Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation
Purpose Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisi...
Saved in:
Published in | Cardiovascular engineering and technology Vol. 11; no. 3; pp. 268 - 282 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF.
Methods
The patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Sat
art
), particle washout time (WOT), pressure in the right superior vena cava (
P
RSVC
), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF.
Results
The result showed that APBF led to better iPL and Sat
art
but worse
P
RSVC
and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than
P
RSVC
and has a greater improvement effect in patients with poorer iPL and WOT.
Conclusions
Moderate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent
P
RSVC
and heart load from being too high as well as an imbalance in HFD. |
---|---|
AbstractList | Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF.
The patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Sat
), particle washout time (WOT), pressure in the right superior vena cava (P
), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF.
The result showed that APBF led to better iPL and Sat
but worse P
and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than P
and has a greater improvement effect in patients with poorer iPL and WOT.
Moderate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent P
and heart load from being too high as well as an imbalance in HFD. Purpose Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF. Methods The patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Sat art ), particle washout time (WOT), pressure in the right superior vena cava ( P RSVC ), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF. Results The result showed that APBF led to better iPL and Sat art but worse P RSVC and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than P RSVC and has a greater improvement effect in patients with poorer iPL and WOT. Conclusions Moderate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent P RSVC and heart load from being too high as well as an imbalance in HFD. PURPOSEAdditional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low oxygen saturation are defects of the Fontan and Glenn procedure. Studying the hemodynamic effect of APBF is beneficial for clinical decisions. This study aimed to explore the effect on particle washout, as well as the differences among the sensitivities of both different hemodynamic parameters and different procedures to APBF. METHODSThe patient-specific clinical datasets of a patient who underwent bilateral bidirectional Glenn (BBDG) with APBF were enrolled in this study, and using these datasets, Glenn- and Fontan-type artery models were reconstructed. A series of parameters, including the total caval flow pulsatility index (TCPI), indexed energy loss (iPL), wall shear stress (WSS), systemic arterial oxygen saturation (Satart), particle washout time (WOT), pressure in the right superior vena cava (PRSVC), pulmonary flow distribution (PFD) and hepatic flow distribution (HFD), were computed from computational fluid dynamic (CFD) simulation to evaluate the hemodynamic effect of APBF. RESULTSThe result showed that APBF led to better iPL and Satart but worse PRSVC and heart load accompanied by a great impact on HFD, making hepatic flow easier to perfuse the side without MPA and APBF. The increase in the APBF rate also effectively results in larger flow pulsation, region velocity, and wall shear stress and lower WOT, and this effect may be more effective for patients with persistent left superior vena cava (PLSVC). However, APBF might have little effect on PFD. Furthermore, APBF might affect WOT, iPL and HFD more significantly than PRSVC and has a greater improvement effect in patients with poorer iPL and WOT. CONCLUSIONSModerate APBF is not only a measure to promote pulmonary artery growth and systemic arterial oxygen saturation but also an effective method against endothelial dysfunction and thrombosis. However, moderate APBF is patient-specific and should be determined based on hemodynamic preference that leads to desired patient outcomes, and care should be taken to prevent PRSVC and heart load from being too high as well as an imbalance in HFD. |
Author | Chen, Xiangyu Zhang, Neichuan Huang, Meiping Liu, Jiawei Zhuang, Jian Yuan, Haiyun Jian, Qifei Zhou, Chengbin |
Author_xml | – sequence: 1 givenname: Xiangyu orcidid: 0000-0002-3621-0830 surname: Chen fullname: Chen, Xiangyu organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 2 givenname: Haiyun surname: Yuan fullname: Yuan, Haiyun organization: Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences – sequence: 3 givenname: Jiawei surname: Liu fullname: Liu, Jiawei organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 4 givenname: Neichuan surname: Zhang fullname: Zhang, Neichuan organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 5 givenname: Chengbin surname: Zhou fullname: Zhou, Chengbin organization: Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences – sequence: 6 givenname: Meiping surname: Huang fullname: Huang, Meiping organization: Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Catheterization Lab, Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences – sequence: 7 givenname: Qifei surname: Jian fullname: Jian, Qifei email: tcjqf@scut.edu.cn organization: School of Mechanical and Automotive Engineering, South China University of Technology – sequence: 8 givenname: Jian surname: Zhuang fullname: Zhuang, Jian email: zhuangjian5413@163.com organization: Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32072439$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLAzEUhYNUbK39Ay4k4MbNaB7zyrKWPoSCLlTchUySkSmZpE5msP33prZWcGE2udx859zccw561lkNwCVGtxih7M5jSiiLEEERQnHCos0JGOA8ZVGMWN471vlbH4y8X6FwKGEoJmegTwnKSEzZALwudO3U1oq6knBallq2HroSjpWq2spZYeBTZ-pQNFt4b5xTcGbcJ3QWzo22FgobOs62wsJJ1cjOiJ3sApyWwng9OtxD8DKbPk8W0fJx_jAZLyNJs6SNmEpkqtIU4zwvSFzoUCIsNcNSlCjLkyxhRUYVKkVoKipyppTKYoGVKJTO6RDc7H3XjfvotG95XXmpjRFWu85zQpNgkrIsDuj1H3TluiYsGKgY0fAFQnaGZE_Jxnnf6JKvm6oOy3OM-C54vg-eh-D5d_B8E0RXB-uuqLU6Sn5iDgDdAz482Xfd_M7-x_YLIOeP4A |
CitedBy_id | crossref_primary_10_1016_j_bspc_2021_103008 |
Cites_doi | 10.1002/cnm.2517 10.1007/s10439-009-9760-8 10.1016/j.athoracsur.2004.06.002 10.1093/ejcts/ezs053 10.1007/s00246-014-1055-7 10.1093/ejcts/ezt066 10.1111/jocs.12154 10.1002/fld.4192 10.1006/jsre.1999.5799 10.1115/1.4029429 10.1115/1.2796039 10.1161/01.atv.17.4.646 10.1161/01.atv.13.12.1806 10.1161/01.CIR.103.17.2176 10.1038/ncpcardio0157 10.1016/j.jtcvs.2014.08.069 10.5152/akd.2012.126 10.1016/j.athoracsur.2005.03.090 10.1111/chd.12685 10.1007/s00246-006-1242-2 10.1007/s13239-018-0341-6 10.1002/cnm.1485 10.1016/j.jtcvs.2008.05.017 10.1504/IJBET.2012.050291 10.1007/s00392-007-0470-z 10.1016/j.jbiomech.2018.10.013 10.1016/j.jtcvs.2012.11.031 10.1016/j.jcmg.2013.12.010 10.1111/aor.12591 10.1016/j.athoracsur.2012.02.053 10.1016/j.compfluid.2016.10.032 10.1136/heartjnl-2014-306337 10.1007/s10439-017-1943-0 10.1016/j.thromres.2009.02.011 10.1093/icvts/ivw429 10.1016/j.athoracsur.2007.08.062 10.1016/j.cma.2016.01.007 10.1093/ejcts/ezu170 10.1016/j.athorascur.2004.02.003 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2020 Biomedical Engineering Society 2020. |
Copyright_xml | – notice: Biomedical Engineering Society 2020 – notice: Biomedical Engineering Society 2020. |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1007/s13239-020-00459-x |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology |
EISSN | 1869-4098 |
EndPage | 282 |
ExternalDocumentID | 10_1007_s13239_020_00459_x 32072439 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the key Program of Union of National Natural Science Foundation of China-Guangdong Province grantid: U1401255 – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030313785 funderid: http://dx.doi.org/10.13039/501100003453 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2019B020230003; 2018B090944002; 2017A070701013; 2017B090904034; 2017B030314109 funderid: http://dx.doi.org/10.13039/501100012245 – fundername: Key Technologies Research and Development Program grantid: 2018YFC1002600 funderid: http://dx.doi.org/10.13039/501100012165 – fundername: Guangdong peak project grantid: DFJH201802 – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030313785 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2017B030314109 – fundername: Key Technologies Research and Development Program grantid: 2018YFC1002600 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2017A070701013 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2017B090904034 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2019B020230003 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2018B090944002 |
GroupedDBID | --- -EM 06C 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 53G 67N 8TC 96X AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA CAG COF CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD EN4 F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HF~ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J PT4 QOS R89 R9I RLLFE ROL RSV S27 S3A S3B SBL SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z45 ZMTXR ~A9 AACDK AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU H13 HG6 NPM SJYHP AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c375t-9d5c6d661188b24be66101ce91caf0785759b73d0face9d3a89ddd74a1dabde83 |
IEDL.DBID | U2A |
ISSN | 1869-408X |
IngestDate | Sat Oct 26 00:01:59 EDT 2024 Wed Nov 06 08:31:19 EST 2024 Thu Sep 12 17:54:10 EDT 2024 Wed Oct 16 00:45:46 EDT 2024 Sat Dec 16 12:04:30 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Additional pulmonary blood flow Energy loss Hemodynamics Particle wash-out time Glenn procedure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-9d5c6d661188b24be66101ce91caf0785759b73d0face9d3a89ddd74a1dabde83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3621-0830 |
PMID | 32072439 |
PQID | 2403118228 |
PQPubID | 2043948 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2358576974 proquest_journals_2403118228 crossref_primary_10_1007_s13239_020_00459_x pubmed_primary_32072439 springer_journals_10_1007_s13239_020_00459_x |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationTitle | Cardiovascular engineering and technology |
PublicationTitleAbbrev | Cardiovasc Eng Tech |
PublicationTitleAlternate | Cardiovasc Eng Technol |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Beng, Restrepo, Haggerty, Mirabella, Bethel, Whitehead (CR2) 2014; 7 Ephrem, Hebson, John, Moore, Jokhadar, Ford (CR10) 2019; 14 Bertagna, Quaini, Veneziani (CR4) 2015; 81 Kogon, Plattner, Leong, Simsic, Kirshbom, Kanter (CR24) 2008; 136 Estafanous, Barash, Reves (CR12) 2001 Khiabani, Whitehead, Han, Restrepo, Tang, Bethel (CR20) 2015; 101 Delorme, Rodefeld, Frankel (CR8) 2017; 143 Di Molfetta, Amodeo, Gagliardi, Trivella, Fresiello, Filippelli (CR9) 2016; 40 Quarteroni, Veneziani, Vergara (CR32) 2016; 302 Zhan, Fan, Deng (CR42) 2010; 125 Kim, Vignon-Clementel, Figueroa, LaDisa, Jansen, Feinstein (CR21) 2009; 37 Berdat, Belli, Lacour-Gayet, Planche, Serraf (CR3) 2005; 79 de Leval (CR7) 2005; 2 Migliavacca, de Leval, Dubini, Pietrabissa (CR27) 1996; 118 Gerelli, Boulitrop, Van Steenberghe, Maldonado, Bojan, Raisky (CR14) 2012; 42 Tang, Wei, Trusty, Whitehead, Mirabella, Veneziani (CR35) 2019; 82 Hjortdal, Christensen, Larsen, Emmertsen, Pedersen (CR17) 2008; 85 Si, Qiao, Yang, Zhu, Zhao, Wang (CR34) 2018; 9 Long, Hsu, Bazilevs, Feinstein, Marsden (CR25) 2012; 28 Ghoreyshi, Saidi, Navabi, Firoozabadi, Shabanian (CR15) 2012; 10 Mainwaring, Lamberti, Uzark, Spicer, Cocalis, Moore (CR26) 1999; 100 Yang, Chan, Reddy, Marsden, Feinstein (CR40) 2015; 149 Garg, Talwar, Kothari, Rajashekar, Saxena, Airan (CR13) 2013; 28 Voges, Jerosch-Herold, Hart, Scheewe, Gabbert, Pardun (CR39) 2013; 44 Tanoue, Sese, Ueno, Joh, Hijii (CR36) 2001; 103 Alastruey, Parker, Peiró, Sherwin (CR1) 2008; 4 Klimes, Abdul-Khaliq, Ovroutski, Hui, Alexi-Meskishvili, Spors (CR22) 2007; 96 Nichay, Gorbatykh, Kornilov, Soynov, Ivantsov, Gorbatykh (CR29) 2017; 24 Mirabella, Haggerty, Passerini, Piccinelli, Powell, Nido (CR28) 2012; 29 Henaine, Vergnat, Bacha, Baudet, Lambert, Belli (CR16) 2013; 146 Schoephoerster, Oynes, Nunez, Kapadvanjwala, Dewanjee (CR33) 1993; 13 Celestin, Guillot, Ross-Ascuitto, Ascuitto (CR5) 2015; 36 Chen, Tulloh, Caputo, Stoica, Kia, Parry (CR6) 2015; 47 Esmaily-Moghadam, Murtuza, Hsia, Marsden (CR11) 2015 Pennati, Migliavacca, Dubini, Pietrabissa, Fumero, de Leval (CR30) 2000; 89 Tree, Wei, Trusty, Raghav, Fogel, Maher (CR37) 2018; 46 van Slooten, Elzenga, Waterbolk, van Melle, Berger, Ebels (CR38) 2012; 93 Holme, Orvim, Hamers, Solum, Brosstad, Barstad (CR18) 1997; 17 Imoto, Sese, Joh (CR19) 2006; 27 Kocyildirim, Dur, Soran, Tuzun, Miller, Housler (CR23) 2012; 12 Pike, Vricella, Feinstein, Black, Reitz (CR31) 2004; 78 Yoshida, Yamaguchi, Yoshimura, Murakami, Matsuhisa, Okita (CR41) 2005; 80 R Henaine (459_CR16) 2013; 146 E Kocyildirim (459_CR23) 2012; 12 PA Holme (459_CR18) 1997; 17 RD Mainwaring (459_CR26) 1999; 100 P Garg (459_CR13) 2013; 28 YJ van Slooten (459_CR38) 2012; 93 NR Nichay (459_CR29) 2017; 24 FG Estafanous (459_CR12) 2001 S Gerelli (459_CR14) 2012; 42 ET Beng (459_CR2) 2014; 7 G Ephrem (459_CR10) 2019; 14 F Migliavacca (459_CR27) 1996; 118 NA Pike (459_CR31) 2004; 78 Y Imoto (459_CR19) 2006; 27 RT Schoephoerster (459_CR33) 1993; 13 E Tang (459_CR35) 2019; 82 K Klimes (459_CR22) 2007; 96 L Bertagna (459_CR4) 2015; 81 Q Chen (459_CR6) 2015; 47 I Voges (459_CR39) 2013; 44 WG Yang (459_CR40) 2015; 149 J Alastruey (459_CR1) 2008; 4 A Di Molfetta (459_CR9) 2016; 40 M Ghoreyshi (459_CR15) 2012; 10 G Pennati (459_CR30) 2000; 89 PA Berdat (459_CR3) 2005; 79 C Celestin (459_CR5) 2015; 36 B Si (459_CR34) 2018; 9 BE Kogon (459_CR24) 2008; 136 VE Hjortdal (459_CR17) 2008; 85 H Kim (459_CR21) 2009; 37 L Mirabella (459_CR28) 2012; 29 M Tree (459_CR37) 2018; 46 Y Tanoue (459_CR36) 2001; 103 RH Khiabani (459_CR20) 2015; 101 MR de Leval (459_CR7) 2005; 2 YT Delorme (459_CR8) 2017; 143 M Esmaily-Moghadam (459_CR11) 2015 CC Long (459_CR25) 2012; 28 F Zhan (459_CR42) 2010; 125 A Quarteroni (459_CR32) 2016; 302 M Yoshida (459_CR41) 2005; 80 |
References_xml | – volume: 29 start-page: 197 issue: 2 year: 2012 end-page: 216 ident: CR28 article-title: Treatment planning for a TCPC test case: a numerical investigation under rigid and moving wall assumptions publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2517 contributor: fullname: Nido – volume: 37 start-page: 2153 issue: 11 year: 2009 end-page: 2169 ident: CR21 article-title: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9760-8 contributor: fullname: Feinstein – volume: 79 start-page: 29 issue: 1 year: 2005 end-page: 37 ident: CR3 article-title: Additional pulmonary blood flow has no adverse effect on outcome after bidirectional cavopulmonary anastomosis publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2004.06.002 contributor: fullname: Serraf – volume: 42 start-page: 513 issue: 3 year: 2012 end-page: 519 ident: CR14 article-title: Bidirectional cavopulmonary shunt with additional pulmonary blood flow: a failed or successful strategy? publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezs053 contributor: fullname: Raisky – volume: 36 start-page: 600 issue: 3 year: 2015 end-page: 615 ident: CR5 article-title: Computational fluid dynamics characterization of blood flow in central aorta to pulmonary artery connections: importance of shunt angulation as a determinant of shear stress-induced thrombosis publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-014-1055-7 contributor: fullname: Ascuitto – volume: 44 start-page: 462 issue: 3 year: 2013 end-page: 467 ident: CR39 article-title: Anatomical and functional assessment of the intra-atrial lateral tunnel in the Fontan circulation(dagger) publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezt066 contributor: fullname: Pardun – volume: 28 start-page: 599 issue: 5 year: 2013 end-page: 603 ident: CR13 article-title: Role of systemic to pulmonary artery shunt after cavopulmonary anastomosis publication-title: J. Cardiac Surg. doi: 10.1111/jocs.12154 contributor: fullname: Airan – volume: 100 start-page: 151 issue: 19 year: 1999 end-page: 156 ident: CR26 article-title: Effect of accessory pulmonary blood flow on survival after the bidirectional Glenn procedure publication-title: Circulation contributor: fullname: Moore – volume: 81 start-page: 463 issue: 8 year: 2015 end-page: 488 ident: CR4 article-title: Deconvolution-based nonlinear filtering for incompressible flows at moderately large Reynolds numbers publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4192 contributor: fullname: Veneziani – volume: 89 start-page: 43 issue: 1 year: 2000 end-page: 52 ident: CR30 article-title: Use of mathematical model to predict hemodynamics in cavopulmonary anastomosis with persistent forward flow publication-title: J. Surg. Res. doi: 10.1006/jsre.1999.5799 contributor: fullname: de Leval – year: 2015 ident: CR11 article-title: Simulations reveal adverse hemodynamics in patients with multiple systemic to pulmonary shunts publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.4029429 contributor: fullname: Marsden – volume: 118 start-page: 520 issue: 4 year: 1996 end-page: 528 ident: CR27 article-title: A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow publication-title: J. Biomech. Eng. doi: 10.1115/1.2796039 contributor: fullname: Pietrabissa – volume: 17 start-page: 646 issue: 4 year: 1997 end-page: 653 ident: CR18 article-title: Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.atv.17.4.646 contributor: fullname: Barstad – volume: 4 start-page: 317 issue: 2 year: 2008 end-page: 336 ident: CR1 article-title: Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation publication-title: Comput. Phys. Commun. contributor: fullname: Sherwin – volume: 13 start-page: 1806 issue: 12 year: 1993 end-page: 1813 ident: CR33 article-title: Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces publication-title: Arterioscler. Thromb. doi: 10.1161/01.atv.13.12.1806 contributor: fullname: Dewanjee – volume: 103 start-page: 2176 issue: 17 year: 2001 end-page: 2180 ident: CR36 article-title: Bidirectional Glenn procedure improves the mechanical efficiency of a total cavopulmonary connection in high-risk Fontan candidates publication-title: Circulation doi: 10.1161/01.CIR.103.17.2176 contributor: fullname: Hijii – volume: 2 start-page: 202 issue: 4 year: 2005 end-page: 208 ident: CR7 article-title: The Fontan circulation: a challenge to William Harvey? publication-title: Nat. Clin. Pract. Cardiovasc. Med. doi: 10.1038/ncpcardio0157 contributor: fullname: de Leval – volume: 149 start-page: 247 issue: 1 year: 2015 end-page: 255 ident: CR40 article-title: Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2014.08.069 contributor: fullname: Feinstein – volume: 12 start-page: 420 issue: 5 year: 2012 end-page: 426 ident: CR23 article-title: Pulsatile venous waveform quality in Fontan circulation-clinical implications, venous assists options and the future publication-title: Anadolu Kardiyoloji Dergisi doi: 10.5152/akd.2012.126 contributor: fullname: Housler – volume: 80 start-page: 976 issue: 3 year: 2005 end-page: 981 ident: CR41 article-title: Appropriate additional pulmonary blood flow at the bidirectional Glenn procedure is useful for completion of total cavopulmonary connection publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2005.03.090 contributor: fullname: Okita – year: 2001 ident: CR12 publication-title: Cardiac Anesthesia: Principles and Clinical Practice contributor: fullname: Reves – volume: 14 start-page: 128 issue: 2 year: 2019 end-page: 137 ident: CR10 article-title: Frontiers in Fontan failure: innovation and improving outcomes: a conference summary publication-title: Congenit. Heart Dis. doi: 10.1111/chd.12685 contributor: fullname: Ford – volume: 27 start-page: 490 issue: 4 year: 2006 end-page: 492 ident: CR19 article-title: Redirection of the hepatic venous flow for the treatment of pulmonary arteriovenous malformations after fontan operation publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-006-1242-2 contributor: fullname: Joh – volume: 9 start-page: 193 issue: 2 year: 2018 end-page: 201 ident: CR34 article-title: Numerical investigation of the effect of additional pulmonary blood flow on patient-specific bilateral bidirectional Glenn hemodynamics publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-018-0341-6 contributor: fullname: Wang – volume: 28 start-page: 513 issue: 5 year: 2012 end-page: 527 ident: CR25 article-title: Fluid-structure interaction simulations of the Fontan procedure using variable wall properties publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1485 contributor: fullname: Marsden – volume: 136 start-page: 1237 issue: 5 year: 2008 end-page: 1242 ident: CR24 article-title: The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2008.05.017 contributor: fullname: Kanter – volume: 10 start-page: 221 issue: 3 year: 2012 end-page: 238 ident: CR15 article-title: Numerical investigation of Antegrade Flow effects on flow pulsations in Fontan operation publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2012.050291 contributor: fullname: Shabanian – volume: 96 start-page: 160 issue: 3 year: 2007 end-page: 167 ident: CR22 article-title: Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study publication-title: Clin. Res. Cardiol. doi: 10.1007/s00392-007-0470-z contributor: fullname: Spors – volume: 82 start-page: 87 year: 2019 end-page: 95 ident: CR35 article-title: The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.10.013 contributor: fullname: Veneziani – volume: 146 start-page: 522 issue: 3 year: 2013 end-page: 529 ident: CR16 article-title: Effects of lack of pulsatility on pulmonary endothelial function in the Fontan circulation publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2012.11.031 contributor: fullname: Belli – volume: 7 start-page: 215 issue: 3 year: 2014 end-page: 224 ident: CR2 article-title: Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics publication-title: Jacc-Cardiovasc. Imaging doi: 10.1016/j.jcmg.2013.12.010 contributor: fullname: Whitehead – volume: 40 start-page: 34 issue: 1 year: 2016 end-page: 42 ident: CR9 article-title: Hemodynamic effects of ventricular assist device implantation on Norwood, Glenn, and Fontan circulation: a simulation study publication-title: Artif. Organs doi: 10.1111/aor.12591 contributor: fullname: Filippelli – volume: 93 start-page: 2028 issue: 6 year: 2012 end-page: 2034 ident: CR38 article-title: The effect of additional pulmonary blood flow on timing of the total cavopulmonary connection publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2012.02.053 contributor: fullname: Ebels – volume: 143 start-page: 16 year: 2017 end-page: 31 ident: CR8 article-title: Multiblock high order large Eddy simulation of powered Fontan hemodynamics: towards computational surgery publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.10.032 contributor: fullname: Frankel – volume: 101 start-page: 139 issue: 2 year: 2015 end-page: 143 ident: CR20 article-title: Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC publication-title: Heart doi: 10.1136/heartjnl-2014-306337 contributor: fullname: Bethel – volume: 46 start-page: 135 issue: 1 year: 2018 end-page: 147 ident: CR37 article-title: Using a novel in vitro fontan model and condition-specific real-time MRI data to examine hemodynamic effects of respiration and exercise publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-017-1943-0 contributor: fullname: Maher – volume: 125 start-page: 413 issue: 5 year: 2010 end-page: 418 ident: CR42 article-title: Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts publication-title: Thromb. Res. doi: 10.1016/j.thromres.2009.02.011 contributor: fullname: Deng – volume: 24 start-page: 582 issue: 4 year: 2017 end-page: 589 ident: CR29 article-title: Bidirectional cavopulmonary anastomosis with additional pulmonary blood flow: good or bad pre-Fontan strategy publication-title: Interact. Cardiovasc. Thorac. Surg. doi: 10.1093/icvts/ivw429 contributor: fullname: Gorbatykh – volume: 85 start-page: 599 issue: 2 year: 2008 end-page: 603 ident: CR17 article-title: Caval blood flow during supine exercise in normal and Fontan patients publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2007.08.062 contributor: fullname: Pedersen – volume: 302 start-page: 193 year: 2016 end-page: 252 ident: CR32 article-title: Geometric multiscale modeling of the cardiovascular system, between theory and practice publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.01.007 contributor: fullname: Vergara – volume: 47 start-page: 154 issue: 1 year: 2015 end-page: 158 ident: CR6 article-title: Does the persistence of pulsatile antegrade pulmonary blood flow following bidirectional Glenn procedure affect long term outcome? publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezu170 contributor: fullname: Parry – volume: 78 start-page: 697 issue: 2 year: 2004 end-page: 699 ident: CR31 article-title: Regression of severe pulmonary arteriovenous malformations after Fontan revision and “Hepatic factor” rerouting publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athorascur.2004.02.003 contributor: fullname: Reitz – volume: 36 start-page: 600 issue: 3 year: 2015 ident: 459_CR5 publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-014-1055-7 contributor: fullname: C Celestin – volume: 37 start-page: 2153 issue: 11 year: 2009 ident: 459_CR21 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9760-8 contributor: fullname: H Kim – volume: 24 start-page: 582 issue: 4 year: 2017 ident: 459_CR29 publication-title: Interact. Cardiovasc. Thorac. Surg. doi: 10.1093/icvts/ivw429 contributor: fullname: NR Nichay – volume: 42 start-page: 513 issue: 3 year: 2012 ident: 459_CR14 publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezs053 contributor: fullname: S Gerelli – volume: 78 start-page: 697 issue: 2 year: 2004 ident: 459_CR31 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athorascur.2004.02.003 contributor: fullname: NA Pike – volume: 9 start-page: 193 issue: 2 year: 2018 ident: 459_CR34 publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-018-0341-6 contributor: fullname: B Si – volume: 79 start-page: 29 issue: 1 year: 2005 ident: 459_CR3 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2004.06.002 contributor: fullname: PA Berdat – volume: 146 start-page: 522 issue: 3 year: 2013 ident: 459_CR16 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2012.11.031 contributor: fullname: R Henaine – volume: 17 start-page: 646 issue: 4 year: 1997 ident: 459_CR18 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.atv.17.4.646 contributor: fullname: PA Holme – volume: 101 start-page: 139 issue: 2 year: 2015 ident: 459_CR20 publication-title: Heart doi: 10.1136/heartjnl-2014-306337 contributor: fullname: RH Khiabani – volume: 100 start-page: 151 issue: 19 year: 1999 ident: 459_CR26 publication-title: Circulation contributor: fullname: RD Mainwaring – volume: 2 start-page: 202 issue: 4 year: 2005 ident: 459_CR7 publication-title: Nat. Clin. Pract. Cardiovasc. Med. doi: 10.1038/ncpcardio0157 contributor: fullname: MR de Leval – volume: 96 start-page: 160 issue: 3 year: 2007 ident: 459_CR22 publication-title: Clin. Res. Cardiol. doi: 10.1007/s00392-007-0470-z contributor: fullname: K Klimes – volume: 29 start-page: 197 issue: 2 year: 2012 ident: 459_CR28 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2517 contributor: fullname: L Mirabella – volume-title: Cardiac Anesthesia: Principles and Clinical Practice year: 2001 ident: 459_CR12 contributor: fullname: FG Estafanous – volume: 46 start-page: 135 issue: 1 year: 2018 ident: 459_CR37 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-017-1943-0 contributor: fullname: M Tree – volume: 4 start-page: 317 issue: 2 year: 2008 ident: 459_CR1 publication-title: Comput. Phys. Commun. contributor: fullname: J Alastruey – volume: 13 start-page: 1806 issue: 12 year: 1993 ident: 459_CR33 publication-title: Arterioscler. Thromb. doi: 10.1161/01.atv.13.12.1806 contributor: fullname: RT Schoephoerster – volume: 149 start-page: 247 issue: 1 year: 2015 ident: 459_CR40 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2014.08.069 contributor: fullname: WG Yang – volume: 81 start-page: 463 issue: 8 year: 2015 ident: 459_CR4 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4192 contributor: fullname: L Bertagna – volume: 10 start-page: 221 issue: 3 year: 2012 ident: 459_CR15 publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2012.050291 contributor: fullname: M Ghoreyshi – volume: 118 start-page: 520 issue: 4 year: 1996 ident: 459_CR27 publication-title: J. Biomech. Eng. doi: 10.1115/1.2796039 contributor: fullname: F Migliavacca – volume: 103 start-page: 2176 issue: 17 year: 2001 ident: 459_CR36 publication-title: Circulation doi: 10.1161/01.CIR.103.17.2176 contributor: fullname: Y Tanoue – volume: 80 start-page: 976 issue: 3 year: 2005 ident: 459_CR41 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2005.03.090 contributor: fullname: M Yoshida – volume: 40 start-page: 34 issue: 1 year: 2016 ident: 459_CR9 publication-title: Artif. Organs doi: 10.1111/aor.12591 contributor: fullname: A Di Molfetta – volume: 7 start-page: 215 issue: 3 year: 2014 ident: 459_CR2 publication-title: Jacc-Cardiovasc. Imaging doi: 10.1016/j.jcmg.2013.12.010 contributor: fullname: ET Beng – year: 2015 ident: 459_CR11 publication-title: J. Biomech. Eng. Trans. ASME doi: 10.1115/1.4029429 contributor: fullname: M Esmaily-Moghadam – volume: 44 start-page: 462 issue: 3 year: 2013 ident: 459_CR39 publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezt066 contributor: fullname: I Voges – volume: 28 start-page: 513 issue: 5 year: 2012 ident: 459_CR25 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1485 contributor: fullname: CC Long – volume: 302 start-page: 193 year: 2016 ident: 459_CR32 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.01.007 contributor: fullname: A Quarteroni – volume: 125 start-page: 413 issue: 5 year: 2010 ident: 459_CR42 publication-title: Thromb. Res. doi: 10.1016/j.thromres.2009.02.011 contributor: fullname: F Zhan – volume: 136 start-page: 1237 issue: 5 year: 2008 ident: 459_CR24 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2008.05.017 contributor: fullname: BE Kogon – volume: 85 start-page: 599 issue: 2 year: 2008 ident: 459_CR17 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2007.08.062 contributor: fullname: VE Hjortdal – volume: 93 start-page: 2028 issue: 6 year: 2012 ident: 459_CR38 publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2012.02.053 contributor: fullname: YJ van Slooten – volume: 12 start-page: 420 issue: 5 year: 2012 ident: 459_CR23 publication-title: Anadolu Kardiyoloji Dergisi doi: 10.5152/akd.2012.126 contributor: fullname: E Kocyildirim – volume: 27 start-page: 490 issue: 4 year: 2006 ident: 459_CR19 publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-006-1242-2 contributor: fullname: Y Imoto – volume: 28 start-page: 599 issue: 5 year: 2013 ident: 459_CR13 publication-title: J. Cardiac Surg. doi: 10.1111/jocs.12154 contributor: fullname: P Garg – volume: 143 start-page: 16 year: 2017 ident: 459_CR8 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.10.032 contributor: fullname: YT Delorme – volume: 14 start-page: 128 issue: 2 year: 2019 ident: 459_CR10 publication-title: Congenit. Heart Dis. doi: 10.1111/chd.12685 contributor: fullname: G Ephrem – volume: 82 start-page: 87 year: 2019 ident: 459_CR35 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.10.013 contributor: fullname: E Tang – volume: 47 start-page: 154 issue: 1 year: 2015 ident: 459_CR6 publication-title: Eur. J. Cardiothorac. Surg. doi: 10.1093/ejcts/ezu170 contributor: fullname: Q Chen – volume: 89 start-page: 43 issue: 1 year: 2000 ident: 459_CR30 publication-title: J. Surg. Res. doi: 10.1006/jsre.1999.5799 contributor: fullname: G Pennati |
SSID | ssj0000329042 |
Score | 2.2273507 |
Snippet | Purpose
Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and... Additional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and low... PurposeAdditional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and... PURPOSEAdditional pulmonary blood flow (APBF) can provide better pulsating blood flow and systemic arterial oxygen saturation, while low blood pulsation and... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 268 |
SubjectTerms | Biomedical Engineering and Bioengineering Biomedicine Blood circulation Blood flow Cardiology Computational fluid dynamics Computer simulation Datasets Energy dissipation Engineering Flow distribution Hemodynamics Mathematical models Original Article Oxygen Oxygen content Parameter sensitivity Pulmonary arteries Pulsation Shear stress Thrombosis Wall shear stresses |
Title | Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation |
URI | https://link.springer.com/article/10.1007/s13239-020-00459-x https://www.ncbi.nlm.nih.gov/pubmed/32072439 https://www.proquest.com/docview/2403118228 https://search.proquest.com/docview/2358576974 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9C2wUOE6zAso3JSBMXsJTYSWMfw9SuAjFxoKicIn_E0qTWmfohtv-eZydtQYMDt8ixnOi9l7zf-wa45JxnudOMOislzUvtqHSuoCpEH3NWOhPDBV9uhpNp_mlWzPZ13DHZfRuRjD_qfa0bZ1zSYO0EGCIpAsfDIrRDQyGesmrnWEk5k2kcmhOmLaF9JGZ9sczfj_lTIT1CmY8ipFHxjJ_DUY8YSdWx-AU8afwxDCqP1vLigbwjMYczOseP4dlv7QUH8H3SLFrbjZwnXZviFWkdqay97VyA5OtmjnKolg_kY8hgJ-N5-5O0nlyjMvJEeVxpPeJHcnW7NP2kr5cwHY--XU1oP0eBGl4WayptYYYWFXEmhGa5bvAyzUwjM6McQoQwo1OX3KZO4aLlSkhrbZmrzCptG8FfwYFvfXMCRDDtrGXSuELnWcpVpoURhZHI1iKzLoH3W2LWd127jHrfGDmQvkbS15H09X0C51t61_2ns6pDg8Bg9TCRwNvdbRT6EMlQvmk3uIejlVMO0RZK4HXHp93jOEtLhjArgQ9bxu0P__e7nP7f9jN4yqIQBX_MORysl5vmDcKTtb6Aw-r6x-fRRRTLX0MO3M8 |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5V5VA4INoCDfRhpIoLWErsZGMfl4rttrRVD120t8iPWKrUOmgfgv57xk6yCyoceoscy4lmJplvZuxvAI4551nuNKPOSknzUjsqnSuoCtXHnJXOxHLB5dVgPMnPp8W0OxQ273e79yXJ-KdeH3bjjEsawp2AQyRF5Pgs8KsHxvwJG64yKylnMo1dc0K7JQyQxLQ7LfPvZf72SI9g5qMSafQ8o1fwsoOMZNjqeBs2ar8Du0OP4fL9A_lI4ibOmB3fgRd_8Avuwvdxfd_Ytuc8aXmK56RxZGjtbZsDJNfLOzRENXsgX8IWdjK6a36SxpNT9EaeKI8jjUcASU5uZ6Zr9fUaJqOvNydj2jVSoIaXxYJKW5iBRU-cCaFZrmu8TDNTy8wohxghNOnUJbepUzhouRLSWlvmKrNK21rwN7DpG1_vARFMO2uZNK7QeZZylWlhRGEk6rXIrEvgUy_M6kfLl1GtmZGD6CsUfRVFX_1KYL-Xd9V9O_MqMASGsIeJBD6sbqPVh1KG8nWzxDkcw5xygMFQAm9bPa0ex1laMsRZCXzuFbde_P_v8u5p049ga3xzeVFdnF19ew_PWTSokJzZh83FbFkfIFZZ6MNomr8BG3relg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxQxFH8xS2L0IAiKo6g1MV60MNPO7LTHBV1WUcJBzHqa9GOaEKFDltkg_PW8zgeLogfjbdJpOtO-17zv3wN4zTlPUqcZdVZKmubaUelcRlWIPqYsd6YJF3zZH04O00_TbHqjir_Jdu9Dkm1NQ0Bp8vXWqXVbi8I3zrikwfQJOomkqEUupQEZaQBLo93vews_S8yZjJseOqH5EppLYtrVzvx5oV_l0y2l81bAtJFD42VQ_Q7a9JMfm_Nab5rL38Ad_2eLK_CgU1LJqOWqh3Cn9KuwNvJooJ9ckDekSRtt_PGrcP8GouEafJuUJ5Vtu9yTFhn5jFSOjKw9ar2O5GB-jKyvZhdkOyTNk_FxdU4qT3ZR_nmiPI7gjypPdo5mpmsu9ggOxx--7kxo17qBGp5nNZU2M0OLsj8RQrNUl_gYJ6aUiVEOtZLQFlTn3MZO4aDlSkhrbZ6qxCptS8Efw8BXvnwCRDDtrGXSuEwjiblKtDAiMxI5KUusi-BtT7DitEXoKBZYzOEQCzzEojnE4mcEGz1Ni-62nhUBkzAYWkxE8Or6Nd6zEDxRvqzmOIejYZUP0fyKYL3lhevPcRbnDDW7CN71dF0s_vd_efpv01_C3YP34-Lzx_29Z3CPNZwRvEEbMKhn8_I5Kke1ftHx_xXwYAS_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hemodynamic+Effects+of+Additional+Pulmonary+Blood+Flow+on+Glenn+and+Fontan+Circulation&rft.jtitle=Cardiovascular+engineering+and+technology&rft.au=Chen%2C+Xiangyu&rft.au=Yuan%2C+Haiyun&rft.au=Liu%2C+Jiawei&rft.au=Zhang%2C+Neichuan&rft.date=2020-06-01&rft.eissn=1869-4098&rft.volume=11&rft.issue=3&rft.spage=268&rft_id=info:doi/10.1007%2Fs13239-020-00459-x&rft_id=info%3Apmid%2F32072439&rft.externalDocID=32072439 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-408X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-408X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-408X&client=summon |