A new preprocessing approach to improve the performance of CNN-based skin lesion classification

Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reas...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 59; no. 5; pp. 1123 - 1131
Main Authors Zanddizari, Hadi, Nguyen, Nam, Zeinali, Behnam, Chang, J. Morris
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well.
AbstractList Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well.Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well.
Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well.
Author Zeinali, Behnam
Zanddizari, Hadi
Nguyen, Nam
Chang, J. Morris
Author_xml – sequence: 1
  givenname: Hadi
  orcidid: 0000-0002-2465-9374
  surname: Zanddizari
  fullname: Zanddizari, Hadi
  email: hadiz@usf.edu
  organization: Department of Electrical Engineering, University of South Florida
– sequence: 2
  givenname: Nam
  surname: Nguyen
  fullname: Nguyen, Nam
  organization: Department of Electrical Engineering, University of South Florida
– sequence: 3
  givenname: Behnam
  surname: Zeinali
  fullname: Zeinali, Behnam
  organization: Department of Electrical Engineering, University of South Florida
– sequence: 4
  givenname: J. Morris
  surname: Chang
  fullname: Chang, J. Morris
  organization: Department of Electrical Engineering, University of South Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33904008$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHTEUhkOx1Kv2D3RRAt10MzYfk49ZysV-gNhNXYdMcqKxM8k0mdviv2_02gouJITkhec95-WcI3SQcgKE3lFySglRnyqlgqqOMNouF6ITr9CGqr7Jvu8P0IbQnnSEUn2Ijmq9JY0UrH-DDjkfSE-I3iBzhhP8wUuBpWQHtcZ0je3ShHU3eM04zu3_G_B6A3iBEnKZbXKAc8Dby8tutBU8rj9jwhPUmBN2k21VQnR2bfIEvQ52qvD28T1GV5_Pf2y_dhffv3zbnl10jiuxdoO2UnLpvbeMaeZHZnslxiE0qbiQgQjJrGfOyTGM0lOuR6sBRh-U9Hbgx-jjvm5L-2sHdTVzrA6mySbIu2qYoHrQWlLV0A_P0Nu8K6mla1Q7vaLsnnr_SO3GGbxZSpxtuTP_RtcAtgdcybUWCP8RSsz9fsx-P6ZN3Tzsx4hm0s9MLq4Pg1qLjdPLVr631tYnXUN5iv2C6y_mW6Qh
CitedBy_id crossref_primary_10_1371_journal_pone_0298305
crossref_primary_10_1002_ima_22890
crossref_primary_10_1109_TNSE_2022_3185327
crossref_primary_10_1007_s11517_022_02673_2
crossref_primary_10_1155_2021_9619079
crossref_primary_10_1007_s11042_024_18973_8
crossref_primary_10_3390_diagnostics13071285
crossref_primary_10_1016_j_eswa_2023_122209
crossref_primary_10_3390_s22114147
crossref_primary_10_3390_app12052677
crossref_primary_10_1007_s11042_022_14181_4
crossref_primary_10_1109_TETCI_2024_3485677
crossref_primary_10_1080_21681163_2023_2219755
crossref_primary_10_1109_TETCI_2021_3122467
crossref_primary_10_3390_app131810536
crossref_primary_10_1016_j_cmpb_2022_106666
crossref_primary_10_1016_j_compeleceng_2022_108318
crossref_primary_10_2196_33006
crossref_primary_10_3390_a16100466
crossref_primary_10_3390_technologies12100183
crossref_primary_10_1016_j_bspc_2023_104779
crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1007_s00521_023_09011_z
crossref_primary_10_3233_IDT_240605
crossref_primary_10_1007_s11517_022_02581_5
crossref_primary_10_3390_diagnostics13071314
crossref_primary_10_1007_s11042_023_14454_6
crossref_primary_10_1080_02522667_2022_2103294
crossref_primary_10_1109_JSEN_2024_3414148
Cites_doi 10.1109/CVPR.2016.90
10.1109/ISBI.2018.8363547
10.1007/978-3-030-01201-4_31
10.1109/ACCESS.2019.2962812
10.1007/978-3-319-75238-9_25
10.1007/978-3-319-24574-4_28
10.1007/s10916-016-0460-2
10.1007/978-3-319-47157-0_20
10.1109/CVPR.2017.195
10.1109/TMI.2018.2845918
10.1109/ICPR.2016.7899656
10.1109/CVPR.2016.308
10.1016/S0893-6080(99)00073-8
10.1038/sdata.2018.161
10.1016/j.patcog.2009.03.008
10.1109/CVPR.2018.00907
10.1109/IranianCEE.2014.6999594
10.1109/CIBEC.2018.8641762
10.1109/TMI.2016.2642839
10.1109/ISBI.2018.8363626
10.1609/aaai.v31i1.11231
10.1007/s10916-019-1413-3
10.1109/CSSE.2008.206
10.1016/j.neunet.2019.08.025
10.1109/SSIAI.2006.1633722
10.1109/TMI.2017.2695227
10.1016/j.eswa.2018.10.029
10.1186/1471-2342-14-7
10.1109/CVPR.2017.243
10.1109/ITME.2018.00080
10.1109/TPAMI.2017.2699184
10.1109/TBME.2017.2712771
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2021
International Federation for Medical and Biological Engineering 2021.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2021
– notice: International Federation for Medical and Biological Engineering 2021.
DBID AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-021-02355-5
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1131
ExternalDocumentID 33904008
10_1007_s11517_021_02355_5
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PJZUB
PPXIY
PQGLB
7SC
7TB
7TS
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-98a6636ddda2282db2a475b9fa227356f0562ad2cc6bfb6d138ba8eebdf76da93
IEDL.DBID 7X7
ISSN 0140-0118
1741-0444
IngestDate Tue Aug 05 09:37:08 EDT 2025
Fri Jul 25 19:01:10 EDT 2025
Mon Jul 21 05:33:54 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 02:58:32 EDT 2025
Fri Feb 21 02:48:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Skin lesion
Region of interest
Segmentation
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-98a6636ddda2282db2a475b9fa227356f0562ad2cc6bfb6d138ba8eebdf76da93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2465-9374
PMID 33904008
PQID 2525247127
PQPubID 54161
PageCount 9
ParticipantIDs proquest_miscellaneous_2518988617
proquest_journals_2525247127
pubmed_primary_33904008
crossref_primary_10_1007_s11517_021_02355_5
crossref_citationtrail_10_1007_s11517_021_02355_5
springer_journals_10_1007_s11517_021_02355_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
2021-May
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BinduCHPrasadKSAn efficient medical image segmentation using conventional otsu methodInt J Adv Sci Technol20123816774
Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks. arXiv:1608.06993
Ng H, Ong S, Foong K, Goh P, Nowinski W (2006) Medical image segmentation using k-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation, IEEE, pp 61–65
Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deep learning. In: 2016 23rd International conference on pattern recognition (ICPR), IEEE, pp 337–342
Goyal M, Yap MH, Hassanpour S (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. arXiv:1711.10449
HaggertyJMWangXNDickinsonAO’MalleyCJMartinEBSegmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skinBMC Med Imaging2014141710.1186/1471-2342-14-7
PremaladhaJRavichandranKNovel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithmsJ Med Syst2016404961:STN:280:DC%2BC28jgvVOksA%3D%3D10.1007/s10916-016-0460-2
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385
Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368
Mahbod A, Schaefer G, Wang C, Ecker R, Dorffner G, Ellinger I (2020) Investigating and exploiting image resolution for transfer learning-based skin lesion classification
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence
ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfsIEEE Trans Pattern Anal Mach Intell201740483484810.1109/TPAMI.2017.2699184
SoudaniABarhoumiWAn image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extractionExpert Syst Appl201911840041010.1016/j.eswa.2018.10.029
Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). arXiv:1605.01397
SabaTKhanMARehmanAMarie-SainteSLRegion extraction and classification of skin cancer: a heterogeneous framework of deep cnn features fusion and reductionJ Med Syst201943928910.1007/s10916-019-1413-3
BiLKimJAhnEKumarAFulhamMFengDDermoscopic image segmentation via multistage fully convolutional networksIEEE Trans Biomed Eng20176492065207410.1109/TBME.2017.2712771
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567
YuanYChaoMLoY-CAutomatic skin lesion segmentation using deep fully convolutional networks with jaccard distanceIEEE Trans Med Imaging20173691876188610.1109/TMI.2017.2695227
Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International conference on information technology in medicine and education (ITME), IEEE, pp 327–331
AdegunAAViririSDeep learning-based system for automatic melanoma detectionIEEE Access202087160717210.1109/ACCESS.2019.2962812
Zhang J, Hu J (2008) Image segmentation based on 2d otsu method with histogram analysis. In: 2008 International conference on computer science and software engineering, vol 6. IEEE, pp 105–108
Berseth M (2017) Isic 2017-skin lesion analysis towards melanoma detection. arXiv:1703.00523
Zhao T, Gao D, Wang J, Tin Z (2018) Lung segmentation in ct images using a fully convolutional neural network with multi-instance and conditional adversary loss. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 505–509
Zoph B, Vasudevan V, Shlens J, Le QV (2017) Learning transferable architectures for scalable image recognition. arXiv:1707.07012
Kawahara J, Hamarneh G (2016) Multi-resolution-tract cnn with hybrid pretrained and skin-lesion trained layers. In: International workshop on machine learning in medical imaging, Springer, pp 164–171
Zeinali B, Ayatollahi A, Kakooei M (2014) A novel method of applying directional filter bank (dfb) for finger-knuckle-print (fkp) recognition. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 500–504
Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci Data2018518016110.1038/sdata.2018.161
Vesal S, Patil SM, Ravikumar N, Maier AK (2018) A multi-task framework for skin lesion detection and segmentation. In: OR 2.0 Context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis, Springer, pp 285–293
Combalia M, Codella NC, Rotemberg V, Helba B, Vilaplana V, Reiter O, Halpern AC, Puig S, Malvehy J (2019) Bcn20000: dermoscopic lesions in the wild. arXiv:1908.02288
LiuYYaoXEnsemble learning via negative correlationNeural Netw19991210139914041:STN:280:DC%2BC2sbnt1Wmsg%3D%3D10.1016/S0893-6080(99)00073-8
IbtehazNRahmanMSMultiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentationNeural Netw2020121748710.1016/j.neunet.2019.08.025
Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In: 2018 9th Cairo international biomedical engineering conference (CIBEC), pp 90–93
Buza E, Akagic A, Omanovic S (2017) Skin detection based on image color segmentation with histogram and k-means clustering. In: 2017 10th International conference on electrical and electronics engineering (ELECO), pp 1181–1186
Chollet F, et al. (2015) Keras. https://keras.io, [accessed April 1 2020]
Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 168–172
Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop. Springer, pp 287–297
YuLChenHDouQQinJHengP-AAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imag2016364994100410.1109/TMI.2016.2642839
LiXChenHQiXDouQFuC-WHengP-AH-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumesIEEE Trans Med Imaging201837122663267410.1109/TMI.2018.2845918
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
Chollet F (2016) Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357
McGuinnessKO’ConnorNEA comparative evaluation of interactive segmentation algorithmsPattern Recogn201043243444410.1016/j.patcog.2009.03.008interactive Imaging and Vision. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320309000818
J Premaladha (2355_CR20) 2016; 40
2355_CR35
2355_CR34
2355_CR10
2355_CR32
2355_CR31
X Li (2355_CR26) 2018; 37
A Soudani (2355_CR16) 2019; 118
CH Bindu (2355_CR19) 2012; 38
L Bi (2355_CR12) 2017; 64
L-C Chen (2355_CR8) 2017; 40
L Yu (2355_CR11) 2016; 36
Y Yuan (2355_CR13) 2017; 36
T Saba (2355_CR30) 2019; 43
P Tschandl (2355_CR4) 2018; 5
2355_CR17
2355_CR39
2355_CR38
2355_CR15
2355_CR37
2355_CR14
AA Adegun (2355_CR33) 2020; 8
2355_CR36
2355_CR24
2355_CR23
2355_CR21
2355_CR43
2355_CR1
2355_CR42
2355_CR2
2355_CR41
2355_CR3
2355_CR40
2355_CR5
2355_CR6
N Ibtehaz (2355_CR27) 2020; 121
2355_CR7
2355_CR9
JM Haggerty (2355_CR18) 2014; 14
Y Liu (2355_CR44) 1999; 12
K McGuinness (2355_CR22) 2010; 43
2355_CR29
2355_CR28
2355_CR25
References_xml – reference: TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci Data2018518016110.1038/sdata.2018.161
– reference: BinduCHPrasadKSAn efficient medical image segmentation using conventional otsu methodInt J Adv Sci Technol20123816774
– reference: Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 168–172
– reference: Chollet F (2016) Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556
– reference: SoudaniABarhoumiWAn image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extractionExpert Syst Appl201911840041010.1016/j.eswa.2018.10.029
– reference: SabaTKhanMARehmanAMarie-SainteSLRegion extraction and classification of skin cancer: a heterogeneous framework of deep cnn features fusion and reductionJ Med Syst201943928910.1007/s10916-019-1413-3
– reference: Zoph B, Vasudevan V, Shlens J, Le QV (2017) Learning transferable architectures for scalable image recognition. arXiv:1707.07012
– reference: PremaladhaJRavichandranKNovel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithmsJ Med Syst2016404961:STN:280:DC%2BC28jgvVOksA%3D%3D10.1007/s10916-016-0460-2
– reference: ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfsIEEE Trans Pattern Anal Mach Intell201740483484810.1109/TPAMI.2017.2699184
– reference: BiLKimJAhnEKumarAFulhamMFengDDermoscopic image segmentation via multistage fully convolutional networksIEEE Trans Biomed Eng20176492065207410.1109/TBME.2017.2712771
– reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence
– reference: HaggertyJMWangXNDickinsonAO’MalleyCJMartinEBSegmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skinBMC Med Imaging2014141710.1186/1471-2342-14-7
– reference: Mahbod A, Schaefer G, Wang C, Ecker R, Dorffner G, Ellinger I (2020) Investigating and exploiting image resolution for transfer learning-based skin lesion classification
– reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385
– reference: Zeinali B, Ayatollahi A, Kakooei M (2014) A novel method of applying directional filter bank (dfb) for finger-knuckle-print (fkp) recognition. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 500–504
– reference: McGuinnessKO’ConnorNEA comparative evaluation of interactive segmentation algorithmsPattern Recogn201043243444410.1016/j.patcog.2009.03.008interactive Imaging and Vision. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320309000818
– reference: Combalia M, Codella NC, Rotemberg V, Helba B, Vilaplana V, Reiter O, Halpern AC, Puig S, Malvehy J (2019) Bcn20000: dermoscopic lesions in the wild. arXiv:1908.02288
– reference: Zhang J, Hu J (2008) Image segmentation based on 2d otsu method with histogram analysis. In: 2008 International conference on computer science and software engineering, vol 6. IEEE, pp 105–108
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS
– reference: Chollet F, et al. (2015) Keras. https://keras.io, [accessed April 1 2020]
– reference: Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International conference on information technology in medicine and education (ITME), IEEE, pp 327–331
– reference: Ng H, Ong S, Foong K, Goh P, Nowinski W (2006) Medical image segmentation using k-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation, IEEE, pp 61–65
– reference: AdegunAAViririSDeep learning-based system for automatic melanoma detectionIEEE Access202087160717210.1109/ACCESS.2019.2962812
– reference: Kawahara J, Hamarneh G (2016) Multi-resolution-tract cnn with hybrid pretrained and skin-lesion trained layers. In: International workshop on machine learning in medical imaging, Springer, pp 164–171
– reference: Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop. Springer, pp 287–297
– reference: YuLChenHDouQQinJHengP-AAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imag2016364994100410.1109/TMI.2016.2642839
– reference: Berseth M (2017) Isic 2017-skin lesion analysis towards melanoma detection. arXiv:1703.00523
– reference: YuanYChaoMLoY-CAutomatic skin lesion segmentation using deep fully convolutional networks with jaccard distanceIEEE Trans Med Imaging20173691876188610.1109/TMI.2017.2695227
– reference: Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567
– reference: Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368
– reference: Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In: 2018 9th Cairo international biomedical engineering conference (CIBEC), pp 90–93
– reference: LiuYYaoXEnsemble learning via negative correlationNeural Netw19991210139914041:STN:280:DC%2BC2sbnt1Wmsg%3D%3D10.1016/S0893-6080(99)00073-8
– reference: Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). arXiv:1605.01397
– reference: Zhao T, Gao D, Wang J, Tin Z (2018) Lung segmentation in ct images using a fully convolutional neural network with multi-instance and conditional adversary loss. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 505–509
– reference: LiXChenHQiXDouQFuC-WHengP-AH-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumesIEEE Trans Med Imaging201837122663267410.1109/TMI.2018.2845918
– reference: Buza E, Akagic A, Omanovic S (2017) Skin detection based on image color segmentation with histogram and k-means clustering. In: 2017 10th International conference on electrical and electronics engineering (ELECO), pp 1181–1186
– reference: Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks. arXiv:1608.06993
– reference: Vesal S, Patil SM, Ravikumar N, Maier AK (2018) A multi-task framework for skin lesion detection and segmentation. In: OR 2.0 Context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis, Springer, pp 285–293
– reference: IbtehazNRahmanMSMultiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentationNeural Netw2020121748710.1016/j.neunet.2019.08.025
– reference: Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deep learning. In: 2016 23rd International conference on pattern recognition (ICPR), IEEE, pp 337–342
– reference: Goyal M, Yap MH, Hassanpour S (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. arXiv:1711.10449
– ident: 2355_CR41
  doi: 10.1109/CVPR.2016.90
– ident: 2355_CR5
  doi: 10.1109/ISBI.2018.8363547
– ident: 2355_CR15
  doi: 10.1007/978-3-030-01201-4_31
– ident: 2355_CR6
– volume: 8
  start-page: 7160
  year: 2020
  ident: 2355_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962812
– ident: 2355_CR36
– ident: 2355_CR7
  doi: 10.1007/978-3-319-75238-9_25
– ident: 2355_CR10
  doi: 10.1007/978-3-319-24574-4_28
– volume: 40
  start-page: 96
  issue: 4
  year: 2016
  ident: 2355_CR20
  publication-title: J Med Syst
  doi: 10.1007/s10916-016-0460-2
– ident: 2355_CR29
  doi: 10.1007/978-3-319-47157-0_20
– ident: 2355_CR34
– ident: 2355_CR37
  doi: 10.1109/CVPR.2017.195
– volume: 37
  start-page: 2663
  issue: 12
  year: 2018
  ident: 2355_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2845918
– ident: 2355_CR28
  doi: 10.1109/ICPR.2016.7899656
– ident: 2355_CR38
  doi: 10.1109/CVPR.2016.308
– ident: 2355_CR42
– ident: 2355_CR21
– volume: 12
  start-page: 1399
  issue: 10
  year: 1999
  ident: 2355_CR44
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(99)00073-8
– volume: 5
  start-page: 180161
  year: 2018
  ident: 2355_CR4
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.161
– volume: 43
  start-page: 434
  issue: 2
  year: 2010
  ident: 2355_CR22
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.03.008
– ident: 2355_CR23
– ident: 2355_CR39
  doi: 10.1109/CVPR.2018.00907
– ident: 2355_CR1
  doi: 10.1109/IranianCEE.2014.6999594
– ident: 2355_CR32
  doi: 10.1109/CIBEC.2018.8641762
– ident: 2355_CR31
– volume: 38
  start-page: 67
  issue: 1
  year: 2012
  ident: 2355_CR19
  publication-title: Int J Adv Sci Technol
– volume: 36
  start-page: 994
  issue: 4
  year: 2016
  ident: 2355_CR11
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2016.2642839
– ident: 2355_CR24
  doi: 10.1109/ISBI.2018.8363626
– ident: 2355_CR35
  doi: 10.1609/aaai.v31i1.11231
– volume: 43
  start-page: 289
  issue: 9
  year: 2019
  ident: 2355_CR30
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1413-3
– ident: 2355_CR3
– ident: 2355_CR14
– ident: 2355_CR17
  doi: 10.1109/CSSE.2008.206
– volume: 121
  start-page: 74
  year: 2020
  ident: 2355_CR27
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.08.025
– ident: 2355_CR43
– ident: 2355_CR9
  doi: 10.1109/SSIAI.2006.1633722
– volume: 36
  start-page: 1876
  issue: 9
  year: 2017
  ident: 2355_CR13
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2695227
– volume: 118
  start-page: 400
  year: 2019
  ident: 2355_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.10.029
– volume: 14
  start-page: 7
  issue: 1
  year: 2014
  ident: 2355_CR18
  publication-title: BMC Med Imaging
  doi: 10.1186/1471-2342-14-7
– ident: 2355_CR40
  doi: 10.1109/CVPR.2017.243
– ident: 2355_CR2
– ident: 2355_CR25
  doi: 10.1109/ITME.2018.00080
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 2355_CR8
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– volume: 64
  start-page: 2065
  issue: 9
  year: 2017
  ident: 2355_CR12
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2712771
SSID ssj0021524
Score 2.4580722
Snippet Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1123
SubjectTerms Artificial neural networks
Background noise
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Classifiers
Computer Applications
Datasets
Disease
Human Physiology
Imaging
Learning algorithms
Lesions
Machine learning
Medical imaging
Melanoma
Neural networks
Original Article
Performance enhancement
Preprocessing
Radiology
Skin diseases
Skin lesions
Training
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBPFFvFudEsE3Daxp0qaPQxxD2J4c7K00TQrD0Q7X_X9Psl6QqSB9Kk3TcE6S7zs5lwI8DmKmWeRrGkgtKEeIojLgMUVw1cjvjeKuiOtkGo5n_G0u5nVS2LqJdm9ckm6n7pLdEJwiakMKbI0WQcU-HAi03W0g14wNWzMLEYm3gYvIn-tUmZ_7-A5HOxxzxz_qYGd0Asc1XyTDrYJPYc8UZ3A4qT3i55AMCRJjsrLFKV3IP_ZCmkLhpCrJwp0aGIJEj6y6LAFS5uRlOqUWxTRZfywKsjT25Ixklk_bACKnswuYjV7fX8a0_mkCzYJIVDSWKZKIUGudMjSntGIpj4SKc7yNAhHmlvGkmmVZqHIVaj-QKpXGKJ1HoU7j4BJ6RVmYayB64Ge5USpCpON-FkuJXMPIFC2onGfc98BvZJdkdUVx-2OLZdLVQrbyTlDeiZN3Ijx4at9Zbetp_Nm636gkqdfWOmECL8RUFnnw0D7GVWFdHWlhyo1t40scL9IzD662qmw_FwSx3bmkB8-NbrvOfx_Lzf-a38IRc_PMxkb2oVd9bswd8pdK3bvp-gUAXuNv
  priority: 102
  providerName: Springer Nature
Title A new preprocessing approach to improve the performance of CNN-based skin lesion classification
URI https://link.springer.com/article/10.1007/s11517-021-02355-5
https://www.ncbi.nlm.nih.gov/pubmed/33904008
https://www.proquest.com/docview/2525247127
https://www.proquest.com/docview/2518988617
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsQX8dvqeUTwTYPXNGnSJ9k9d-9QbhFxYX0qzUfhuKNd3b3_35lsukUOj0JLSZqGmWTml2TyC8D7k0p4oXPPC-MVl-iiuClkxdG5esT3wcpI4nqxKM-X8utKrdKE2yaFVQ42MRpq3zuaI_8kFF5oSYX-vP7N6dQoWl1NR2jch0OiLqNWrVfjgAt9k9yHMCKSTptmdlvn0NVpTgEKxPiiuPrXMd1Cm7dWSqMDmj-GRwk5sslO1U_gXuiewoOLtDb-DOoJQ4jM1kRTGYP_sRQ2UIazbc8u4_xBYAj52HrcL8D6lp0uFpz8mWebq8uOXQeaQ2OOkDWFEkXtPYflfPbz9Jyn4xO4K7Ta8so0CCdK730jcGDlrWikVrZq8VUXqmwJ-zReOFfa1pY-L4xtTAjWt7r0TVW8gIOu78IrYP4kd22wVqPPk7mrjEHUEUyDY6lWOplnkA-yq13iFqcjLq7rkRWZ5F2jvOso71pl8GH_zXrHrHFn7qNBJXXqZZt6bBMZvNsnY_-gRY-mC_0N5ckN1heBWgYvd6rc_64oKrJhJoOPg27Hwv9fl9d31-UNPBSxXVFU5BEcbP_chLeIXLb2ODZPvJv52TEcTqZfpnN6nv36NsPndLb4_gNTl2LyF5ht7Ps
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuiFdpoICR4AQWjWMnzgGhqrBsaXdPrdSbiR-RqlbJwm6F-FP8RmacxwpV7a3KKYqTWOPxfN_YM2OAt7ul8KJIPc-0V1wiRHGdyZIjuHrk98HKWMR1Ns-nJ_L7qTrdgL9DLgyFVQ42MRpq3zpaI_8oFF5oSUXxefGT06lRtLs6HKHRqcVh-PMbXbblp4MvOL7vhJh8Pd6f8v5UAe6yQq14qStE2dx7Xwn0N7wVlSyULWu8LTKV10QJKi-cy21tc59m2lY6BOvrIvcVFV9Ck39HZojklJk--TY6eIiFcgyZRObeJ-l0qXoIrQWngAiqMKO4-h8Ir7DbKzuzEfAmD-FBz1TZXqdaj2AjNI_h7qzfi38CZo8hJWcLKosZkw3wK2woUc5WLTuL6xWBIcVki3V-Amtrtj-fc8JPz5bnZw27CLRmxxwxeQpditryFE5uRbBbsNm0TdgG5ndTVwdrC8RYmbpSa2Q5QVfou9XSyTSBdJCdcX0tczpS48KsqzCTvA3K20R5G5XA-_GdRVfJ48bWO8OQmH5WL81aBxN4Mz7G-UibLFUT2ktqk2rsLxLDBJ51Qzn-DlWGbKZO4MMwtuuPX9-X5zf35TXcmx7PjszRwfzwBdwXUccoInMHNle_LsNLZE0r-yqqKoMftz03_gG-nSUv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS91AEB7kCNKXUntN1XYL7VO71Gx2k81DEasetNYgpYJv2-wlIJXk1HNE-tf66zqT26FIfZM8hWySZXZ2vm92Z2YB3m7nwoss9jzRXnGJEMV1InOO4OqR3wcr2yKuJ0V6eCa_nKvzFfgz5MJQWOVgE1tD7RtHa-QfhcILLSm66lUfFnG6P92Z_eJ0ghTttA7HaXQqchx-36D7Nv90tI9j_U6I6cH3vUPenzDAXZKpBc91iYibeu9Lgb6Ht6KUmbJ5hbdZotKK6EHphXOprWzq40TbUodgfZWlvqRCTGj-VzPyiiaw-vmgOP02unuIjHIMoEQe36fsdIl7CLQZp_AIqjejuPoXFm9x3Vv7tC38TR_Bw563st1O0dZhJdSPYe2k35l_AmaXIUFnMyqS2aYe4FfYULCcLRp20a5eBIaEk82W2QqsqdheUXBCU8_mPy9qdhloBY854vUUyNTqzlM4uxfRPoNJ3dThBTC_HbsqWJsh4srY5Voj5wm6RE-ukk7GEcSD7IzrK5vTARuXZlmTmeRtUN6mlbdREbwf35l1dT3ubL05DInp5_jcLDUygjfjY5ydtOVS1qG5pjaxxv4iTYzgeTeU4--SJCcLqiP4MIzt8uP_78vLu_vyGtZwXpivR8XxBjwQrYpReOYmTBZX12ELKdTCvup1lcGP-54efwFreirB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+preprocessing+approach+to+improve+the+performance+of+CNN-based+skin+lesion+classification&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zanddizari+Hadi&rft.au=Nguyen%2C+Nam&rft.au=Zeinali+Behnam&rft.au=Morris%2C+Chang+J&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=59&rft.issue=5&rft.spage=1123&rft.epage=1131&rft_id=info:doi/10.1007%2Fs11517-021-02355-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon