A new preprocessing approach to improve the performance of CNN-based skin lesion classification
Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reas...
Saved in:
Published in | Medical & biological engineering & computing Vol. 59; no. 5; pp. 1123 - 1131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well. |
---|---|
AbstractList | Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well.Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well. Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy images can significantly increase the survival rate. However, the accurate detection of disease is highly challenging due to the following reasons: e.g., visual similarity between different classes of disease (e.g., melanoma and non-melanoma lesions), low contrast between lesions and skin, background noise, and artifacts. Machine learning models based on convolutional neural networks (CNN) have been widely used for automatic recognition of lesion diseases with high accuracy in comparison to conventional machine learning methods. In this research, we proposed a new preprocessing technique in order to extract the region of interest (RoI) of skin lesion dataset. We compare the performance of the most state-of-the-art CNN classifiers with two datasets which contain (1) raw, and (2) RoI extracted images. Our experiment results show that training CNN models by RoI extracted dataset can improve the accuracy of the prediction (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it significantly decreases the evaluation (inference) and training time of classifiers as well. |
Author | Zeinali, Behnam Zanddizari, Hadi Nguyen, Nam Chang, J. Morris |
Author_xml | – sequence: 1 givenname: Hadi orcidid: 0000-0002-2465-9374 surname: Zanddizari fullname: Zanddizari, Hadi email: hadiz@usf.edu organization: Department of Electrical Engineering, University of South Florida – sequence: 2 givenname: Nam surname: Nguyen fullname: Nguyen, Nam organization: Department of Electrical Engineering, University of South Florida – sequence: 3 givenname: Behnam surname: Zeinali fullname: Zeinali, Behnam organization: Department of Electrical Engineering, University of South Florida – sequence: 4 givenname: J. Morris surname: Chang fullname: Chang, J. Morris organization: Department of Electrical Engineering, University of South Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33904008$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LHTEUhkOx1Kv2D3RRAt10MzYfk49ZysV-gNhNXYdMcqKxM8k0mdviv2_02gouJITkhec95-WcI3SQcgKE3lFySglRnyqlgqqOMNouF6ITr9CGqr7Jvu8P0IbQnnSEUn2Ijmq9JY0UrH-DDjkfSE-I3iBzhhP8wUuBpWQHtcZ0je3ShHU3eM04zu3_G_B6A3iBEnKZbXKAc8Dby8tutBU8rj9jwhPUmBN2k21VQnR2bfIEvQ52qvD28T1GV5_Pf2y_dhffv3zbnl10jiuxdoO2UnLpvbeMaeZHZnslxiE0qbiQgQjJrGfOyTGM0lOuR6sBRh-U9Hbgx-jjvm5L-2sHdTVzrA6mySbIu2qYoHrQWlLV0A_P0Nu8K6mla1Q7vaLsnnr_SO3GGbxZSpxtuTP_RtcAtgdcybUWCP8RSsz9fsx-P6ZN3Tzsx4hm0s9MLq4Pg1qLjdPLVr631tYnXUN5iv2C6y_mW6Qh |
CitedBy_id | crossref_primary_10_1371_journal_pone_0298305 crossref_primary_10_1002_ima_22890 crossref_primary_10_1109_TNSE_2022_3185327 crossref_primary_10_1007_s11517_022_02673_2 crossref_primary_10_1155_2021_9619079 crossref_primary_10_1007_s11042_024_18973_8 crossref_primary_10_3390_diagnostics13071285 crossref_primary_10_1016_j_eswa_2023_122209 crossref_primary_10_3390_s22114147 crossref_primary_10_3390_app12052677 crossref_primary_10_1007_s11042_022_14181_4 crossref_primary_10_1109_TETCI_2024_3485677 crossref_primary_10_1080_21681163_2023_2219755 crossref_primary_10_1109_TETCI_2021_3122467 crossref_primary_10_3390_app131810536 crossref_primary_10_1016_j_cmpb_2022_106666 crossref_primary_10_1016_j_compeleceng_2022_108318 crossref_primary_10_2196_33006 crossref_primary_10_3390_a16100466 crossref_primary_10_3390_technologies12100183 crossref_primary_10_1016_j_bspc_2023_104779 crossref_primary_10_1016_j_compbiomed_2023_106624 crossref_primary_10_1007_s00521_023_09011_z crossref_primary_10_3233_IDT_240605 crossref_primary_10_1007_s11517_022_02581_5 crossref_primary_10_3390_diagnostics13071314 crossref_primary_10_1007_s11042_023_14454_6 crossref_primary_10_1080_02522667_2022_2103294 crossref_primary_10_1109_JSEN_2024_3414148 |
Cites_doi | 10.1109/CVPR.2016.90 10.1109/ISBI.2018.8363547 10.1007/978-3-030-01201-4_31 10.1109/ACCESS.2019.2962812 10.1007/978-3-319-75238-9_25 10.1007/978-3-319-24574-4_28 10.1007/s10916-016-0460-2 10.1007/978-3-319-47157-0_20 10.1109/CVPR.2017.195 10.1109/TMI.2018.2845918 10.1109/ICPR.2016.7899656 10.1109/CVPR.2016.308 10.1016/S0893-6080(99)00073-8 10.1038/sdata.2018.161 10.1016/j.patcog.2009.03.008 10.1109/CVPR.2018.00907 10.1109/IranianCEE.2014.6999594 10.1109/CIBEC.2018.8641762 10.1109/TMI.2016.2642839 10.1109/ISBI.2018.8363626 10.1609/aaai.v31i1.11231 10.1007/s10916-019-1413-3 10.1109/CSSE.2008.206 10.1016/j.neunet.2019.08.025 10.1109/SSIAI.2006.1633722 10.1109/TMI.2017.2695227 10.1016/j.eswa.2018.10.029 10.1186/1471-2342-14-7 10.1109/CVPR.2017.243 10.1109/ITME.2018.00080 10.1109/TPAMI.2017.2699184 10.1109/TBME.2017.2712771 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2021 International Federation for Medical and Biological Engineering 2021. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2021 – notice: International Federation for Medical and Biological Engineering 2021. |
DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-021-02355-5 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 1131 |
ExternalDocumentID | 33904008 10_1007_s11517_021_02355_5 |
Genre | Journal Article |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PJZUB PPXIY PQGLB 7SC 7TB 7TS 7XB 8AL 8FD 8FK FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-98a6636ddda2282db2a475b9fa227356f0562ad2cc6bfb6d138ba8eebdf76da93 |
IEDL.DBID | 7X7 |
ISSN | 0140-0118 1741-0444 |
IngestDate | Tue Aug 05 09:37:08 EDT 2025 Fri Jul 25 19:01:10 EDT 2025 Mon Jul 21 05:33:54 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 02:58:32 EDT 2025 Fri Feb 21 02:48:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Skin lesion Region of interest Segmentation Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-98a6636ddda2282db2a475b9fa227356f0562ad2cc6bfb6d138ba8eebdf76da93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2465-9374 |
PMID | 33904008 |
PQID | 2525247127 |
PQPubID | 54161 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2518988617 proquest_journals_2525247127 pubmed_primary_33904008 crossref_primary_10_1007_s11517_021_02355_5 crossref_citationtrail_10_1007_s11517_021_02355_5 springer_journals_10_1007_s11517_021_02355_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210500 2021-05-00 2021-May 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210500 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | BinduCHPrasadKSAn efficient medical image segmentation using conventional otsu methodInt J Adv Sci Technol20123816774 Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks. arXiv:1608.06993 Ng H, Ong S, Foong K, Goh P, Nowinski W (2006) Medical image segmentation using k-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation, IEEE, pp 61–65 Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deep learning. In: 2016 23rd International conference on pattern recognition (ICPR), IEEE, pp 337–342 Goyal M, Yap MH, Hassanpour S (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. arXiv:1711.10449 HaggertyJMWangXNDickinsonAO’MalleyCJMartinEBSegmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skinBMC Med Imaging2014141710.1186/1471-2342-14-7 PremaladhaJRavichandranKNovel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithmsJ Med Syst2016404961:STN:280:DC%2BC28jgvVOksA%3D%3D10.1007/s10916-016-0460-2 He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385 Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368 Mahbod A, Schaefer G, Wang C, Ecker R, Dorffner G, Ellinger I (2020) Investigating and exploiting image resolution for transfer learning-based skin lesion classification Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfsIEEE Trans Pattern Anal Mach Intell201740483484810.1109/TPAMI.2017.2699184 SoudaniABarhoumiWAn image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extractionExpert Syst Appl201911840041010.1016/j.eswa.2018.10.029 Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). arXiv:1605.01397 SabaTKhanMARehmanAMarie-SainteSLRegion extraction and classification of skin cancer: a heterogeneous framework of deep cnn features fusion and reductionJ Med Syst201943928910.1007/s10916-019-1413-3 BiLKimJAhnEKumarAFulhamMFengDDermoscopic image segmentation via multistage fully convolutional networksIEEE Trans Biomed Eng20176492065207410.1109/TBME.2017.2712771 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567 YuanYChaoMLoY-CAutomatic skin lesion segmentation using deep fully convolutional networks with jaccard distanceIEEE Trans Med Imaging20173691876188610.1109/TMI.2017.2695227 Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International conference on information technology in medicine and education (ITME), IEEE, pp 327–331 AdegunAAViririSDeep learning-based system for automatic melanoma detectionIEEE Access202087160717210.1109/ACCESS.2019.2962812 Zhang J, Hu J (2008) Image segmentation based on 2d otsu method with histogram analysis. In: 2008 International conference on computer science and software engineering, vol 6. IEEE, pp 105–108 Berseth M (2017) Isic 2017-skin lesion analysis towards melanoma detection. arXiv:1703.00523 Zhao T, Gao D, Wang J, Tin Z (2018) Lung segmentation in ct images using a fully convolutional neural network with multi-instance and conditional adversary loss. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 505–509 Zoph B, Vasudevan V, Shlens J, Le QV (2017) Learning transferable architectures for scalable image recognition. arXiv:1707.07012 Kawahara J, Hamarneh G (2016) Multi-resolution-tract cnn with hybrid pretrained and skin-lesion trained layers. In: International workshop on machine learning in medical imaging, Springer, pp 164–171 Zeinali B, Ayatollahi A, Kakooei M (2014) A novel method of applying directional filter bank (dfb) for finger-knuckle-print (fkp) recognition. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 500–504 Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci Data2018518016110.1038/sdata.2018.161 Vesal S, Patil SM, Ravikumar N, Maier AK (2018) A multi-task framework for skin lesion detection and segmentation. In: OR 2.0 Context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis, Springer, pp 285–293 Combalia M, Codella NC, Rotemberg V, Helba B, Vilaplana V, Reiter O, Halpern AC, Puig S, Malvehy J (2019) Bcn20000: dermoscopic lesions in the wild. arXiv:1908.02288 LiuYYaoXEnsemble learning via negative correlationNeural Netw19991210139914041:STN:280:DC%2BC2sbnt1Wmsg%3D%3D10.1016/S0893-6080(99)00073-8 IbtehazNRahmanMSMultiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentationNeural Netw2020121748710.1016/j.neunet.2019.08.025 Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In: 2018 9th Cairo international biomedical engineering conference (CIBEC), pp 90–93 Buza E, Akagic A, Omanovic S (2017) Skin detection based on image color segmentation with histogram and k-means clustering. In: 2017 10th International conference on electrical and electronics engineering (ELECO), pp 1181–1186 Chollet F, et al. (2015) Keras. https://keras.io, [accessed April 1 2020] Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 168–172 Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop. Springer, pp 287–297 YuLChenHDouQQinJHengP-AAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imag2016364994100410.1109/TMI.2016.2642839 LiXChenHQiXDouQFuC-WHengP-AH-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumesIEEE Trans Med Imaging201837122663267410.1109/TMI.2018.2845918 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241 Chollet F (2016) Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357 McGuinnessKO’ConnorNEA comparative evaluation of interactive segmentation algorithmsPattern Recogn201043243444410.1016/j.patcog.2009.03.008interactive Imaging and Vision. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320309000818 J Premaladha (2355_CR20) 2016; 40 2355_CR35 2355_CR34 2355_CR10 2355_CR32 2355_CR31 X Li (2355_CR26) 2018; 37 A Soudani (2355_CR16) 2019; 118 CH Bindu (2355_CR19) 2012; 38 L Bi (2355_CR12) 2017; 64 L-C Chen (2355_CR8) 2017; 40 L Yu (2355_CR11) 2016; 36 Y Yuan (2355_CR13) 2017; 36 T Saba (2355_CR30) 2019; 43 P Tschandl (2355_CR4) 2018; 5 2355_CR17 2355_CR39 2355_CR38 2355_CR15 2355_CR37 2355_CR14 AA Adegun (2355_CR33) 2020; 8 2355_CR36 2355_CR24 2355_CR23 2355_CR21 2355_CR43 2355_CR1 2355_CR42 2355_CR2 2355_CR41 2355_CR3 2355_CR40 2355_CR5 2355_CR6 N Ibtehaz (2355_CR27) 2020; 121 2355_CR7 2355_CR9 JM Haggerty (2355_CR18) 2014; 14 Y Liu (2355_CR44) 1999; 12 K McGuinness (2355_CR22) 2010; 43 2355_CR29 2355_CR28 2355_CR25 |
References_xml | – reference: TschandlPRosendahlCKittlerHThe ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesionsSci Data2018518016110.1038/sdata.2018.161 – reference: BinduCHPrasadKSAn efficient medical image segmentation using conventional otsu methodInt J Adv Sci Technol20123816774 – reference: Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H et al (2018) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), IEEE, pp 168–172 – reference: Chollet F (2016) Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357 – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 234–241 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 – reference: SoudaniABarhoumiWAn image-based segmentation recommender using crowdsourcing and transfer learning for skin lesion extractionExpert Syst Appl201911840041010.1016/j.eswa.2018.10.029 – reference: SabaTKhanMARehmanAMarie-SainteSLRegion extraction and classification of skin cancer: a heterogeneous framework of deep cnn features fusion and reductionJ Med Syst201943928910.1007/s10916-019-1413-3 – reference: Zoph B, Vasudevan V, Shlens J, Le QV (2017) Learning transferable architectures for scalable image recognition. arXiv:1707.07012 – reference: PremaladhaJRavichandranKNovel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithmsJ Med Syst2016404961:STN:280:DC%2BC28jgvVOksA%3D%3D10.1007/s10916-016-0460-2 – reference: ChenL-CPapandreouGKokkinosIMurphyKYuilleALDeeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfsIEEE Trans Pattern Anal Mach Intell201740483484810.1109/TPAMI.2017.2699184 – reference: BiLKimJAhnEKumarAFulhamMFengDDermoscopic image segmentation via multistage fully convolutional networksIEEE Trans Biomed Eng20176492065207410.1109/TBME.2017.2712771 – reference: Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence – reference: HaggertyJMWangXNDickinsonAO’MalleyCJMartinEBSegmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skinBMC Med Imaging2014141710.1186/1471-2342-14-7 – reference: Mahbod A, Schaefer G, Wang C, Ecker R, Dorffner G, Ellinger I (2020) Investigating and exploiting image resolution for transfer learning-based skin lesion classification – reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385 – reference: Zeinali B, Ayatollahi A, Kakooei M (2014) A novel method of applying directional filter bank (dfb) for finger-knuckle-print (fkp) recognition. In: 2014 22nd Iranian conference on electrical engineering (ICEE), pp 500–504 – reference: McGuinnessKO’ConnorNEA comparative evaluation of interactive segmentation algorithmsPattern Recogn201043243444410.1016/j.patcog.2009.03.008interactive Imaging and Vision. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320309000818 – reference: Combalia M, Codella NC, Rotemberg V, Helba B, Vilaplana V, Reiter O, Halpern AC, Puig S, Malvehy J (2019) Bcn20000: dermoscopic lesions in the wild. arXiv:1908.02288 – reference: Zhang J, Hu J (2008) Image segmentation based on 2d otsu method with histogram analysis. In: 2008 International conference on computer science and software engineering, vol 6. IEEE, pp 105–108 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS – reference: Chollet F, et al. (2015) Keras. https://keras.io, [accessed April 1 2020] – reference: Xiao X, Lian S, Luo Z, Li S (2018) Weighted res-unet for high-quality retina vessel segmentation. In: 2018 9th International conference on information technology in medicine and education (ITME), IEEE, pp 327–331 – reference: Ng H, Ong S, Foong K, Goh P, Nowinski W (2006) Medical image segmentation using k-means clustering and improved watershed algorithm. In: 2006 IEEE southwest symposium on image analysis and interpretation, IEEE, pp 61–65 – reference: AdegunAAViririSDeep learning-based system for automatic melanoma detectionIEEE Access202087160717210.1109/ACCESS.2019.2962812 – reference: Kawahara J, Hamarneh G (2016) Multi-resolution-tract cnn with hybrid pretrained and skin-lesion trained layers. In: International workshop on machine learning in medical imaging, Springer, pp 164–171 – reference: Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2017) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: International MICCAI brainlesion workshop. Springer, pp 287–297 – reference: YuLChenHDouQQinJHengP-AAutomated melanoma recognition in dermoscopy images via very deep residual networksIEEE Trans Med Imag2016364994100410.1109/TMI.2016.2642839 – reference: Berseth M (2017) Isic 2017-skin lesion analysis towards melanoma detection. arXiv:1703.00523 – reference: YuanYChaoMLoY-CAutomatic skin lesion segmentation using deep fully convolutional networks with jaccard distanceIEEE Trans Med Imaging20173691876188610.1109/TMI.2017.2695227 – reference: Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567 – reference: Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D, Helba B, Kalloo A, Liopyris K, Marchetti M et al (2019) Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368 – reference: Hosny KM, Kassem MA, Foaud MM (2018) Skin cancer classification using deep learning and transfer learning. In: 2018 9th Cairo international biomedical engineering conference (CIBEC), pp 90–93 – reference: LiuYYaoXEnsemble learning via negative correlationNeural Netw19991210139914041:STN:280:DC%2BC2sbnt1Wmsg%3D%3D10.1016/S0893-6080(99)00073-8 – reference: Gutman D, Codella NC, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A (2016) Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). arXiv:1605.01397 – reference: Zhao T, Gao D, Wang J, Tin Z (2018) Lung segmentation in ct images using a fully convolutional neural network with multi-instance and conditional adversary loss. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), IEEE, pp 505–509 – reference: LiXChenHQiXDouQFuC-WHengP-AH-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumesIEEE Trans Med Imaging201837122663267410.1109/TMI.2018.2845918 – reference: Buza E, Akagic A, Omanovic S (2017) Skin detection based on image color segmentation with histogram and k-means clustering. In: 2017 10th International conference on electrical and electronics engineering (ELECO), pp 1181–1186 – reference: Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely connected convolutional networks. arXiv:1608.06993 – reference: Vesal S, Patil SM, Ravikumar N, Maier AK (2018) A multi-task framework for skin lesion detection and segmentation. In: OR 2.0 Context-aware operating theaters, computer assisted robotic endoscopy, clinical image-based procedures, and skin image analysis, Springer, pp 285–293 – reference: IbtehazNRahmanMSMultiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentationNeural Netw2020121748710.1016/j.neunet.2019.08.025 – reference: Jafari MH, Karimi N, Nasr-Esfahani E, Samavi S, Soroushmehr SMR, Ward K, Najarian K (2016) Skin lesion segmentation in clinical images using deep learning. In: 2016 23rd International conference on pattern recognition (ICPR), IEEE, pp 337–342 – reference: Goyal M, Yap MH, Hassanpour S (2017) Multi-class semantic segmentation of skin lesions via fully convolutional networks. arXiv:1711.10449 – ident: 2355_CR41 doi: 10.1109/CVPR.2016.90 – ident: 2355_CR5 doi: 10.1109/ISBI.2018.8363547 – ident: 2355_CR15 doi: 10.1007/978-3-030-01201-4_31 – ident: 2355_CR6 – volume: 8 start-page: 7160 year: 2020 ident: 2355_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962812 – ident: 2355_CR36 – ident: 2355_CR7 doi: 10.1007/978-3-319-75238-9_25 – ident: 2355_CR10 doi: 10.1007/978-3-319-24574-4_28 – volume: 40 start-page: 96 issue: 4 year: 2016 ident: 2355_CR20 publication-title: J Med Syst doi: 10.1007/s10916-016-0460-2 – ident: 2355_CR29 doi: 10.1007/978-3-319-47157-0_20 – ident: 2355_CR34 – ident: 2355_CR37 doi: 10.1109/CVPR.2017.195 – volume: 37 start-page: 2663 issue: 12 year: 2018 ident: 2355_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2845918 – ident: 2355_CR28 doi: 10.1109/ICPR.2016.7899656 – ident: 2355_CR38 doi: 10.1109/CVPR.2016.308 – ident: 2355_CR42 – ident: 2355_CR21 – volume: 12 start-page: 1399 issue: 10 year: 1999 ident: 2355_CR44 publication-title: Neural Netw doi: 10.1016/S0893-6080(99)00073-8 – volume: 5 start-page: 180161 year: 2018 ident: 2355_CR4 publication-title: Sci Data doi: 10.1038/sdata.2018.161 – volume: 43 start-page: 434 issue: 2 year: 2010 ident: 2355_CR22 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.03.008 – ident: 2355_CR23 – ident: 2355_CR39 doi: 10.1109/CVPR.2018.00907 – ident: 2355_CR1 doi: 10.1109/IranianCEE.2014.6999594 – ident: 2355_CR32 doi: 10.1109/CIBEC.2018.8641762 – ident: 2355_CR31 – volume: 38 start-page: 67 issue: 1 year: 2012 ident: 2355_CR19 publication-title: Int J Adv Sci Technol – volume: 36 start-page: 994 issue: 4 year: 2016 ident: 2355_CR11 publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2016.2642839 – ident: 2355_CR24 doi: 10.1109/ISBI.2018.8363626 – ident: 2355_CR35 doi: 10.1609/aaai.v31i1.11231 – volume: 43 start-page: 289 issue: 9 year: 2019 ident: 2355_CR30 publication-title: J Med Syst doi: 10.1007/s10916-019-1413-3 – ident: 2355_CR3 – ident: 2355_CR14 – ident: 2355_CR17 doi: 10.1109/CSSE.2008.206 – volume: 121 start-page: 74 year: 2020 ident: 2355_CR27 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.08.025 – ident: 2355_CR43 – ident: 2355_CR9 doi: 10.1109/SSIAI.2006.1633722 – volume: 36 start-page: 1876 issue: 9 year: 2017 ident: 2355_CR13 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2695227 – volume: 118 start-page: 400 year: 2019 ident: 2355_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.10.029 – volume: 14 start-page: 7 issue: 1 year: 2014 ident: 2355_CR18 publication-title: BMC Med Imaging doi: 10.1186/1471-2342-14-7 – ident: 2355_CR40 doi: 10.1109/CVPR.2017.243 – ident: 2355_CR2 – ident: 2355_CR25 doi: 10.1109/ITME.2018.00080 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 2355_CR8 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – volume: 64 start-page: 2065 issue: 9 year: 2017 ident: 2355_CR12 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2712771 |
SSID | ssj0021524 |
Score | 2.4580722 |
Snippet | Skin lesion is one of the severe diseases which in many cases endanger the lives of patients on a worldwide extent. Early detection of disease in dermoscopy... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1123 |
SubjectTerms | Artificial neural networks Background noise Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Classifiers Computer Applications Datasets Disease Human Physiology Imaging Learning algorithms Lesions Machine learning Medical imaging Melanoma Neural networks Original Article Performance enhancement Preprocessing Radiology Skin diseases Skin lesions Training |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBPFFvFudEsE3Daxp0qaPQxxD2J4c7K00TQrD0Q7X_X9Psl6QqSB9Kk3TcE6S7zs5lwI8DmKmWeRrGkgtKEeIojLgMUVw1cjvjeKuiOtkGo5n_G0u5nVS2LqJdm9ckm6n7pLdEJwiakMKbI0WQcU-HAi03W0g14wNWzMLEYm3gYvIn-tUmZ_7-A5HOxxzxz_qYGd0Asc1XyTDrYJPYc8UZ3A4qT3i55AMCRJjsrLFKV3IP_ZCmkLhpCrJwp0aGIJEj6y6LAFS5uRlOqUWxTRZfywKsjT25Ixklk_bACKnswuYjV7fX8a0_mkCzYJIVDSWKZKIUGudMjSntGIpj4SKc7yNAhHmlvGkmmVZqHIVaj-QKpXGKJ1HoU7j4BJ6RVmYayB64Ge5USpCpON-FkuJXMPIFC2onGfc98BvZJdkdUVx-2OLZdLVQrbyTlDeiZN3Ijx4at9Zbetp_Nm636gkqdfWOmECL8RUFnnw0D7GVWFdHWlhyo1t40scL9IzD662qmw_FwSx3bmkB8-NbrvOfx_Lzf-a38IRc_PMxkb2oVd9bswd8pdK3bvp-gUAXuNv priority: 102 providerName: Springer Nature |
Title | A new preprocessing approach to improve the performance of CNN-based skin lesion classification |
URI | https://link.springer.com/article/10.1007/s11517-021-02355-5 https://www.ncbi.nlm.nih.gov/pubmed/33904008 https://www.proquest.com/docview/2525247127 https://www.proquest.com/docview/2518988617 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0DsQX8dvqeUTwTYPXNGnSJ9k9d-9QbhFxYX0qzUfhuKNd3b3_35lsukUOj0JLSZqGmWTml2TyC8D7k0p4oXPPC-MVl-iiuClkxdG5esT3wcpI4nqxKM-X8utKrdKE2yaFVQ42MRpq3zuaI_8kFF5oSYX-vP7N6dQoWl1NR2jch0OiLqNWrVfjgAt9k9yHMCKSTptmdlvn0NVpTgEKxPiiuPrXMd1Cm7dWSqMDmj-GRwk5sslO1U_gXuiewoOLtDb-DOoJQ4jM1kRTGYP_sRQ2UIazbc8u4_xBYAj52HrcL8D6lp0uFpz8mWebq8uOXQeaQ2OOkDWFEkXtPYflfPbz9Jyn4xO4K7Ta8so0CCdK730jcGDlrWikVrZq8VUXqmwJ-zReOFfa1pY-L4xtTAjWt7r0TVW8gIOu78IrYP4kd22wVqPPk7mrjEHUEUyDY6lWOplnkA-yq13iFqcjLq7rkRWZ5F2jvOso71pl8GH_zXrHrHFn7qNBJXXqZZt6bBMZvNsnY_-gRY-mC_0N5ckN1heBWgYvd6rc_64oKrJhJoOPg27Hwv9fl9d31-UNPBSxXVFU5BEcbP_chLeIXLb2ODZPvJv52TEcTqZfpnN6nv36NsPndLb4_gNTl2LyF5ht7Ps |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuiFdpoICR4AQWjWMnzgGhqrBsaXdPrdSbiR-RqlbJwm6F-FP8RmacxwpV7a3KKYqTWOPxfN_YM2OAt7ul8KJIPc-0V1wiRHGdyZIjuHrk98HKWMR1Ns-nJ_L7qTrdgL9DLgyFVQ42MRpq3zpaI_8oFF5oSUXxefGT06lRtLs6HKHRqcVh-PMbXbblp4MvOL7vhJh8Pd6f8v5UAe6yQq14qStE2dx7Xwn0N7wVlSyULWu8LTKV10QJKi-cy21tc59m2lY6BOvrIvcVFV9Ck39HZojklJk--TY6eIiFcgyZRObeJ-l0qXoIrQWngAiqMKO4-h8Ir7DbKzuzEfAmD-FBz1TZXqdaj2AjNI_h7qzfi38CZo8hJWcLKosZkw3wK2woUc5WLTuL6xWBIcVki3V-Amtrtj-fc8JPz5bnZw27CLRmxxwxeQpditryFE5uRbBbsNm0TdgG5ndTVwdrC8RYmbpSa2Q5QVfou9XSyTSBdJCdcX0tczpS48KsqzCTvA3K20R5G5XA-_GdRVfJ48bWO8OQmH5WL81aBxN4Mz7G-UibLFUT2ktqk2rsLxLDBJ51Qzn-DlWGbKZO4MMwtuuPX9-X5zf35TXcmx7PjszRwfzwBdwXUccoInMHNle_LsNLZE0r-yqqKoMftz03_gG-nSUv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS91AEB7kCNKXUntN1XYL7VO71Gx2k81DEasetNYgpYJv2-wlIJXk1HNE-tf66zqT26FIfZM8hWySZXZ2vm92Z2YB3m7nwoss9jzRXnGJEMV1InOO4OqR3wcr2yKuJ0V6eCa_nKvzFfgz5MJQWOVgE1tD7RtHa-QfhcILLSm66lUfFnG6P92Z_eJ0ghTttA7HaXQqchx-36D7Nv90tI9j_U6I6cH3vUPenzDAXZKpBc91iYibeu9Lgb6Ht6KUmbJ5hbdZotKK6EHphXOprWzq40TbUodgfZWlvqRCTGj-VzPyiiaw-vmgOP02unuIjHIMoEQe36fsdIl7CLQZp_AIqjejuPoXFm9x3Vv7tC38TR_Bw563st1O0dZhJdSPYe2k35l_AmaXIUFnMyqS2aYe4FfYULCcLRp20a5eBIaEk82W2QqsqdheUXBCU8_mPy9qdhloBY854vUUyNTqzlM4uxfRPoNJ3dThBTC_HbsqWJsh4srY5Voj5wm6RE-ukk7GEcSD7IzrK5vTARuXZlmTmeRtUN6mlbdREbwf35l1dT3ubL05DInp5_jcLDUygjfjY5ydtOVS1qG5pjaxxv4iTYzgeTeU4--SJCcLqiP4MIzt8uP_78vLu_vyGtZwXpivR8XxBjwQrYpReOYmTBZX12ELKdTCvup1lcGP-54efwFreirB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+preprocessing+approach+to+improve+the+performance+of+CNN-based+skin+lesion+classification&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zanddizari+Hadi&rft.au=Nguyen%2C+Nam&rft.au=Zeinali+Behnam&rft.au=Morris%2C+Chang+J&rft.date=2021-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=59&rft.issue=5&rft.spage=1123&rft.epage=1131&rft_id=info:doi/10.1007%2Fs11517-021-02355-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |