693_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.071034898
– volume: 365
  start-page: 2019
  year: 2010
  ident: 1693_CR6
  publication-title: Philos. Trans. R. Soc. B
  doi: 10.1098/rstb.2010.0021
– volume: 2
  start-page: 1408
  year: 2018
  ident: 1693_CR33
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0631-2
– volume: 10
  start-page: 710
  year: 2007
  ident: 1693_CR10
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2007.01061.x
– volume: 87
  start-page: 995
  year: 2018
  ident: 1693_CR49
  publication-title: J. Anim. Ecol.
  doi: 10.1111/1365-2656.12831
– volume: 4
  start-page: 170122
  year: 2017
  ident: 1693_CR62
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.122
– volume: 21
  start-page: 908
  year: 2010
  ident: 1693_CR63
  publication-title: J. Veg. Sci.
  doi: 10.1111/j.1654-1103.2010.01198.x
– volume: 5
  start-page: eaav2539
  year: 2019
  ident: 1693_CR9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2539
– volume: 5
  start-page: 90
  year: 2014
  ident: 1693_CR36
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12139
– volume: 6
  year: 2006
  ident: 1693_CR35
  publication-title: BMC Ecol.
  doi: 10.1186/1472-6785-6-9
– ident: 1693_CR66
– volume: 50
  start-page: 346
  year: 2008
  ident: 1693_CR67
  publication-title: Biom. J.
  doi: 10.1002/bimj.200810425
– volume: 38
  start-page: 209
  year: 1950
  ident: 1693_CR59
  publication-title: Am. Sci.
– volume: 30
  start-page: 91
  year: 1981
  ident: 1693_CR53
  publication-title: J. R. Stat. Soc. C
SSID ssj0001775966
Score 2.3191583
Snippet Climate-driven range shifts may cause local extinctions, while the accompanying loss of biotic interactions may trigger secondary coextinctions. At the same...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 720
SubjectTerms 631/158/2165
631/158/852
631/158/853
Biological and Physical Anthropology
Biomedical and Life Sciences
Climate change
Colonization
Ecology
Endangered & extinct species
Evolutionary Biology
Extinction
Geography
Life Sciences
Networks
Paleontology
Species extinction
Zoology
Title Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change
URI https://link.springer.com/article/10.1038/s41559-022-01693-3
https://www.ncbi.nlm.nih.gov/pubmed/35347259
https://www.proquest.com/docview/2674129706
https://www.proquest.com/docview/2644938017
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw8MTaB_aCGAwIsMmT9jYs0tiO4ye0TUUVEmiaQOItsh0HKlVpaYoEb_wH_iG_hHPitJrQeLTi-OPu7DvfJ8B3qYxKJee0tIxRrrigWhbYVJlzCZc2ET4a-fwiHV3xs2txHRRudXCr7O7E5qIuptbryI8THBF5k4zTk9kd9VWjvHU1lND4AH28grOsB_1fw4s_f1daFikFCvQhWiZm2XHtOaii3om9SURC2b8c6Y2Y-cZE2nCe003YCCIj-dni-BOsuWoL1kP18tvHbbgZPizGVROgcETs1C1bRFcF8Wmpu2hLUrQF6GsyrshsglB9eXq-xc3hxGY8L0jVeoXXxMeWzYmdjFGidaQND_4MV6fDy98jGgooUMukWFCN3DwxqTeuGytSxp1VwmalVmXqSmONLQpm9EBxLmODT5lEFImOtTQDrWJTsh3oVdPK7QHx6g7jlFDc51izzAyYESjqpdwkpeEqgkEHxNyG7OK-yMUkb6zcLMtbwOcI-LwBfM4i-LH8Z9bm1ni392GHmzycszpfUUUE35af8YR4s4eu3PTe9-FcMeTEMoLdFqfL6ZhgXOILMIKjDsmrwf-_lv3313IAH5OGwLyy5hB6i_m9-4Kyy8J8DQT6CkAz7OE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTSQ7mglleXFjASnKjVjR_r-IAQj1QpbSOEWqm3xfZ6aaRoE7KpoDf-of_Rj-qXMN5HIlTRW4_Wem1rZux5zwC8VtrqRAlBc8c5FVpIalSGQ93zngnlmAzZyEfDZHAivpzK0xW4anNhQlhl-yZWD3U2ccFGvstwReRNKk7eT3_S0DUqeFfbFho1WRz4i1-ospXv9j8jft8wttc__jSgTVcB6riSc2qQxTGbBI-zdTLhwjstXS83Ok98bp11WcatQeVeqNiifM9kxkxslO0aHduc47r3YFXwJGYdWP3YH379trTqKCVRgWiyc2Le2y0Dx9Y0BM1XhU8o_5cD3hBrb7hkK063tw4PGhGVfKhpagNWfPEQ1ppu6WcXj-BH__d8VFQJETvETfxiREyRkVAGu83uJFnd8L4ko4JMx4jF6z-XZwhM3NiOZhkp6ij0koRcthlx4xFK0J7U6ciP4eROQPsEOsWk8JtAgnnFei21CDXdHLddbiWKlomwLLdCR9BtgZi6ppp5aKoxTiuvOu-lNeBTBHxaAT7lEbxd_DOta3ncOnu7xU3a3OsyXVJhBK8Wn_FGBjeLKfzkPMwRQnPk_CqCpzVOF9txyYVCjTOCnRbJy8X_f5Znt5_lJawNjo8O08P94cEW3GcVsQVD0TZ05rNz_xzlprl90RArge93fT_-Au22Kuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extinction%2C+coextinction+and+colonization+dynamics+in+plant%E2%80%93hummingbird+networks+under+climate+change&rft.jtitle=Nature+ecology+%26+evolution&rft.au=Sonne%2C+Jesper&rft.au=Maruyama%2C+Pietro+K&rft.au=Mart%C3%ADn+Gonz%C3%A1lez%2C+Ana+M&rft.au=Rahbek%2C+Carsten&rft.date=2022-06-01&rft.pub=Nature+Publishing+Group&rft.eissn=2397-334X&rft.volume=6&rft.issue=6&rft.spage=720&rft.epage=729&rft_id=info:doi/10.1038%2Fs41559-022-01693-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-334X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-334X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-334X&client=summon