A procedure for extracting primary and secondary creep parameters from nanoindentation data

•A methodology is presented for extraction of creep parameters from indentation data.•It is shown that primary creep often exerts a strong influence on the behaviour.•An explanation is provided of why a currently-common methodology gives poor results. A methodology is presented for the extraction of...

Full description

Saved in:
Bibliographic Details
Published inMechanics of materials Vol. 65; pp. 124 - 134
Main Authors Dean, J., Bradbury, A., Aldrich-Smith, G., Clyne, T.W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A methodology is presented for extraction of creep parameters from indentation data.•It is shown that primary creep often exerts a strong influence on the behaviour.•An explanation is provided of why a currently-common methodology gives poor results. A methodology is presented for the extraction of creep parameters from nanoindentation data – i.e. data obtained from an indentation system with a high resolution displacement measuring capability. The procedure involves consideration of both primary and secondary creep regimes. The sensitivities inherent in the methodology are explored and it is concluded that, provided certain conditions are satisfied, it should be reasonably robust and reliable. In contrast to this, it is also shown that the methodology commonly used at present to obtain (steady state) creep parameters is in general highly unreliable; the effects responsible for this are identified.
AbstractList •A methodology is presented for extraction of creep parameters from indentation data.•It is shown that primary creep often exerts a strong influence on the behaviour.•An explanation is provided of why a currently-common methodology gives poor results. A methodology is presented for the extraction of creep parameters from nanoindentation data – i.e. data obtained from an indentation system with a high resolution displacement measuring capability. The procedure involves consideration of both primary and secondary creep regimes. The sensitivities inherent in the methodology are explored and it is concluded that, provided certain conditions are satisfied, it should be reasonably robust and reliable. In contrast to this, it is also shown that the methodology commonly used at present to obtain (steady state) creep parameters is in general highly unreliable; the effects responsible for this are identified.
Author Clyne, T.W.
Aldrich-Smith, G.
Dean, J.
Bradbury, A.
Author_xml – sequence: 1
  givenname: J.
  surname: Dean
  fullname: Dean, J.
  organization: Department of Materials Science & Metallurgy, Cambridge University, Pembroke Street, Cambridge CB2 3QZ, UK
– sequence: 2
  givenname: A.
  surname: Bradbury
  fullname: Bradbury, A.
  organization: Department of Materials Science & Metallurgy, Cambridge University, Pembroke Street, Cambridge CB2 3QZ, UK
– sequence: 3
  givenname: G.
  surname: Aldrich-Smith
  fullname: Aldrich-Smith, G.
  organization: AWE, Aldermaston, Reading, Berkshire RG7 4PR, UK
– sequence: 4
  givenname: T.W.
  surname: Clyne
  fullname: Clyne, T.W.
  email: twc10@cam.ac.uk
  organization: Department of Materials Science & Metallurgy, Cambridge University, Pembroke Street, Cambridge CB2 3QZ, UK
BookMark eNqFkM1KxDAUhYOM4MzoIwh5gdakaZp2JcPgHwy40ZWLcJvcagabDEkUfXs7TPeuDpdzz-HwrcjCB4-EXHNWcsabm305ovkYIZcV46JksmS8PiNL3qqqUKoWC7Kc_lTRNKK5IKuU9owx2Um1JG8beojBoP2KSIcQKf7kCCY7_z4ZboT4S8FbmtAEb4-XiYgHeoAII2aMiQ4xjNSDD85b9BmyC55ayHBJzgf4THg165q83t-9bB-L3fPD03azK4xQMhdQ9YM0PTNcGNH2CEaarqsHZpuK87rvh060HVd11wKoRtWVUFawXnVgBOeNWBN56jUxpBRx0PNyzZk-EtJ7PRPSR0KaST0RmnK3pxxO474dRp2MQz_BcBFN1ja4fxr-AJNbdXk
CitedBy_id crossref_primary_10_1080_14786435_2016_1209310
crossref_primary_10_1080_02670836_2018_1497130
crossref_primary_10_1016_j_msea_2014_02_060
crossref_primary_10_1016_j_nucengdes_2024_113136
crossref_primary_10_1002_pssb_202100481
crossref_primary_10_1557_jmr_2018_191
crossref_primary_10_1016_j_jnucmat_2020_152497
crossref_primary_10_1007_s11837_023_05752_3
crossref_primary_10_3390_met9060639
crossref_primary_10_1016_j_cossms_2015_02_001
crossref_primary_10_1016_j_msea_2018_01_036
crossref_primary_10_1007_s11043_016_9316_x
crossref_primary_10_1007_s11837_022_05376_z
crossref_primary_10_1016_j_jmrt_2024_01_183
crossref_primary_10_1016_j_jnucmat_2020_152605
crossref_primary_10_1016_j_matdes_2019_108090
crossref_primary_10_1016_j_surfin_2021_101144
crossref_primary_10_1080_02670844_2018_1564994
crossref_primary_10_1080_1539445X_2015_1116447
crossref_primary_10_1007_s10854_016_6031_y
crossref_primary_10_1016_j_ijsolstr_2015_10_029
crossref_primary_10_1016_j_ijsolstr_2020_09_017
crossref_primary_10_1080_02726351_2016_1267287
crossref_primary_10_1007_s11665_016_1934_6
crossref_primary_10_1007_s11837_019_03707_1
crossref_primary_10_3390_ma16165702
crossref_primary_10_1016_j_engfailanal_2022_106141
crossref_primary_10_4028_www_scientific_net_KEM_827_98
crossref_primary_10_1007_s11837_017_2536_y
crossref_primary_10_3390_cryst11111316
crossref_primary_10_1016_j_msea_2014_04_035
crossref_primary_10_1016_j_msea_2020_139246
crossref_primary_10_1016_j_msea_2020_139539
crossref_primary_10_1007_s11664_019_07666_w
crossref_primary_10_1016_j_ijmecsci_2020_105577
crossref_primary_10_1016_j_actamat_2014_07_054
crossref_primary_10_1016_j_ijfatigue_2018_04_014
crossref_primary_10_1016_j_ijlmm_2019_12_003
crossref_primary_10_1177_0021998318808358
crossref_primary_10_1007_s11837_015_1634_y
crossref_primary_10_1007_s12572_017_0191_8
crossref_primary_10_1017_jmech_2016_55
crossref_primary_10_1557_jmr_2015_322
crossref_primary_10_1016_j_ceramint_2022_05_122
crossref_primary_10_1016_j_eml_2018_11_005
crossref_primary_10_1007_s10853_014_8699_9
Cites_doi 10.1016/j.actamat.2010.02.031
10.1016/S0921-5093(01)01079-6
10.1016/j.engfracmech.2008.06.012
10.1016/j.actamat.2006.07.020
10.1016/j.msea.2006.11.098
10.3139/146.110131
10.1016/j.msea.2010.05.069
10.1016/j.msea.2007.02.061
10.1016/j.actamat.2011.01.014
10.1007/s11043-007-9033-6
10.1016/S0257-8972(01)01340-8
10.1557/JMR.2010.0092
10.1007/s10338-008-0832-3
10.1557/PROC-1049-AA10-02
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright_xml – notice: 2013 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mechmat.2013.05.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7743
EndPage 134
ExternalDocumentID 10_1016_j_mechmat_2013_05_014
S0167663613001002
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c375t-a2bf5cb0c13c38beac5c994f0d62114bbf938917498aa7674237d30b79ac31163
IEDL.DBID .~1
ISSN 0167-6636
IngestDate Thu Sep 26 18:09:12 EDT 2024
Fri Feb 23 02:27:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element analysis
Non-destructive testing
Creep
Nanoindentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a2bf5cb0c13c38beac5c994f0d62114bbf938917498aa7674237d30b79ac31163
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_mechmat_2013_05_014
elsevier_sciencedirect_doi_10_1016_j_mechmat_2013_05_014
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Mechanics of materials
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stone, D., Elmustafa, A., 2008. Analysis of indentation creep. In: Proc. MRS (Fundamentals of Nanoindentation and Nanotribology IV), vol. 1049, pp. 163–68.
Dean, Aldrich-Smith, Clyne (b0010) 2010; 59
Seltzer, Mai (b0020) 2008; 75
Galli, Oyen (b0030) 2009; 100
Mulhearn, Tabor (b0060) 1960–61; 89
Dean, Wheeler, Clyne (b0005) 2010; 58
Liu, Zhao, Xu, Yue (b0075) 2007; 456
Takagi, Dao, Fujiwara (b0050) 2008; 21
Chudoba, Richter (b0015) 2001; 148
Chen, Cheng, Li (b0045) 2010; 527
Stone, Jakes, Puthoff, Elmustafa (b0025) 2010; 25
Cao (b0035) 2007; 11
Fujiwara, Otsuka (b0065) 2001; A319–321
Liu, Chen, Tang, Wei, Nuiu (b0070) 2007; 464
Goodall, Clyne (b0040) 2006; 54
Cao (10.1016/j.mechmat.2013.05.014_b0035) 2007; 11
Seltzer (10.1016/j.mechmat.2013.05.014_b0020) 2008; 75
Chen (10.1016/j.mechmat.2013.05.014_b0045) 2010; 527
Liu (10.1016/j.mechmat.2013.05.014_b0070) 2007; 464
Mulhearn (10.1016/j.mechmat.2013.05.014_b0060) 1960; 89
Dean (10.1016/j.mechmat.2013.05.014_b0005) 2010; 58
Galli (10.1016/j.mechmat.2013.05.014_b0030) 2009; 100
Dean (10.1016/j.mechmat.2013.05.014_b0010) 2010; 59
Chudoba (10.1016/j.mechmat.2013.05.014_b0015) 2001; 148
Takagi (10.1016/j.mechmat.2013.05.014_b0050) 2008; 21
Goodall (10.1016/j.mechmat.2013.05.014_b0040) 2006; 54
Liu (10.1016/j.mechmat.2013.05.014_b0075) 2007; 456
Stone (10.1016/j.mechmat.2013.05.014_b0025) 2010; 25
10.1016/j.mechmat.2013.05.014_b0055
Fujiwara (10.1016/j.mechmat.2013.05.014_b0065) 2001; A319–321
References_xml – volume: 58
  start-page: 3613
  year: 2010
  end-page: 3623
  ident: b0005
  article-title: Use of quasi-static nanoindentation data to obtain stress-strain characteristics for metallic materials
  publication-title: Acta Mater.
  contributor:
    fullname: Clyne
– volume: 25
  start-page: 611
  year: 2010
  end-page: 621
  ident: b0025
  article-title: Analysis of indentation creep
  publication-title: J. Mat. Res.
  contributor:
    fullname: Elmustafa
– volume: 100
  start-page: 954
  year: 2009
  end-page: 959
  ident: b0030
  article-title: Creep properties from indentation tests by analytical and numerical techniques
  publication-title: Int. J. Mat. Res.
  contributor:
    fullname: Oyen
– volume: 59
  start-page: 2749
  year: 2010
  end-page: 2761
  ident: b0010
  article-title: Use of nanoindentation to measure residual stresses in surface layers
  publication-title: Acta Mater.
  contributor:
    fullname: Clyne
– volume: 89
  start-page: 7
  year: 1960–61
  end-page: 12
  ident: b0060
  article-title: Creep and hardness of metals: a physical study
  publication-title: J. Inst. Met.
  contributor:
    fullname: Tabor
– volume: 464
  start-page: 124
  year: 2007
  end-page: 128
  ident: b0070
  article-title: Tensile and indentation creep behaviour of Mg-5%Sn and Mg-5%Sn-2%Di alloys
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Nuiu
– volume: 75
  start-page: 4852
  year: 2008
  end-page: 4862
  ident: b0020
  article-title: Depth sensing indentation of linear viscoelastic-plastic solids: A simple method to determine creep compliance
  publication-title: Eng. Fract. Mech.
  contributor:
    fullname: Mai
– volume: 54
  start-page: 5489
  year: 2006
  end-page: 5499
  ident: b0040
  article-title: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature
  publication-title: Acta Mater.
  contributor:
    fullname: Clyne
– volume: A319–321
  start-page: 929
  year: 2001
  end-page: 933
  ident: b0065
  article-title: Indentation creep of beta-Sn and Sn–Pb eutectic alloy
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Otsuka
– volume: 456
  start-page: 103
  year: 2007
  end-page: 108
  ident: b0075
  article-title: Experimental and numerical study of the method to determine the creep parameters from the indentation creep testing
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Yue
– volume: 21
  start-page: 283
  year: 2008
  end-page: 288
  ident: b0050
  article-title: Analysis on pseudo-steady indentation creep
  publication-title: Acta Mech. Solida Sin.
  contributor:
    fullname: Fujiwara
– volume: 11
  start-page: 159
  year: 2007
  end-page: 172
  ident: b0035
  article-title: Determination of the creep exponent of a power-law creep solid using indentation tests
  publication-title: Mech. Time-Depend. Mater.
  contributor:
    fullname: Cao
– volume: 148
  start-page: 191
  year: 2001
  end-page: 198
  ident: b0015
  article-title: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results
  publication-title: Surf. Coat. Technol.
  contributor:
    fullname: Richter
– volume: 527
  start-page: 5613
  year: 2010
  end-page: 5618
  ident: b0045
  article-title: Indentation of power law creep solids by self-similar indenters
  publication-title: Mat. Sci. Eng. A
  contributor:
    fullname: Li
– volume: 58
  start-page: 3613
  year: 2010
  ident: 10.1016/j.mechmat.2013.05.014_b0005
  article-title: Use of quasi-static nanoindentation data to obtain stress-strain characteristics for metallic materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.02.031
  contributor:
    fullname: Dean
– volume: A319–321
  start-page: 929
  year: 2001
  ident: 10.1016/j.mechmat.2013.05.014_b0065
  article-title: Indentation creep of beta-Sn and Sn–Pb eutectic alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01079-6
  contributor:
    fullname: Fujiwara
– volume: 75
  start-page: 4852
  year: 2008
  ident: 10.1016/j.mechmat.2013.05.014_b0020
  article-title: Depth sensing indentation of linear viscoelastic-plastic solids: A simple method to determine creep compliance
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2008.06.012
  contributor:
    fullname: Seltzer
– volume: 54
  start-page: 5489
  year: 2006
  ident: 10.1016/j.mechmat.2013.05.014_b0040
  article-title: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.07.020
  contributor:
    fullname: Goodall
– volume: 456
  start-page: 103
  year: 2007
  ident: 10.1016/j.mechmat.2013.05.014_b0075
  article-title: Experimental and numerical study of the method to determine the creep parameters from the indentation creep testing
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.11.098
  contributor:
    fullname: Liu
– volume: 100
  start-page: 954
  year: 2009
  ident: 10.1016/j.mechmat.2013.05.014_b0030
  article-title: Creep properties from indentation tests by analytical and numerical techniques
  publication-title: Int. J. Mat. Res.
  doi: 10.3139/146.110131
  contributor:
    fullname: Galli
– volume: 527
  start-page: 5613
  year: 2010
  ident: 10.1016/j.mechmat.2013.05.014_b0045
  article-title: Indentation of power law creep solids by self-similar indenters
  publication-title: Mat. Sci. Eng. A
  doi: 10.1016/j.msea.2010.05.069
  contributor:
    fullname: Chen
– volume: 464
  start-page: 124
  year: 2007
  ident: 10.1016/j.mechmat.2013.05.014_b0070
  article-title: Tensile and indentation creep behaviour of Mg-5%Sn and Mg-5%Sn-2%Di alloys
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.02.061
  contributor:
    fullname: Liu
– volume: 59
  start-page: 2749
  year: 2010
  ident: 10.1016/j.mechmat.2013.05.014_b0010
  article-title: Use of nanoindentation to measure residual stresses in surface layers
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.01.014
  contributor:
    fullname: Dean
– volume: 11
  start-page: 159
  year: 2007
  ident: 10.1016/j.mechmat.2013.05.014_b0035
  article-title: Determination of the creep exponent of a power-law creep solid using indentation tests
  publication-title: Mech. Time-Depend. Mater.
  doi: 10.1007/s11043-007-9033-6
  contributor:
    fullname: Cao
– volume: 148
  start-page: 191
  year: 2001
  ident: 10.1016/j.mechmat.2013.05.014_b0015
  article-title: Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(01)01340-8
  contributor:
    fullname: Chudoba
– volume: 25
  start-page: 611
  year: 2010
  ident: 10.1016/j.mechmat.2013.05.014_b0025
  article-title: Analysis of indentation creep
  publication-title: J. Mat. Res.
  doi: 10.1557/JMR.2010.0092
  contributor:
    fullname: Stone
– volume: 89
  start-page: 7
  year: 1960
  ident: 10.1016/j.mechmat.2013.05.014_b0060
  article-title: Creep and hardness of metals: a physical study
  publication-title: J. Inst. Met.
  contributor:
    fullname: Mulhearn
– volume: 21
  start-page: 283
  year: 2008
  ident: 10.1016/j.mechmat.2013.05.014_b0050
  article-title: Analysis on pseudo-steady indentation creep
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1007/s10338-008-0832-3
  contributor:
    fullname: Takagi
– ident: 10.1016/j.mechmat.2013.05.014_b0055
  doi: 10.1557/PROC-1049-AA10-02
SSID ssj0005957
Score 2.3035905
Snippet •A methodology is presented for extraction of creep parameters from indentation data.•It is shown that primary creep often exerts a strong influence on the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 124
SubjectTerms Creep
Finite element analysis
Nanoindentation
Non-destructive testing
Title A procedure for extracting primary and secondary creep parameters from nanoindentation data
URI https://dx.doi.org/10.1016/j.mechmat.2013.05.014
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MFrmk2zSbrHUixVsRctFDws-4q20G3p4-pvdyYPrCAePG6SheTLMvNN9psvhNyh12nKcihLDOMBN5kNtBYmiFKmU8OtNsX3judROhzzx0kyaZB-3QuDssoq9pcxvYjW1ZGwQjNcTqfhCwroIV8iAWZRaSjJIRnBmm5_7sg8ROn2if7eePV3F084a8-d-QBiiAqvuDTw5L_np52cMzgihxVZpL3yfo5Jw_kTcrBjIXhK3nq0yEF2u3IUCCiFYFs0Pvl3OFE4SVDlLV1j4WtxBDTRLSlafs9RCrOm2GFCvfILdE4sO5E8ReXoGRkP7l_7w6D6YUJg4izZBKqj88RoZqLYxF0NMTUxQvCc2RTqPK51LnBbMuOiqxS6-HTizMZMZ0KZOAJmdk6afuHdBaGsMAfrpNph27LVittOzhUUI1HuRJRcknYNk6yeRtaCsZmscJWIq2SJBFwvSbcGU_54wRJi999Tr_4_9Zrs46hU392Q5ma1dbfAIja6VSyTFtnrPTwNR1_UiMf9
link.rule.ids 315,786,790,4521,24144,27957,27958,45620,45714
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La4NAEF5Ccmh7KH3S9LmHXo2rrpo9htBgmselCQR6WNyHbQMxIY__3x1dSQqlhx51GdBZmflGv-8ToWfwOo1IZsYSSahDZawcIZh0vIiISFIlZPG-YzSOkil9nYWzGupWWhigVdraX9b0olrbM67Nprv6-nLfgEBv-iUAYOIVhpINGsYeraNGpz9IxnumBysNP8HiGwL2Qh533lpo-WmwIZC8gtLDk_7eog7aTu8MnVq8iDvlJZ2jms4v0MmBi-Aleu_gog2p3Vpjg0GxqbeF9in_MAuFmQROc4U3MPsqODJIUa8wuH4vgA2zwSAywXmaL8E8sRQj5RjIo1do2nuZdBPH_jPBkUEcbp3UF1koBZFeIIO2MGU1lIzRjKjIjHpUiIzBl8mYsnaagpGPH8QqICJmqQw8A86uUT1f5voGYVL4g_mR0KBcViKlys9oauYRL9PMC5uoVaWJ27vhFWdszm1eOeSVk5CbvDZRu0om_7HH3JTvv0Nv_x_6hI6SyWjIh_3x4A4dw0pJxrtH9e16px8MqNiKR_vQfAPMIsqz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+procedure+for+extracting+primary+and+secondary+creep+parameters+from+nanoindentation+data&rft.jtitle=Mechanics+of+materials&rft.au=Dean%2C+J.&rft.au=Bradbury%2C+A.&rft.au=Aldrich-Smith%2C+G.&rft.au=Clyne%2C+T.W.&rft.date=2013-10-01&rft.pub=Elsevier+Ltd&rft.issn=0167-6636&rft.eissn=1872-7743&rft.volume=65&rft.spage=124&rft.epage=134&rft_id=info:doi/10.1016%2Fj.mechmat.2013.05.014&rft.externalDocID=S0167663613001002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon