Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma

Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity. Flow cytometry-based screening was performed to identify kinase inhibitor...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 25; no. 14; pp. 4530 - 4541
Main Authors Wu, Rui-Yan, Kong, Peng-Fei, Xia, Liang-Ping, Huang, Yun, Li, Zhi-Ling, Tang, Yun-Yun, Chen, Yu-Hong, Li, Xuan, Senthilkumar, Ravichandran, Zhang, Hai-Liang, Sun, Ting, Xu, Xue-Lian, Yu, Yan, Mai, Jia, Peng, Xiao-Dan, Yang, Dong, Zhou, Li-Huan, Feng, Gong-Kan, Deng, Rong, Zhu, Xiao-Feng
Format Journal Article
LanguageEnglish
Published United States 15.07.2019
Online AccessGet full text

Cover

Loading…
Abstract Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity. Flow cytometry-based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy and were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti-PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. Through screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, and , strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET-Src axis, regorafenib potently inhibited JAK1/2-STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response. Our data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.
AbstractList Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity. Flow cytometry-based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy and were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti-PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. Through screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, and , strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET-Src axis, regorafenib potently inhibited JAK1/2-STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response. Our data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.
Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity.PURPOSEImmune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity.Flow cytometry-based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy in vitro and in vivo were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti-PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets.EXPERIMENTAL DESIGNFlow cytometry-based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy in vitro and in vivo were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti-PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets.Through screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, in vitro and in vivo, strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET-Src axis, regorafenib potently inhibited JAK1/2-STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response.RESULTSThrough screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, in vitro and in vivo, strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET-Src axis, regorafenib potently inhibited JAK1/2-STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response.Our data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.CONCLUSIONSOur data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.
Author Tang, Yun-Yun
Deng, Rong
Zhang, Hai-Liang
Feng, Gong-Kan
Zhou, Li-Huan
Kong, Peng-Fei
Mai, Jia
Sun, Ting
Yang, Dong
Xia, Liang-Ping
Li, Zhi-Ling
Senthilkumar, Ravichandran
Zhu, Xiao-Feng
Peng, Xiao-Dan
Li, Xuan
Wu, Rui-Yan
Chen, Yu-Hong
Yu, Yan
Huang, Yun
Xu, Xue-Lian
Author_xml – sequence: 1
  givenname: Rui-Yan
  surname: Wu
  fullname: Wu, Rui-Yan
– sequence: 2
  givenname: Peng-Fei
  surname: Kong
  fullname: Kong, Peng-Fei
– sequence: 3
  givenname: Liang-Ping
  surname: Xia
  fullname: Xia, Liang-Ping
– sequence: 4
  givenname: Yun
  surname: Huang
  fullname: Huang, Yun
– sequence: 5
  givenname: Zhi-Ling
  surname: Li
  fullname: Li, Zhi-Ling
– sequence: 6
  givenname: Yun-Yun
  surname: Tang
  fullname: Tang, Yun-Yun
– sequence: 7
  givenname: Yu-Hong
  surname: Chen
  fullname: Chen, Yu-Hong
– sequence: 8
  givenname: Xuan
  surname: Li
  fullname: Li, Xuan
– sequence: 9
  givenname: Ravichandran
  surname: Senthilkumar
  fullname: Senthilkumar, Ravichandran
– sequence: 10
  givenname: Hai-Liang
  surname: Zhang
  fullname: Zhang, Hai-Liang
– sequence: 11
  givenname: Ting
  surname: Sun
  fullname: Sun, Ting
– sequence: 12
  givenname: Xue-Lian
  surname: Xu
  fullname: Xu, Xue-Lian
– sequence: 13
  givenname: Yan
  surname: Yu
  fullname: Yu, Yan
– sequence: 14
  givenname: Jia
  surname: Mai
  fullname: Mai, Jia
– sequence: 15
  givenname: Xiao-Dan
  surname: Peng
  fullname: Peng, Xiao-Dan
– sequence: 16
  givenname: Dong
  surname: Yang
  fullname: Yang, Dong
– sequence: 17
  givenname: Li-Huan
  surname: Zhou
  fullname: Zhou, Li-Huan
– sequence: 18
  givenname: Gong-Kan
  surname: Feng
  fullname: Feng, Gong-Kan
– sequence: 19
  givenname: Rong
  surname: Deng
  fullname: Deng, Rong
– sequence: 20
  givenname: Xiao-Feng
  surname: Zhu
  fullname: Zhu, Xiao-Feng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30940655$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LwzAYx4MozrePoOTopTOvbcWTbFMHE2XoTQhpmsxIm8wkFfftbZm7ePCUh_D7Py-_Y7DvvNMAnGM0xpiXVxgVZYYYJePJZJnhMiMlQ3vgCHNeZJTkfL-vd8wIHMf4gRBmGLFDMKLomqGc8yPwttQrH6TRzlbwOfjWJx3hrUs2da0PcN62nbNpA7-shHP3biubrFvB52m2wFC6Gs6nTxjOvtdBx2i9g9bBR91I51t5Cg6MbKI--31PwOvd7GXykC2e7ueT20WmaMFTJrFhiCllKMMMFYqXqCi4MrqucFXVkqnScFQx2n-zXGutDM4LaSipCKVS0RNwue27Dv6z0zGJ1kalm34L7bsoCEEkLwjN8x69-EW7qtW1WAfbyrAROyM9cLMFVPAxBm2Eskmm_rIUpG0ERmLwLwa3YnArev8Cl2Lw36f5n_RuwP-5H479iFc
CitedBy_id crossref_primary_10_1177_17588359211018026
crossref_primary_10_1186_s40164_022_00297_8
crossref_primary_10_1038_s41423_023_01068_z
crossref_primary_10_1186_s40364_022_00415_y
crossref_primary_10_3390_cells11010019
crossref_primary_10_3390_cells13171444
crossref_primary_10_1515_oncologie_2022_1026
crossref_primary_10_1007_s12094_024_03432_5
crossref_primary_10_1080_14656566_2024_2342403
crossref_primary_10_1002_cam4_7236
crossref_primary_10_2147_IJN_S455213
crossref_primary_10_3390_cancers12082317
crossref_primary_10_1007_s11684_022_0922_5
crossref_primary_10_1634_theoncologist_2020_0161
crossref_primary_10_1080_0284186X_2020_1871067
crossref_primary_10_3389_fphar_2023_1136114
crossref_primary_10_2147_OTT_S284092
crossref_primary_10_1002_adfm_202407685
crossref_primary_10_3390_cancers13246311
crossref_primary_10_1016_j_intimp_2024_111947
crossref_primary_10_1038_s41573_022_00415_5
crossref_primary_10_3390_cancers14143368
crossref_primary_10_1001_jamaoncol_2022_7845
crossref_primary_10_1111_exd_14750
crossref_primary_10_1016_j_biopha_2023_114254
crossref_primary_10_1007_s00262_021_03083_3
crossref_primary_10_1093_noajnl_vdac017
crossref_primary_10_2217_fon_2019_0480
crossref_primary_10_1186_s12877_022_03637_9
crossref_primary_10_2147_OTT_S383685
crossref_primary_10_3892_mco_2021_2405
crossref_primary_10_1186_s12885_023_10971_7
crossref_primary_10_1155_2020_9037217
crossref_primary_10_2147_OTT_S500281
crossref_primary_10_3389_fimmu_2022_1070961
crossref_primary_10_1016_j_hoc_2024_08_008
crossref_primary_10_1080_15548627_2020_1850609
crossref_primary_10_2147_JHC_S399874
crossref_primary_10_3389_fonc_2022_932353
crossref_primary_10_1007_s12094_024_03644_9
crossref_primary_10_1016_j_ctrv_2019_101912
crossref_primary_10_1080_0284186X_2022_2075239
crossref_primary_10_2147_JHC_S353956
crossref_primary_10_1136_jitc_2020_001037
crossref_primary_10_1007_s11864_024_01246_9
crossref_primary_10_1007_s10555_024_10189_4
crossref_primary_10_1177_17588359251316094
crossref_primary_10_1016_j_biopha_2022_112661
crossref_primary_10_3892_ol_2024_14451
crossref_primary_10_7717_peerj_15172
crossref_primary_10_1080_14712598_2021_1933940
crossref_primary_10_1016_j_bcp_2022_114940
crossref_primary_10_1016_j_ctrv_2022_102460
crossref_primary_10_1002_hep_31921
crossref_primary_10_1093_jpp_rgad034
crossref_primary_10_3389_fimmu_2021_762341
crossref_primary_10_1007_s00384_023_04553_z
crossref_primary_10_1136_jmedgenet_2019_106609
crossref_primary_10_1097_CMR_0000000000000977
crossref_primary_10_1016_j_soc_2020_08_008
crossref_primary_10_1016_j_lfs_2024_123147
crossref_primary_10_62347_IIHG2242
crossref_primary_10_1158_1078_0432_CCR_20_2662
crossref_primary_10_1016_j_jhep_2023_03_003
crossref_primary_10_1038_s41389_021_00335_w
crossref_primary_10_4103_tcmj_tcmj_159_23
crossref_primary_10_1136_bmjopen_2021_049992
crossref_primary_10_1016_j_asjsur_2022_09_130
crossref_primary_10_1136_jitc_2020_001866
crossref_primary_10_1186_s40001_023_01099_2
crossref_primary_10_1016_j_eclinm_2023_102175
crossref_primary_10_23922_jarc_2020_064
crossref_primary_10_3892_ol_2024_14286
crossref_primary_10_3390_cells10092488
crossref_primary_10_7717_peerj_7831
crossref_primary_10_1002_ctm2_718
Cites_doi 10.1126/science.aar4060
10.1158/0008-5472.CAN-17-2285
10.1038/nature25015
10.1038/nature23669
10.1056/NEJMoa1210093
10.1016/j.ccell.2016.10.010
10.1158/2159-8290.CD-16-1223
10.1016/j.cell.2016.11.022
10.1200/JCO.2010.33.2312
10.1016/j.cell.2016.03.031
10.1158/1078-0432.CCR-09-1624
10.1189/jlb.0911449
10.1158/2326-6066.CIR-14-0118
10.1200/JCO.2013.53.0105
10.1056/NEJMoa1103782
10.4049/jimmunol.0900609
10.1126/science.aac9935
10.1084/jem.20161462
10.3389/fimmu.2018.00151
10.1158/1078-0432.CCR-13-2797
10.1038/nrd3463
10.1038/nature23643
10.1371/journal.pone.0020235
10.1038/s41577-018-0029-z
10.1038/nature12978
10.1016/S0092-8674(00)80664-9
10.1158/1078-0432.CCR-14-3128
10.1038/ncomms8215
10.1189/jlb.0603252
10.1016/j.immuni.2016.05.002
10.1126/science.aae0477
10.1016/j.ymthe.2017.01.013
10.1158/1078-0432.CCR-12-1630
10.1056/NEJMoa1412082
10.1016/j.cellsig.2009.10.013
10.1158/1078-0432.CCR-09-0399
10.1126/scitranslmed.3006504
10.3390/cancers4020490
10.1158/2326-6066.CIR-16-0177
10.1158/2159-8290.CD-15-0563
10.1038/nrc.2017.17
10.1056/NEJMoa1604958
10.1038/s41591-018-0217-1
ContentType Journal Article
Copyright 2019 American Association for Cancer Research.
Copyright_xml – notice: 2019 American Association for Cancer Research.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1158/1078-0432.CCR-18-2840
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 4541
ExternalDocumentID 30940655
10_1158_1078_0432_CCR_18_2840
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
18M
29B
2FS
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BR6
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
QTD
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WOQ
YKV
NPM
RHF
7X8
ID FETCH-LOGICAL-c375t-a1f404ccf341407c580775cfedb1bbda4c8f50b4307746eeecf167af32b233ac3
ISSN 1078-0432
1557-3265
IngestDate Fri Jul 11 16:20:14 EDT 2025
Wed Feb 19 02:30:43 EST 2025
Thu Apr 24 23:03:29 EDT 2025
Tue Jul 01 01:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License 2019 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-a1f404ccf341407c580775cfedb1bbda4c8f50b4307746eeecf167af32b233ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30940655
PQID 2202672366
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2202672366
pubmed_primary_30940655
crossref_citationtrail_10_1158_1078_0432_CCR_18_2840
crossref_primary_10_1158_1078_0432_CCR_18_2840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-15
PublicationDateYYYYMMDD 2019-07-15
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2019
References Schroder (2022061101051725700_bib4) 2004; 75
Dorand (2022061101051725700_bib9) 2016; 353
Wagle (2022061101051725700_bib16) 2011; 29
Ribas (2022061101051725700_bib3) 2015; 5
Schildberg (2022061101051725700_bib7) 2016; 44
Gotwals (2022061101051725700_bib17) 2017; 17
Mezzadra (2022061101051725700_bib30) 2017; 549
Spranger (2022061101051725700_bib5) 2013; 5
Cerezo (2022061101051725700_bib41) 2018; 24
Bai (2022061101051725700_bib25) 2013; 93
Frederick (2022061101051725700_bib36) 2013; 19
Ivashkiv (2022061101051725700_bib6) 2018; 18
Casey (2022061101051725700_bib8) 2016; 352
Wolchok (2022061101051725700_bib18) 2009; 15
Zhao (2022061101051725700_bib40) 2009; 15
Robert (2022061101051725700_bib11) 2015; 372
Sondak (2022061101051725700_bib14) 2011; 10
Abschuetz (2022061101051725700_bib37) 2012; 4
Zhang (2022061101051725700_bib32) 2018; 553
Sun (2022061101051725700_bib22) 2015; 6
Hornyak (2022061101051725700_bib12) 2018; 9
Zaretsky (2022061101051725700_bib33) 2016; 375
Kimpfler (2022061101051725700_bib38) 2009; 183
Ribas (2022061101051725700_bib2) 2016; 213
Prendergast (2022061101051725700_bib10) 2017; 77
Chapman (2022061101051725700_bib13) 2011; 364
Atefi (2022061101051725700_bib43) 2014; 20
Ribas (2022061101051725700_bib1) 2018; 359
Minn (2022061101051725700_bib35) 2016; 165
Lengagne (2022061101051725700_bib39) 2011; 6
Lim (2022061101051725700_bib31) 2016; 30
Flaherty (2022061101051725700_bib15) 2012; 367
Hoos (2022061101051725700_bib19) 2015; 21
Burr (2022061101051725700_bib29) 2017; 549
Liu (2022061101051725700_bib20) 2014; 507
Kong (2022061101051725700_bib21) 2017; 25
Brea (2022061101051725700_bib23) 2016; 4
Topalian (2022061101051725700_bib42) 2014; 32
Shin (2022061101051725700_bib34) 2017; 7
Benci (2022061101051725700_bib28) 2016; 167
Chen (2022061101051725700_bib27) 2015; 3
Garcia-Martinez (2022061101051725700_bib26) 2010; 22
Schlessinger (2022061101051725700_bib24) 2000; 100
References_xml – volume: 359
  start-page: 1350
  year: 2018
  ident: 2022061101051725700_bib1
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 77
  start-page: 6795
  year: 2017
  ident: 2022061101051725700_bib10
  article-title: Discovery of IDO1 Inhibitors: From Bench to Bedside
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-2285
– volume: 553
  start-page: 91
  year: 2018
  ident: 2022061101051725700_bib32
  article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance
  publication-title: Nature
  doi: 10.1038/nature25015
– volume: 549
  start-page: 106
  year: 2017
  ident: 2022061101051725700_bib30
  article-title: Identification of CMTM6 and CMTM4 as PD-L1 protein regulators
  publication-title: Nature
  doi: 10.1038/nature23669
– volume: 367
  start-page: 1694
  year: 2012
  ident: 2022061101051725700_bib15
  article-title: Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1210093
– volume: 30
  start-page: 925
  year: 2016
  ident: 2022061101051725700_bib31
  article-title: Deubiquitination and stabilization of PD-L1 by CSN5
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.010
– volume: 7
  start-page: 188
  year: 2017
  ident: 2022061101051725700_bib34
  article-title: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-16-1223
– volume: 167
  start-page: 1540
  year: 2016
  ident: 2022061101051725700_bib28
  article-title: Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.022
– volume: 29
  start-page: 3085
  year: 2011
  ident: 2022061101051725700_bib16
  article-title: Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.33.2312
– volume: 165
  start-page: 272
  year: 2016
  ident: 2022061101051725700_bib35
  article-title: Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.031
– volume: 15
  start-page: 7412
  year: 2009
  ident: 2022061101051725700_bib18
  article-title: Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-1624
– volume: 93
  start-page: 101
  year: 2013
  ident: 2022061101051725700_bib25
  article-title: Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0911449
– volume: 3
  start-page: 149
  year: 2015
  ident: 2022061101051725700_bib27
  article-title: Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-14-0118
– volume: 32
  start-page: 1020
  year: 2014
  ident: 2022061101051725700_bib42
  article-title: Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2013.53.0105
– volume: 364
  start-page: 2507
  year: 2011
  ident: 2022061101051725700_bib13
  article-title: Improved survival with vemurafenib in melanoma with BRAF V600E mutation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1103782
– volume: 183
  start-page: 6330
  year: 2009
  ident: 2022061101051725700_bib38
  article-title: Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0900609
– volume: 352
  start-page: 227
  year: 2016
  ident: 2022061101051725700_bib8
  article-title: MYC regulates the antitumor immune response through CD47 and PD-L1
  publication-title: Science
  doi: 10.1126/science.aac9935
– volume: 213
  start-page: 2835
  year: 2016
  ident: 2022061101051725700_bib2
  article-title: What does PD-L1 positive or negative mean?
  publication-title: J Exp Med
  doi: 10.1084/jem.20161462
– volume: 9
  start-page: 151
  year: 2018
  ident: 2022061101051725700_bib12
  article-title: The Role of indoleamine-2,3-dioxygenase in cancer development, diagnostics, and therapy
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00151
– volume: 20
  start-page: 3446
  year: 2014
  ident: 2022061101051725700_bib43
  article-title: Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-2797
– volume: 10
  start-page: 411
  year: 2011
  ident: 2022061101051725700_bib14
  article-title: Ipilimumab
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3463
– volume: 549
  start-page: 101
  year: 2017
  ident: 2022061101051725700_bib29
  article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature23643
– volume: 6
  start-page: e20235
  year: 2011
  ident: 2022061101051725700_bib39
  article-title: T cells contribute to tumor progression by favoring pro-tumoral properties of intra-tumoral myeloid cells in a mouse model for spontaneous melanoma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020235
– volume: 18
  start-page: 545
  year: 2018
  ident: 2022061101051725700_bib6
  article-title: IFNgamma: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy
  publication-title: Nature reviews Immunology
  doi: 10.1038/s41577-018-0029-z
– volume: 507
  start-page: 519
  year: 2014
  ident: 2022061101051725700_bib20
  article-title: Structure-based programming of lymph-node targeting in molecular vaccines
  publication-title: Nature
  doi: 10.1038/nature12978
– volume: 100
  start-page: 293
  year: 2000
  ident: 2022061101051725700_bib24
  article-title: New roles for Src kinases in control of cell survival and angiogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80664-9
– volume: 21
  start-page: 4989
  year: 2015
  ident: 2022061101051725700_bib19
  article-title: CCR 20th Anniversary Commentary: Immune-Related Response Criteria–Capturing Clinical Activity in Immuno-Oncology
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-3128
– volume: 6
  start-page: 7215
  year: 2015
  ident: 2022061101051725700_bib22
  article-title: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
  publication-title: Nat Commun
  doi: 10.1038/ncomms8215
– volume: 75
  start-page: 163
  year: 2004
  ident: 2022061101051725700_bib4
  article-title: Interferon-gamma: an overview of signals, mechanisms and functions
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0603252
– volume: 44
  start-page: 955
  year: 2016
  ident: 2022061101051725700_bib7
  article-title: Coinhibitory pathways in the B7-CD28 ligand-receptor family
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.05.002
– volume: 353
  start-page: 399
  year: 2016
  ident: 2022061101051725700_bib9
  article-title: Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity
  publication-title: Science
  doi: 10.1126/science.aae0477
– volume: 25
  start-page: 1027
  year: 2017
  ident: 2022061101051725700_bib21
  article-title: The microRNA-423-3p-Bim axis promotes cancer progression and activates oncogenic autophagy in gastric cancer
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2017.01.013
– volume: 19
  start-page: 1225
  year: 2013
  ident: 2022061101051725700_bib36
  article-title: BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-12-1630
– volume: 372
  start-page: 320
  year: 2015
  ident: 2022061101051725700_bib11
  article-title: Nivolumab in previously untreated melanoma without BRAF mutation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1412082
– volume: 22
  start-page: 415
  year: 2010
  ident: 2022061101051725700_bib26
  article-title: A non-catalytic function of the Src family tyrosine kinases controls prolactin-induced Jak2 signaling
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2009.10.013
– volume: 15
  start-page: 4382
  year: 2009
  ident: 2022061101051725700_bib40
  article-title: Activation of p38 mitogen-activated protein kinase drives dendritic cells to become tolerogenic in ret transgenic mice spontaneously developing melanoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0399
– volume: 5
  start-page: 200ra116
  year: 2013
  ident: 2022061101051725700_bib5
  article-title: Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006504
– volume: 4
  start-page: 490
  year: 2012
  ident: 2022061101051725700_bib37
  article-title: T-cell mediated immune responses induced in ret transgenic mouse model of malignant melanoma
  publication-title: Cancers
  doi: 10.3390/cancers4020490
– volume: 4
  start-page: 936
  year: 2016
  ident: 2022061101051725700_bib23
  article-title: Kinase regulation of human MHC class I molecule expression on cancer cells
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-16-0177
– volume: 5
  start-page: 915
  year: 2015
  ident: 2022061101051725700_bib3
  article-title: Adaptive immune resistance: how cancer protects from immune attack
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-15-0563
– volume: 17
  start-page: 286
  year: 2017
  ident: 2022061101051725700_bib17
  article-title: Prospects for combining targeted and conventional cancer therapy with immunotherapy
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc.2017.17
– volume: 375
  start-page: 819
  year: 2016
  ident: 2022061101051725700_bib33
  article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1604958
– volume: 24
  start-page: 1877
  year: 2018
  ident: 2022061101051725700_bib41
  article-title: Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0217-1
SSID ssj0014104
Score 2.5700307
Snippet Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4530
Title Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma
URI https://www.ncbi.nlm.nih.gov/pubmed/30940655
https://www.proquest.com/docview/2202672366
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbB2MvY9_NvtBgb0VZLEu2-zjShnZN21ASlsJASLLUGVqnpPYe9tfvJNlOyjLW7cUYgWxz99P5Trr7HUIfmcmkSmVC-C5NCcs5JdL6dTWwsMBSK5XP8j1JDmbsy5zPV3m6vrqkUn39c2Ndyf9oFcZAr65K9h802z0UBuAe9AtX0DBc76TjM1dfIq0pC-Uy_kHq5sbRARRVfbVY7hz62g_wsn8UEgzB90IVPsl5skfGUUgE3juNHNtxSIb1SY_H5lKWi8ZatxQGbfmkdhhZ7jQMQd1O8tfaa6ouyPkKbEdNsu_ElBdkZIp2fB7Sc8eAywsyaf-cHlnN3vV5Xa5vRvj6JxLKMVv7ycFm0dD-oW82jDVGl_J1cLE1E8p4OKj53bbzzG8zOEpgFtP-cHhGIgBEFviebnNpn5yK0Ww8FtP9-fQ-ekAhiPAB9-FRd8bEIt9csvu8pr4LXvNp40tuey5_CEe8WzJ9gh438QT-HMDxFN0z5TP08LjJmHiOvq1hBLcYwR1GcIsRDBjBK4xgjxEMGMEOI3iFEVyUuMXICzQb7U-HB6TpqEF0nPKKyMiyAdPagu8CkbzmmWNA1NbkKlIql0xnlg8UA8OfssQYo22UpLB4qaJxLHX8Em2Vi9JsI5xnxsokA-dGaUaNUk7Cuzn4g5FKs1j1EGulJXRDN--6nlwKH3byTDghCydkAUIWUSackHuo3027Dnwrf5vwoVWFAMvojrtkaRb1jaDUdVejcZL00Kugo-6RsaONTDh_fYfZb9CjFdTfoq1qWZt34IlW6r0H1C-j7oLG
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regorafenib+Promotes+Antitumor+Immunity+via+Inhibiting+PD-L1+and+IDO1+Expression+in+Melanoma&rft.jtitle=Clinical+cancer+research&rft.au=Wu%2C+Rui-Yan&rft.au=Kong%2C+Peng-Fei&rft.au=Xia%2C+Liang-Ping&rft.au=Huang%2C+Yun&rft.date=2019-07-15&rft.issn=1557-3265&rft.eissn=1557-3265&rft.volume=25&rft.issue=14&rft.spage=4530&rft_id=info:doi/10.1158%2F1078-0432.CCR-18-2840&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon