Reconstructing computational system dynamics from neural data with recurrent neural networks
Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay...
Saved in:
Published in | Nature reviews. Neuroscience Vol. 24; no. 11; pp. 693 - 710 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.
The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience. |
---|---|
AbstractList | Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges. Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience. Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges. Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges. The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience. |
Author | Koppe, Georgia Durstewitz, Daniel Thurm, Max Ingo |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-9340-3786 surname: Durstewitz fullname: Durstewitz, Daniel email: daniel.durstewitz@zi-mannheim.de organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Interdisciplinary Center for Scientific Computing, Heidelberg University, Faculty of Physics and Astronomy, Heidelberg University – sequence: 2 givenname: Georgia orcidid: 0000-0003-2941-9238 surname: Koppe fullname: Koppe, Georgia organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University – sequence: 3 givenname: Max Ingo surname: Thurm fullname: Thurm, Max Ingo organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37794121$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoOs6K76BzxIwYuXatIkm_Yoi18gCKLgQQhpOl2rbbImKcv-e-PWVdiDhzAJ87yTmXknaGSsAYSOCT4nmOYXnhGe0xRn8WDBcCp20JgwQeKT5aPfO33ZRxPv3zEmUyKme2ifClEwkpExen0EbY0PrtehMfNE227RBxUaa1Sb-JUP0CXVyqiu0T6pne0SA72LuUoFlSyb8JY40L1zYMImZSAsrfvwh2i3Vq2Ho594gJ6vr55mt-n9w83d7PI-1VTwkBZcVXktslLwWlFKQPA4F9S8pKqsCg0lL3DJNCtLUheFykBgpiioHKspzTg9QGdD3YWznz34ILvGa2hbZcD2Xma5iBjOGIvo6Rb6bnsXZ11TOZ8SKr6pkx-qLzuo5MI1nXIrudlbBLIB0M5676D-RQiW3-bIwRwZzZFrc6SIonxLpJth1cGppv1fSgepj_-YObi_tv9RfQGdLqSi |
CitedBy_id | crossref_primary_10_1038_s41592_024_02581_3 crossref_primary_10_1016_j_chaos_2024_115818 crossref_primary_10_1002_kjm2_12901 crossref_primary_10_1109_ACCESS_2024_3370431 crossref_primary_10_3390_electronics12244925 crossref_primary_10_1038_s41586_024_07915_x crossref_primary_10_1089_ains_2024_0001 crossref_primary_10_1016_j_neuron_2024_11_008 crossref_primary_10_1103_PhysRevX_15_011005 crossref_primary_10_3390_electronics13163233 crossref_primary_10_1109_JBHI_2024_3509959 crossref_primary_10_1371_journal_pcbi_1012457 crossref_primary_10_1016_j_mee_2024_112240 crossref_primary_10_3390_e26100823 crossref_primary_10_3390_s24041245 crossref_primary_10_1016_j_plrev_2024_02_009 crossref_primary_10_1109_TSG_2024_3401227 crossref_primary_10_1162_neco_a_01681 crossref_primary_10_1016_j_isci_2024_110545 crossref_primary_10_1007_s00115_024_01770_x crossref_primary_10_1111_ejn_70064 crossref_primary_10_1109_JLT_2024_3429490 crossref_primary_10_1371_journal_pcbi_1011852 crossref_primary_10_1007_s10845_024_02532_x crossref_primary_10_1016_j_est_2025_115908 crossref_primary_10_2197_ipsjjip_33_21 crossref_primary_10_1016_j_neunet_2024_107079 crossref_primary_10_1515_nleng_2024_0045 crossref_primary_10_4018_IJICTE_349899 crossref_primary_10_1039_D4TA07127A |
Cites_doi | 10.1162/089976603765202622 10.1371/journal.pcbi.1008621 10.1016/j.neuron.2020.05.020 10.1016/j.neuron.2018.07.003 10.1088/1742-6596/22/1/002 10.1093/brain/awu133 10.1038/s41467-023-36583-0 10.1006/jcss.1995.1013 10.1073/pnas.93.23.13339 10.1523/JNEUROSCI.13-08-03406.1993 10.1016/j.neuron.2022.12.016 10.1038/s41592-022-01675-0 10.1016/j.neuron.2009.07.018 10.1126/sciadv.1602614 10.1023/A:1008925309027 10.1126/science.1226518 10.1038/s41593-020-00733-0 10.1162/neco.1997.9.8.1735 10.1103/PhysRevLett.72.3811 10.1109/72.392253 10.1016/S0893-6080(98)00098-7 10.1371/journal.pcbi.1005542 10.1038/323533a0 10.1038/nn.4042 10.1038/s41467-022-35115-6 10.1073/pnas.1517384113 10.1152/jn.90941.2008 10.3758/s13415-011-0068-4 10.1016/j.neuron.2016.02.009 10.1063/5.0066013 10.1016/j.conb.2021.08.002 10.1016/S0896-6273(02)01092-9 10.1162/neco.1989.1.2.270 10.1038/s41467-018-07210-0 10.1126/science.1179867 10.1073/pnas.79.8.2554 10.1016/j.jcp.2018.10.045 10.7554/eLife.77907 10.1038/s41593-018-0310-2 10.1016/j.neunet.2021.11.022 10.1162/neco_a_01094 10.1162/neco.1991.3.2.179 10.1207/s15516709cog1402_1 10.1152/jn.1989.61.2.331 10.1137/090749761 10.1126/science.1104171 10.1007/BF01053745 10.1016/S0893-6080(02)00049-7 10.1038/s41467-023-35822-8 10.1038/s41586-021-04268-7 10.1038/s42256-021-00302-5 10.12688/f1000research.7698.1 10.1073/pnas.1906995116 10.1016/j.neunet.2009.07.016 10.1146/annurev-neuro-092619-094115 10.1371/journal.pcbi.1004792 10.1098/rstb.2016.0161 10.1073/pnas.0901621106 10.1523/JNEUROSCI.2588-20.2021 10.1016/j.neuron.2018.01.004 10.1038/s41593-021-00997-0 10.1038/s42256-021-00321-2 10.1038/nature09086 10.1088/1742-6596/22/1/014 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.neuron.2008.09.034 10.1523/JNEUROSCI.16-06-02112.1996 10.1063/1.5128372 10.1016/S0960-9822(01)00581-4 10.1073/pnas.2005993117 10.1038/s41467-021-23479-0 10.1063/1.1350440 10.1162/NECO_a_00953 10.1038/s41593-017-0028-6 10.1162/089976600300015619 10.1038/s41593-021-00980-9 10.1016/j.neuron.2007.03.017 10.1016/j.conb.2018.04.007 10.1103/PhysRevLett.120.024102 10.1162/089976602760407955 10.1093/cercor/bhk044 10.1063/5.0056425 10.1103/PhysRevResearch.4.L032014 10.1016/S1053-8119(03)00202-7 10.1007/s10827-009-0179-x 10.1371/journal.pcbi.1002385 10.1038/81460 10.1073/pnas.2023832118 10.1007/BF02551274 10.1038/nature09319 10.1016/j.neuron.2010.03.029 10.7554/eLife.19428 10.1016/j.conb.2021.10.014 10.1038/s41583-022-00634-0 10.1016/0304-3975(94)00147-B 10.1085/jgp.201110668 10.1523/JNEUROSCI.19-21-09587.1999 10.1038/s41593-022-01088-4 10.1016/j.apenergy.2017.12.051 10.1126/science.1091277 10.1016/0304-3975(94)90229-1 10.1038/s41592-018-0109-9 10.1142/S0218127404010345 10.1371/journal.pcbi.1007263 10.1063/5.0131787 10.1016/j.cell.2022.11.027 10.1126/science.274.5293.1724 10.1038/nature12742 10.1093/cercor/bhs104 10.1162/NECO_a_00058 10.1016/j.neuron.2017.03.002 10.1371/journal.pcbi.1008591 10.1063/1.166094 10.1126/science.283.5400.381 10.1143/PTPS.161.68 10.1016/S0893-6080(05)80125-X 10.1016/j.conb.2014.10.012 10.1152/jn.1973.36.1.61 10.1038/s41467-022-33581-6 10.1371/journal.pcbi.1004209 10.1126/science.267326 10.1016/j.neunet.2020.02.016 10.1523/JNEUROSCI.23-12-05342.2003 10.3109/0954898X.2012.677095 10.1109/72.279181 10.1016/0893-6080(88)90007-X 10.1073/pnas.91.22.10380 10.1038/s42256-022-00575-4 10.1038/s41593-023-01293-9 10.1016/j.neuron.2017.05.025 10.1109/TBME.2004.827072 10.1523/JNEUROSCI.16-16-05154.1996 10.1038/383621a0 10.1093/cercor/7.3.237 10.1016/S0896-6273(00)81155-1 10.1073/pnas.97.4.1867 10.1016/j.neuron.2019.06.012 10.1016/0893-6080(89)90020-8 10.1063/5.0149673 10.1038/s41592-019-0644-z 10.1152/jn.00698.2016 10.1016/S0006-3495(72)86068-5 10.1098/rstb.2012.0460 10.1126/science.abf4588 10.1126/science.290.5500.2319 10.1162/089976604323057443 10.1162/089976698300017917 10.1162/NECO_a_00409 10.1038/s41593-022-01230-2 10.1126/science.1127647 10.1016/j.neuron.2018.05.020 10.1073/pnas.1114415109 10.1016/j.neuron.2015.04.014 10.1016/j.neunet.2016.04.001 10.1137/21M1401243 10.1038/s41586-022-05293-w 10.1371/journal.pcbi.1006309 10.1088/1367-2630/abeb90 10.21105/joss.03994 10.48550/arXiv.1409.0473 10.3115/v1/W14-4012 10.48550/arXiv.2306.01187 10.48550/arXiv.2302.03358 10.1017/CBO9781139941433.007 10.1101/2022.08.15.503870 10.48550/arXiv.2304.12865 10.48550/arXiv.2001.04385 10.1017/CBO9780511755798 10.48550/arXiv.2302.11101 10.1007/978-1-4614-7218-6 10.1007/978-1-4613-0003-8 10.7551/mitpress/2526.001.0001 10.1007/b97589 10.1007/978-3-319-59976-2 10.3389/fncom.2020.00071 10.1201/9780429399640 10.48550/arXiv.1412.3555 10.48550/arXiv.2303.08774 10.1101/2022.07.21.500962 10.48550/arXiv.2006.08973 10.1007/978-3-642-00616-6_3 10.1109/ICMLA.2019.00015 10.1007/978-1-4614-9602-1 10.7551/mitpress/1120.003.0080 10.1109/ISCAS.2019.8702137 10.1098/rspa.2017.0844 10.48550/arXiv.2201.05136 10.1007/BFb0091924 10.1016/B978-0-12-407815-4.00002-7 10.1111/j.2517-6161.1996.tb02080.x 10.1109/ISCAS.1992.230622 10.1007/978-0-387-84858-7 10.1109/ITSC.2017.8317943 10.48550/arXiv.2006.02427 10.48550/arXiv.2004.02172 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Springer Nature Limited. |
Copyright_xml | – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U RC3 7X8 |
DOI | 10.1038/s41583-023-00740-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1471-0048 1469-3178 |
EndPage | 710 |
ExternalDocumentID | 37794121 10_1038_s41583_023_00740_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABIVO ABJNI ABLJU ABNNU ABUWG ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AFBBN AFKRA AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBS EE. EJD EMB EMK EMOBN EPL EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ITC L-9 M1P M2M M7P N9A NAPCQ NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO PSYQQ Q2X RIG RNR RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT AETEA CGR CUY CVF ECM EIF NPM 7QG 7QP 7QR 7TK 7TM 7XB 8FD 8FE 8FH 8FK FR3 K9. LK8 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c375t-95ad8f72b75fa331e75583ef5b3abd9ceb590b4c4bb1f99a2e704a3ea80a63253 |
IEDL.DBID | 7X7 |
ISSN | 1471-003X 1471-0048 |
IngestDate | Fri Jul 11 02:38:12 EDT 2025 Sat Aug 23 14:25:11 EDT 2025 Thu Apr 03 07:05:38 EDT 2025 Tue Jul 01 00:42:08 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Fri Feb 21 02:38:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2023. Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-95ad8f72b75fa331e75583ef5b3abd9ceb590b4c4bb1f99a2e704a3ea80a63253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9340-3786 0000-0003-2941-9238 |
PMID | 37794121 |
PQID | 2878561374 |
PQPubID | 44265 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2873250244 proquest_journals_2878561374 pubmed_primary_37794121 crossref_primary_10_1038_s41583_023_00740_7 crossref_citationtrail_10_1038_s41583_023_00740_7 springer_journals_10_1038_s41583_023_00740_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Neuroscience |
PublicationTitleAbbrev | Nat. Rev. Neurosci |
PublicationTitleAlternate | Nat Rev Neurosci |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tenenbaum, Silva, Langford (CR114) 2000; 290 Hopfield (CR9) 1982; 79 Seleznev, Mukhin, Gavrilov, Loskutov, Feigin (CR133) 2019; 29 CR161 CR159 Zipser (CR71) 1991; 3 CR157 CR158 CR155 Funahashi, Bruce, Goldman-Rakic (CR47) 1989; 61 CR153 CR154 van Vreeswijk, Sompolinsky (CR244) 1996; 274 Spitmaan, Seo, Lee, Soltani (CR242) 2020; 117 Marder, Goeritz, Otopalik (CR59) 2015; 31 Lusch, Kutz, Brunton (CR156) 2018; 9 Elman (CR72) 1990; 14 Storace, De Feo (CR120) 2005; 22 Lindén, Petersen, Vestergaard, Berg (CR60) 2022; 610 Branicky (CR19) 1995; 138 Rajalingham, Piccato, Jazayeri (CR79) 2022; 13 Gallego, Perich, Miller, Solla (CR219) 2017; 94 Rahman, Srikumar, Smith (CR203) 2018; 212 Miller (CR13) 2016; 5 CR171 CR172 CR170 Hyman, Whitman, Emberly, Woodward, Seamans (CR249) 2013; 23 Marder, Bucher (CR58) 2001; 11 Hochreiter, Schmidhuber (CR137) 1997; 9 Brunel (CR2) 2000; 8 Wang (CR52) 2008; 60 CR169 CR166 Raissi, Perdikaris, Karniadakis (CR184) 2019; 378 Siegelmann, Sontag (CR21) 1995; 50 Smith, Brown (CR103) 2003; 15 Sauer, Yorke, Casdagli (CR112) 1991; 65 CR141 CR138 CR136 Gelbrecht, Boers, Kurths (CR182) 2021; 23 Bhalla, Iyengar (CR22) 1999; 283 CR134 CR131 Albantakis, Deco (CR51) 2009; 106 Wilson, Cowan (CR18) 1972; 12 Wood (CR205) 2010; 466 De Feo, Storace (CR186) 2005; 22 CR139 Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (CR248) 2004; 51 Friston, Harrison, Penny (CR127) 2003; 19 Wang (CR15) 1999; 19 Goel, Buonomano (CR8) 2014; 369 Platt, Wong, Clark, Penny, Abarbanel (CR164) 2021; 31 Tanaka, Matsumori, Yoshida, Aihara (CR243) 2022; 4 Vyas, Golub, Sussillo, Shenoy (CR46) 2020; 43 CR151 CR152 Seung, Lee, Reis, Tank (CR55) 2000; 26 CR150 Chaisangmongkon, Swaminathan, Freedman, Wang (CR78) 2017; 93 Bhalla, Iyengar (CR23) 2001; 11 CR148 CR149 CR146 CR147 CR144 CR145 CR143 Rudy, Brunton, Proctor, Kutz (CR185) 2017; 3 Trischler, D’Eleuterio (CR126) 2016; 80 Zhang (CR57) 1996; 16 Sauer (CR226) 1994; 72 Koppe, Toutounji, Kirsch, Lis, Durstewitz (CR39) 2019; 15 Paulk (CR29) 2022; 25 CR115 CR236 Vogt (CR32) 2019; 16 CR116 CR237 CR113 CR235 CR111 CR233 CR110 Abarbanel, Creveling, Farsian, Kostuk (CR162) 2009; 8 CR119 Voss, Timmer, Kurths (CR167) 2004; 14 Feulner, Clopath (CR225) 2021; 17 Mai, Sommer, Hauber (CR230) 2012; 12 Bengio, Simard, Frasconi (CR140) 1994; 5 Urai, Doiron, Leifer, Churchland (CR31) 2022; 25 Wang (CR16) 2002; 36 Roxin, Brunel, Hansel (CR68) 2006; 161 CR130 CR123 Kopell, Ermentrout, Whittington, Traub (CR67) 2000; 97 Sussillo, Churchland, Kaufman, Shenoy (CR84) 2015; 18 Shimazaki, Amari, Brown, Grün (CR232) 2012; 8 CR17 Mackey, Glass (CR26) 1977; 197 Botvinick-Greenhouse, Martin, Yang (CR168) 2023; 33 CR14 CR10 CR215 Russo (CR231) 2021; 41 CR212 CR213 Galgali, Sahani, Mante (CR208) 2023; 26 Maass, Natschläger, Markram (CR176) 2002; 14 Hornik, Stinchcombe, White (CR118) 1989; 2 Fusi, Asaad, Miller, Wang (CR240) 2007; 54 Durstewitz, Seamans (CR25) 2002; 15 Gardner (CR53) 2022; 602 Russo (CR61) 2018; 97 Sussillo, Abbott (CR75) 2009; 63 Song, Yang, Wang (CR83) 2016; 12 CR105 Nakahara, Doya (CR209) 1998; 10 Steinmetz (CR30) 2021; 372 CR100 Geneva, Zabaras (CR192) 2022; 146 Remington, Narain, Hosseini, Jazayeri (CR80) 2018; 98 Chen, Chen (CR121) 1995; 6 CR108 Jirsa, Stacey, Quilichini, Ivanov, Bernard (CR238) 2014; 137 CR109 CR107 Durstewitz, Gabriel (CR24) 2007; 17 Lorenz (CR247) 1963; 20 CR38 CR37 CR36 Allen, Stevens (CR197) 1994; 91 Hinton, Salakhutdinov (CR194) 2006; 313 Brunton, Proctor, Kutz (CR33) 2016; 113 Beiran, Meirhaeghe, Sohn, Jazayeri, Ostojic (CR76) 2023; 111 Durstewitz (CR5) 2003; 23 Brunton, Budišić, Kaiser, Kutz (CR211) 2022; 64 CR49 Yang, Joglekar, Song, Newsome, Wang (CR85) 2019; 22 Seung (CR54) 1996; 93 Pillow, Ahmadian, Paninski (CR102) 2011; 23 Sani, Abbaspourazad, Wong, Pesaran, Shanechi (CR128) 2021; 24 CR45 CR44 CR43 CR204 Yu (CR129) 2009; 102 CR201 CR202 CR40 CR200 Koiran, Cosnard, Garzon (CR20) 1994; 132 Sussillo, Barak (CR210) 2013; 25 Altan, Solla, Miller, Perreault (CR217) 2021; 17 CR207 Sauer (CR227) 1995; 5 Mastrogiuseppe, Ostojic (CR90) 2018; 99 Buesing, Macke, Sahani (CR98) 2012; 23 CR206 Paninski (CR101) 2010; 29 Goudar, Peysakhovich, Freedman, Buffalo, Wang (CR87) 2023; 26 Johnston, Fusi (CR88) 2023; 14 Champion, Lusch, Kutz, Brunton (CR34) 2019; 116 Vlachas (CR135) 2020; 126 Ecker (CR229) 2010; 327 Werbos (CR142) 1988; 1 Clopath, Bonhoeffer, Hübener, Rose (CR228) 2017; 372 Williams, Zipser (CR160) 1989; 1 Zhao, Park (CR198) 2017; 29 Amit, Brunel (CR1) 1997; 7 Tibshirani (CR187) 1996; 58 Jaeger, Haas (CR175) 2004; 304 Paninski, Cunningham (CR42) 2018; 50 Whiteway, Butts (CR96) 2016; 117 Miller, Erickson, Desimone (CR50) 1996; 16 Verzelli, Alippi, Livi (CR165) 2021; 31 Lu, Jin, Pang, Zhang, Karniadakis (CR125) 2021; 3 Ghahramani, Hinton (CR104) 2000; 12 Reinbold, Kageorge, Schatz, Grigoriev (CR216) 2021; 12 Russo, Durstewitz (CR241) 2017; 6 Hyman, Ma, Balaguer-Ballester, Durstewitz, Seamans (CR222) 2012; 109 Durstewitz, Huys, Koppe (CR6) 2021; 6 Machado, Kauvar, Deisseroth (CR28) 2022; 23 Roach, Churchland, Engel (CR81) 2023; 14 Kim, Lu, Nozari, Pappas, Bassett (CR234) 2021; 3 Patel, Ott (CR178) 2023; 33 Durstewitz, Vittoz, Floresco, Seamans (CR65) 2010; 66 Fuster (CR48) 1973; 36 CR77 CR73 CR199 Sadeh, Clopath (CR224) 2022; 11 Karlsson, Tervo, Karpova (CR66) 2012; 338 Floryan, Graham (CR214) 2022; 4 Bertschinger, Natschläger (CR174) 2004; 16 Kaptanoglu (CR173) 2022; 7 CR4 Landau, Sompolinsky (CR63) 2018; 14 Zipser, Kehoe, Littlewort, Fuster (CR70) 1993; 13 Sherman (CR27) 2011; 138 Durstewitz (CR35) 2017; 13 Durstewitz (CR246) 2009; 22 Nair (CR106) 2023; 186 CR86 Rumelhart, Hinton, Williams (CR74) 1986; 323 Abarbanel, Rozdeba, Shirman (CR180) 2018; 30 Mante, Sussillo, Shenoy, Newsome (CR12) 2013; 503 Sohn, Narain, Meirhaeghe, Jazayeri (CR82) 2019; 103 Cybenko (CR117) 1989; 2 Pereira-Obilinovic, Aljadeff, Brunel (CR245) 2023; 13 CR183 Rajan, Harvey, Tank (CR93) 2016; 90 Jazayeri, Ostojic (CR220) 2021; 70 Funahashi, Nakamura (CR122) 1993; 6 CR181 Duncker, Sahani (CR218) 2021; 70 Pandarinath (CR41) 2018; 15 London, Roth, Beeren, Häusser, Latham (CR64) 2010; 466 CR99 CR97 Kimura, Nakano (CR124) 1998; 11 Carnevale, de Lafuente, Romo, Barak, Parga (CR3) 2015; 86 CR177 CR94 CR92 Traub, Whittington, Stanford, Jefferys (CR69) 1996; 383 CR91 Keshtkaran (CR95) 2022; 19 Russo (CR62) 2020; 107 Pathak, Hunt, Grivan, Lu, Ott (CR132) 2018; 120 Dubreuil, Valente, Beiran, Mastrogiuseppe, Ostojic (CR89) 2022; 25 Durstewitz, Seamans, Sejnowski (CR7) 2000; 3 CR195 Melbaum (CR221) 2022; 13 CR196 CR193 Abarbanel, Creveling, Jeanne (CR163) 2008; 77 CR191 CR190 Kossio, Goedeke, Klos, Memmesheimer (CR223) 2021; 118 CR188 CR189 Machens, Romo, Brody (CR11) 2005; 307 Wang, Narain, Hosseini, Jazayeri (CR56) 2018; 21 Raissi (CR179) 2018; 19 Naze, Bernard, Jirsa (CR239) 2015; 11 HDI Abarbanel (740_CR163) 2008; 77 HS Seung (740_CR55) 2000; 26 Y Bengio (740_CR140) 1994; 5 G Schalk (740_CR248) 2004; 51 M Jazayeri (740_CR220) 2021; 70 MS Branicky (740_CR19) 1995; 138 AR Galgali (740_CR208) 2023; 26 740_CR169 740_CR166 K Champion (740_CR34) 2019; 116 HU Voss (740_CR167) 2004; 14 YFK Kossio (740_CR223) 2021; 118 DJ Amit (740_CR1) 1997; 7 H Sohn (740_CR82) 2019; 103 740_CR86 L Paninski (740_CR101) 2010; 29 740_CR161 740_CR170 S Hochreiter (740_CR137) 1997; 9 EN Lorenz (740_CR247) 1963; 20 AC Smith (740_CR103) 2003; 15 740_CR73 PJ Werbos (740_CR142) 1988; 1 G Koppe (740_CR39) 2019; 15 JW Pillow (740_CR102) 2011; 23 M Raissi (740_CR179) 2018; 19 740_CR177 BM Yu (740_CR129) 2009; 102 740_CR77 740_CR171 740_CR172 J Pathak (740_CR132) 2018; 120 740_CR181 US Bhalla (740_CR22) 1999; 283 AC Paulk (740_CR29) 2022; 25 L Buesing (740_CR98) 2012; 23 R Tibshirani (740_CR187) 1996; 58 P Verzelli (740_CR165) 2021; 31 H Nakahara (740_CR209) 1998; 10 MC Mackey (740_CR26) 1977; 197 WJ Johnston (740_CR88) 2023; 14 E Marder (740_CR59) 2015; 31 H Jaeger (740_CR175) 2004; 304 JA Gallego (740_CR219) 2017; 94 SL Brunton (740_CR33) 2016; 113 740_CR188 B Feulner (740_CR225) 2021; 17 740_CR189 740_CR183 E Altan (740_CR217) 2021; 17 740_CR191 A Roxin (740_CR68) 2006; 161 HF Song (740_CR83) 2016; 12 740_CR190 740_CR49 VK Jirsa (740_CR238) 2014; 137 J Wang (740_CR56) 2018; 21 V Goudar (740_CR87) 2023; 26 M Beiran (740_CR76) 2023; 111 L Lu (740_CR125) 2021; 3 ED Remington (740_CR80) 2018; 98 HDI Abarbanel (740_CR180) 2018; 30 740_CR199 G Tanaka (740_CR243) 2022; 4 740_CR195 740_CR196 740_CR193 V Mante (740_CR12) 2013; 503 T Sauer (740_CR112) 1991; 65 GE Hinton (740_CR194) 2006; 313 A Rahman (740_CR203) 2018; 212 H Siegelmann (740_CR21) 1995; 50 740_CR123 D Sussillo (740_CR210) 2013; 25 JJ Hopfield (740_CR9) 1982; 79 CK Machens (740_CR11) 2005; 307 D Zipser (740_CR71) 1991; 3 B Lusch (740_CR156) 2018; 9 D Durstewitz (740_CR6) 2021; 6 740_CR139 S Melbaum (740_CR221) 2022; 13 T Sauer (740_CR227) 1995; 5 740_CR138 740_CR136 740_CR134 740_CR131 740_CR130 E Russo (740_CR231) 2021; 41 DE Rumelhart (740_CR74) 1986; 323 X-J Wang (740_CR52) 2008; 60 GR Yang (740_CR85) 2019; 22 Y Zhao (740_CR198) 2017; 29 SH Rudy (740_CR185) 2017; 3 D Durstewitz (740_CR35) 2017; 13 AA Russo (740_CR62) 2020; 107 PAK Reinbold (740_CR216) 2021; 12 740_CR148 740_CR149 740_CR146 740_CR147 740_CR144 RJ Gardner (740_CR53) 2022; 602 740_CR145 RJ Williams (740_CR160) 1989; 1 740_CR143 K Hornik (740_CR118) 1989; 2 740_CR141 C van Vreeswijk (740_CR244) 1996; 274 F Mastrogiuseppe (740_CR90) 2018; 99 L Albantakis (740_CR51) 2009; 106 N Vogt (740_CR32) 2019; 16 P Koiran (740_CR20) 1994; 132 C Allen (740_CR197) 1994; 91 740_CR94 740_CR92 A Sherman (740_CR27) 2011; 138 740_CR91 MR Whiteway (740_CR96) 2016; 117 740_CR159 740_CR157 740_CR158 O De Feo (740_CR186) 2005; 22 740_CR155 740_CR153 740_CR154 740_CR99 740_CR151 740_CR152 740_CR97 740_CR150 H Lindén (740_CR60) 2022; 610 M Kimura (740_CR124) 1998; 11 E Russo (740_CR241) 2017; 6 F Carnevale (740_CR3) 2015; 86 MR Keshtkaran (740_CR95) 2022; 19 P Miller (740_CR13) 2016; 5 D Sussillo (740_CR75) 2009; 63 740_CR207 NA Steinmetz (740_CR30) 2021; 372 740_CR206 JZ Kim (740_CR234) 2021; 3 740_CR204 740_CR201 740_CR202 M Gelbrecht (740_CR182) 2021; 23 740_CR200 AE Urai (740_CR31) 2022; 25 C Clopath (740_CR228) 2017; 372 N Geneva (740_CR192) 2022; 146 MP Karlsson (740_CR66) 2012; 338 740_CR215 740_CR212 740_CR213 H Shimazaki (740_CR232) 2012; 8 J Fuster (740_CR48) 1973; 36 T Sauer (740_CR226) 1994; 72 L Duncker (740_CR218) 2021; 70 W Maass (740_CR176) 2002; 14 AP Trischler (740_CR126) 2016; 80 740_CR108 740_CR109 740_CR107 SL Brunton (740_CR211) 2022; 64 740_CR105 740_CR100 A Goel (740_CR8) 2014; 369 740_CR4 N Kopell (740_CR67) 2000; 97 G Cybenko (740_CR117) 1989; 2 D Durstewitz (740_CR7) 2000; 3 M London (740_CR64) 2010; 466 W Chaisangmongkon (740_CR78) 2017; 93 K Rajan (740_CR93) 2016; 90 D Zipser (740_CR70) 1993; 13 S Vyas (740_CR46) 2020; 43 740_CR119 EK Miller (740_CR50) 1996; 16 740_CR115 740_CR236 X-J Wang (740_CR16) 2002; 36 740_CR116 740_CR237 TA Machado (740_CR28) 2022; 23 740_CR113 740_CR235 740_CR111 740_CR233 740_CR110 M Raissi (740_CR184) 2019; 378 D Durstewitz (740_CR5) 2003; 23 B Mai (740_CR230) 2012; 12 JM Hyman (740_CR222) 2012; 109 AA Russo (740_CR61) 2018; 97 740_CR38 S Naze (740_CR239) 2015; 11 D Durstewitz (740_CR246) 2009; 22 RD Traub (740_CR69) 1996; 383 740_CR40 X-J Wang (740_CR15) 1999; 19 OG Sani (740_CR128) 2021; 24 AS Ecker (740_CR229) 2010; 327 740_CR45 U Pereira-Obilinovic (740_CR245) 2023; 13 740_CR44 740_CR43 K Zhang (740_CR57) 1996; 16 HR Wilson (740_CR18) 1972; 12 R Rajalingham (740_CR79) 2022; 13 A Nair (740_CR106) 2023; 186 HDI Abarbanel (740_CR162) 2009; 8 M Spitmaan (740_CR242) 2020; 117 US Bhalla (740_CR23) 2001; 11 ID Landau (740_CR63) 2018; 14 S Funahashi (740_CR47) 1989; 61 L Paninski (740_CR42) 2018; 50 PR Vlachas (740_CR135) 2020; 126 N Brunel (740_CR2) 2000; 8 AA Kaptanoglu (740_CR173) 2022; 7 D Durstewitz (740_CR25) 2002; 15 740_CR37 SN Wood (740_CR205) 2010; 466 740_CR36 KJ Friston (740_CR127) 2003; 19 J Botvinick-Greenhouse (740_CR168) 2023; 33 D Sussillo (740_CR84) 2015; 18 D Patel (740_CR178) 2023; 33 N Bertschinger (740_CR174) 2004; 16 JM Hyman (740_CR249) 2013; 23 740_CR17 M Storace (740_CR120) 2005; 22 D Durstewitz (740_CR65) 2010; 66 JA Platt (740_CR164) 2021; 31 S Sadeh (740_CR224) 2022; 11 A Dubreuil (740_CR89) 2022; 25 A Seleznev (740_CR133) 2019; 29 JP Roach (740_CR81) 2023; 14 C Pandarinath (740_CR41) 2018; 15 E Marder (740_CR58) 2001; 11 KI Funahashi (740_CR122) 1993; 6 T Chen (740_CR121) 1995; 6 D Durstewitz (740_CR24) 2007; 17 HS Seung (740_CR54) 1996; 93 D Floryan (740_CR214) 2022; 4 JL Elman (740_CR72) 1990; 14 JB Tenenbaum (740_CR114) 2000; 290 Z Ghahramani (740_CR104) 2000; 12 740_CR14 740_CR10 S Fusi (740_CR240) 2007; 54 |
References_xml | – ident: CR45 – volume: 15 start-page: 965 year: 2003 end-page: 991 ident: CR103 article-title: Estimating a state-space model from point process observations publication-title: Neural Comput. doi: 10.1162/089976603765202622 – ident: CR150 – ident: CR97 – ident: CR196 – ident: CR115 – ident: CR138 – volume: 17 year: 2021 ident: CR225 article-title: Neural manifold under plasticity in a goal driven learning behaviour publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008621 – volume: 107 start-page: 745 year: 2020 end-page: 758.e6 ident: CR62 article-title: Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation publication-title: Neuron doi: 10.1016/j.neuron.2020.05.020 – ident: CR201 – volume: 99 start-page: 609 year: 2018 end-page: 623.e29 ident: CR90 article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – volume: 22 start-page: 002 year: 2005 ident: CR186 article-title: PWL approximation of nonlinear dynamical systems, part II: identification issues publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/22/1/002 – volume: 137 start-page: 2210 year: 2014 end-page: 2230 ident: CR238 article-title: On the nature of seizure dynamics publication-title: Brain doi: 10.1093/brain/awu133 – ident: CR144 – ident: CR235 – volume: 14 year: 2023 ident: CR88 article-title: Abstract representations emerge naturally in neural networks trained to perform multiple tasks publication-title: Nat. Commun. doi: 10.1038/s41467-023-36583-0 – ident: CR92 – ident: CR191 – volume: 50 start-page: 132 year: 1995 end-page: 150 ident: CR21 article-title: On the computational power of neural nets publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1995.1013 – volume: 93 start-page: 13339 year: 1996 end-page: 13344 ident: CR54 article-title: How the brain keeps the eyes still publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.23.13339 – volume: 13 start-page: 3406 year: 1993 ident: CR70 article-title: A spiking network model of short-term active memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.13-08-03406.1993 – ident: CR109 – ident: CR207 – volume: 111 start-page: 739 year: 2023 end-page: 753.e8 ident: CR76 article-title: Parametric control of flexible timing through low-dimensional neural manifolds publication-title: Neuron doi: 10.1016/j.neuron.2022.12.016 – ident: CR91 – volume: 19 start-page: 1572 year: 2022 end-page: 1577 ident: CR95 article-title: A large-scale neural network training framework for generalized estimation of single-trial population dynamics publication-title: Nat. Methods doi: 10.1038/s41592-022-01675-0 – volume: 63 start-page: 544 year: 2009 end-page: 557 ident: CR75 article-title: Generating coherent patterns of activity from chaotic neural networks publication-title: Neuron doi: 10.1016/j.neuron.2009.07.018 – ident: CR213 – volume: 3 year: 2017 ident: CR185 article-title: Data-driven discovery of partial differential equations publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – volume: 8 start-page: 183 year: 2000 end-page: 208 ident: CR2 article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008925309027 – volume: 338 start-page: 135 year: 2012 end-page: 139 ident: CR66 article-title: Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty publication-title: Science doi: 10.1126/science.1226518 – ident: CR190 – ident: CR10 – volume: 24 start-page: 140 year: 2021 end-page: 149 ident: CR128 article-title: Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00733-0 – volume: 77 start-page: 016208 year: 2008 ident: CR163 article-title: Estimation of parameters in nonlinear systems using balanced synchronization publication-title: Phys. Rev. – ident: CR86 – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: CR137 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 72 start-page: 3811 year: 1994 end-page: 3814 ident: CR226 article-title: Reconstruction of dynamical systems from interspike intervals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3811 – volume: 6 start-page: 911 year: 1995 end-page: 917 ident: CR121 article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.392253 – ident: CR236 – ident: CR108 – volume: 11 start-page: 1589 year: 1998 end-page: 1599 ident: CR124 article-title: Learning dynamical systems by recurrent neural networks from orbits publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00098-7 – volume: 13 year: 2017 ident: CR35 article-title: A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005542 – ident: CR44 – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: CR74 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 18 start-page: 1025 year: 2015 end-page: 1033 ident: CR84 article-title: A neural network that finds a naturalistic solution for the production of muscle activity publication-title: Nat. Neurosci. doi: 10.1038/nn.4042 – ident: CR38 – volume: 13 year: 2022 ident: CR221 article-title: Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding publication-title: Nat. Commun. doi: 10.1038/s41467-022-35115-6 – ident: CR139 – ident: CR151 – volume: 113 start-page: 3932 year: 2016 end-page: 3937 ident: CR33 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517384113 – volume: 102 start-page: 614 year: 2009 end-page: 635 ident: CR129 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: J. Neurophysiol. doi: 10.1152/jn.90941.2008 – volume: 12 start-page: 74 year: 2012 end-page: 84 ident: CR230 article-title: Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-011-0068-4 – volume: 90 start-page: 128 year: 2016 end-page: 142 ident: CR93 article-title: Recurrent network models of sequence generation and memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – volume: 31 start-page: 123118 year: 2021 ident: CR164 article-title: Robust forecasting using predictive generalized synchronization in reservoir computing publication-title: Chaos doi: 10.1063/5.0066013 – ident: CR202 – volume: 70 start-page: 113 year: 2021 end-page: 120 ident: CR220 article-title: Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.08.002 – volume: 36 start-page: 955 year: 2002 end-page: 968 ident: CR16 article-title: Probabilistic decision making by slow reverberation in cortical circuits publication-title: Neuron doi: 10.1016/S0896-6273(02)01092-9 – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: CR160 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – ident: CR145 – volume: 9 year: 2018 ident: CR156 article-title: Deep learning for universal linear embeddings of nonlinear dynamics publication-title: Nat. Commun. doi: 10.1038/s41467-018-07210-0 – volume: 327 start-page: 584 year: 2010 end-page: 587 ident: CR229 article-title: Decorrelated neuronal firing in cortical microcircuits publication-title: Science doi: 10.1126/science.1179867 – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: CR9 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – ident: CR148 – ident: CR177 – ident: CR49 – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: CR184 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 11 year: 2022 ident: CR224 article-title: Contribution of behavioural variability to representational drift publication-title: eLife doi: 10.7554/eLife.77907 – volume: 22 start-page: 297 year: 2019 end-page: 306 ident: CR85 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0310-2 – ident: CR154 – volume: 146 start-page: 272 year: 2022 end-page: 289 ident: CR192 article-title: Transformers for modeling physical systems publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.11.022 – ident: CR111 – volume: 30 start-page: 2025 year: 2018 end-page: 2055 ident: CR180 article-title: Machine learning: deepest learning as statistical data assimilation problems publication-title: Neural Comput. doi: 10.1162/neco_a_01094 – volume: 3 start-page: 179 year: 1991 end-page: 193 ident: CR71 article-title: Recurrent network model of the neural mechanism of short-term active memory publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.179 – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: CR72 article-title: Finding structure in time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – ident: CR195 – volume: 61 start-page: 331 year: 1989 end-page: 349 ident: CR47 article-title: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.1989.61.2.331 – volume: 13 start-page: 011009 year: 2023 ident: CR245 article-title: Forgetting leads to chaos in attractor networks publication-title: Phys. Rev. X – ident: CR116 – volume: 8 start-page: 1341 year: 2009 end-page: 1381 ident: CR162 article-title: Dynamical state and parameter estimation publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/090749761 – ident: CR189 – volume: 307 start-page: 1121 year: 2005 end-page: 1124 ident: CR11 article-title: Flexible control of mutual inhibition: a neural model of two-interval discrimination publication-title: Science doi: 10.1126/science.1104171 – volume: 65 start-page: 579 year: 1991 end-page: 616 ident: CR112 article-title: Embedology publication-title: J. Stat. Phys. doi: 10.1007/BF01053745 – volume: 15 start-page: 561 year: 2002 end-page: 572 ident: CR25 article-title: The computational role of dopamine D1 receptors in working memory publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00049-7 – ident: CR105 – ident: CR99 – ident: CR143 – volume: 14 year: 2023 ident: CR81 article-title: Choice selective inhibition drives stability and competition in decision circuits publication-title: Nat. Commun. doi: 10.1038/s41467-023-35822-8 – ident: CR43 – volume: 602 start-page: 123 year: 2022 end-page: 128 ident: CR53 article-title: Toroidal topology of population activity in grid cells publication-title: Nature doi: 10.1038/s41586-021-04268-7 – ident: CR14 – volume: 3 start-page: 218 year: 2021 end-page: 229 ident: CR125 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – volume: 5 start-page: F1000 year: 2016 ident: CR13 article-title: Dynamical systems, attractors, and neural circuits publication-title: F1000Res. doi: 10.12688/f1000research.7698.1 – volume: 116 start-page: 22445 year: 2019 end-page: 22451 ident: CR34 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906995116 – ident: CR37 – volume: 22 start-page: 1189 year: 2009 end-page: 1200 ident: CR246 article-title: Implications of synaptic biophysics for recurrent network dynamics and active memory publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.07.016 – volume: 43 start-page: 249 year: 2020 end-page: 275 ident: CR46 article-title: Computation through neural population dynamics publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-092619-094115 – volume: 12 year: 2016 ident: CR83 article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004792 – volume: 372 start-page: 20160161 year: 2017 ident: CR228 article-title: Variance and invariance of neuronal long-term representations publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2016.0161 – volume: 106 start-page: 10308 year: 2009 end-page: 10313 ident: CR51 article-title: The encoding of alternatives in multiple-choice decision making publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0901621106 – volume: 41 start-page: 2406 year: 2021 end-page: 2419 ident: CR231 article-title: Coordinated prefrontal state transition leads extinction of reward-seeking behaviors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2588-20.2021 – volume: 97 start-page: 953 year: 2018 end-page: 966.e8 ident: CR61 article-title: Motor cortex embeds muscle-like commands in an untangled population response publication-title: Neuron doi: 10.1016/j.neuron.2018.01.004 – ident: CR188 – volume: 25 start-page: 252 year: 2022 end-page: 263 ident: CR29 article-title: Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00997-0 – volume: 3 start-page: 316 year: 2021 end-page: 323 ident: CR234 article-title: Teaching recurrent neural networks to infer global temporal structure from local examples publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00321-2 – volume: 466 start-page: 123 year: 2010 end-page: 127 ident: CR64 article-title: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex publication-title: Nature doi: 10.1038/nature09086 – volume: 22 start-page: 208 year: 2005 ident: CR120 article-title: PWL approximation of nonlinear dynamical systems, part I: structural stability publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/22/1/014 – ident: CR161 – ident: CR149 – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: CR247 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 60 start-page: 215 year: 2008 end-page: 234 ident: CR52 article-title: Decision making in recurrent neuronal circuits publication-title: Neuron doi: 10.1016/j.neuron.2008.09.034 – volume: 16 start-page: 2112 year: 1996 end-page: 2126 ident: CR57 article-title: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-06-02112.1996 – volume: 29 start-page: 123115 year: 2019 ident: CR133 article-title: Bayesian framework for simulation of dynamical systems from multidimensional data using recurrent neural network publication-title: Chaos doi: 10.1063/1.5128372 – volume: 11 start-page: R986 year: 2001 end-page: R996 ident: CR58 article-title: Central pattern generators and the control of rhythmic movements publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00581-4 – volume: 19 start-page: 1 year: 2018 end-page: 24 ident: CR179 article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations publication-title: J. Mach. Learn. Res. – ident: CR155 – volume: 117 start-page: 22522 year: 2020 end-page: 22531 ident: CR242 article-title: Multiple timescales of neural dynamics and integration of task-relevant signals across cortex publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005993117 – volume: 12 year: 2021 ident: CR216 article-title: Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression publication-title: Nat. Commun. doi: 10.1038/s41467-021-23479-0 – volume: 11 start-page: 221 year: 2001 end-page: 226 ident: CR23 article-title: Robustness of the bistable behavior of a biological signaling feedback loop publication-title: Chaos doi: 10.1063/1.1350440 – ident: CR172 – volume: 29 start-page: 1293 year: 2017 end-page: 1316 ident: CR198 article-title: Variational latent Gaussian process for recovering single-trial dynamics from population spike trains publication-title: Neural Comput. doi: 10.1162/NECO_a_00953 – volume: 21 start-page: 102 year: 2018 end-page: 110 ident: CR56 article-title: Flexible timing by temporal scaling of cortical responses publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0028-6 – ident: CR110 – volume: 12 start-page: 831 year: 2000 end-page: 864 ident: CR104 article-title: Variational learning for switching state-space models publication-title: Neural Comput. doi: 10.1162/089976600300015619 – ident: CR166 – ident: CR237 – ident: CR183 – volume: 25 start-page: 11 year: 2022 end-page: 19 ident: CR31 article-title: Large-scale neural recordings call for new insights to link brain and behavior publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00980-9 – volume: 54 start-page: 319 year: 2007 end-page: 333 ident: CR240 article-title: A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales publication-title: Neuron doi: 10.1016/j.neuron.2007.03.017 – volume: 50 start-page: 232 year: 2018 end-page: 241 ident: CR42 article-title: Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.04.007 – volume: 120 start-page: 024102 year: 2018 ident: CR132 article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.024102 – volume: 14 start-page: 2531 year: 2002 end-page: 2560 ident: CR176 article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Comput. doi: 10.1162/089976602760407955 – ident: CR158 – volume: 17 start-page: 894 year: 2007 end-page: 908 ident: CR24 article-title: Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons publication-title: Cereb. Cortex doi: 10.1093/cercor/bhk044 – ident: CR77 – volume: 31 start-page: 083119 year: 2021 ident: CR165 article-title: Learn to synchronize, synchronize to learn publication-title: Chaos doi: 10.1063/5.0056425 – ident: CR215 – volume: 4 start-page: L032014 year: 2022 ident: CR243 article-title: Reservoir computing with diverse timescales for prediction of multiscale dynamics publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.L032014 – volume: 19 start-page: 1273 year: 2003 end-page: 1302 ident: CR127 article-title: Dynamic causal modelling publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 29 start-page: 107 year: 2010 end-page: 126 ident: CR101 article-title: A new look at state-space models for neural data publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0179-x – volume: 8 year: 2012 ident: CR232 article-title: State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002385 – volume: 3 start-page: 1184 year: 2000 end-page: 1191 ident: CR7 article-title: Neurocomputational models of working memory publication-title: Nat. Neurosci. doi: 10.1038/81460 – volume: 118 year: 2021 ident: CR223 article-title: Drifting assemblies for persistent memory: neuron transitions and unsupervised compensation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2023832118 – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: CR117 article-title: Approximation by superpositions of a sigmoidal function publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – ident: CR199 – ident: CR204 – volume: 466 start-page: 1102 year: 2010 end-page: 1104 ident: CR205 article-title: Statistical inference for noisy nonlinear ecological dynamic systems publication-title: Nature doi: 10.1038/nature09319 – volume: 66 start-page: 438 year: 2010 end-page: 448 ident: CR65 article-title: Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning publication-title: Neuron doi: 10.1016/j.neuron.2010.03.029 – ident: CR153 – volume: 6 year: 2017 ident: CR241 article-title: Cell assemblies at multiple time scales with arbitrary lag constellations publication-title: eLife doi: 10.7554/eLife.19428 – ident: CR170 – volume: 70 start-page: 163 year: 2021 end-page: 170 ident: CR218 article-title: Dynamics on the manifold: identifying computational dynamical activity from neural population recordings publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.10.014 – volume: 23 start-page: 683 year: 2022 end-page: 704 ident: CR28 article-title: Multiregion neuronal activity: the forest and the trees publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-022-00634-0 – ident: CR36 – volume: 138 start-page: 67 year: 1995 end-page: 100 ident: CR19 article-title: Universal computation and other capabilities of hybrid and continuous dynamical systems publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)00147-B – volume: 138 start-page: 13 year: 2011 end-page: 19 ident: CR27 article-title: Dynamical systems theory in physiology publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201110668 – volume: 19 start-page: 9587 year: 1999 end-page: 9603 ident: CR15 article-title: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-21-09587.1999 – ident: CR147 – volume: 25 start-page: 783 year: 2022 end-page: 794 ident: CR89 article-title: The role of population structure in computations through neural dynamics publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01088-4 – volume: 212 start-page: 372 year: 2018 end-page: 385 ident: CR203 article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.051 – ident: CR100 – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: CR175 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume: 132 start-page: 113 year: 1994 end-page: 128 ident: CR20 article-title: Computability with low-dimensional dynamical systems publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)90229-1 – volume: 15 start-page: 805 year: 2018 end-page: 815 ident: CR41 article-title: Inferring single-trial neural population dynamics using sequential auto-encoders publication-title: Nat. Methods doi: 10.1038/s41592-018-0109-9 – volume: 14 start-page: 1905 year: 2004 end-page: 1933 ident: CR167 article-title: Nonlinear dynamical system identification from uncertain and indirect measurements publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127404010345 – volume: 15 year: 2019 ident: CR39 article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007263 – ident: CR171 – volume: 33 start-page: 023143 year: 2023 ident: CR178 article-title: Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems publication-title: Chaos doi: 10.1063/5.0131787 – volume: 186 start-page: 178 year: 2023 end-page: 193.e15 ident: CR106 article-title: An approximate line attractor in the hypothalamus encodes an aggressive state publication-title: Cell doi: 10.1016/j.cell.2022.11.027 – volume: 274 start-page: 1724 year: 1996 end-page: 1726 ident: CR244 article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity publication-title: Science doi: 10.1126/science.274.5293.1724 – volume: 503 start-page: 78 year: 2013 end-page: 84 ident: CR12 article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 23 start-page: 1257 year: 2013 end-page: 1268 ident: CR249 article-title: Action and outcome activity state patterns in the anterior cingulate cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs104 – ident: CR123 – volume: 23 start-page: 1 year: 2011 end-page: 45 ident: CR102 article-title: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains publication-title: Neural Comput. doi: 10.1162/NECO_a_00058 – ident: CR94 – ident: CR233 – volume: 93 start-page: 1504 year: 2017 end-page: 1517.e4 ident: CR78 article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 17 year: 2021 ident: CR217 article-title: Estimating the dimensionality of the manifold underlying multi-electrode neural recordings publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008591 – volume: 5 start-page: 127 year: 1995 end-page: 132 ident: CR227 article-title: Interspike interval embedding of chaotic signals publication-title: Chaos doi: 10.1063/1.166094 – volume: 283 start-page: 381 year: 1999 end-page: 387 ident: CR22 article-title: Emergent properties of networks of biological signaling pathways publication-title: Science doi: 10.1126/science.283.5400.381 – volume: 161 start-page: 68 year: 2006 end-page: 85 ident: CR68 article-title: Rate models with delays and the dynamics of large networks of spiking neurons publication-title: Prog. Theor. Phys. Supp. doi: 10.1143/PTPS.161.68 – ident: CR193 – volume: 6 start-page: 801 year: 1993 end-page: 806 ident: CR122 article-title: Approximation of dynamical systems by continuous time recurrent neural networks publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80125-X – ident: CR134 – volume: 31 start-page: 156 year: 2015 end-page: 163 ident: CR59 article-title: Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.10.012 – volume: 36 start-page: 61 year: 1973 end-page: 78 ident: CR48 article-title: Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory publication-title: J. Neurophysiol. doi: 10.1152/jn.1973.36.1.61 – volume: 13 year: 2022 ident: CR79 article-title: Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task publication-title: Nat. Commun. doi: 10.1038/s41467-022-33581-6 – volume: 11 year: 2015 ident: CR239 article-title: Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004209 – volume: 197 start-page: 287 year: 1977 end-page: 289 ident: CR26 article-title: Oscillation and chaos in physiological control systems publication-title: Science doi: 10.1126/science.267326 – ident: CR159 – volume: 126 start-page: 191 year: 2020 end-page: 217 ident: CR135 article-title: Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.02.016 – volume: 23 start-page: 5342 year: 2003 end-page: 5353 ident: CR5 article-title: Self-organizing neural integrator predicts interval times through climbing activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-05342.2003 – volume: 23 start-page: 24 year: 2012 end-page: 47 ident: CR98 article-title: Learning stable, regularised latent models of neural population dynamics publication-title: Network doi: 10.3109/0954898X.2012.677095 – ident: CR4 – ident: CR131 – volume: 5 start-page: 157 year: 1994 end-page: 166 ident: CR140 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – ident: CR119 – volume: 1 start-page: 339 year: 1988 end-page: 356 ident: CR142 article-title: Generalization of backpropagation with application to a recurrent gas market model publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90007-X – volume: 91 start-page: 10380 year: 1994 end-page: 10383 ident: CR197 article-title: An evaluation of causes for unreliability of synaptic transmission publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.22.10380 – volume: 4 start-page: 1113 year: 2022 end-page: 1120 ident: CR214 article-title: Data-driven discovery of intrinsic dynamics publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00575-4 – volume: 26 start-page: 879 year: 2023 end-page: 890 ident: CR87 article-title: Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01293-9 – volume: 94 start-page: 978 year: 2017 end-page: 984 ident: CR219 article-title: Neural manifolds for the control of movement publication-title: Neuron doi: 10.1016/j.neuron.2017.05.025 – volume: 51 start-page: 1034 year: 2004 end-page: 1043 ident: CR248 article-title: BCI2000: a general-purpose brain–computer interface (BCI) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – volume: 16 start-page: 5154 year: 1996 ident: CR50 article-title: Neural mechanisms of visual working memory in prefrontal cortex of the macaque publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-16-05154.1996 – volume: 383 start-page: 621 year: 1996 end-page: 624 ident: CR69 article-title: A mechanism for generation of long-range synchronous fast oscillations in the cortex publication-title: Nature doi: 10.1038/383621a0 – volume: 7 start-page: 237 year: 1997 end-page: 252 ident: CR1 article-title: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/7.3.237 – volume: 26 start-page: 259 year: 2000 end-page: 271 ident: CR55 article-title: Stability of the memory of eye position in a recurrent network of conductance-based model neurons publication-title: Neuron doi: 10.1016/S0896-6273(00)81155-1 – volume: 97 start-page: 1867 year: 2000 end-page: 1872 ident: CR67 article-title: Gamma rhythms and beta rhythms have different synchronization properties publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.4.1867 – volume: 103 start-page: 934 year: 2019 end-page: 947.e5 ident: CR82 article-title: Bayesian computation through cortical latent dynamics publication-title: Neuron doi: 10.1016/j.neuron.2019.06.012 – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: CR118 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: CR157 – ident: CR136 – volume: 33 start-page: 063152 year: 2023 ident: CR168 article-title: Learning dynamics on invariant measures using PDE-constrained optimization publication-title: Chaos doi: 10.1063/5.0149673 – volume: 16 start-page: 1079 year: 2019 end-page: 1079 ident: CR32 article-title: Massively parallel intracellular recordings publication-title: Nat. Methods doi: 10.1038/s41592-019-0644-z – ident: CR200 – ident: CR181 – volume: 117 start-page: 919 year: 2016 end-page: 936 ident: CR96 article-title: Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings publication-title: J. Neurophysiol. doi: 10.1152/jn.00698.2016 – volume: 12 start-page: 1 year: 1972 end-page: 24 ident: CR18 article-title: Excitatory and inhibitory interactions in localized populations of model neurons publication-title: Biophys. J. doi: 10.1016/S0006-3495(72)86068-5 – volume: 369 start-page: 20120460 year: 2014 ident: CR8 article-title: Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2012.0460 – volume: 372 start-page: eabf4588 year: 2021 ident: CR30 article-title: Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings publication-title: Science doi: 10.1126/science.abf4588 – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: CR187 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. B Stat. Methodol. – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: CR114 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – ident: CR152 – ident: CR113 – volume: 16 start-page: 1413 year: 2004 end-page: 1436 ident: CR174 article-title: Real-time computation at the edge of chaos in recurrent neural networks publication-title: Neural Comput. doi: 10.1162/089976604323057443 – ident: CR40 – ident: CR169 – ident: CR146 – volume: 10 start-page: 113 year: 1998 end-page: 132 ident: CR209 article-title: Near-saddle-node bifurcation behavior as dynamics in working memory for goal-directed behavior publication-title: Neural Comput. doi: 10.1162/089976698300017917 – volume: 25 start-page: 626 year: 2013 end-page: 649 ident: CR210 article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks publication-title: Neural Comput. doi: 10.1162/NECO_a_00409 – volume: 26 start-page: 326 year: 2023 end-page: 338 ident: CR208 article-title: Residual dynamics resolves recurrent contributions to neural computation publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01230-2 – volume: 6 start-page: 865 year: 2021 end-page: 876 ident: CR6 article-title: Psychiatric illnesses as disorders of network dynamics publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – ident: CR73 – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: CR194 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – ident: CR212 – ident: CR206 – volume: 98 start-page: 1005 year: 2018 end-page: 1019.e5 ident: CR80 article-title: Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics publication-title: Neuron doi: 10.1016/j.neuron.2018.05.020 – volume: 109 start-page: 5086 year: 2012 end-page: 5091 ident: CR222 article-title: Contextual encoding by ensembles of medial prefrontal cortex neurons publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1114415109 – volume: 86 start-page: 1067 year: 2015 end-page: 1077 ident: CR3 article-title: Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty publication-title: Neuron doi: 10.1016/j.neuron.2015.04.014 – ident: CR130 – volume: 80 start-page: 67 year: 2016 end-page: 78 ident: CR126 article-title: Synthesis of recurrent neural networks for dynamical system simulation publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.04.001 – ident: CR17 – volume: 64 start-page: 229 year: 2022 end-page: 340 ident: CR211 article-title: Modern Koopman Theory for Dynamical Systems publication-title: SIAM Rev. doi: 10.1137/21M1401243 – volume: 610 start-page: 526 year: 2022 end-page: 531 ident: CR60 article-title: Movement is governed by rotational neural dynamics in spinal motor networks publication-title: Nature doi: 10.1038/s41586-022-05293-w – volume: 14 year: 2018 ident: CR63 article-title: Coherent chaos in a recurrent neural network with structured connectivity publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006309 – volume: 23 start-page: 043005 year: 2021 ident: CR182 article-title: Neural partial differential equations for chaotic systems publication-title: New J. Phys. doi: 10.1088/1367-2630/abeb90 – ident: CR107 – ident: CR141 – volume: 7 start-page: 3994 year: 2022 ident: CR173 article-title: PySINDy: a comprehensive python package for robust sparse system identification publication-title: J. Open Source Softw. doi: 10.21105/joss.03994 – volume: 117 start-page: 919 year: 2016 ident: 740_CR96 publication-title: J. Neurophysiol. doi: 10.1152/jn.00698.2016 – volume: 8 start-page: 1341 year: 2009 ident: 740_CR162 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/090749761 – volume: 23 start-page: 683 year: 2022 ident: 740_CR28 publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-022-00634-0 – volume: 8 year: 2012 ident: 740_CR232 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002385 – volume: 116 start-page: 22445 year: 2019 ident: 740_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906995116 – volume: 503 start-page: 78 year: 2013 ident: 740_CR12 publication-title: Nature doi: 10.1038/nature12742 – volume: 31 start-page: 123118 year: 2021 ident: 740_CR164 publication-title: Chaos doi: 10.1063/5.0066013 – volume: 6 start-page: 865 year: 2021 ident: 740_CR6 publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging – ident: 740_CR188 doi: 10.48550/arXiv.1409.0473 – volume: 25 start-page: 783 year: 2022 ident: 740_CR89 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01088-4 – volume: 118 year: 2021 ident: 740_CR223 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2023832118 – volume: 33 start-page: 063152 year: 2023 ident: 740_CR168 publication-title: Chaos doi: 10.1063/5.0149673 – volume: 138 start-page: 67 year: 1995 ident: 740_CR19 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)00147-B – ident: 740_CR99 – ident: 740_CR136 doi: 10.3115/v1/W14-4012 – ident: 740_CR130 – volume: 5 start-page: 157 year: 1994 ident: 740_CR140 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – ident: 740_CR169 doi: 10.48550/arXiv.2306.01187 – ident: 740_CR233 – ident: 740_CR170 doi: 10.48550/arXiv.2302.03358 – ident: 740_CR107 – volume: 197 start-page: 287 year: 1977 ident: 740_CR26 publication-title: Science doi: 10.1126/science.267326 – ident: 740_CR100 doi: 10.1017/CBO9781139941433.007 – volume: 23 start-page: 24 year: 2012 ident: 740_CR98 publication-title: Network doi: 10.3109/0954898X.2012.677095 – ident: 740_CR86 doi: 10.1101/2022.08.15.503870 – volume: 24 start-page: 140 year: 2021 ident: 740_CR128 publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00733-0 – ident: 740_CR157 doi: 10.48550/arXiv.2304.12865 – volume: 72 start-page: 3811 year: 1994 ident: 740_CR226 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3811 – volume: 63 start-page: 544 year: 2009 ident: 740_CR75 publication-title: Neuron doi: 10.1016/j.neuron.2009.07.018 – ident: 740_CR148 – ident: 740_CR171 doi: 10.48550/arXiv.2001.04385 – volume: 19 start-page: 1 year: 2018 ident: 740_CR179 publication-title: J. Mach. Learn. Res. – volume: 65 start-page: 579 year: 1991 ident: 740_CR112 publication-title: J. Stat. Phys. doi: 10.1007/BF01053745 – volume: 17 year: 2021 ident: 740_CR217 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008591 – volume: 466 start-page: 1102 year: 2010 ident: 740_CR205 publication-title: Nature doi: 10.1038/nature09319 – ident: 740_CR193 – volume: 9 year: 2018 ident: 740_CR156 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07210-0 – volume: 99 start-page: 609 year: 2018 ident: 740_CR90 publication-title: Neuron doi: 10.1016/j.neuron.2018.07.003 – ident: 740_CR111 doi: 10.1017/CBO9780511755798 – volume: 23 start-page: 1 year: 2011 ident: 740_CR102 publication-title: Neural Comput. doi: 10.1162/NECO_a_00058 – volume: 15 start-page: 965 year: 2003 ident: 740_CR103 publication-title: Neural Comput. doi: 10.1162/089976603765202622 – volume: 12 start-page: 74 year: 2012 ident: 740_CR230 publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-011-0068-4 – volume: 14 year: 2023 ident: 740_CR88 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36583-0 – volume: 3 start-page: 218 year: 2021 ident: 740_CR125 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00302-5 – volume: 26 start-page: 259 year: 2000 ident: 740_CR55 publication-title: Neuron doi: 10.1016/S0896-6273(00)81155-1 – volume: 14 year: 2018 ident: 740_CR63 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006309 – ident: 740_CR199 – volume: 18 start-page: 1025 year: 2015 ident: 740_CR84 publication-title: Nat. Neurosci. doi: 10.1038/nn.4042 – ident: 740_CR159 doi: 10.48550/arXiv.2302.11101 – volume: 80 start-page: 67 year: 2016 ident: 740_CR126 publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.04.001 – volume: 3 year: 2017 ident: 740_CR185 publication-title: Sci. Adv. doi: 10.1126/sciadv.1602614 – ident: 740_CR94 – volume: 90 start-page: 128 year: 2016 ident: 740_CR93 publication-title: Neuron doi: 10.1016/j.neuron.2016.02.009 – volume: 4 start-page: L032014 year: 2022 ident: 740_CR243 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.L032014 – ident: 740_CR154 – volume: 31 start-page: 156 year: 2015 ident: 740_CR59 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.10.012 – volume: 16 start-page: 1079 year: 2019 ident: 740_CR32 publication-title: Nat. Methods doi: 10.1038/s41592-019-0644-z – ident: 740_CR108 – volume: 17 year: 2021 ident: 740_CR225 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1008621 – ident: 740_CR181 – volume: 5 start-page: F1000 year: 2016 ident: 740_CR13 publication-title: F1000Res. doi: 10.12688/f1000research.7698.1 – volume: 11 year: 2015 ident: 740_CR239 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004209 – volume: 132 start-page: 113 year: 1994 ident: 740_CR20 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)90229-1 – volume: 11 start-page: 221 year: 2001 ident: 740_CR23 publication-title: Chaos doi: 10.1063/1.1350440 – volume: 6 start-page: 911 year: 1995 ident: 740_CR121 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.392253 – volume: 3 start-page: 1184 year: 2000 ident: 740_CR7 publication-title: Nat. Neurosci. doi: 10.1038/81460 – ident: 740_CR161 doi: 10.1007/978-1-4614-7218-6 – ident: 740_CR146 – ident: 740_CR44 doi: 10.1007/978-1-4613-0003-8 – ident: 740_CR10 doi: 10.7551/mitpress/2526.001.0001 – volume: 22 start-page: 208 year: 2005 ident: 740_CR120 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/22/1/014 – ident: 740_CR212 – volume: 15 start-page: 805 year: 2018 ident: 740_CR41 publication-title: Nat. Methods doi: 10.1038/s41592-018-0109-9 – ident: 740_CR43 doi: 10.1007/b97589 – volume: 283 start-page: 381 year: 1999 ident: 740_CR22 publication-title: Science doi: 10.1126/science.283.5400.381 – ident: 740_CR207 doi: 10.1007/978-3-319-59976-2 – ident: 740_CR92 doi: 10.3389/fncom.2020.00071 – volume: 12 start-page: 831 year: 2000 ident: 740_CR104 publication-title: Neural Comput. doi: 10.1162/089976600300015619 – volume: 16 start-page: 2112 year: 1996 ident: 740_CR57 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-06-02112.1996 – volume: 338 start-page: 135 year: 2012 ident: 740_CR66 publication-title: Science doi: 10.1126/science.1226518 – volume: 15 year: 2019 ident: 740_CR39 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007263 – volume: 10 start-page: 113 year: 1998 ident: 740_CR209 publication-title: Neural Comput. doi: 10.1162/089976698300017917 – ident: 740_CR152 – volume: 107 start-page: 745 year: 2020 ident: 740_CR62 publication-title: Neuron doi: 10.1016/j.neuron.2020.05.020 – volume: 466 start-page: 123 year: 2010 ident: 740_CR64 publication-title: Nature doi: 10.1038/nature09086 – volume: 109 start-page: 5086 year: 2012 ident: 740_CR222 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1114415109 – volume: 313 start-page: 504 year: 2006 ident: 740_CR194 publication-title: Science doi: 10.1126/science.1127647 – volume: 111 start-page: 739 year: 2023 ident: 740_CR76 publication-title: Neuron doi: 10.1016/j.neuron.2022.12.016 – ident: 740_CR131 – ident: 740_CR45 doi: 10.1201/9780429399640 – volume: 212 start-page: 372 year: 2018 ident: 740_CR203 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.051 – volume: 23 start-page: 5342 year: 2003 ident: 740_CR5 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-12-05342.2003 – ident: 740_CR144 doi: 10.48550/arXiv.1412.3555 – volume: 12 year: 2021 ident: 740_CR216 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23479-0 – ident: 740_CR141 – volume: 70 start-page: 163 year: 2021 ident: 740_CR218 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.10.014 – ident: 740_CR119 – ident: 740_CR201 – volume: 66 start-page: 438 year: 2010 ident: 740_CR65 publication-title: Neuron doi: 10.1016/j.neuron.2010.03.029 – volume: 126 start-page: 191 year: 2020 ident: 740_CR135 publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.02.016 – volume: 33 start-page: 023143 year: 2023 ident: 740_CR178 publication-title: Chaos doi: 10.1063/5.0131787 – volume: 70 start-page: 113 year: 2021 ident: 740_CR220 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2021.08.002 – ident: 740_CR36 – ident: 740_CR191 doi: 10.48550/arXiv.2303.08774 – volume: 22 start-page: 002 year: 2005 ident: 740_CR186 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/22/1/002 – volume: 19 start-page: 1572 year: 2022 ident: 740_CR95 publication-title: Nat. Methods doi: 10.1038/s41592-022-01675-0 – volume: 36 start-page: 61 year: 1973 ident: 740_CR48 publication-title: J. Neurophysiol. doi: 10.1152/jn.1973.36.1.61 – volume: 29 start-page: 123115 year: 2019 ident: 740_CR133 publication-title: Chaos doi: 10.1063/1.5128372 – ident: 740_CR77 doi: 10.1101/2022.07.21.500962 – volume: 610 start-page: 526 year: 2022 ident: 740_CR60 publication-title: Nature doi: 10.1038/s41586-022-05293-w – ident: 740_CR235 – volume: 50 start-page: 232 year: 2018 ident: 740_CR42 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2018.04.007 – volume: 61 start-page: 331 year: 1989 ident: 740_CR47 publication-title: J. Neurophysiol. doi: 10.1152/jn.1989.61.2.331 – ident: 740_CR200 doi: 10.48550/arXiv.2006.08973 – volume: 11 year: 2022 ident: 740_CR224 publication-title: eLife doi: 10.7554/eLife.77907 – volume: 137 start-page: 2210 year: 2014 ident: 740_CR238 publication-title: Brain doi: 10.1093/brain/awu133 – ident: 740_CR147 – volume: 290 start-page: 2319 year: 2000 ident: 740_CR114 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 1 start-page: 339 year: 1988 ident: 740_CR142 publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90007-X – volume: 51 start-page: 1034 year: 2004 ident: 740_CR248 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – ident: 740_CR14 – volume: 327 start-page: 584 year: 2010 ident: 740_CR229 publication-title: Science doi: 10.1126/science.1179867 – volume: 117 start-page: 22522 year: 2020 ident: 740_CR242 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2005993117 – volume: 2 start-page: 303 year: 1989 ident: 740_CR117 publication-title: Math. Control Signals Syst. doi: 10.1007/BF02551274 – ident: 740_CR110 – ident: 740_CR213 – volume: 11 start-page: 1589 year: 1998 ident: 740_CR124 publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00098-7 – ident: 740_CR4 doi: 10.1007/978-3-642-00616-6_3 – volume: 3 start-page: 179 year: 1991 ident: 740_CR71 publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.179 – ident: 740_CR236 – volume: 5 start-page: 127 year: 1995 ident: 740_CR227 publication-title: Chaos doi: 10.1063/1.166094 – volume: 22 start-page: 297 year: 2019 ident: 740_CR85 publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0310-2 – ident: 740_CR166 doi: 10.1109/ICMLA.2019.00015 – volume: 43 start-page: 249 year: 2020 ident: 740_CR46 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-092619-094115 – volume: 23 start-page: 1257 year: 2013 ident: 740_CR249 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs104 – volume: 60 start-page: 215 year: 2008 ident: 740_CR52 publication-title: Neuron doi: 10.1016/j.neuron.2008.09.034 – volume: 16 start-page: 5154 year: 1996 ident: 740_CR50 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.16-16-05154.1996 – ident: 740_CR38 – volume: 14 start-page: 179 year: 1990 ident: 740_CR72 publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – ident: 740_CR91 – volume: 64 start-page: 229 year: 2022 ident: 740_CR211 publication-title: SIAM Rev. doi: 10.1137/21M1401243 – volume: 54 start-page: 319 year: 2007 ident: 740_CR240 publication-title: Neuron doi: 10.1016/j.neuron.2007.03.017 – volume: 307 start-page: 1121 year: 2005 ident: 740_CR11 publication-title: Science doi: 10.1126/science.1104171 – volume: 6 start-page: 801 year: 1993 ident: 740_CR122 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80125-X – volume: 50 start-page: 132 year: 1995 ident: 740_CR21 publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1995.1013 – ident: 740_CR145 – volume: 21 start-page: 102 year: 2018 ident: 740_CR56 publication-title: Nat. Neurosci. doi: 10.1038/s41593-017-0028-6 – ident: 740_CR37 doi: 10.1007/978-1-4614-9602-1 – ident: 740_CR202 – ident: 740_CR115 doi: 10.7551/mitpress/1120.003.0080 – volume: 29 start-page: 1293 year: 2017 ident: 740_CR198 publication-title: Neural Comput. doi: 10.1162/NECO_a_00953 – ident: 740_CR139 – volume: 1 start-page: 270 year: 1989 ident: 740_CR160 publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – volume: 14 start-page: 2531 year: 2002 ident: 740_CR176 publication-title: Neural Comput. doi: 10.1162/089976602760407955 – volume: 26 start-page: 879 year: 2023 ident: 740_CR87 publication-title: Nat. Neurosci. doi: 10.1038/s41593-023-01293-9 – volume: 25 start-page: 626 year: 2013 ident: 740_CR210 publication-title: Neural Comput. doi: 10.1162/NECO_a_00409 – volume: 113 start-page: 3932 year: 2016 ident: 740_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517384113 – ident: 740_CR177 doi: 10.1109/ISCAS.2019.8702137 – volume: 372 start-page: eabf4588 year: 2021 ident: 740_CR30 publication-title: Science doi: 10.1126/science.abf4588 – ident: 740_CR134 doi: 10.1098/rspa.2017.0844 – volume: 13 start-page: 3406 year: 1993 ident: 740_CR70 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.13-08-03406.1993 – ident: 740_CR97 – volume: 323 start-page: 533 year: 1986 ident: 740_CR74 publication-title: Nature doi: 10.1038/323533a0 – ident: 740_CR151 – volume: 6 year: 2017 ident: 740_CR241 publication-title: eLife doi: 10.7554/eLife.19428 – volume: 79 start-page: 2554 year: 1982 ident: 740_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 9 start-page: 1735 year: 1997 ident: 740_CR137 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 25 start-page: 11 year: 2022 ident: 740_CR31 publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00980-9 – ident: 740_CR195 doi: 10.48550/arXiv.2201.05136 – volume: 93 start-page: 1504 year: 2017 ident: 740_CR78 publication-title: Neuron doi: 10.1016/j.neuron.2017.03.002 – volume: 103 start-page: 934 year: 2019 ident: 740_CR82 publication-title: Neuron doi: 10.1016/j.neuron.2019.06.012 – ident: 740_CR109 – ident: 740_CR113 doi: 10.1007/BFb0091924 – ident: 740_CR49 doi: 10.1016/B978-0-12-407815-4.00002-7 – volume: 146 start-page: 272 year: 2022 ident: 740_CR192 publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.11.022 – ident: 740_CR196 – volume: 91 start-page: 10380 year: 1994 ident: 740_CR197 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.22.10380 – volume: 3 start-page: 316 year: 2021 ident: 740_CR234 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00321-2 – volume: 138 start-page: 13 year: 2011 ident: 740_CR27 publication-title: J. Gen. Physiol. doi: 10.1085/jgp.201110668 – volume: 12 start-page: 1 year: 1972 ident: 740_CR18 publication-title: Biophys. J. doi: 10.1016/S0006-3495(72)86068-5 – volume: 304 start-page: 78 year: 2004 ident: 740_CR175 publication-title: Science doi: 10.1126/science.1091277 – volume: 98 start-page: 1005 year: 2018 ident: 740_CR80 publication-title: Neuron doi: 10.1016/j.neuron.2018.05.020 – volume: 369 start-page: 20120460 year: 2014 ident: 740_CR8 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2012.0460 – volume: 102 start-page: 614 year: 2009 ident: 740_CR129 publication-title: J. Neurophysiol. doi: 10.1152/jn.90941.2008 – volume: 30 start-page: 2025 year: 2018 ident: 740_CR180 publication-title: Neural Comput. doi: 10.1162/neco_a_01094 – ident: 740_CR40 – ident: 740_CR143 – volume: 11 start-page: R986 year: 2001 ident: 740_CR58 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00581-4 – volume: 383 start-page: 621 year: 1996 ident: 740_CR69 publication-title: Nature doi: 10.1038/383621a0 – volume: 12 year: 2016 ident: 740_CR83 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004792 – ident: 740_CR123 – volume: 19 start-page: 9587 year: 1999 ident: 740_CR15 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-21-09587.1999 – ident: 740_CR172 – volume: 77 start-page: 016208 year: 2008 ident: 740_CR163 publication-title: Phys. Rev. – volume: 58 start-page: 267 year: 1996 ident: 740_CR187 publication-title: J. R. Stat. Soc. B Stat. Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 17 start-page: 894 year: 2007 ident: 740_CR24 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhk044 – volume: 602 start-page: 123 year: 2022 ident: 740_CR53 publication-title: Nature doi: 10.1038/s41586-021-04268-7 – volume: 106 start-page: 10308 year: 2009 ident: 740_CR51 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0901621106 – volume: 274 start-page: 1724 year: 1996 ident: 740_CR244 publication-title: Science doi: 10.1126/science.274.5293.1724 – volume: 4 start-page: 1113 year: 2022 ident: 740_CR214 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00575-4 – ident: 740_CR155 – volume: 93 start-page: 13339 year: 1996 ident: 740_CR54 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.93.23.13339 – volume: 26 start-page: 326 year: 2023 ident: 740_CR208 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01230-2 – ident: 740_CR149 – volume: 13 year: 2017 ident: 740_CR35 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005542 – volume: 22 start-page: 1189 year: 2009 ident: 740_CR246 publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.07.016 – volume: 120 start-page: 024102 year: 2018 ident: 740_CR132 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.024102 – ident: 740_CR158 doi: 10.1109/ISCAS.1992.230622 – volume: 97 start-page: 953 year: 2018 ident: 740_CR61 publication-title: Neuron doi: 10.1016/j.neuron.2018.01.004 – ident: 740_CR190 – ident: 740_CR237 doi: 10.1007/978-0-387-84858-7 – volume: 13 start-page: 011009 year: 2023 ident: 740_CR245 publication-title: Phys. Rev. X – ident: 740_CR183 – ident: 740_CR215 – ident: 740_CR204 doi: 10.1109/ITSC.2017.8317943 – volume: 13 year: 2022 ident: 740_CR79 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33581-6 – volume: 7 start-page: 3994 year: 2022 ident: 740_CR173 publication-title: J. Open Source Softw. doi: 10.21105/joss.03994 – volume: 15 start-page: 561 year: 2002 ident: 740_CR25 publication-title: Neural Netw. doi: 10.1016/S0893-6080(02)00049-7 – volume: 97 start-page: 1867 year: 2000 ident: 740_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.4.1867 – volume: 186 start-page: 178 year: 2023 ident: 740_CR106 publication-title: Cell doi: 10.1016/j.cell.2022.11.027 – volume: 161 start-page: 68 year: 2006 ident: 740_CR68 publication-title: Prog. Theor. Phys. Supp. doi: 10.1143/PTPS.161.68 – volume: 372 start-page: 20160161 year: 2017 ident: 740_CR228 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2016.0161 – ident: 740_CR153 doi: 10.48550/arXiv.2006.02427 – volume: 23 start-page: 043005 year: 2021 ident: 740_CR182 publication-title: New J. Phys. doi: 10.1088/1367-2630/abeb90 – volume: 86 start-page: 1067 year: 2015 ident: 740_CR3 publication-title: Neuron doi: 10.1016/j.neuron.2015.04.014 – volume: 8 start-page: 183 year: 2000 ident: 740_CR2 publication-title: J. Comput. Neurosci. doi: 10.1023/A:1008925309027 – ident: 740_CR138 – volume: 19 start-page: 1273 year: 2003 ident: 740_CR127 publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00202-7 – volume: 41 start-page: 2406 year: 2021 ident: 740_CR231 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2588-20.2021 – ident: 740_CR17 – volume: 14 year: 2023 ident: 740_CR81 publication-title: Nat. Commun. doi: 10.1038/s41467-023-35822-8 – volume: 94 start-page: 978 year: 2017 ident: 740_CR219 publication-title: Neuron doi: 10.1016/j.neuron.2017.05.025 – volume: 16 start-page: 1413 year: 2004 ident: 740_CR174 publication-title: Neural Comput. doi: 10.1162/089976604323057443 – volume: 14 start-page: 1905 year: 2004 ident: 740_CR167 publication-title: Int. J. Bifurcat. Chaos doi: 10.1142/S0218127404010345 – volume: 20 start-page: 130 year: 1963 ident: 740_CR247 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 36 start-page: 955 year: 2002 ident: 740_CR16 publication-title: Neuron doi: 10.1016/S0896-6273(02)01092-9 – volume: 29 start-page: 107 year: 2010 ident: 740_CR101 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-009-0179-x – volume: 2 start-page: 359 year: 1989 ident: 740_CR118 publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: 740_CR206 doi: 10.48550/arXiv.2004.02172 – volume: 13 year: 2022 ident: 740_CR221 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35115-6 – ident: 740_CR105 – volume: 378 start-page: 686 year: 2019 ident: 740_CR184 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 25 start-page: 252 year: 2022 ident: 740_CR29 publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00997-0 – volume: 31 start-page: 083119 year: 2021 ident: 740_CR165 publication-title: Chaos doi: 10.1063/5.0056425 – ident: 740_CR189 – volume: 7 start-page: 237 year: 1997 ident: 740_CR1 publication-title: Cereb. Cortex doi: 10.1093/cercor/7.3.237 – ident: 740_CR150 – ident: 740_CR73 – ident: 740_CR116 |
SSID | ssj0016176 |
Score | 2.589698 |
SecondaryResourceType | review_article |
Snippet | Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 693 |
SubjectTerms | 631/378/116/2393 631/378/116/2396 Animal Genetics and Genomics Animals Artificial Intelligence Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Computational neuroscience Dynamical systems Humans Learning algorithms Machine learning Mathematical models Nervous system Neural networks Neural Networks, Computer Neurobiology Neurosciences Perspective System theory |
Title | Reconstructing computational system dynamics from neural data with recurrent neural networks |
URI | https://link.springer.com/article/10.1038/s41583-023-00740-7 https://www.ncbi.nlm.nih.gov/pubmed/37794121 https://www.proquest.com/docview/2878561374 https://www.proquest.com/docview/2873250244 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB-qQvFFrP26aiVC39rF7CUx2afiiYcIPaRUuIfCkmSTvpQ9dfX_70ySPSmiD8s-JLubnUkyX5nfAHzhXei0TysNbVWJAq-yUsdKhUgCxgtlE9rn4uTiWl4u1bI43IZyrHLcE9NG3a08-ciPUbM3pOxq-f3mtqKqURRdLSU0NmCLoMtoVuvl2uAi1T1nF2k0mblYlqQZLszxgILLUAQTL5SivNL_C6Yn2uaTSGkSQPNd2CmaIzvNrH4Dr0K_B69_lNj4W_hNluSIB9v_YT7Vayi-PpYRm1mXC9APjNJKGIFZYhudEmXkkGV35H0nvKaxqc-nxId3cD0__3V2UZXaCZUXWt1XjbKdiXrqtIpWiDpohf8bonLCuq7xwamGO-mlc3VsGjsNmksrgjXcnoipEu9hs1_14SMwx4MOKkpng0f1xRvdcBNxqwjCGxXjBOqRcK0vwOJU3-JvmwLcwrSZ2C0Su03EbvUEvq6fucmwGi_2Phj50ZYlNrSPE2ICR-tmXBwU8bB9WD2kPvgvqIZgnw-Zj-vPEdKirKf1BL6NjH18-fNj-fTyWPZhmwrS52zFA9hEpofPqLbcu8M0Nw9h63Q-my3wPjtfXP38B6lI640 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFS1EnBBZe2DAkaCE0R1Yrt2DgghoHqly6mV3gHJ2I7NBeUVUoT4Kb6RGTt5FarorYec7GyzL54ZgBe8i50OmdPQV5Wo8CondapUTKRgglAud_s83p2fyk8LtViDP1MtDB2rnGRiFtTdMlCMfActe0PGrpZvz75XNDWKsqvTCI1CFgfx9y902YY3-x8Qvy-bZu_jyft5NU4VqILQ6rxqletM0o3XKjkh6qiVMiIm5YXzXRuiVy33Mkjv69S2romaSyeiM9ztioamRKDI30DFy8nZ04uVg0euQqlm0uiic7EYi3S4MDsDKkpDGVO8UGvzSv-rCC9Zt5cys1nh7W3C7dFSZe8Kad2BtdjfhRtHYy7-Hnwmz3XqP9t_ZSHPhxhji6x0iGZdGXg_MCpjYdQ8E9foVCqjADD7QdF-6g81LfXlVPpwH06vBaoPYL1f9nELmOdRR5WkdzGguRSMbrlJKJqiCEalNIN6ApwNYyNzmqfxzeaEujC2ANsisG0GttUzeLW656y08bhy9_aEDzuy9GAvCHAGz1fLyIyUYXF9XP7Me_Bf0OzBPQ8LHlevo86Osm7qGbyeEHvx8P9_y6Orv-UZ3JyfHB3aw_3jg8dwqyECy5WS27COBBCfoMl07p9mOmXw5boZ4y-dAiZJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahQx9FC2UHyR1uu2VSPokw6bmSRN5kFEbZfW6lLEwj4IMckkIuhs26lIf82v85y5bJFi3_owT8ncziXnfg7AM17FSoeW09BWlSjwMid1ylRMJGCCUK7t9jnb2T-W7-dqvgJ_hloYSqsczsT2oK4WgXzkE9TsDSm7Wk5SnxZxtDt9fXKa0QQpirQO4zQ6EjmMF7_RfGteHewirp8XxXTv87v9rJ8wkAWh1XlWKleZpAuvVXJC5FErZURMygvnqzJEr0ruZZDe56ksXRE1l05EZ7jbEQVNjMDjf1WTVTSC1bd7s6NPyxgG6gZdbZNGg52LeV-yw4WZNCg2DcVP8UIZzjP9r1i8outeidO24m-6Drd7vZW96QhtA1ZifQfWPvaR-bvwhezYoRtt_Y2FdlpE72lkXb9oVl3U7uf30DAqamHUShPXKEeVkTuYnZHvn7pFDUt1l6Pe3IPjG4HrfRjVizo-BOZ51FEl6V0MqDwFo0tuEh5UUQSjUhpDPgDOhr6tOU3X-GHb8LowtgO2RWDbFthWj-HF8p6TrqnHtbu3B3zYnsEbe0mOY3i6XEbWpHiLq-PiV7sH_wWVINzzoMPj8nXU51HmRT6GlwNiLx_-_2_ZvP5bnsAaMoX9cDA73IJbBdFXWza5DSPEf3yE-tO5f9wTKoOvN80bfwFj6ivk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+computational+system+dynamics+from+neural+data+with+recurrent+neural+networks&rft.jtitle=Nature+reviews.+Neuroscience&rft.au=Durstewitz%2C+Daniel&rft.au=Koppe%2C+Georgia&rft.au=Thurm%2C+Max+Ingo&rft.date=2023-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-003X&rft.eissn=1469-3178&rft.volume=24&rft.issue=11&rft.spage=693&rft.epage=710&rft_id=info:doi/10.1038%2Fs41583-023-00740-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-003X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-003X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-003X&client=summon |