Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α
Objective This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. Methods HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammator...
Saved in:
Published in | Inflammation research Vol. 72; no. 5; pp. 1021 - 1035 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.
Methods
HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied.
Results
Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV.
Conclusion
Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation. |
---|---|
AbstractList | ObjectiveThis study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.MethodsHUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied.ResultsMetabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV.ConclusionGlycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation. Objective This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. Methods HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. Results Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. Conclusion Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation. This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.OBJECTIVEThis study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied.METHODSHUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied.Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV.RESULTSMetabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV.Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.CONCLUSIONGlycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation. This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation. |
Author | Zuo, Jian Yu, Li-Jun Jiang, Tian-Tian Li, Yan Ji, Cong-Lan Liao, Qiang Wei, Tuo Olatunji, Opeyemi Joshua Han, Jun Song, Meng-Ke |
Author_xml | – sequence: 1 givenname: Tian-Tian surname: Jiang fullname: Jiang, Tian-Tian organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital) – sequence: 2 givenname: Cong-Lan surname: Ji fullname: Ji, Cong-Lan organization: School of Pharmacy, Anhui College of Traditional Chinese Medicine – sequence: 3 givenname: Li-Jun surname: Yu fullname: Yu, Li-Jun organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College – sequence: 4 givenname: Meng-Ke surname: Song fullname: Song, Meng-Ke organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College – sequence: 5 givenname: Yan surname: Li fullname: Li, Yan organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital) – sequence: 6 givenname: Qiang surname: Liao fullname: Liao, Qiang organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College – sequence: 7 givenname: Tuo surname: Wei fullname: Wei, Tuo organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital) – sequence: 8 givenname: Opeyemi Joshua surname: Olatunji fullname: Olatunji, Opeyemi Joshua organization: African Genome Center, Mohammed VI Polytechnic University – sequence: 9 givenname: Jian surname: Zuo fullname: Zuo, Jian email: zuojian8178@163.com organization: Xin’an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui – sequence: 10 givenname: Jun surname: Han fullname: Han, Jun email: hanjun@wnmc.edu.cn organization: Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37016140$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd9uFCEYxYmpsX_0Bbwwk3jjDcqfmYG5NI21mzRpUmviHWHgY5dmFlZg2uwj-Di-iM8k26016UVvgHB-5_CFc4wOQgyA0FtKPlJCxKdMCKEUE8YxoYJJfPcCHdGWETwQ-eOgnncSl5wcouOcbyoumWSv0CEXhPa0JUfo1xXkW0i6pDhhH-xswDbfFlfXtNGm-FtdfAyNDys_-pKb5bQ1cdpmn7GbYaqsDksflxCg3jVzsJCatIJ5rUv0VU1llXypkonB-l1YrmkWNlCXUJromvPFGaZ_fr9GL52eMrx52E_Q97Mv16fn-OLy6-L08wU2XHQFD07aTo8jF7QznHKhNQATtueiHaQVg-u1FoK0RAtj3GjN2DnHHWW6s67n_AR92OduUvw5Qy5q7bOBadIB4pwVE0NPO9mJvqLvn6A3cU6hTqeYrEzLulZU6t0DNY9rsGqT_Fqnrfr3yRVge8CkmHMC94hQonZNqn2Tqtal7ptUd9Ukn5iML_dtlKT99LyV7625vhOWkP6P_YzrL_zNtnY |
CitedBy_id | crossref_primary_10_1186_s13020_023_00833_6 crossref_primary_10_1007_s10787_024_01612_x crossref_primary_10_3389_fvets_2025_1548866 crossref_primary_10_1016_j_jep_2024_118061 crossref_primary_10_3390_epigenomes9010002 crossref_primary_10_1016_j_heliyon_2024_e37371 crossref_primary_10_3390_biology13080598 crossref_primary_10_1016_j_intimp_2024_111913 crossref_primary_10_1002_ptr_8184 crossref_primary_10_2147_JIR_S474329 crossref_primary_10_3389_fphar_2024_1403823 crossref_primary_10_2147_JIR_S431600 |
Cites_doi | 10.1016/j.canlet.2019.08.003 10.3389/fphar.2021.785586 10.1016/j.foodchem.2018.04.096 10.1016/j.canlet.2017.12.035 10.3389/fphar.2018.01472 10.3390/cancers13194987 10.1002/1873-3468.13087 10.2147/JIR.S378090 10.1007/s10911-006-9002-8 10.1038/s41580-020-0227-y 10.1021/acs.jafc.8b05047 10.1155/2020/3830212 10.1111/bph.13492 10.1016/j.biopha.2021.111693 10.3389/fnins.2018.00911 10.3389/fphar.2019.00421 10.3389/fimmu.2021.686155 10.1152/physrev.00001.2017 10.1016/j.jaut.2019.102400 10.1001/jama.2018.13103 10.1126/scisignal.aal3024 10.1161/STROKEAHA.117.018562 10.1038/s41419-018-0570-5 10.1016/j.ejphar.2021.174500 10.1182/blood-2013-09-512749 10.1016/j.abb.2018.11.016 10.1002/biof.1599 10.1007/s00005-011-0116-3 10.3389/fimmu.2021.795626 10.1111/imr.12838 10.1155/2017/7543973 10.7150/thno.30305 10.3389/fcvm.2021.775392 10.7326/AITC201901010 10.21037/atm-22-1221 10.3390/molecules26247528 10.2147/JIR.S295957 10.1016/j.cmet.2017.10.005 10.2174/1871530315666150316120316 10.1002/ptr.6175 10.1301/nr.2007.dec.S140-S146 10.1111/jfbc.14182 10.3390/nu14235101 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7T7 7TM 7TO 7U9 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1007/s00011-023-01728-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1420-908X |
EndPage | 1035 |
ExternalDocumentID | 37016140 10_1007_s00011_023_01728_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Key Project of Natural Science Foundation of Anhui Province for College Scholar grantid: KJ2020A0868 – fundername: National Natural Science Foundation of China grantid: 81973828, 82274465 – fundername: the Open Fund of Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, China (Anhui Medical University) grantid: KFJJ-2020-08 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 X7M Y6R YLTOR Z45 Z7U Z7W Z82 Z87 Z8O Z8Q Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-c375t-9f8d5abb3715c3137aaee27d637498d79f6aa77040a7ccfbdcb5ff3f12a5df633 |
IEDL.DBID | 7X7 |
ISSN | 1023-3830 1420-908X |
IngestDate | Fri Jul 11 04:55:19 EDT 2025 Sat Aug 23 13:03:57 EDT 2025 Wed Feb 19 02:24:06 EST 2025 Tue Jul 01 01:43:54 EDT 2025 Thu Apr 24 22:58:14 EDT 2025 Fri Feb 21 02:44:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Glucose metabolism GTP Bikinin Rho/ROCK VEGF |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-9f8d5abb3715c3137aaee27d637498d79f6aa77040a7ccfbdcb5ff3f12a5df633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 37016140 |
PQID | 2815842547 |
PQPubID | 24296 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2796158576 proquest_journals_2815842547 pubmed_primary_37016140 crossref_primary_10_1007_s00011_023_01728_w crossref_citationtrail_10_1007_s00011_023_01728_w springer_journals_10_1007_s00011_023_01728_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230500 2023-05-00 2023-May 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
PublicationSubtitle | Official Journal of: The International Association of Inflammation Societies + The European Histamine Research Society |
PublicationTitle | Inflammation research |
PublicationTitleAbbrev | Inflamm. Res |
PublicationTitleAlternate | Inflamm Res |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Yu, Dong, Li, Liu (CR16) 2018; 418 Yang, Chang, Yang, Yuan, Xu, Ho, Li (CR24) 2018; 66 Jaklová Dytrtová, Straka, Bělonožníková, Jakl, Ryšlavá (CR18) 2018; 262 Merajver, Usmani (CR27) 2005; 10 Scherer, Häupl, Burmester (CR2) 2020; 110 Weyand, Goronzy (CR30) 2020; 294 Jia, Wu, Yang, Xiao, Huang, Long, Su (CR7) 2018; 9 Wang, Xie, Yuan, Qiu, Duan, Xu, Chen (CR23) 2020; 46 Zhu, Xie, Wang, Jin, Meng, Sun, Sun (CR33) 2021; 140 Inoue, Nakata (CR22) 2015; 15 Nazari-Khanamiri, Ghasemnejad-Berenji (CR31) 2022; 46 Rameshrad, Imenshahidi, Razavi, Iranshahi, Hosseinzadeh (CR26) 2018; 32 Jiang, Ji, Cheng, Gu, Wang, Li, Zuo, Han (CR13) 2021; 12 Xia, Daiber, Förstermann, Li (CR17) 2017; 174 Kim, Byzova (CR39) 2014; 123 Zuo, Wang, Liu, Ye, Liu, Li, Li (CR42) 2018; 9 Kretschmer, Rüdiger, Zahler (CR11) 2021; 13 Libby (CR29) 2007; 65 Huang, Fu, Chen, Li, Huang, Liang (CR6) 2021; 12 Koronowski, Khoury, Saul, Loris, Cohan, Stradecki-Cohan, Dave (CR21) 2017; 48 Choudhry, Harris (CR10) 2018; 27 Lei, Tao, Wu, Xu, Yang, Li, Olatunji (CR15) 2022; 12 Zhang, Huang, Zeng, Wu, Zhang, Chen (CR38) 2017; 2017 Wang, He, Wu, Xu, Shi, Olatunji, Zuo (CR14) 2022; 15 Zheng, Shan, Xu, Wang, Shi, Wang, Zheng (CR34) 2018; 12 Liu, Pang, Ji, Fang, Tian, Chen, Chen (CR25) 2022; 8 Zuo, Tao, Wu, Jiang, Olatunji, Dong, Han (CR43) 2021; 14 Fang, Zhou, Nandakumar (CR4) 2020; 2020 Aletaha, Smolen (CR5) 2018; 320 Craveiro, Cretenet, Mongellaz, Matias, Caron, de Lima, Zimmermann (CR20) 2017; 10 Liu, Wada, Katsura, Tozawa, Erwin, Kapron, Bao (CR41) 2018; 8 Fan, Liu, Guo, Huang, Peng, Li, Luo (CR36) 2021; 26 Lee, Chandel, Simon (CR9) 2020; 21 Sparks (CR3) 2019; 170 Shiozawa, Tsumiyama, Yoshida, Hashiramoto (CR1) 2011; 59 Li, Wu, Han, Wang, Bai, Jia, Li (CR35) 2019; 661 Grzeczka, Kordowitzki (CR19) 2022; 14 Eelen, de Zeeuw, Treps, Harjes, Wong, Carmeliet (CR12) 2018; 98 Fang, Zhang, Liu, Zhang, Zhu, Li, Wang (CR28) 2019; 463 Huang, Sun, Chen, Niu, Wang, Zhao, Sun (CR37) 2019; 10 Narumiya, Thumkeo (CR40) 2018; 592 Peng, Wei, Huang, Yan, Li, Li, Wu (CR32) 2022; 10 Wang, Wu, Deng (CR8) 2021; 910 P Libby (1728_CR29) 2007; 65 F Nazari-Khanamiri (1728_CR31) 2022; 46 J Zuo (1728_CR42) 2018; 9 H Choudhry (1728_CR10) 2018; 27 KB Koronowski (1728_CR21) 2017; 48 M Rameshrad (1728_CR26) 2018; 32 P Lee (1728_CR9) 2020; 21 J Huang (1728_CR6) 2021; 12 TT Jiang (1728_CR13) 2021; 12 W Zhang (1728_CR38) 2017; 2017 DD Wang (1728_CR14) 2022; 15 Q Yu (1728_CR16) 2018; 418 T Zhu (1728_CR33) 2021; 140 W Jia (1728_CR7) 2018; 9 M Lei (1728_CR15) 2022; 12 SD Merajver (1728_CR27) 2005; 10 X Huang (1728_CR37) 2019; 10 J Zuo (1728_CR43) 2021; 14 N Xia (1728_CR17) 2017; 174 JA Sparks (1728_CR3) 2019; 170 CM Weyand (1728_CR30) 2020; 294 G Eelen (1728_CR12) 2018; 98 H Inoue (1728_CR22) 2015; 15 Q Fang (1728_CR4) 2020; 2020 YW Kim (1728_CR39) 2014; 123 A Grzeczka (1728_CR19) 2022; 14 G Wang (1728_CR23) 2020; 46 H Peng (1728_CR32) 2022; 10 XW Zheng (1728_CR34) 2018; 12 S Narumiya (1728_CR40) 2018; 592 J Liu (1728_CR41) 2018; 8 J Jaklová Dytrtová (1728_CR18) 2018; 262 B Liu (1728_CR25) 2022; 8 D Fan (1728_CR36) 2021; 26 G Yang (1728_CR24) 2018; 66 X Li (1728_CR35) 2019; 661 M Craveiro (1728_CR20) 2017; 10 M Kretschmer (1728_CR11) 2021; 13 Y Wang (1728_CR8) 2021; 910 HU Scherer (1728_CR2) 2020; 110 D Aletaha (1728_CR5) 2018; 320 S Shiozawa (1728_CR1) 2011; 59 G Fang (1728_CR28) 2019; 463 |
References_xml | – volume: 463 start-page: 11 year: 2019 end-page: 26 ident: CR28 article-title: Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.08.003 – volume: 12 start-page: 785586 year: 2021 ident: CR13 article-title: α-Mangostin alleviated hif-1α-mediated angiogenesis in rats with adjuvant-induced arthritis by suppressing aerobic glycolysis publication-title: Front Pharmacol doi: 10.3389/fphar.2021.785586 – volume: 262 start-page: 221 year: 2018 end-page: 225 ident: CR18 article-title: Does resveratrol retain its antioxidative properties in wine? Redox behaviour of resveratrol in the presence of Cu(II) and tebuconazole publication-title: Food Chem doi: 10.1016/j.foodchem.2018.04.096 – volume: 418 start-page: 20 year: 2018 end-page: 26 ident: CR16 article-title: SIRT1 and HIF1α signaling in metabolism and immune responses publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.12.035 – volume: 9 start-page: 1472 year: 2018 ident: CR42 article-title: Integrating network pharmacology and metabolomics study on anti-rheumatic mechanisms and antagonistic effects against methotrexate-induced toxicity of Qing-Luo-Yin publication-title: Front Pharmacol doi: 10.3389/fphar.2018.01472 – volume: 13 start-page: 4987 year: 2021 ident: CR11 article-title: Mechanical aspects of angiogenesis publication-title: Cancers doi: 10.3390/cancers13194987 – volume: 592 start-page: 1763 year: 2018 end-page: 1776 ident: CR40 article-title: Rho signaling research: history, current status and future directions publication-title: FEBS Lett doi: 10.1002/1873-3468.13087 – volume: 15 start-page: 4663 year: 2022 end-page: 4675 ident: CR14 article-title: AMPK/SIRT1 deficiency drives adjuvant-induced arthritis in rats by promoting glycolysis-mediated monocytes inflammatory polarization publication-title: J Inflamm Res doi: 10.2147/JIR.S378090 – volume: 10 start-page: 291 year: 2005 end-page: 298 ident: CR27 article-title: Multifaceted role of Rho proteins in angiogenesis publication-title: J Mammary Gland Biol Neoplasia doi: 10.1007/s10911-006-9002-8 – volume: 21 start-page: 268 year: 2020 end-page: 283 ident: CR9 article-title: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0227-y – volume: 66 start-page: 12953 year: 2018 end-page: 12960 ident: CR24 article-title: Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.8b05047 – volume: 2020 start-page: 3830212 year: 2020 ident: CR4 article-title: Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis publication-title: Mediators Inflamm doi: 10.1155/2020/3830212 – volume: 174 start-page: 1633 year: 2017 end-page: 1646 ident: CR17 article-title: Antioxidant effects of resveratrol in the cardiovascular system publication-title: Br J Pharmacol doi: 10.1111/bph.13492 – volume: 140 start-page: 111693 year: 2021 ident: CR33 article-title: Notoginsenoside R1 activates the NAMPT-NAD -SIRT1 cascade to promote postischemic angiogenesis by modulating Notch signaling publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2021.111693 – volume: 12 start-page: 911 year: 2018 ident: CR34 article-title: Buyang Huanwu decoction targets SIRT1/VEGF pathway to promote angiogenesis after cerebral ischemia/reperfusion injury publication-title: Front Neurosci doi: 10.3389/fnins.2018.00911 – volume: 10 start-page: 421 year: 2019 ident: CR37 article-title: Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00421 – volume: 12 year: 2021 ident: CR6 article-title: Promising therapeutic targets for treatment of rheumatoid arthritis publication-title: Front Immunol doi: 10.3389/fimmu.2021.686155 – volume: 98 start-page: 3 year: 2018 end-page: 58 ident: CR12 article-title: Endothelial cell metabolism publication-title: Physiol Rev doi: 10.1152/physrev.00001.2017 – volume: 110 year: 2020 ident: CR2 article-title: The etiology of rheumatoid arthritis publication-title: J Autoimmun doi: 10.1016/j.jaut.2019.102400 – volume: 320 start-page: 1360 year: 2018 end-page: 1372 ident: CR5 article-title: Diagnosis and management of rheumatoid arthritis: a review publication-title: JAMA doi: 10.1001/jama.2018.13103 – volume: 10 start-page: 3024 year: 2017 ident: CR20 article-title: Resveratrol stimulates the metabolic reprogramming of human CD4 T cells to enhance effector function publication-title: Sci Signal. doi: 10.1126/scisignal.aal3024 – volume: 48 start-page: 3117 year: 2017 end-page: 3125 ident: CR21 article-title: Neuronal SIRT1 (silent information regulator 2 homologue 1) regulates glycolysis and mediates resveratrol-induced ischemic tolerance publication-title: Stroke doi: 10.1161/STROKEAHA.117.018562 – volume: 9 start-page: 503 year: 2018 ident: CR7 article-title: GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis publication-title: Cell Death Dis doi: 10.1038/s41419-018-0570-5 – volume: 910 year: 2021 ident: CR8 article-title: Angiogenesis as a potential treatment strategy for rheumatoid arthritis publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2021.174500 – volume: 123 start-page: 625 year: 2014 end-page: 631 ident: CR39 article-title: Oxidative stress in angiogenesis and vascular disease publication-title: Blood doi: 10.1182/blood-2013-09-512749 – volume: 661 start-page: 117 year: 2019 end-page: 124 ident: CR35 article-title: SIRT1 activation promotes angiogenesis in diabetic wounds by protecting endothelial cells against oxidative stress publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2018.11.016 – volume: 46 start-page: 441 year: 2020 end-page: 453 ident: CR23 article-title: Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signaling pathway publication-title: BioFactors doi: 10.1002/biof.1599 – volume: 59 start-page: 89 year: 2011 end-page: 95 ident: CR1 article-title: Pathogenesis of joint destruction in rheumatoid arthritis publication-title: Arch Immunol Ther Exp doi: 10.1007/s00005-011-0116-3 – volume: 12 start-page: 795626 year: 2022 ident: CR15 article-title: Metabolic Enzyme Triosephosphate isomerase 1 and nicotinamide phosphoribosyltransferase, two independent inflammatory indicators in rheumatoid arthritis: evidences from collagen-induced arthritis and clinical samples publication-title: Front Immunol doi: 10.3389/fimmu.2021.795626 – volume: 294 start-page: 177 year: 2020 end-page: 187 ident: CR30 article-title: Immunometabolism in the development of rheumatoid arthritis publication-title: Immunol Rev doi: 10.1111/imr.12838 – volume: 2017 start-page: 7543973 year: 2017 ident: CR38 article-title: Sirt1 inhibits oxidative stress in vascular endothelial cells publication-title: Oxid Med Cell Longev doi: 10.1155/2017/7543973 – volume: 8 start-page: 6053 year: 2018 end-page: 6069 ident: CR41 article-title: Rho-associated coiled-coil kinase (ROCK) in molecular regulation of angiogenesis publication-title: Theranostics doi: 10.7150/thno.30305 – volume: 8 start-page: 775392 year: 2022 ident: CR25 article-title: MEF2A is the trigger of resveratrol exerting protection on vascular endothelial cell publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.775392 – volume: 170 start-page: 1 year: 2019 end-page: 16 ident: CR3 article-title: Rheumatoid arthritis publication-title: Ann Intern Med doi: 10.7326/AITC201901010 – volume: 10 start-page: 446 year: 2022 ident: CR32 article-title: Maternal obesity inhibits placental angiogenesis by down-regulating the SIRT1/PGC-1α pathway publication-title: Ann Transl Med doi: 10.21037/atm-22-1221 – volume: 26 start-page: 7528 year: 2021 ident: CR36 article-title: Resveratrol promotes angiogenesis in a FoxO1-dependent manner in hind limb ischemia in mice publication-title: Molecules doi: 10.3390/molecules26247528 – volume: 14 start-page: 395 year: 2021 end-page: 411 ident: CR43 article-title: Securidaca inappendiculata-derived xanthones protected joints from degradation in male rats with collagen-induced arthritis by regulating PPAR-γ signaling publication-title: J Inflamm Res doi: 10.2147/JIR.S295957 – volume: 27 start-page: 281 year: 2018 end-page: 298 ident: CR10 article-title: Advances in hypoxia-inducible factor biology publication-title: Cell Metab doi: 10.1016/j.cmet.2017.10.005 – volume: 15 start-page: 186 year: 2015 end-page: 195 ident: CR22 article-title: Resveratrol targets in inflammation publication-title: Endocr Metab Immune Disord Drug Targets doi: 10.2174/1871530315666150316120316 – volume: 32 start-page: 2396 year: 2018 end-page: 2407 ident: CR26 article-title: Bisphenol A vascular toxicity: Protective effect of Vitis vinifera (grape) seed extract and resveratrol publication-title: Phytother Res doi: 10.1002/ptr.6175 – volume: 65 start-page: S140 year: 2007 end-page: S146 ident: CR29 article-title: Inflammatory mechanisms: the molecular basis of inflammation and disease publication-title: Nutr Rev doi: 10.1301/nr.2007.dec.S140-S146 – volume: 46 year: 2022 ident: CR31 article-title: Resveratrol may ameliorate rheumatoid arthritis via the STAT3/HIF-1/VEGF molecular pathway publication-title: J Food Biochem doi: 10.1111/jfbc.14182 – volume: 14 start-page: 5101 year: 2022 ident: CR19 article-title: Resveratrol and SIRT1: Antiaging cornerstones for oocytes? publication-title: Nutrients doi: 10.3390/nu14235101 – volume: 592 start-page: 1763 year: 2018 ident: 1728_CR40 publication-title: FEBS Lett doi: 10.1002/1873-3468.13087 – volume: 2017 start-page: 7543973 year: 2017 ident: 1728_CR38 publication-title: Oxid Med Cell Longev doi: 10.1155/2017/7543973 – volume: 10 start-page: 291 year: 2005 ident: 1728_CR27 publication-title: J Mammary Gland Biol Neoplasia doi: 10.1007/s10911-006-9002-8 – volume: 320 start-page: 1360 year: 2018 ident: 1728_CR5 publication-title: JAMA doi: 10.1001/jama.2018.13103 – volume: 8 start-page: 775392 year: 2022 ident: 1728_CR25 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.775392 – volume: 32 start-page: 2396 year: 2018 ident: 1728_CR26 publication-title: Phytother Res doi: 10.1002/ptr.6175 – volume: 294 start-page: 177 year: 2020 ident: 1728_CR30 publication-title: Immunol Rev doi: 10.1111/imr.12838 – volume: 9 start-page: 503 year: 2018 ident: 1728_CR7 publication-title: Cell Death Dis doi: 10.1038/s41419-018-0570-5 – volume: 48 start-page: 3117 year: 2017 ident: 1728_CR21 publication-title: Stroke doi: 10.1161/STROKEAHA.117.018562 – volume: 8 start-page: 6053 year: 2018 ident: 1728_CR41 publication-title: Theranostics doi: 10.7150/thno.30305 – volume: 21 start-page: 268 year: 2020 ident: 1728_CR9 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0227-y – volume: 10 start-page: 421 year: 2019 ident: 1728_CR37 publication-title: Front Pharmacol doi: 10.3389/fphar.2019.00421 – volume: 262 start-page: 221 year: 2018 ident: 1728_CR18 publication-title: Food Chem doi: 10.1016/j.foodchem.2018.04.096 – volume: 46 start-page: 441 year: 2020 ident: 1728_CR23 publication-title: BioFactors doi: 10.1002/biof.1599 – volume: 10 start-page: 446 year: 2022 ident: 1728_CR32 publication-title: Ann Transl Med doi: 10.21037/atm-22-1221 – volume: 110 year: 2020 ident: 1728_CR2 publication-title: J Autoimmun doi: 10.1016/j.jaut.2019.102400 – volume: 14 start-page: 395 year: 2021 ident: 1728_CR43 publication-title: J Inflamm Res doi: 10.2147/JIR.S295957 – volume: 910 year: 2021 ident: 1728_CR8 publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2021.174500 – volume: 418 start-page: 20 year: 2018 ident: 1728_CR16 publication-title: Cancer Lett doi: 10.1016/j.canlet.2017.12.035 – volume: 27 start-page: 281 year: 2018 ident: 1728_CR10 publication-title: Cell Metab doi: 10.1016/j.cmet.2017.10.005 – volume: 65 start-page: S140 year: 2007 ident: 1728_CR29 publication-title: Nutr Rev doi: 10.1301/nr.2007.dec.S140-S146 – volume: 98 start-page: 3 year: 2018 ident: 1728_CR12 publication-title: Physiol Rev doi: 10.1152/physrev.00001.2017 – volume: 13 start-page: 4987 year: 2021 ident: 1728_CR11 publication-title: Cancers doi: 10.3390/cancers13194987 – volume: 12 start-page: 785586 year: 2021 ident: 1728_CR13 publication-title: Front Pharmacol doi: 10.3389/fphar.2021.785586 – volume: 661 start-page: 117 year: 2019 ident: 1728_CR35 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2018.11.016 – volume: 2020 start-page: 3830212 year: 2020 ident: 1728_CR4 publication-title: Mediators Inflamm doi: 10.1155/2020/3830212 – volume: 12 start-page: 911 year: 2018 ident: 1728_CR34 publication-title: Front Neurosci doi: 10.3389/fnins.2018.00911 – volume: 59 start-page: 89 year: 2011 ident: 1728_CR1 publication-title: Arch Immunol Ther Exp doi: 10.1007/s00005-011-0116-3 – volume: 10 start-page: 3024 year: 2017 ident: 1728_CR20 publication-title: Sci Signal. doi: 10.1126/scisignal.aal3024 – volume: 9 start-page: 1472 year: 2018 ident: 1728_CR42 publication-title: Front Pharmacol doi: 10.3389/fphar.2018.01472 – volume: 140 start-page: 111693 year: 2021 ident: 1728_CR33 publication-title: Biomed Pharmacother doi: 10.1016/j.biopha.2021.111693 – volume: 170 start-page: 1 year: 2019 ident: 1728_CR3 publication-title: Ann Intern Med doi: 10.7326/AITC201901010 – volume: 15 start-page: 4663 year: 2022 ident: 1728_CR14 publication-title: J Inflamm Res doi: 10.2147/JIR.S378090 – volume: 66 start-page: 12953 year: 2018 ident: 1728_CR24 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.8b05047 – volume: 463 start-page: 11 year: 2019 ident: 1728_CR28 publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.08.003 – volume: 12 start-page: 795626 year: 2022 ident: 1728_CR15 publication-title: Front Immunol doi: 10.3389/fimmu.2021.795626 – volume: 15 start-page: 186 year: 2015 ident: 1728_CR22 publication-title: Endocr Metab Immune Disord Drug Targets doi: 10.2174/1871530315666150316120316 – volume: 123 start-page: 625 year: 2014 ident: 1728_CR39 publication-title: Blood doi: 10.1182/blood-2013-09-512749 – volume: 26 start-page: 7528 year: 2021 ident: 1728_CR36 publication-title: Molecules doi: 10.3390/molecules26247528 – volume: 12 year: 2021 ident: 1728_CR6 publication-title: Front Immunol doi: 10.3389/fimmu.2021.686155 – volume: 174 start-page: 1633 year: 2017 ident: 1728_CR17 publication-title: Br J Pharmacol doi: 10.1111/bph.13492 – volume: 14 start-page: 5101 year: 2022 ident: 1728_CR19 publication-title: Nutrients doi: 10.3390/nu14235101 – volume: 46 year: 2022 ident: 1728_CR31 publication-title: J Food Biochem doi: 10.1111/jfbc.14182 |
SSID | ssj0008282 |
Score | 2.4679532 |
Snippet | Objective
This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.
Methods
HUVECs were cultured by different... This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. HUVECs were cultured by different human serum.... ObjectiveThis study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.MethodsHUVECs were cultured by different... This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis.OBJECTIVEThis study investigated the impacts of SIRT1... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1021 |
SubjectTerms | Allergology Angiogenesis Animals Arthritis Arthritis, Rheumatoid - drug therapy Arthritis, Rheumatoid - metabolism Biomedical and Life Sciences Biomedicine Chromatography, Liquid Cytokines Cytokines - metabolism Dermatology Energy metabolism Epithelial cells Epithelium Gene expression Glycolysis Guanosine Triphosphate - metabolism Humans Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Hypoxia-inducible factor 1a Immunoblotting Immunology Inflammation Interrupters Lipopolysaccharides Lipopolysaccharides - metabolism Metabolites Metabolomics Neovascularization, Pathologic - drug therapy Neurology Original Research Paper Pharmacology/Toxicology Rats Resveratrol Resveratrol - pharmacology Rheumatoid arthritis Rheumatology RhoA protein Rocks siRNA SIRT1 protein Sirtuin 1 - genetics Sirtuin 1 - metabolism Tandem Mass Spectrometry Vascular endothelial growth factor Vascular Endothelial Growth Factor A - genetics Wound healing |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEB_0fPFF_G_1lAhyL27g2jRN-3iIy56gHOcu3FtJmmS3sLRH2_XYj-DH8Yv4mZykfxY5FXwrZJIWZjLzm07mF4B3XGU6VSahOoqUKzMqKnUSUckUhj8dsthzd37-kixW8acrfjU0hbXjafexJOk99dTs5uELxRhDXd6S0pu7cI-73B2teBWdTf4Xc4i-xomSmH-dDq0yf17j93B0C2Peqo_6sDN_CA8GvEjOegU_gjumegwnFz3h9H5Glof-qXZGTsjFgYp6_wS-X5r2m6NNbuotxewb9ajJ1_PLZUhcQ0P_O5aU1aZUZdeS9XaPMx1HCbU7jEeayGpd1mvnD8uWuH6zhjQbs0OYW5c42nQbT4pEMKvW_eEvUk4X63aktmRxPqfhzx9PYTX_uPywoMPlC7Rggnc0s6nmUikmQl6wkAkpjYmETpiIs1SLzCZSCoE-QIqisEoXilvLbBhJrm3C2DM4qurKvACC4QBtAJGaTdKYewo-65CHSSU-xSaAcNRBXgzM5O6CjG0-cSp7veWot9zrLb8J4P0057rn5fin9PGo2nzYo20epSF3RchYBPB2Gsbd5UomsjL1DmVEhpAvxaQsgOe9SUyvY8LB5fg0gNloI4fF__4tL_9P_BXcj7y9ujOWx3DUNTvzGnFQp954s_8FEgUBzg priority: 102 providerName: Springer Nature |
Title | Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α |
URI | https://link.springer.com/article/10.1007/s00011-023-01728-w https://www.ncbi.nlm.nih.gov/pubmed/37016140 https://www.proquest.com/docview/2815842547 https://www.proquest.com/docview/2796158576 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZg98IF8U-XZWUktBdqsYmTOD2hLmrpgqiq0krlFNmx3UaqkqVJWfUReBxehGdixklToRV7SiTbiaUZe77xeL4h5G2oejpWJmLa9xWGGRWTOvKZ5ArMn_Z44Lg7v46j0Tz4vAgXzYFb2Vyr3O-JbqPWRYpn5O_92AsxZBSID9c_GFaNwuhqU0LjPjlG6jK80iUWrcOF7Gx1tNPnDDyxiyZpxqXOOTDEsAW9oJjd_GuYbqHNW5FSZ4CGj8jDBjnSfi3qx-SeyZ-Q80lNPb3r0tkhk6rs0nM6OZBS756SX1NT_kQC5U2xZuCHg0Q1_XY1nXkUUxvqg1ma5atMZVVJl-sdjES2Ema3YJk0lfkyK5a4M2YlxcyzDd2szBYAb5FB66ZaOXokCv61rq-B0awtsVvRwtLR1ZB5f34_I_PhYPZxxJoyDCzlIqxYz8Y6lEpx4YUp97iQ0hhf6IiLoBdr0bORlELAbiBFmlqlUxVay63ny1DbiPPn5CgvcvOSUDAMoA2A2WwUB6Ej47OIQUws4S0wHeLtZZCkDUc5lspYJy27spNbAnJLnNySmw551465rhk67ux9uhdt0qzWMjnoVoe8aZthnWHwROam2EIf0QPwF4N71iEvapVof8cFAufgokO6ex05fPz_czm5ey6vyAPf6SferjwlR9Vma14DAqrUmVPzM3LcH15ejvH56fuXATwvB-PJFFrnfv8vSjEKHA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V6QEuiH9MCywS9EJW1F7bax8Q4qdRQtsoCqnUm7vr3U0sRXZrO0R5BF4GiRfhmZj1X4Qqeust0tqOpfk8883OzjcIvfFEKAOhfCIdR5gyoyBc-g7hVED4kzZ1K-3O07E_PHO_nXvnO-hX2wtjjlW2PrFy1DKLzR75eyewPVMyctnHyytipkaZ6mo7QqOGxbHarCFlKz6MvoJ93zrO4Gj2ZUiaqQIkpswrSagD6XEhKLO9mNqUca6Uw6RPmRsGkoXa55wxADdncayFjIWnNdW2wz2pfbMBCi5_16WQyvTQ7uej8WTa-X7IX-r6qkMJ5H6HTZtO1axX0S9iVkzeFZD1v6HwGr-9VputQt7gPrrXcFX8qQbXA7Sj0ofoYFKLXW_6eLbt3Sr6-ABPtjLYm0fo51QVP4xkc54tCWT-gCGJv4-mMxubZop6Kxgn6SIRSVng-XIDdxp9FKJXEAsl5uk8yebGFycFNr1uOc4XagUUO0tgNS8XlSAThoxe1gfPcNIN9S1xpvFwNCD2n9-P0dmtmOgJ6qVZqp4hDKEI8AcsUfuB61Xyf9qwHhVw-OUqC9mtDaK4UUU3wzmWUafnXNktArtFld2itYXedfdc1pogN16935o2avxDEW3RbKHX3TJ82aZcw1OVreAaFgLdDCAhtNDTGhLd31FmqLp7aKF-i5Htw___Ls9vfpdX6M5wdnoSnYzGx3vorlNh1Zzt3Ee9Ml-pF8C_SvGyAT1GF7f9nf0FqLJEhA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamISFuEP8UBhgJdkOtLXESpxcIIUbVMpiq0Um7C3Zst5GqZDQpVR-Bx-GWh-CZOMf5qdDE7nYXyXYS6Xw-Pz4-3yHkVagGOlYmYtr3FaYZFZM68pnkCsyf9njguDu_nESjs-DTeXi-Q363tTB4rbLViU5R6yLFM_IDP_ZCTBkF4sA21yImR8N3F98ZdpDCTGvbTqOGyLHZrCF8K9-Oj0DWr31_-HH6YcSaDgMs5SKs2MDGOpRKceGFKfe4kNIYX-iIi2AQazGwkZRCANClSFOrdKpCa7n1fBlqG-FhKKj_G4KHHu4xcd4Fe8gMV2dafc4gCjxsCnZc2Z5zxBiOYAQWs_W_RvGSp3spS-uM3_AOud14rfR9DbO7ZMfk98j-pKa93vTpdFvFVfbpPp1sCbE398nPU1P-QPLmZbFgWa4BTZp-HZ9OPYplFfWhMM3yeaayqqSzxQZWIlMKsyuwiprKfJYVM9TKWUmx6m1Jl3OzAme7yGB0Wc0dNROF2F7XV9Bo1rX3rWhh6Wg8ZN6fXw_I2bUI6CHZzYvcPCYUjBIgEfxFG8VB6IgALfo_JpbwFJge8VoZJGnDj45tOhZJx-zs5JaA3BInt2TdI2-6NRc1O8iVs_da0SaNpiiTLa575GU3DHscEzcyN8UK5ogBOJ4xhIY98qiGRPc5LtBpDw57pN9iZPvy___Lk6v_5QW5Cbsr-Tw-OX5KbvkOqnjJc4_sVsuVeQaOWKWeO8RT8u26t9hfGkJHVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resveratrol-induced+SIRT1+activation+inhibits+glycolysis-fueled+angiogenesis+under+rheumatoid+arthritis+conditions+independent+of+HIF-1%CE%B1&rft.jtitle=Inflammation+research&rft.au=Jiang%2C+Tian-Tian&rft.au=Ji%2C+Cong-Lan&rft.au=Yu%2C+Li-Jun&rft.au=Song%2C+Meng-Ke&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1023-3830&rft.eissn=1420-908X&rft.volume=72&rft.issue=5&rft.spage=1021&rft.epage=1035&rft_id=info:doi/10.1007%2Fs00011-023-01728-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon |