Optimal designs for discrete-time survival models with random effects
This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subje...
Saved in:
Published in | Lifetime data analysis Vol. 27; no. 2; pp. 300 - 332 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7870 1572-9249 1572-9249 |
DOI | 10.1007/s10985-020-09512-2 |
Cover
Abstract | This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized
D
(
D
s
)-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized
D
(
D
s
)-optimal designs. The equivalence theorem for the cost-based
D
(
D
s
)-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies. |
---|---|
AbstractList | This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized
D
(
D
s
)-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized
D
(
D
s
)-optimal designs. The equivalence theorem for the cost-based
D
(
D
s
)-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies. This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies.This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies. This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D ([Formula: see text])-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D ([Formula: see text])-optimal designs. The equivalence theorem for the cost-based D ([Formula: see text])-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies. This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects into the discrete hazard models to account for the heterogeneity between experimental subjects, which causes the observations of the same subject at the sequential time points being correlated. We propose a general design method to collect the survival endpoints as inexpensively and efficiently as possible. A cost-based generalized D (Ds)-optimal design criterion is proposed to derive the optimal designs for estimating the fixed effects with cost constraint. Different computation strategies based on grid search or particle swarm optimization (PSO) algorithm are provided to obtain generalized D (Ds)-optimal designs. The equivalence theorem for the cost-based D (Ds)-optimal design criterion is given to verify the optimality of the designs. Our numerical results indicate that the presence of the random effects has a great influence on the optimal designs. Some useful suggestions are also put forward for future designing longitudinal studies. |
Author | Wang, Yun-Juan Yue, Rong-Xian Zhou, Xiao-Dong |
Author_xml | – sequence: 1 givenname: Xiao-Dong orcidid: 0000-0002-2498-1582 surname: Zhou fullname: Zhou, Xiao-Dong email: xdzhou@suibe.edu.cn organization: School of Statistics and Information, Shanghai University of International Business and Economics – sequence: 2 givenname: Yun-Juan surname: Wang fullname: Wang, Yun-Juan organization: School of Statistics and Mathematics, Shanghai Lixin University Accounting and Finance – sequence: 3 givenname: Rong-Xian surname: Yue fullname: Yue, Rong-Xian organization: College of Mathematics and Science, Shanghai Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33417074$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LHTEUhkO5Ur3qH-iiDHTjJvXkazJZFtEqXHBR9yE3c2JHZia3SeaW_vvGXqXgwlUO5HleDuddk9UcZyTkE4OvDEBfZgamUxQ4UDCKcco_kBOmNKeGS7Oqs-iA6k7DMVnn_ARVMq35SI6FkEyDlifk-n5XhsmNTY95eJxzE2Jq-iH7hAVp_cImL2k_7CsyxR7H3Pweys8mubmPU4MhoC_5jBwFN2Y8f3lPyY-b64erW7q5_3539W1DvdCqUCeD9CiDD4pzDcyYFp3QKLYBDGgBvetatu0MCqfAcIZehZ4rL9S278QpuTik7lL8tWAudqqL4ji6GeOSLZe6Va2suRX98gZ9ikua626VMoZzxWRbqc8v1LKdsLe7VE-R_tjX81SgOwA-xZwTBuuH4soQ55LcMFoG9rkJe2jC1ibsvyYsryp_o76mvyuJg5QrPD9i-r_2O9Zf6XqZyw |
CitedBy_id | crossref_primary_10_1016_j_jspi_2021_12_004 crossref_primary_10_3390_axioms12121102 crossref_primary_10_1007_s11222_023_10279_3 |
Cites_doi | 10.1007/s10985-016-9359-y 10.1016/j.jspi.2004.07.014 10.1016/0378-3758(93)90047-A 10.1016/j.csda.2008.04.037 10.1002/sim.6569 10.1111/biom.12659 10.1016/j.jspi.2012.11.006 10.1016/j.csda.2014.02.012 10.1007/978-3-319-28158-2 10.1002/9781118032985 10.1016/j.csda.2011.12.018 10.1016/j.csda.2013.07.040 10.1016/j.jeconom.2010.04.003 10.1016/j.cmpb.2013.05.004 10.1201/9781315116945 10.18637/jss.v060.i06 10.1093/biomet/asv005 10.1111/stan.12085 10.1080/00949655.2015.1087525 10.1016/S0378-3758(00)00173-7 10.1081/STA-200056839 10.1007/s10928-011-9203-7 10.1093/biostatistics/kxu040 10.1002/9780470258019 10.2307/2533117 10.1007/s00180-017-0767-6 10.1007/s11222-014-9466-0 10.1016/j.csda.2016.10.011 10.1080/01621459.1993.10594284 10.1093/oso/9780199296590.001.0001 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 3V. 7WY 7WZ 7X7 7XB 87Z 88C 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FK 8FL ABJCF ABUWG AFKRA AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- L6V M0C M0S M0T M1P M2P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1007/s10985-020-09512-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database (subscription) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global ProQuest Health & Medical Collection ProQuest Central Healthcare Administration Database (via ProQuest) Medical Database Science Database (subscription) Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Health Management ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Economics Mathematics Statistics |
EISSN | 1572-9249 |
EndPage | 332 |
ExternalDocumentID | 33417074 10_1007_s10985_020_09512_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11871143; 11971318 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11301132 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3V. 4.4 406 408 409 40D 40E 44B 53G 5GY 5QI 5VS 67Z 6NX 78A 7WY 7X7 88E 88I 8AO 8C1 8FE 8FG 8FI 8FJ 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQUVI ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EBU EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ KDC KOV KOW L6V LAK LLZTM M0C M0T M1P M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z81 Z83 Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7XB 8FK ABRTQ K9. L.- PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c375t-a4f4ce4fcf522701996ea37e3bf090730da861b89e3a50921ec5fd25c35bd83 |
IEDL.DBID | 7X7 |
ISSN | 1380-7870 1572-9249 |
IngestDate | Fri Sep 05 10:25:12 EDT 2025 Sat Aug 23 14:15:32 EDT 2025 Wed Feb 19 02:29:34 EST 2025 Tue Jul 01 01:43:34 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Fri Feb 21 02:48:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Equivalence theorem Random effects Particle swarm optimization Discrete-time survival model Optimal designs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-a4f4ce4fcf522701996ea37e3bf090730da861b89e3a50921ec5fd25c35bd83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2498-1582 |
PMID | 33417074 |
PQID | 2499225146 |
PQPubID | 26261 |
PageCount | 33 |
ParticipantIDs | proquest_miscellaneous_2476564019 proquest_journals_2499225146 pubmed_primary_33417074 crossref_citationtrail_10_1007_s10985_020_09512_2 crossref_primary_10_1007_s10985_020_09512_2 springer_journals_10_1007_s10985_020_09512_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210400 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data |
PublicationTitle | Lifetime data analysis |
PublicationTitleAbbrev | Lifetime Data Anal |
PublicationTitleAlternate | Lifetime Data Anal |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dette (CR8) 1993; 35 Ogungbenro, Aarons (CR24) 2011; 38 Wu, Wong, Crespi (CR34) 2017; 73 Agresti (CR2) 2013 Fedorov (CR9) 1972 Groll, Tutz (CR11) 2017; 23 Moerbeek (CR19) 2012; 8 Atkinson, Donev, Tobias (CR3) 2007 Ueckert, Mentré (CR31) 2017; 111 Kang, Huang, Miller (CR16) 2015; 16 Moerbeek, Wong (CR21) 2015; 34 Moerbeek, Maas (CR20) 2005; 34 Scheike, Jensen (CR28) 1997; 53 Hosmer, Lemeshow, May (CR12) 2008 Maram, Jafari (CR17) 2016; 86 Józwiak, Moerbeek (CR14) 2013; 143 Zhou, Wang, Yue (CR35) 2018; 33 Józwiak, Moerbeek (CR13) 2012; 56 Mullen (CR22) 2014; 60 Tekle, Tan, Berger (CR29) 2008; 52 Wong (CR33) 2013; 111 Waite, Woods (CR32) 2015; 102 Mathew, Sinha (CR18) 2001; 93 Fedorov, Leonov (CR10) 2014 Breslow, Clayton (CR6) 1993; 88 Bogaerts, Komarek, Lesaffre (CR5) 2017 Nicoletti, Rondinelli (CR23) 2010; 159 Chen, Chang, Wang (CR7) 2015; 25 Kalbfleisch, Prentice (CR15) 2002 Ouwens, Tan, Berger (CR25) 2006; 136 Avriel (CR4) 2003 Safarkhani, Moerbeek (CR27) 2016; 70 Tutz, Schmid (CR30) 2016 Abebe, Tan, Van Breukelen (CR1) 2014; 71 Safarkhani, Moerbeek (CR26) 2014; 75 T Scheike (9512_CR28) 1997; 53 H Dette (9512_CR8) 1993; 35 K Józwiak (9512_CR13) 2012; 56 TW Waite (9512_CR32) 2015; 102 XD Zhou (9512_CR35) 2018; 33 PP Maram (9512_CR17) 2016; 86 M Moerbeek (9512_CR19) 2012; 8 NE Breslow (9512_CR6) 1993; 88 C Kang (9512_CR16) 2015; 16 T Mathew (9512_CR18) 2001; 93 R Chen (9512_CR7) 2015; 25 AH Groll (9512_CR11) 2017; 23 K Ogungbenro (9512_CR24) 2011; 38 MJNM Ouwens (9512_CR25) 2006; 136 S Ueckert (9512_CR31) 2017; 111 AC Atkinson (9512_CR3) 2007 DW Hosmer (9512_CR12) 2008 G Tutz (9512_CR30) 2016 K Józwiak (9512_CR14) 2013; 143 HT Abebe (9512_CR1) 2014; 71 J Kalbfleisch (9512_CR15) 2002 VV Fedorov (9512_CR9) 1972 M Moerbeek (9512_CR20) 2005; 34 WK Wong (9512_CR33) 2013; 111 C Nicoletti (9512_CR23) 2010; 159 M Avriel (9512_CR4) 2003 K Bogaerts (9512_CR5) 2017 A Agresti (9512_CR2) 2013 M Moerbeek (9512_CR21) 2015; 34 KM Mullen (9512_CR22) 2014; 60 S Wu (9512_CR34) 2017; 73 M Safarkhani (9512_CR26) 2014; 75 FB Tekle (9512_CR29) 2008; 52 VV Fedorov (9512_CR10) 2014 M Safarkhani (9512_CR27) 2016; 70 |
References_xml | – volume: 23 start-page: 305 year: 2017 end-page: 338 ident: CR11 article-title: Variable selection in discrete survival models including heterogeneity publication-title: Lifetime Data Anal doi: 10.1007/s10985-016-9359-y – volume: 136 start-page: 962 year: 2006 end-page: 981 ident: CR25 article-title: A maximin criterion for the logistic random intercept model with covariates publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2004.07.014 – volume: 35 start-page: 233 year: 1993 end-page: 249 ident: CR8 article-title: On a mixture of the - and -optimality criterion in polynomial regression publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(93)90047-A – year: 2007 ident: CR3 publication-title: Optimum experimental designs, with SAS – volume: 52 start-page: 5253 year: 2008 end-page: 5262 ident: CR29 article-title: Maximin -optimal designs for binary longitudinal responses publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.04.037 – volume: 34 start-page: 3490 year: 2015 end-page: 3502 ident: CR21 article-title: Optimal treatment allocation for placebo-treatment comparisons in trials with discrete-time survival endpoints publication-title: Stat Med doi: 10.1002/sim.6569 – volume: 73 start-page: 916 issue: 3 year: 2017 end-page: 926 ident: CR34 article-title: Maximin optimal designs for cluster randomized trials publication-title: Biometrics doi: 10.1111/biom.12659 – volume: 143 start-page: 971 year: 2013 end-page: 982 ident: CR14 article-title: Optimal treatment allocation and study duration for trials with discrete-time survival endpoints publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2012.11.006 – volume: 75 start-page: 217 year: 2014 end-page: 226 ident: CR26 article-title: The influence of a covariate on optimal designs in longitudinal studies with discrete-time survival endpoints publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2014.02.012 – year: 2016 ident: CR30 publication-title: Modeling discrete time-to-event data doi: 10.1007/978-3-319-28158-2 – year: 1972 ident: CR9 publication-title: Theory of optimal experiments – year: 2002 ident: CR15 publication-title: The statistical analysis of failure time data doi: 10.1002/9781118032985 – volume: 56 start-page: 2086 year: 2012 end-page: 2096 ident: CR13 article-title: Cost-effective designs for trials with discrete-time survival end points publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.12.018 – volume: 8 start-page: 146 year: 2012 end-page: 158 ident: CR19 article-title: Sample size issues for cluster randomized trials with discrete-time survival endpoints publication-title: Methodol EUR – volume: 71 start-page: 1066 year: 2014 end-page: 1076 ident: CR1 article-title: Bayesian -optimal designs for the two parameter logistic mixed effects model publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.07.040 – year: 2003 ident: CR4 publication-title: Nonlinear programming: analysis and methods – volume: 159 start-page: 1 year: 2010 end-page: 13 ident: CR23 article-title: The (mis)specification of discrete duration models with unobserved heterogeneity: a Monte Carlo study publication-title: J Econ doi: 10.1016/j.jeconom.2010.04.003 – volume: 111 start-page: 701 year: 2013 end-page: 710 ident: CR33 article-title: Web-based tools for finding optimal designs in biomedical studies publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.05.004 – year: 2017 ident: CR5 publication-title: Survival analysis with interval-censored data: a practical approach with R SAS and BUGS doi: 10.1201/9781315116945 – volume: 60 start-page: 1 year: 2014 end-page: 45 ident: CR22 article-title: Continuous global optimization in R publication-title: J Stat Softw doi: 10.18637/jss.v060.i06 – volume: 102 start-page: 677 year: 2015 end-page: 693 ident: CR32 article-title: Designs for generalized linear models with random block effects via information matrix approximations publication-title: Biometrika doi: 10.1093/biomet/asv005 – year: 2013 ident: CR2 publication-title: Categorical data analysis – volume: 70 start-page: 146 year: 2016 end-page: 171 ident: CR27 article-title: -optimal designs for a continuous predictor in longitudinal trials with discrete-time survival endpoints publication-title: Stat Neerl doi: 10.1111/stan.12085 – volume: 86 start-page: 1856 year: 2016 end-page: 1868 ident: CR17 article-title: Bayesian D-optimal design for logistic regression model with exponential distribution for random intercept publication-title: J Stat Comput Simul doi: 10.1080/00949655.2015.1087525 – year: 2014 ident: CR10 publication-title: Optimal design for nonlinear response models – volume: 93 start-page: 295 year: 2001 end-page: 307 ident: CR18 article-title: Optimal designs for binary data under logistic regression publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(00)00173-7 – volume: 34 start-page: 1151 year: 2005 end-page: 1167 ident: CR20 article-title: Optimal experimental designs for multilevel logistic models with two binary predictors publication-title: Commun Stat Theory Methods doi: 10.1081/STA-200056839 – volume: 88 start-page: 9 year: 1993 end-page: 25 ident: CR6 article-title: Approximate inference in generalized linear mixed models publication-title: J Am Stat Assoc – volume: 38 start-page: 449 issue: 4 year: 2011 end-page: 469 ident: CR24 article-title: Population Fisher information matrix and optimal design of discrete data responses in population pharmacodynamic experiments publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-011-9203-7 – volume: 16 start-page: 295 year: 2015 end-page: 310 ident: CR16 article-title: A discrete-time survival model with random effects for designing and analyzing repeated low-dose challenge experiments publication-title: Biostatistics doi: 10.1093/biostatistics/kxu040 – year: 2008 ident: CR12 publication-title: Applied survival analysis: regression modeling of time to event data doi: 10.1002/9780470258019 – volume: 53 start-page: 318 year: 1997 end-page: 329 ident: CR28 article-title: A discrete survival model with random effects: an application to time to pregnancy publication-title: Biometrics doi: 10.2307/2533117 – volume: 33 start-page: 903 year: 2018 end-page: 931 ident: CR35 article-title: Robust population designs for longitudinal linear regression model with a random intercept publication-title: Comput Stat doi: 10.1007/s00180-017-0767-6 – volume: 25 start-page: 975 year: 2015 end-page: 988 ident: CR7 article-title: Minimax optimal designs via particle swarm optimization methods publication-title: Stat Comput doi: 10.1007/s11222-014-9466-0 – volume: 111 start-page: 203 year: 2017 end-page: 219 ident: CR31 article-title: A new method for evaluation of the Fisher information matrix for discrete mixed effect models using Monte Carlo sampling and adaptive Gaussian quadrature publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2016.10.011 – volume-title: Survival analysis with interval-censored data: a practical approach with R SAS and BUGS year: 2017 ident: 9512_CR5 doi: 10.1201/9781315116945 – volume-title: Applied survival analysis: regression modeling of time to event data year: 2008 ident: 9512_CR12 doi: 10.1002/9780470258019 – volume-title: Nonlinear programming: analysis and methods year: 2003 ident: 9512_CR4 – volume: 136 start-page: 962 year: 2006 ident: 9512_CR25 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2004.07.014 – volume-title: Categorical data analysis year: 2013 ident: 9512_CR2 – volume-title: Optimal design for nonlinear response models year: 2014 ident: 9512_CR10 – volume: 86 start-page: 1856 year: 2016 ident: 9512_CR17 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2015.1087525 – volume: 34 start-page: 3490 year: 2015 ident: 9512_CR21 publication-title: Stat Med doi: 10.1002/sim.6569 – volume: 8 start-page: 146 year: 2012 ident: 9512_CR19 publication-title: Methodol EUR – volume: 159 start-page: 1 year: 2010 ident: 9512_CR23 publication-title: J Econ doi: 10.1016/j.jeconom.2010.04.003 – volume: 143 start-page: 971 year: 2013 ident: 9512_CR14 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2012.11.006 – volume: 93 start-page: 295 year: 2001 ident: 9512_CR18 publication-title: J Stat Plan Inference doi: 10.1016/S0378-3758(00)00173-7 – volume-title: The statistical analysis of failure time data year: 2002 ident: 9512_CR15 doi: 10.1002/9781118032985 – volume-title: Theory of optimal experiments year: 1972 ident: 9512_CR9 – volume: 111 start-page: 701 year: 2013 ident: 9512_CR33 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.05.004 – volume: 25 start-page: 975 year: 2015 ident: 9512_CR7 publication-title: Stat Comput doi: 10.1007/s11222-014-9466-0 – volume: 16 start-page: 295 year: 2015 ident: 9512_CR16 publication-title: Biostatistics doi: 10.1093/biostatistics/kxu040 – volume-title: Modeling discrete time-to-event data year: 2016 ident: 9512_CR30 doi: 10.1007/978-3-319-28158-2 – volume: 88 start-page: 9 year: 1993 ident: 9512_CR6 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1993.10594284 – volume: 56 start-page: 2086 year: 2012 ident: 9512_CR13 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.12.018 – volume: 60 start-page: 1 year: 2014 ident: 9512_CR22 publication-title: J Stat Softw doi: 10.18637/jss.v060.i06 – volume: 34 start-page: 1151 year: 2005 ident: 9512_CR20 publication-title: Commun Stat Theory Methods doi: 10.1081/STA-200056839 – volume: 75 start-page: 217 year: 2014 ident: 9512_CR26 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2014.02.012 – volume: 33 start-page: 903 year: 2018 ident: 9512_CR35 publication-title: Comput Stat doi: 10.1007/s00180-017-0767-6 – volume: 38 start-page: 449 issue: 4 year: 2011 ident: 9512_CR24 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-011-9203-7 – volume: 23 start-page: 305 year: 2017 ident: 9512_CR11 publication-title: Lifetime Data Anal doi: 10.1007/s10985-016-9359-y – volume: 73 start-page: 916 issue: 3 year: 2017 ident: 9512_CR34 publication-title: Biometrics doi: 10.1111/biom.12659 – volume: 102 start-page: 677 year: 2015 ident: 9512_CR32 publication-title: Biometrika doi: 10.1093/biomet/asv005 – volume: 53 start-page: 318 year: 1997 ident: 9512_CR28 publication-title: Biometrics doi: 10.2307/2533117 – volume: 71 start-page: 1066 year: 2014 ident: 9512_CR1 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2013.07.040 – volume: 35 start-page: 233 year: 1993 ident: 9512_CR8 publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(93)90047-A – volume: 52 start-page: 5253 year: 2008 ident: 9512_CR29 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2008.04.037 – volume: 70 start-page: 146 year: 2016 ident: 9512_CR27 publication-title: Stat Neerl doi: 10.1111/stan.12085 – volume-title: Optimum experimental designs, with SAS year: 2007 ident: 9512_CR3 doi: 10.1093/oso/9780199296590.001.0001 – volume: 111 start-page: 203 year: 2017 ident: 9512_CR31 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2016.10.011 |
SSID | ssj0007969 |
Score | 2.2460568 |
Snippet | This paper considers the optimal design for the frailty model with discrete-time survival endpoints in longitudinal studies. We introduce the random effects... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 300 |
SubjectTerms | Algorithms Correlation analysis Design criteria Design optimization Economics Finance Health Sciences Heterogeneity Insurance Longitudinal studies Management Mathematics and Statistics Medicine Operations Research/Decision Theory Particle swarm optimization Quality Control Reliability Safety and Risk Statistics Statistics for Business Statistics for Life Sciences Survival |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kgtaDaH1Fq6zgTRfabHaTPRZpKUL1oIXeQrKPk02laf-_s3lVqQoeQzabMLMz803mBXAnhFJaK0EZSzQNrOY0RUNAjavrRP_ZclVk-T6L8TR4mvFZVRSW19nudUiy0NRfit1k5KqJe9TBAp-i4t3l6Ls7cZz6g0b_hrIYZNdnkcuVC3tVqczPe3w3R1sYcys-Wpid0REcVniRDEoGH8OOyTqwX5cT5x04mDSNV_Fqb1LFyjvQdjiybMN8AsMXVA1z3EgXGRs5QaxKXEXuEkEzdQPmSb5GrYHnjhTDcXLi_tAStGR6MSdV1scpvI6Gb49jWk1QoIqFfEWTwAbKBFZZhFmu8boUJmGhYantSSfcOolEP42kYQkiB79vFLfa54rxVEfsDFrZIjMXQJhOIxGmVhiJDrVNpWVSa8k5or2eb4QH_ZqMsaqai7sZF-_xpi2yI32MpI8L0se-B_fNMx9la40_V3dr7sSVmOUx-o4SFRJqew9um9soIC7qkWRmsXZrQsSs6EZKD85LrjavY2jDQwRRHjzUbN5s_vu3XP5v-RW03TEt83260Fot1-YaocwqvSlO7if0Xub7 priority: 102 providerName: Springer Nature |
Title | Optimal designs for discrete-time survival models with random effects |
URI | https://link.springer.com/article/10.1007/s10985-020-09512-2 https://www.ncbi.nlm.nih.gov/pubmed/33417074 https://www.proquest.com/docview/2499225146 https://www.proquest.com/docview/2476564019 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9t5YU9TMDYlq0gT9obs5bEsRM_oYJaEGhsYiB1T1HijydoGWn__925biqExksiJXZi3Z19v7PvA-CrUsZYaxQXorG88FbyFhUBdxTXifazlyZ4-V6p89viYiqnccOti26V6zUxLNR2bmiP_DuaCRplDyf28cNfTlWj6HQ1ltB4DVshdRnKczntDa601KGkXSYq8por0xg0E0PndEWxySknkJHz_KlieoY2n52UBgU02YG3ETmy0YrVu_DKzfbgzY8-7Wq3B9sEHVeZl9_B-CeuBvfYwwYnjY4hPGUUhPuIOJlTTXnWLXGhQFFjoR5Ox2hTlqHysvN7Fh099uH3ZHxzes5j0QRuRCkXvCl8YVzhjUdkRbnWtXKNKJ1ofappPtumUllbaScaBAt55oz0NpdGyNZW4j0MZvOZ-whM2LZSZeuV02hD-1Z7oa3VUiLAS3OnEsjW9KpNzCdOZS3u6k0mZKJxjTSuA43rPIGjvs_DKpvGi62HazbUcWZ19UYOEvjSv8Y5QQcdzczNl9SmRJiKlqNO4MOKff3vBKrtEnFTAt_W_Nx8_P9j-fTyWD7Ddk7OLsGlZwiDxePSHSBaWbSHQSTxWp1mdJ2cHcLW6OzP5RjvJ-OrX9f49DYf_QOlK-jx |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RegAOiEJbQmlrJDi1Vnft2IkPFaooaCmvQ6nEqVHixwl2gewK8Z_6IzvjJLtCCG6cYzvWPDzf2PMA2NbaWues5lKWjqfBKV6hIeCe8jrRfw7KxijfUz34k_66UBdz8K_LhaGwyu5MjAe1G1m6I_-GboJB2UPF3r2-4dQ1il5XuxYajVgc-fs7dNnq74c_kb87Qhzsn-8NeNtVgFuZqTEv05BanwYbEHpQMXKjfSkzL6vQMyTwrsx1v8qNlyVaU9H3VgUnlJWqcrnEVV_B61RKTTqU780CSjITG-j1ZU4xelmvTdFpE_VMTpnQPU6QRnDx0Aw-wraP3mWjuTtYgeUWp7IfjWC9gTk_XIWlk2mR13oVFgmoNnWe12D_DM-eK5zhYkhIzRAMM0r5vUVUzqmDPasneCyhYLPYfadmdAXM0FS60RVrw0rewu8XIOY7mB-Ohn4dmHRVrrMqaG_QYw-VCdI4Z5RCONkTXifQ7-hV2LZ6OTXRuCxmdZeJxgXSuIg0LkQCX6ZzrpvaHc-O3uzYULR6XBczqUtga_oZNZCeVcqhH01oTIagGP1Uk8D7hn3T30kECRmitAS-dvycLf70Xjae38tnWBicnxwXx4enRx9gUVCYTQwm2oT58e3Ef0ScNK4-RfFk8PdlteE_Zake5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTKAUF5BQoYCU5gsWvHTnyoENBdtRSWiofUU6PEjxPdLc2uEP-Qn8WM18kKVfTWcxzHGs94voln5gN4rrW1zlnNpawdz4NTvEFHwD3VdWL8HJSNWb5Tvf89_3CsjjfgT1cLQ2mV3ZkYD2o3t_SP_DWGCQZ1jwhaQkqLONqbvDn7yYlBim5aOzqNOtEsuN3YbiwVeRz6378wnGt3D_Zw718IMRl_e7_PE-MAt7JQC17nIbc-DzYgLKFG5Ub7WhZeNmFoyBhcXepRUxova_S0YuStCk4oK1XjSomzXoPNAn1kPoDNd-Pp0ZfeKxQm0uuNZEkZfMUwFfCkMj5TUp30kBPgEVz86yQvIN8Lt7bRGU5uwc2EYtnbldrdhg0_24Ybn_oWsO02bBGMXXWBvgPjz3gyneIbLiaMtAyhMqOC4HPE7Jz47Vm7xEML1Z5Fbp6W0Q9iho7UzU9ZSjq5C1-vQJz3YDCbz_wDYNI1pS6aoL3BeD40JkjjnFEKweZQeJ3BqJNXZVNvc6LY-FGtuzKTjCuUcRVlXIkMXvbvnK06e1w6eqfbhipZeVutdTKDZ_1jtE-6dKlnfr6kMQVCZoxiTQb3V9vXf04ihCgQw2XwqtvP9eT_X8vDy9fyFK6jZVQfD6aHj2BLUA5OzDTagcHifOkfI4haNE-SfjI4uVqD-AsFQinc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+designs+for+discrete-time+survival+models+with+random+effects&rft.jtitle=Lifetime+data+analysis&rft.au=Zhou%2C+Xiao-Dong&rft.au=Wang%2C+Yun-Juan&rft.au=Yue%2C+Rong-Xian&rft.date=2021-04-01&rft.issn=1572-9249&rft.eissn=1572-9249&rft.volume=27&rft.issue=2&rft.spage=300&rft_id=info:doi/10.1007%2Fs10985-020-09512-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7870&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7870&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7870&client=summon |