Optimal designs for discrete-time survival models with random effects

This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subje...

Full description

Saved in:
Bibliographic Details
Published inLifetime data analysis Vol. 27; no. 2; pp. 300 - 332
Main Authors Zhou, Xiao-Dong, Wang, Yun-Juan, Yue, Rong-Xian
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7870
1572-9249
1572-9249
DOI10.1007/s10985-020-09512-2

Cover

Abstract This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ( D s )-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ( D s )-optimal designs. The equivalence theorem for the cost-based D ( D s )-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.
AbstractList This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ( D s )-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ( D s )-optimal designs. The equivalence theorem for the cost-based D ( D s )-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.
This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.
This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.
This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D (Ds)-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D (Ds)-optimal designs. The equivalence theorem for the cost-based D (Ds)-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.
Author Wang, Yun-Juan
Yue, Rong-Xian
Zhou, Xiao-Dong
Author_xml – sequence: 1
  givenname: Xiao-Dong
  orcidid: 0000-0002-2498-1582
  surname: Zhou
  fullname: Zhou, Xiao-Dong
  email: xdzhou@suibe.edu.cn
  organization: School of Statistics and Information, Shanghai University of International Business and Economics
– sequence: 2
  givenname: Yun-Juan
  surname: Wang
  fullname: Wang, Yun-Juan
  organization: School of Statistics and Mathematics, Shanghai Lixin University Accounting and Finance
– sequence: 3
  givenname: Rong-Xian
  surname: Yue
  fullname: Yue, Rong-Xian
  organization: College of Mathematics and Science, Shanghai Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33417074$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHTEUhkO5Ur3qH-iiDHTjJvXkazJZFtEqXHBR9yE3c2JHZia3SeaW_vvGXqXgwlUO5HleDuddk9UcZyTkE4OvDEBfZgamUxQ4UDCKcco_kBOmNKeGS7Oqs-iA6k7DMVnn_ARVMq35SI6FkEyDlifk-n5XhsmNTY95eJxzE2Jq-iH7hAVp_cImL2k_7CsyxR7H3Pweys8mubmPU4MhoC_5jBwFN2Y8f3lPyY-b64erW7q5_3539W1DvdCqUCeD9CiDD4pzDcyYFp3QKLYBDGgBvetatu0MCqfAcIZehZ4rL9S278QpuTik7lL8tWAudqqL4ji6GeOSLZe6Va2suRX98gZ9ikua626VMoZzxWRbqc8v1LKdsLe7VE-R_tjX81SgOwA-xZwTBuuH4soQ55LcMFoG9rkJe2jC1ibsvyYsryp_o76mvyuJg5QrPD9i-r_2O9Zf6XqZyw
CitedBy_id crossref_primary_10_1016_j_jspi_2021_12_004
crossref_primary_10_3390_axioms12121102
crossref_primary_10_1007_s11222_023_10279_3
Cites_doi 10.1007/s10985-016-9359-y
10.1016/j.jspi.2004.07.014
10.1016/0378-3758(93)90047-A
10.1016/j.csda.2008.04.037
10.1002/sim.6569
10.1111/biom.12659
10.1016/j.jspi.2012.11.006
10.1016/j.csda.2014.02.012
10.1007/978-3-319-28158-2
10.1002/9781118032985
10.1016/j.csda.2011.12.018
10.1016/j.csda.2013.07.040
10.1016/j.jeconom.2010.04.003
10.1016/j.cmpb.2013.05.004
10.1201/9781315116945
10.18637/jss.v060.i06
10.1093/biomet/asv005
10.1111/stan.12085
10.1080/00949655.2015.1087525
10.1016/S0378-3758(00)00173-7
10.1081/STA-200056839
10.1007/s10928-011-9203-7
10.1093/biostatistics/kxu040
10.1002/9780470258019
10.2307/2533117
10.1007/s00180-017-0767-6
10.1007/s11222-014-9466-0
10.1016/j.csda.2016.10.011
10.1080/01621459.1993.10594284
10.1093/oso/9780199296590.001.0001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
3V.
7WY
7WZ
7X7
7XB
87Z
88C
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
L6V
M0C
M0S
M0T
M1P
M2P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1007/s10985-020-09512-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (subscription)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
ProQuest Health & Medical Collection
ProQuest Central Healthcare Administration Database (via ProQuest)
Medical Database
Science Database (subscription)
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Health Management
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Mathematics
Statistics
EISSN 1572-9249
EndPage 332
ExternalDocumentID 33417074
10_1007_s10985_020_09512_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11871143; 11971318
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11301132
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3V.
4.4
406
408
409
40D
40E
44B
53G
5GY
5QI
5VS
67Z
6NX
78A
7WY
7X7
88E
88I
8AO
8C1
8FE
8FG
8FI
8FJ
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EBU
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6~
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0T
M1P
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z81
Z83
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
ABRTQ
K9.
L.-
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c375t-a4f4ce4fcf522701996ea37e3bf090730da861b89e3a50921ec5fd25c35bd83
IEDL.DBID 7X7
ISSN 1380-7870
1572-9249
IngestDate Fri Sep 05 10:25:12 EDT 2025
Sat Aug 23 14:15:32 EDT 2025
Wed Feb 19 02:29:34 EST 2025
Tue Jul 01 01:43:34 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Fri Feb 21 02:48:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Equivalence theorem
Random effects
Particle swarm optimization
Discrete-time survival model
Optimal designs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a4f4ce4fcf522701996ea37e3bf090730da861b89e3a50921ec5fd25c35bd83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2498-1582
PMID 33417074
PQID 2499225146
PQPubID 26261
PageCount 33
ParticipantIDs proquest_miscellaneous_2476564019
proquest_journals_2499225146
pubmed_primary_33417074
crossref_citationtrail_10_1007_s10985_020_09512_2
crossref_primary_10_1007_s10985_020_09512_2
springer_journals_10_1007_s10985_020_09512_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210400
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data
PublicationTitle Lifetime data analysis
PublicationTitleAbbrev Lifetime Data Anal
PublicationTitleAlternate Lifetime Data Anal
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dette (CR8) 1993; 35
Ogungbenro, Aarons (CR24) 2011; 38
Wu, Wong, Crespi (CR34) 2017; 73
Agresti (CR2) 2013
Fedorov (CR9) 1972
Groll, Tutz (CR11) 2017; 23
Moerbeek (CR19) 2012; 8
Atkinson, Donev, Tobias (CR3) 2007
Ueckert, Mentré (CR31) 2017; 111
Kang, Huang, Miller (CR16) 2015; 16
Moerbeek, Wong (CR21) 2015; 34
Moerbeek, Maas (CR20) 2005; 34
Scheike, Jensen (CR28) 1997; 53
Hosmer, Lemeshow, May (CR12) 2008
Maram, Jafari (CR17) 2016; 86
Józwiak, Moerbeek (CR14) 2013; 143
Zhou, Wang, Yue (CR35) 2018; 33
Józwiak, Moerbeek (CR13) 2012; 56
Mullen (CR22) 2014; 60
Tekle, Tan, Berger (CR29) 2008; 52
Wong (CR33) 2013; 111
Waite, Woods (CR32) 2015; 102
Mathew, Sinha (CR18) 2001; 93
Fedorov, Leonov (CR10) 2014
Breslow, Clayton (CR6) 1993; 88
Bogaerts, Komarek, Lesaffre (CR5) 2017
Nicoletti, Rondinelli (CR23) 2010; 159
Chen, Chang, Wang (CR7) 2015; 25
Kalbfleisch, Prentice (CR15) 2002
Ouwens, Tan, Berger (CR25) 2006; 136
Avriel (CR4) 2003
Safarkhani, Moerbeek (CR27) 2016; 70
Tutz, Schmid (CR30) 2016
Abebe, Tan, Van Breukelen (CR1) 2014; 71
Safarkhani, Moerbeek (CR26) 2014; 75
T Scheike (9512_CR28) 1997; 53
H Dette (9512_CR8) 1993; 35
K Józwiak (9512_CR13) 2012; 56
TW Waite (9512_CR32) 2015; 102
XD Zhou (9512_CR35) 2018; 33
PP Maram (9512_CR17) 2016; 86
M Moerbeek (9512_CR19) 2012; 8
NE Breslow (9512_CR6) 1993; 88
C Kang (9512_CR16) 2015; 16
T Mathew (9512_CR18) 2001; 93
R Chen (9512_CR7) 2015; 25
AH Groll (9512_CR11) 2017; 23
K Ogungbenro (9512_CR24) 2011; 38
MJNM Ouwens (9512_CR25) 2006; 136
S Ueckert (9512_CR31) 2017; 111
AC Atkinson (9512_CR3) 2007
DW Hosmer (9512_CR12) 2008
G Tutz (9512_CR30) 2016
K Józwiak (9512_CR14) 2013; 143
HT Abebe (9512_CR1) 2014; 71
J Kalbfleisch (9512_CR15) 2002
VV Fedorov (9512_CR9) 1972
M Moerbeek (9512_CR20) 2005; 34
WK Wong (9512_CR33) 2013; 111
C Nicoletti (9512_CR23) 2010; 159
M Avriel (9512_CR4) 2003
K Bogaerts (9512_CR5) 2017
A Agresti (9512_CR2) 2013
M Moerbeek (9512_CR21) 2015; 34
KM Mullen (9512_CR22) 2014; 60
S Wu (9512_CR34) 2017; 73
M Safarkhani (9512_CR26) 2014; 75
FB Tekle (9512_CR29) 2008; 52
VV Fedorov (9512_CR10) 2014
M Safarkhani (9512_CR27) 2016; 70
References_xml – volume: 23
  start-page: 305
  year: 2017
  end-page: 338
  ident: CR11
  article-title: Variable selection in discrete survival models including heterogeneity
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-016-9359-y
– volume: 136
  start-page: 962
  year: 2006
  end-page: 981
  ident: CR25
  article-title: A maximin criterion for the logistic random intercept model with covariates
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2004.07.014
– volume: 35
  start-page: 233
  year: 1993
  end-page: 249
  ident: CR8
  article-title: On a mixture of the - and -optimality criterion in polynomial regression
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(93)90047-A
– year: 2007
  ident: CR3
  publication-title: Optimum experimental designs, with SAS
– volume: 52
  start-page: 5253
  year: 2008
  end-page: 5262
  ident: CR29
  article-title: Maximin -optimal designs for binary longitudinal responses
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.04.037
– volume: 34
  start-page: 3490
  year: 2015
  end-page: 3502
  ident: CR21
  article-title: Optimal treatment allocation for placebo-treatment comparisons in trials with discrete-time survival endpoints
  publication-title: Stat Med
  doi: 10.1002/sim.6569
– volume: 73
  start-page: 916
  issue: 3
  year: 2017
  end-page: 926
  ident: CR34
  article-title: Maximin optimal designs for cluster randomized trials
  publication-title: Biometrics
  doi: 10.1111/biom.12659
– volume: 143
  start-page: 971
  year: 2013
  end-page: 982
  ident: CR14
  article-title: Optimal treatment allocation and study duration for trials with discrete-time survival endpoints
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2012.11.006
– volume: 75
  start-page: 217
  year: 2014
  end-page: 226
  ident: CR26
  article-title: The influence of a covariate on optimal designs in longitudinal studies with discrete-time survival endpoints
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2014.02.012
– year: 2016
  ident: CR30
  publication-title: Modeling discrete time-to-event data
  doi: 10.1007/978-3-319-28158-2
– year: 1972
  ident: CR9
  publication-title: Theory of optimal experiments
– year: 2002
  ident: CR15
  publication-title: The statistical analysis of failure time data
  doi: 10.1002/9781118032985
– volume: 56
  start-page: 2086
  year: 2012
  end-page: 2096
  ident: CR13
  article-title: Cost-effective designs for trials with discrete-time survival end points
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.12.018
– volume: 8
  start-page: 146
  year: 2012
  end-page: 158
  ident: CR19
  article-title: Sample size issues for cluster randomized trials with discrete-time survival endpoints
  publication-title: Methodol EUR
– volume: 71
  start-page: 1066
  year: 2014
  end-page: 1076
  ident: CR1
  article-title: Bayesian -optimal designs for the two parameter logistic mixed effects model
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.07.040
– year: 2003
  ident: CR4
  publication-title: Nonlinear programming: analysis and methods
– volume: 159
  start-page: 1
  year: 2010
  end-page: 13
  ident: CR23
  article-title: The (mis)specification of discrete duration models with unobserved heterogeneity: a Monte Carlo study
  publication-title: J Econ
  doi: 10.1016/j.jeconom.2010.04.003
– volume: 111
  start-page: 701
  year: 2013
  end-page: 710
  ident: CR33
  article-title: Web-based tools for finding optimal designs in biomedical studies
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.05.004
– year: 2017
  ident: CR5
  publication-title: Survival analysis with interval-censored data: a practical approach with R SAS and BUGS
  doi: 10.1201/9781315116945
– volume: 60
  start-page: 1
  year: 2014
  end-page: 45
  ident: CR22
  article-title: Continuous global optimization in R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v060.i06
– volume: 102
  start-page: 677
  year: 2015
  end-page: 693
  ident: CR32
  article-title: Designs for generalized linear models with random block effects via information matrix approximations
  publication-title: Biometrika
  doi: 10.1093/biomet/asv005
– year: 2013
  ident: CR2
  publication-title: Categorical data analysis
– volume: 70
  start-page: 146
  year: 2016
  end-page: 171
  ident: CR27
  article-title: -optimal designs for a continuous predictor in longitudinal trials with discrete-time survival endpoints
  publication-title: Stat Neerl
  doi: 10.1111/stan.12085
– volume: 86
  start-page: 1856
  year: 2016
  end-page: 1868
  ident: CR17
  article-title: Bayesian D-optimal design for logistic regression model with exponential distribution for random intercept
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1087525
– year: 2014
  ident: CR10
  publication-title: Optimal design for nonlinear response models
– volume: 93
  start-page: 295
  year: 2001
  end-page: 307
  ident: CR18
  article-title: Optimal designs for binary data under logistic regression
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(00)00173-7
– volume: 34
  start-page: 1151
  year: 2005
  end-page: 1167
  ident: CR20
  article-title: Optimal experimental designs for multilevel logistic models with two binary predictors
  publication-title: Commun Stat Theory Methods
  doi: 10.1081/STA-200056839
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  ident: CR6
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J Am Stat Assoc
– volume: 38
  start-page: 449
  issue: 4
  year: 2011
  end-page: 469
  ident: CR24
  article-title: Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-011-9203-7
– volume: 16
  start-page: 295
  year: 2015
  end-page: 310
  ident: CR16
  article-title: A discrete-time survival model with random effects for designing and analyzing repeated low-dose challenge experiments
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu040
– year: 2008
  ident: CR12
  publication-title: Applied survival analysis: regression modeling of time to event data
  doi: 10.1002/9780470258019
– volume: 53
  start-page: 318
  year: 1997
  end-page: 329
  ident: CR28
  article-title: A discrete survival model with random effects: an application to time to pregnancy
  publication-title: Biometrics
  doi: 10.2307/2533117
– volume: 33
  start-page: 903
  year: 2018
  end-page: 931
  ident: CR35
  article-title: Robust population designs for longitudinal linear regression model with a random intercept
  publication-title: Comput Stat
  doi: 10.1007/s00180-017-0767-6
– volume: 25
  start-page: 975
  year: 2015
  end-page: 988
  ident: CR7
  article-title: Minimax optimal designs via particle swarm optimization methods
  publication-title: Stat Comput
  doi: 10.1007/s11222-014-9466-0
– volume: 111
  start-page: 203
  year: 2017
  end-page: 219
  ident: CR31
  article-title: A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2016.10.011
– volume-title: Survival analysis with interval-censored data: a practical approach with R SAS and BUGS
  year: 2017
  ident: 9512_CR5
  doi: 10.1201/9781315116945
– volume-title: Applied survival analysis: regression modeling of time to event data
  year: 2008
  ident: 9512_CR12
  doi: 10.1002/9780470258019
– volume-title: Nonlinear programming: analysis and methods
  year: 2003
  ident: 9512_CR4
– volume: 136
  start-page: 962
  year: 2006
  ident: 9512_CR25
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2004.07.014
– volume-title: Categorical data analysis
  year: 2013
  ident: 9512_CR2
– volume-title: Optimal design for nonlinear response models
  year: 2014
  ident: 9512_CR10
– volume: 86
  start-page: 1856
  year: 2016
  ident: 9512_CR17
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2015.1087525
– volume: 34
  start-page: 3490
  year: 2015
  ident: 9512_CR21
  publication-title: Stat Med
  doi: 10.1002/sim.6569
– volume: 8
  start-page: 146
  year: 2012
  ident: 9512_CR19
  publication-title: Methodol EUR
– volume: 159
  start-page: 1
  year: 2010
  ident: 9512_CR23
  publication-title: J Econ
  doi: 10.1016/j.jeconom.2010.04.003
– volume: 143
  start-page: 971
  year: 2013
  ident: 9512_CR14
  publication-title: J Stat Plan Inference
  doi: 10.1016/j.jspi.2012.11.006
– volume: 93
  start-page: 295
  year: 2001
  ident: 9512_CR18
  publication-title: J Stat Plan Inference
  doi: 10.1016/S0378-3758(00)00173-7
– volume-title: The statistical analysis of failure time data
  year: 2002
  ident: 9512_CR15
  doi: 10.1002/9781118032985
– volume-title: Theory of optimal experiments
  year: 1972
  ident: 9512_CR9
– volume: 111
  start-page: 701
  year: 2013
  ident: 9512_CR33
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.05.004
– volume: 25
  start-page: 975
  year: 2015
  ident: 9512_CR7
  publication-title: Stat Comput
  doi: 10.1007/s11222-014-9466-0
– volume: 16
  start-page: 295
  year: 2015
  ident: 9512_CR16
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu040
– volume-title: Modeling discrete time-to-event data
  year: 2016
  ident: 9512_CR30
  doi: 10.1007/978-3-319-28158-2
– volume: 88
  start-page: 9
  year: 1993
  ident: 9512_CR6
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1993.10594284
– volume: 56
  start-page: 2086
  year: 2012
  ident: 9512_CR13
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.12.018
– volume: 60
  start-page: 1
  year: 2014
  ident: 9512_CR22
  publication-title: J Stat Softw
  doi: 10.18637/jss.v060.i06
– volume: 34
  start-page: 1151
  year: 2005
  ident: 9512_CR20
  publication-title: Commun Stat Theory Methods
  doi: 10.1081/STA-200056839
– volume: 75
  start-page: 217
  year: 2014
  ident: 9512_CR26
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2014.02.012
– volume: 33
  start-page: 903
  year: 2018
  ident: 9512_CR35
  publication-title: Comput Stat
  doi: 10.1007/s00180-017-0767-6
– volume: 38
  start-page: 449
  issue: 4
  year: 2011
  ident: 9512_CR24
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-011-9203-7
– volume: 23
  start-page: 305
  year: 2017
  ident: 9512_CR11
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-016-9359-y
– volume: 73
  start-page: 916
  issue: 3
  year: 2017
  ident: 9512_CR34
  publication-title: Biometrics
  doi: 10.1111/biom.12659
– volume: 102
  start-page: 677
  year: 2015
  ident: 9512_CR32
  publication-title: Biometrika
  doi: 10.1093/biomet/asv005
– volume: 53
  start-page: 318
  year: 1997
  ident: 9512_CR28
  publication-title: Biometrics
  doi: 10.2307/2533117
– volume: 71
  start-page: 1066
  year: 2014
  ident: 9512_CR1
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2013.07.040
– volume: 35
  start-page: 233
  year: 1993
  ident: 9512_CR8
  publication-title: J Stat Plan Inference
  doi: 10.1016/0378-3758(93)90047-A
– volume: 52
  start-page: 5253
  year: 2008
  ident: 9512_CR29
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.04.037
– volume: 70
  start-page: 146
  year: 2016
  ident: 9512_CR27
  publication-title: Stat Neerl
  doi: 10.1111/stan.12085
– volume-title: Optimum experimental designs, with SAS
  year: 2007
  ident: 9512_CR3
  doi: 10.1093/oso/9780199296590.001.0001
– volume: 111
  start-page: 203
  year: 2017
  ident: 9512_CR31
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2016.10.011
SSID ssj0007969
Score 2.2460568
Snippet This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 300
SubjectTerms Algorithms
Correlation analysis
Design criteria
Design optimization
Economics
Finance
Health Sciences
Heterogeneity
Insurance
Longitudinal studies
Management
Mathematics and Statistics
Medicine
Operations Research/Decision Theory
Particle swarm optimization
Quality Control
Reliability
Safety and Risk
Statistics
Statistics for Business
Statistics for Life Sciences
Survival
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kgtaDaH1Fq6zgTRfabHaTPRZpKUL1oIXeQrKPk02laf-_s3lVqQoeQzabMLMz803mBXAnhFJaK0EZSzQNrOY0RUNAjavrRP_ZclVk-T6L8TR4mvFZVRSW19nudUiy0NRfit1k5KqJe9TBAp-i4t3l6Ls7cZz6g0b_hrIYZNdnkcuVC3tVqczPe3w3R1sYcys-Wpid0REcVniRDEoGH8OOyTqwX5cT5x04mDSNV_Fqb1LFyjvQdjiybMN8AsMXVA1z3EgXGRs5QaxKXEXuEkEzdQPmSb5GrYHnjhTDcXLi_tAStGR6MSdV1scpvI6Gb49jWk1QoIqFfEWTwAbKBFZZhFmu8boUJmGhYantSSfcOolEP42kYQkiB79vFLfa54rxVEfsDFrZIjMXQJhOIxGmVhiJDrVNpWVSa8k5or2eb4QH_ZqMsaqai7sZF-_xpi2yI32MpI8L0se-B_fNMx9la40_V3dr7sSVmOUx-o4SFRJqew9um9soIC7qkWRmsXZrQsSs6EZKD85LrjavY2jDQwRRHjzUbN5s_vu3XP5v-RW03TEt83260Fot1-YaocwqvSlO7if0Xub7
  priority: 102
  providerName: Springer Nature
Title Optimal designs for discrete-time survival models with random effects
URI https://link.springer.com/article/10.1007/s10985-020-09512-2
https://www.ncbi.nlm.nih.gov/pubmed/33417074
https://www.proquest.com/docview/2499225146
https://www.proquest.com/docview/2476564019
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9t5YU9TMDYlq0gT9obs5bEsRM_oYJaEGhsYiB1T1HijydoGWn__925biqExksiJXZi3Z19v7PvA-CrUsZYaxQXorG88FbyFhUBdxTXifazlyZ4-V6p89viYiqnccOti26V6zUxLNR2bmiP_DuaCRplDyf28cNfTlWj6HQ1ltB4DVshdRnKczntDa601KGkXSYq8por0xg0E0PndEWxySknkJHz_KlieoY2n52UBgU02YG3ETmy0YrVu_DKzfbgzY8-7Wq3B9sEHVeZl9_B-CeuBvfYwwYnjY4hPGUUhPuIOJlTTXnWLXGhQFFjoR5Ox2hTlqHysvN7Fh099uH3ZHxzes5j0QRuRCkXvCl8YVzhjUdkRbnWtXKNKJ1ofappPtumUllbaScaBAt55oz0NpdGyNZW4j0MZvOZ-whM2LZSZeuV02hD-1Z7oa3VUiLAS3OnEsjW9KpNzCdOZS3u6k0mZKJxjTSuA43rPIGjvs_DKpvGi62HazbUcWZ19UYOEvjSv8Y5QQcdzczNl9SmRJiKlqNO4MOKff3vBKrtEnFTAt_W_Nx8_P9j-fTyWD7Ddk7OLsGlZwiDxePSHSBaWbSHQSTxWp1mdJ2cHcLW6OzP5RjvJ-OrX9f49DYf_QOlK-jx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RegAOiEJbQmlrJDi1Vnft2IkPFaooaCmvQ6nEqVHixwl2gewK8Z_6IzvjJLtCCG6cYzvWPDzf2PMA2NbaWues5lKWjqfBKV6hIeCe8jrRfw7KxijfUz34k_66UBdz8K_LhaGwyu5MjAe1G1m6I_-GboJB2UPF3r2-4dQ1il5XuxYajVgc-fs7dNnq74c_kb87Qhzsn-8NeNtVgFuZqTEv05BanwYbEHpQMXKjfSkzL6vQMyTwrsx1v8qNlyVaU9H3VgUnlJWqcrnEVV_B61RKTTqU780CSjITG-j1ZU4xelmvTdFpE_VMTpnQPU6QRnDx0Aw-wraP3mWjuTtYgeUWp7IfjWC9gTk_XIWlk2mR13oVFgmoNnWe12D_DM-eK5zhYkhIzRAMM0r5vUVUzqmDPasneCyhYLPYfadmdAXM0FS60RVrw0rewu8XIOY7mB-Ohn4dmHRVrrMqaG_QYw-VCdI4Z5RCONkTXifQ7-hV2LZ6OTXRuCxmdZeJxgXSuIg0LkQCX6ZzrpvaHc-O3uzYULR6XBczqUtga_oZNZCeVcqhH01oTIagGP1Uk8D7hn3T30kECRmitAS-dvycLf70Xjae38tnWBicnxwXx4enRx9gUVCYTQwm2oT58e3Ef0ScNK4-RfFk8PdlteE_Zake5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTKAUF5BQoYCU5gsWvHTnyoENBdtRSWiofUU6PEjxPdLc2uEP-Qn8WM18kKVfTWcxzHGs94voln5gN4rrW1zlnNpawdz4NTvEFHwD3VdWL8HJSNWb5Tvf89_3CsjjfgT1cLQ2mV3ZkYD2o3t_SP_DWGCQZ1jwhaQkqLONqbvDn7yYlBim5aOzqNOtEsuN3YbiwVeRz6378wnGt3D_Zw718IMRl_e7_PE-MAt7JQC17nIbc-DzYgLKFG5Ub7WhZeNmFoyBhcXepRUxova_S0YuStCk4oK1XjSomzXoPNAn1kPoDNd-Pp0ZfeKxQm0uuNZEkZfMUwFfCkMj5TUp30kBPgEVz86yQvIN8Lt7bRGU5uwc2EYtnbldrdhg0_24Ybn_oWsO02bBGMXXWBvgPjz3gyneIbLiaMtAyhMqOC4HPE7Jz47Vm7xEML1Z5Fbp6W0Q9iho7UzU9ZSjq5C1-vQJz3YDCbz_wDYNI1pS6aoL3BeD40JkjjnFEKweZQeJ3BqJNXZVNvc6LY-FGtuzKTjCuUcRVlXIkMXvbvnK06e1w6eqfbhipZeVutdTKDZ_1jtE-6dKlnfr6kMQVCZoxiTQb3V9vXf04ihCgQw2XwqtvP9eT_X8vDy9fyFK6jZVQfD6aHj2BLUA5OzDTagcHifOkfI4haNE-SfjI4uVqD-AsFQinc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+designs+for+discrete-time+survival+models+with+random+effects&rft.jtitle=Lifetime+data+analysis&rft.au=Zhou%2C+Xiao-Dong&rft.au=Wang%2C+Yun-Juan&rft.au=Yue%2C+Rong-Xian&rft.date=2021-04-01&rft.issn=1572-9249&rft.eissn=1572-9249&rft.volume=27&rft.issue=2&rft.spage=300&rft_id=info:doi/10.1007%2Fs10985-020-09512-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon