Reconstructing computational system dynamics from neural data with recurrent neural networks

Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Neuroscience Vol. 24; no. 11; pp. 693 - 710
Main Authors Durstewitz, Daniel, Koppe, Georgia, Thurm, Max Ingo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges. The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience.
AbstractList Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.
Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience.
Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges.
Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical systems theory. Dynamical systems theory provides a powerful mathematical toolbox for analysing neurobiological processes and has been a mainstay of computational neuroscience for decades. Recently, recurrent neural networks (RNNs) have become a popular machine learning tool for studying the non-linear dynamics of neural and behavioural processes by emulating an underlying system of differential equations. RNNs have been routinely trained on similar behavioural tasks to those used for animal subjects to generate hypotheses about the underlying computational mechanisms. By contrast, RNNs can also be trained on the measured physiological and behavioural data, thereby directly inheriting their temporal and geometrical properties. In this way they become a formal surrogate for the experimentally probed system that can be further analysed, perturbed and simulated. This powerful approach is called dynamical system reconstruction. In this Perspective, we focus on recent trends in artificial intelligence and machine learning in this exciting and rapidly expanding field, which may be less well known in neuroscience. We discuss formal prerequisites, different model architectures and training approaches for RNN-based dynamical system reconstructions, ways to evaluate and validate model performance, how to interpret trained models in a neuroscience context, and current challenges. The prospects for applying dynamical systems theory in neuroscience are changing dramatically. In this Perspective, Durstewitz et al. discuss dynamical system reconstruction using recurrent neural networks to directly infer a formal surrogate from an experimentally probed system and consider its potential for revolutionizing neuroscience.
Author Koppe, Georgia
Durstewitz, Daniel
Thurm, Max Ingo
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-9340-3786
  surname: Durstewitz
  fullname: Durstewitz, Daniel
  email: daniel.durstewitz@zi-mannheim.de
  organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Interdisciplinary Center for Scientific Computing, Heidelberg University, Faculty of Physics and Astronomy, Heidelberg University
– sequence: 2
  givenname: Georgia
  orcidid: 0000-0003-2941-9238
  surname: Koppe
  fullname: Koppe, Georgia
  organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
– sequence: 3
  givenname: Max Ingo
  surname: Thurm
  fullname: Thurm, Max Ingo
  organization: Dept. of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37794121$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoOs6K76BzxIwYuXatIkm_Yoi18gCKLgQQhpOl2rbbImKcv-e-PWVdiDhzAJ87yTmXknaGSsAYSOCT4nmOYXnhGe0xRn8WDBcCp20JgwQeKT5aPfO33ZRxPv3zEmUyKme2ifClEwkpExen0EbY0PrtehMfNE227RBxUaa1Sb-JUP0CXVyqiu0T6pne0SA72LuUoFlSyb8JY40L1zYMImZSAsrfvwh2i3Vq2Ho594gJ6vr55mt-n9w83d7PI-1VTwkBZcVXktslLwWlFKQPA4F9S8pKqsCg0lL3DJNCtLUheFykBgpiioHKspzTg9QGdD3YWznz34ILvGa2hbZcD2Xma5iBjOGIvo6Rb6bnsXZ11TOZ8SKr6pkx-qLzuo5MI1nXIrudlbBLIB0M5676D-RQiW3-bIwRwZzZFrc6SIonxLpJth1cGppv1fSgepj_-YObi_tv9RfQGdLqSi
CitedBy_id crossref_primary_10_1038_s41592_024_02581_3
crossref_primary_10_1016_j_chaos_2024_115818
crossref_primary_10_1002_kjm2_12901
crossref_primary_10_1109_ACCESS_2024_3370431
crossref_primary_10_3390_electronics12244925
crossref_primary_10_1038_s41586_024_07915_x
crossref_primary_10_1089_ains_2024_0001
crossref_primary_10_1016_j_neuron_2024_11_008
crossref_primary_10_1103_PhysRevX_15_011005
crossref_primary_10_3390_electronics13163233
crossref_primary_10_1109_JBHI_2024_3509959
crossref_primary_10_1371_journal_pcbi_1012457
crossref_primary_10_1016_j_mee_2024_112240
crossref_primary_10_3390_e26100823
crossref_primary_10_3390_s24041245
crossref_primary_10_1016_j_plrev_2024_02_009
crossref_primary_10_1109_TSG_2024_3401227
crossref_primary_10_1162_neco_a_01681
crossref_primary_10_1016_j_isci_2024_110545
crossref_primary_10_1007_s00115_024_01770_x
crossref_primary_10_1111_ejn_70064
crossref_primary_10_1109_JLT_2024_3429490
crossref_primary_10_1371_journal_pcbi_1011852
crossref_primary_10_1007_s10845_024_02532_x
crossref_primary_10_1016_j_est_2025_115908
crossref_primary_10_2197_ipsjjip_33_21
crossref_primary_10_1016_j_neunet_2024_107079
crossref_primary_10_1515_nleng_2024_0045
crossref_primary_10_4018_IJICTE_349899
crossref_primary_10_1039_D4TA07127A
Cites_doi 10.1162/089976603765202622
10.1371/journal.pcbi.1008621
10.1016/j.neuron.2020.05.020
10.1016/j.neuron.2018.07.003
10.1088/1742-6596/22/1/002
10.1093/brain/awu133
10.1038/s41467-023-36583-0
10.1006/jcss.1995.1013
10.1073/pnas.93.23.13339
10.1523/JNEUROSCI.13-08-03406.1993
10.1016/j.neuron.2022.12.016
10.1038/s41592-022-01675-0
10.1016/j.neuron.2009.07.018
10.1126/sciadv.1602614
10.1023/A:1008925309027
10.1126/science.1226518
10.1038/s41593-020-00733-0
10.1162/neco.1997.9.8.1735
10.1103/PhysRevLett.72.3811
10.1109/72.392253
10.1016/S0893-6080(98)00098-7
10.1371/journal.pcbi.1005542
10.1038/323533a0
10.1038/nn.4042
10.1038/s41467-022-35115-6
10.1073/pnas.1517384113
10.1152/jn.90941.2008
10.3758/s13415-011-0068-4
10.1016/j.neuron.2016.02.009
10.1063/5.0066013
10.1016/j.conb.2021.08.002
10.1016/S0896-6273(02)01092-9
10.1162/neco.1989.1.2.270
10.1038/s41467-018-07210-0
10.1126/science.1179867
10.1073/pnas.79.8.2554
10.1016/j.jcp.2018.10.045
10.7554/eLife.77907
10.1038/s41593-018-0310-2
10.1016/j.neunet.2021.11.022
10.1162/neco_a_01094
10.1162/neco.1991.3.2.179
10.1207/s15516709cog1402_1
10.1152/jn.1989.61.2.331
10.1137/090749761
10.1126/science.1104171
10.1007/BF01053745
10.1016/S0893-6080(02)00049-7
10.1038/s41467-023-35822-8
10.1038/s41586-021-04268-7
10.1038/s42256-021-00302-5
10.12688/f1000research.7698.1
10.1073/pnas.1906995116
10.1016/j.neunet.2009.07.016
10.1146/annurev-neuro-092619-094115
10.1371/journal.pcbi.1004792
10.1098/rstb.2016.0161
10.1073/pnas.0901621106
10.1523/JNEUROSCI.2588-20.2021
10.1016/j.neuron.2018.01.004
10.1038/s41593-021-00997-0
10.1038/s42256-021-00321-2
10.1038/nature09086
10.1088/1742-6596/22/1/014
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1016/j.neuron.2008.09.034
10.1523/JNEUROSCI.16-06-02112.1996
10.1063/1.5128372
10.1016/S0960-9822(01)00581-4
10.1073/pnas.2005993117
10.1038/s41467-021-23479-0
10.1063/1.1350440
10.1162/NECO_a_00953
10.1038/s41593-017-0028-6
10.1162/089976600300015619
10.1038/s41593-021-00980-9
10.1016/j.neuron.2007.03.017
10.1016/j.conb.2018.04.007
10.1103/PhysRevLett.120.024102
10.1162/089976602760407955
10.1093/cercor/bhk044
10.1063/5.0056425
10.1103/PhysRevResearch.4.L032014
10.1016/S1053-8119(03)00202-7
10.1007/s10827-009-0179-x
10.1371/journal.pcbi.1002385
10.1038/81460
10.1073/pnas.2023832118
10.1007/BF02551274
10.1038/nature09319
10.1016/j.neuron.2010.03.029
10.7554/eLife.19428
10.1016/j.conb.2021.10.014
10.1038/s41583-022-00634-0
10.1016/0304-3975(94)00147-B
10.1085/jgp.201110668
10.1523/JNEUROSCI.19-21-09587.1999
10.1038/s41593-022-01088-4
10.1016/j.apenergy.2017.12.051
10.1126/science.1091277
10.1016/0304-3975(94)90229-1
10.1038/s41592-018-0109-9
10.1142/S0218127404010345
10.1371/journal.pcbi.1007263
10.1063/5.0131787
10.1016/j.cell.2022.11.027
10.1126/science.274.5293.1724
10.1038/nature12742
10.1093/cercor/bhs104
10.1162/NECO_a_00058
10.1016/j.neuron.2017.03.002
10.1371/journal.pcbi.1008591
10.1063/1.166094
10.1126/science.283.5400.381
10.1143/PTPS.161.68
10.1016/S0893-6080(05)80125-X
10.1016/j.conb.2014.10.012
10.1152/jn.1973.36.1.61
10.1038/s41467-022-33581-6
10.1371/journal.pcbi.1004209
10.1126/science.267326
10.1016/j.neunet.2020.02.016
10.1523/JNEUROSCI.23-12-05342.2003
10.3109/0954898X.2012.677095
10.1109/72.279181
10.1016/0893-6080(88)90007-X
10.1073/pnas.91.22.10380
10.1038/s42256-022-00575-4
10.1038/s41593-023-01293-9
10.1016/j.neuron.2017.05.025
10.1109/TBME.2004.827072
10.1523/JNEUROSCI.16-16-05154.1996
10.1038/383621a0
10.1093/cercor/7.3.237
10.1016/S0896-6273(00)81155-1
10.1073/pnas.97.4.1867
10.1016/j.neuron.2019.06.012
10.1016/0893-6080(89)90020-8
10.1063/5.0149673
10.1038/s41592-019-0644-z
10.1152/jn.00698.2016
10.1016/S0006-3495(72)86068-5
10.1098/rstb.2012.0460
10.1126/science.abf4588
10.1126/science.290.5500.2319
10.1162/089976604323057443
10.1162/089976698300017917
10.1162/NECO_a_00409
10.1038/s41593-022-01230-2
10.1126/science.1127647
10.1016/j.neuron.2018.05.020
10.1073/pnas.1114415109
10.1016/j.neuron.2015.04.014
10.1016/j.neunet.2016.04.001
10.1137/21M1401243
10.1038/s41586-022-05293-w
10.1371/journal.pcbi.1006309
10.1088/1367-2630/abeb90
10.21105/joss.03994
10.48550/arXiv.1409.0473
10.3115/v1/W14-4012
10.48550/arXiv.2306.01187
10.48550/arXiv.2302.03358
10.1017/CBO9781139941433.007
10.1101/2022.08.15.503870
10.48550/arXiv.2304.12865
10.48550/arXiv.2001.04385
10.1017/CBO9780511755798
10.48550/arXiv.2302.11101
10.1007/978-1-4614-7218-6
10.1007/978-1-4613-0003-8
10.7551/mitpress/2526.001.0001
10.1007/b97589
10.1007/978-3-319-59976-2
10.3389/fncom.2020.00071
10.1201/9780429399640
10.48550/arXiv.1412.3555
10.48550/arXiv.2303.08774
10.1101/2022.07.21.500962
10.48550/arXiv.2006.08973
10.1007/978-3-642-00616-6_3
10.1109/ICMLA.2019.00015
10.1007/978-1-4614-9602-1
10.7551/mitpress/1120.003.0080
10.1109/ISCAS.2019.8702137
10.1098/rspa.2017.0844
10.48550/arXiv.2201.05136
10.1007/BFb0091924
10.1016/B978-0-12-407815-4.00002-7
10.1111/j.2517-6161.1996.tb02080.x
10.1109/ISCAS.1992.230622
10.1007/978-0-387-84858-7
10.1109/ITSC.2017.8317943
10.48550/arXiv.2006.02427
10.48550/arXiv.2004.02172
ContentType Journal Article
Copyright Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
Q9U
RC3
7X8
DOI 10.1038/s41583-023-00740-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-0048
1469-3178
EndPage 710
ExternalDocumentID 37794121
10_1038_s41583_023_00740_7
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABIVO
ABJNI
ABLJU
ABNNU
ABUWG
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AFBBN
AFKRA
AFSHS
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
IPY
ITC
L-9
M1P
M2M
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PSYQQ
Q2X
RIG
RNR
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
AETEA
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QP
7QR
7TK
7TM
7XB
8FD
8FE
8FH
8FK
FR3
K9.
LK8
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7X8
ID FETCH-LOGICAL-c375t-95ad8f72b75fa331e75583ef5b3abd9ceb590b4c4bb1f99a2e704a3ea80a63253
IEDL.DBID 7X7
ISSN 1471-003X
1471-0048
IngestDate Fri Jul 11 02:38:12 EDT 2025
Sat Aug 23 14:25:11 EDT 2025
Thu Apr 03 07:05:38 EDT 2025
Tue Jul 01 00:42:08 EDT 2025
Thu Apr 24 23:44:05 EDT 2025
Fri Feb 21 02:38:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2023. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-95ad8f72b75fa331e75583ef5b3abd9ceb590b4c4bb1f99a2e704a3ea80a63253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9340-3786
0000-0003-2941-9238
PMID 37794121
PQID 2878561374
PQPubID 44265
PageCount 18
ParticipantIDs proquest_miscellaneous_2873250244
proquest_journals_2878561374
pubmed_primary_37794121
crossref_primary_10_1038_s41583_023_00740_7
crossref_citationtrail_10_1038_s41583_023_00740_7
springer_journals_10_1038_s41583_023_00740_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Neuroscience
PublicationTitleAbbrev Nat. Rev. Neurosci
PublicationTitleAlternate Nat Rev Neurosci
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tenenbaum, Silva, Langford (CR114) 2000; 290
Hopfield (CR9) 1982; 79
Seleznev, Mukhin, Gavrilov, Loskutov, Feigin (CR133) 2019; 29
CR161
CR159
Zipser (CR71) 1991; 3
CR157
CR158
CR155
Funahashi, Bruce, Goldman-Rakic (CR47) 1989; 61
CR153
CR154
van Vreeswijk, Sompolinsky (CR244) 1996; 274
Spitmaan, Seo, Lee, Soltani (CR242) 2020; 117
Marder, Goeritz, Otopalik (CR59) 2015; 31
Lusch, Kutz, Brunton (CR156) 2018; 9
Elman (CR72) 1990; 14
Storace, De Feo (CR120) 2005; 22
Lindén, Petersen, Vestergaard, Berg (CR60) 2022; 610
Branicky (CR19) 1995; 138
Rajalingham, Piccato, Jazayeri (CR79) 2022; 13
Gallego, Perich, Miller, Solla (CR219) 2017; 94
Rahman, Srikumar, Smith (CR203) 2018; 212
Miller (CR13) 2016; 5
CR171
CR172
CR170
Hyman, Whitman, Emberly, Woodward, Seamans (CR249) 2013; 23
Marder, Bucher (CR58) 2001; 11
Hochreiter, Schmidhuber (CR137) 1997; 9
Brunel (CR2) 2000; 8
Wang (CR52) 2008; 60
CR169
CR166
Raissi, Perdikaris, Karniadakis (CR184) 2019; 378
Siegelmann, Sontag (CR21) 1995; 50
Smith, Brown (CR103) 2003; 15
Sauer, Yorke, Casdagli (CR112) 1991; 65
CR141
CR138
CR136
Gelbrecht, Boers, Kurths (CR182) 2021; 23
Bhalla, Iyengar (CR22) 1999; 283
CR134
CR131
Albantakis, Deco (CR51) 2009; 106
Wilson, Cowan (CR18) 1972; 12
Wood (CR205) 2010; 466
De Feo, Storace (CR186) 2005; 22
CR139
Schalk, McFarland, Hinterberger, Birbaumer, Wolpaw (CR248) 2004; 51
Friston, Harrison, Penny (CR127) 2003; 19
Wang (CR15) 1999; 19
Goel, Buonomano (CR8) 2014; 369
Platt, Wong, Clark, Penny, Abarbanel (CR164) 2021; 31
Tanaka, Matsumori, Yoshida, Aihara (CR243) 2022; 4
Vyas, Golub, Sussillo, Shenoy (CR46) 2020; 43
CR151
CR152
Seung, Lee, Reis, Tank (CR55) 2000; 26
CR150
Chaisangmongkon, Swaminathan, Freedman, Wang (CR78) 2017; 93
Bhalla, Iyengar (CR23) 2001; 11
CR148
CR149
CR146
CR147
CR144
CR145
CR143
Rudy, Brunton, Proctor, Kutz (CR185) 2017; 3
Trischler, D’Eleuterio (CR126) 2016; 80
Zhang (CR57) 1996; 16
Sauer (CR226) 1994; 72
Koppe, Toutounji, Kirsch, Lis, Durstewitz (CR39) 2019; 15
Paulk (CR29) 2022; 25
CR115
CR236
Vogt (CR32) 2019; 16
CR116
CR237
CR113
CR235
CR111
CR233
CR110
Abarbanel, Creveling, Farsian, Kostuk (CR162) 2009; 8
CR119
Voss, Timmer, Kurths (CR167) 2004; 14
Feulner, Clopath (CR225) 2021; 17
Mai, Sommer, Hauber (CR230) 2012; 12
Bengio, Simard, Frasconi (CR140) 1994; 5
Urai, Doiron, Leifer, Churchland (CR31) 2022; 25
Wang (CR16) 2002; 36
Roxin, Brunel, Hansel (CR68) 2006; 161
CR130
CR123
Kopell, Ermentrout, Whittington, Traub (CR67) 2000; 97
Sussillo, Churchland, Kaufman, Shenoy (CR84) 2015; 18
Shimazaki, Amari, Brown, Grün (CR232) 2012; 8
CR17
Mackey, Glass (CR26) 1977; 197
Botvinick-Greenhouse, Martin, Yang (CR168) 2023; 33
CR14
CR10
CR215
Russo (CR231) 2021; 41
CR212
CR213
Galgali, Sahani, Mante (CR208) 2023; 26
Maass, Natschläger, Markram (CR176) 2002; 14
Hornik, Stinchcombe, White (CR118) 1989; 2
Fusi, Asaad, Miller, Wang (CR240) 2007; 54
Durstewitz, Seamans (CR25) 2002; 15
Gardner (CR53) 2022; 602
Russo (CR61) 2018; 97
Sussillo, Abbott (CR75) 2009; 63
Song, Yang, Wang (CR83) 2016; 12
CR105
Nakahara, Doya (CR209) 1998; 10
Steinmetz (CR30) 2021; 372
CR100
Geneva, Zabaras (CR192) 2022; 146
Remington, Narain, Hosseini, Jazayeri (CR80) 2018; 98
Chen, Chen (CR121) 1995; 6
CR108
Jirsa, Stacey, Quilichini, Ivanov, Bernard (CR238) 2014; 137
CR109
CR107
Durstewitz, Gabriel (CR24) 2007; 17
Lorenz (CR247) 1963; 20
CR38
CR37
CR36
Allen, Stevens (CR197) 1994; 91
Hinton, Salakhutdinov (CR194) 2006; 313
Brunton, Proctor, Kutz (CR33) 2016; 113
Beiran, Meirhaeghe, Sohn, Jazayeri, Ostojic (CR76) 2023; 111
Durstewitz (CR5) 2003; 23
Brunton, Budišić, Kaiser, Kutz (CR211) 2022; 64
CR49
Yang, Joglekar, Song, Newsome, Wang (CR85) 2019; 22
Seung (CR54) 1996; 93
Pillow, Ahmadian, Paninski (CR102) 2011; 23
Sani, Abbaspourazad, Wong, Pesaran, Shanechi (CR128) 2021; 24
CR45
CR44
CR43
CR204
Yu (CR129) 2009; 102
CR201
CR202
CR40
CR200
Koiran, Cosnard, Garzon (CR20) 1994; 132
Sussillo, Barak (CR210) 2013; 25
Altan, Solla, Miller, Perreault (CR217) 2021; 17
CR207
Sauer (CR227) 1995; 5
Mastrogiuseppe, Ostojic (CR90) 2018; 99
Buesing, Macke, Sahani (CR98) 2012; 23
CR206
Paninski (CR101) 2010; 29
Goudar, Peysakhovich, Freedman, Buffalo, Wang (CR87) 2023; 26
Johnston, Fusi (CR88) 2023; 14
Champion, Lusch, Kutz, Brunton (CR34) 2019; 116
Vlachas (CR135) 2020; 126
Ecker (CR229) 2010; 327
Werbos (CR142) 1988; 1
Clopath, Bonhoeffer, Hübener, Rose (CR228) 2017; 372
Williams, Zipser (CR160) 1989; 1
Zhao, Park (CR198) 2017; 29
Amit, Brunel (CR1) 1997; 7
Tibshirani (CR187) 1996; 58
Jaeger, Haas (CR175) 2004; 304
Paninski, Cunningham (CR42) 2018; 50
Whiteway, Butts (CR96) 2016; 117
Miller, Erickson, Desimone (CR50) 1996; 16
Verzelli, Alippi, Livi (CR165) 2021; 31
Lu, Jin, Pang, Zhang, Karniadakis (CR125) 2021; 3
Ghahramani, Hinton (CR104) 2000; 12
Reinbold, Kageorge, Schatz, Grigoriev (CR216) 2021; 12
Russo, Durstewitz (CR241) 2017; 6
Hyman, Ma, Balaguer-Ballester, Durstewitz, Seamans (CR222) 2012; 109
Durstewitz, Huys, Koppe (CR6) 2021; 6
Machado, Kauvar, Deisseroth (CR28) 2022; 23
Roach, Churchland, Engel (CR81) 2023; 14
Kim, Lu, Nozari, Pappas, Bassett (CR234) 2021; 3
Patel, Ott (CR178) 2023; 33
Durstewitz, Vittoz, Floresco, Seamans (CR65) 2010; 66
Fuster (CR48) 1973; 36
CR77
CR73
CR199
Sadeh, Clopath (CR224) 2022; 11
Karlsson, Tervo, Karpova (CR66) 2012; 338
Floryan, Graham (CR214) 2022; 4
Bertschinger, Natschläger (CR174) 2004; 16
Kaptanoglu (CR173) 2022; 7
CR4
Landau, Sompolinsky (CR63) 2018; 14
Zipser, Kehoe, Littlewort, Fuster (CR70) 1993; 13
Sherman (CR27) 2011; 138
Durstewitz (CR35) 2017; 13
Durstewitz (CR246) 2009; 22
Nair (CR106) 2023; 186
CR86
Rumelhart, Hinton, Williams (CR74) 1986; 323
Abarbanel, Rozdeba, Shirman (CR180) 2018; 30
Mante, Sussillo, Shenoy, Newsome (CR12) 2013; 503
Sohn, Narain, Meirhaeghe, Jazayeri (CR82) 2019; 103
Cybenko (CR117) 1989; 2
Pereira-Obilinovic, Aljadeff, Brunel (CR245) 2023; 13
CR183
Rajan, Harvey, Tank (CR93) 2016; 90
Jazayeri, Ostojic (CR220) 2021; 70
Funahashi, Nakamura (CR122) 1993; 6
CR181
Duncker, Sahani (CR218) 2021; 70
Pandarinath (CR41) 2018; 15
London, Roth, Beeren, Häusser, Latham (CR64) 2010; 466
CR99
CR97
Kimura, Nakano (CR124) 1998; 11
Carnevale, de Lafuente, Romo, Barak, Parga (CR3) 2015; 86
CR177
CR94
CR92
Traub, Whittington, Stanford, Jefferys (CR69) 1996; 383
CR91
Keshtkaran (CR95) 2022; 19
Russo (CR62) 2020; 107
Pathak, Hunt, Grivan, Lu, Ott (CR132) 2018; 120
Dubreuil, Valente, Beiran, Mastrogiuseppe, Ostojic (CR89) 2022; 25
Durstewitz, Seamans, Sejnowski (CR7) 2000; 3
CR195
Melbaum (CR221) 2022; 13
CR196
CR193
Abarbanel, Creveling, Jeanne (CR163) 2008; 77
CR191
CR190
Kossio, Goedeke, Klos, Memmesheimer (CR223) 2021; 118
CR188
CR189
Machens, Romo, Brody (CR11) 2005; 307
Wang, Narain, Hosseini, Jazayeri (CR56) 2018; 21
Raissi (CR179) 2018; 19
Naze, Bernard, Jirsa (CR239) 2015; 11
HDI Abarbanel (740_CR163) 2008; 77
HS Seung (740_CR55) 2000; 26
Y Bengio (740_CR140) 1994; 5
G Schalk (740_CR248) 2004; 51
M Jazayeri (740_CR220) 2021; 70
MS Branicky (740_CR19) 1995; 138
AR Galgali (740_CR208) 2023; 26
740_CR169
740_CR166
K Champion (740_CR34) 2019; 116
HU Voss (740_CR167) 2004; 14
YFK Kossio (740_CR223) 2021; 118
DJ Amit (740_CR1) 1997; 7
H Sohn (740_CR82) 2019; 103
740_CR86
L Paninski (740_CR101) 2010; 29
740_CR161
740_CR170
S Hochreiter (740_CR137) 1997; 9
EN Lorenz (740_CR247) 1963; 20
AC Smith (740_CR103) 2003; 15
740_CR73
PJ Werbos (740_CR142) 1988; 1
G Koppe (740_CR39) 2019; 15
JW Pillow (740_CR102) 2011; 23
M Raissi (740_CR179) 2018; 19
740_CR177
BM Yu (740_CR129) 2009; 102
740_CR77
740_CR171
740_CR172
J Pathak (740_CR132) 2018; 120
740_CR181
US Bhalla (740_CR22) 1999; 283
AC Paulk (740_CR29) 2022; 25
L Buesing (740_CR98) 2012; 23
R Tibshirani (740_CR187) 1996; 58
P Verzelli (740_CR165) 2021; 31
H Nakahara (740_CR209) 1998; 10
MC Mackey (740_CR26) 1977; 197
WJ Johnston (740_CR88) 2023; 14
E Marder (740_CR59) 2015; 31
H Jaeger (740_CR175) 2004; 304
JA Gallego (740_CR219) 2017; 94
SL Brunton (740_CR33) 2016; 113
740_CR188
B Feulner (740_CR225) 2021; 17
740_CR189
740_CR183
E Altan (740_CR217) 2021; 17
740_CR191
A Roxin (740_CR68) 2006; 161
HF Song (740_CR83) 2016; 12
740_CR190
740_CR49
VK Jirsa (740_CR238) 2014; 137
J Wang (740_CR56) 2018; 21
V Goudar (740_CR87) 2023; 26
M Beiran (740_CR76) 2023; 111
L Lu (740_CR125) 2021; 3
ED Remington (740_CR80) 2018; 98
HDI Abarbanel (740_CR180) 2018; 30
740_CR199
G Tanaka (740_CR243) 2022; 4
740_CR195
740_CR196
740_CR193
V Mante (740_CR12) 2013; 503
T Sauer (740_CR112) 1991; 65
GE Hinton (740_CR194) 2006; 313
A Rahman (740_CR203) 2018; 212
H Siegelmann (740_CR21) 1995; 50
740_CR123
D Sussillo (740_CR210) 2013; 25
JJ Hopfield (740_CR9) 1982; 79
CK Machens (740_CR11) 2005; 307
D Zipser (740_CR71) 1991; 3
B Lusch (740_CR156) 2018; 9
D Durstewitz (740_CR6) 2021; 6
740_CR139
S Melbaum (740_CR221) 2022; 13
T Sauer (740_CR227) 1995; 5
740_CR138
740_CR136
740_CR134
740_CR131
740_CR130
E Russo (740_CR231) 2021; 41
DE Rumelhart (740_CR74) 1986; 323
X-J Wang (740_CR52) 2008; 60
GR Yang (740_CR85) 2019; 22
Y Zhao (740_CR198) 2017; 29
SH Rudy (740_CR185) 2017; 3
D Durstewitz (740_CR35) 2017; 13
AA Russo (740_CR62) 2020; 107
PAK Reinbold (740_CR216) 2021; 12
740_CR148
740_CR149
740_CR146
740_CR147
740_CR144
RJ Gardner (740_CR53) 2022; 602
740_CR145
RJ Williams (740_CR160) 1989; 1
740_CR143
K Hornik (740_CR118) 1989; 2
740_CR141
C van Vreeswijk (740_CR244) 1996; 274
F Mastrogiuseppe (740_CR90) 2018; 99
L Albantakis (740_CR51) 2009; 106
N Vogt (740_CR32) 2019; 16
P Koiran (740_CR20) 1994; 132
C Allen (740_CR197) 1994; 91
740_CR94
740_CR92
A Sherman (740_CR27) 2011; 138
740_CR91
MR Whiteway (740_CR96) 2016; 117
740_CR159
740_CR157
740_CR158
O De Feo (740_CR186) 2005; 22
740_CR155
740_CR153
740_CR154
740_CR99
740_CR151
740_CR152
740_CR97
740_CR150
H Lindén (740_CR60) 2022; 610
M Kimura (740_CR124) 1998; 11
E Russo (740_CR241) 2017; 6
F Carnevale (740_CR3) 2015; 86
MR Keshtkaran (740_CR95) 2022; 19
P Miller (740_CR13) 2016; 5
D Sussillo (740_CR75) 2009; 63
740_CR207
NA Steinmetz (740_CR30) 2021; 372
740_CR206
JZ Kim (740_CR234) 2021; 3
740_CR204
740_CR201
740_CR202
M Gelbrecht (740_CR182) 2021; 23
740_CR200
AE Urai (740_CR31) 2022; 25
C Clopath (740_CR228) 2017; 372
N Geneva (740_CR192) 2022; 146
MP Karlsson (740_CR66) 2012; 338
740_CR215
740_CR212
740_CR213
H Shimazaki (740_CR232) 2012; 8
J Fuster (740_CR48) 1973; 36
T Sauer (740_CR226) 1994; 72
L Duncker (740_CR218) 2021; 70
W Maass (740_CR176) 2002; 14
AP Trischler (740_CR126) 2016; 80
740_CR108
740_CR109
740_CR107
SL Brunton (740_CR211) 2022; 64
740_CR105
740_CR100
A Goel (740_CR8) 2014; 369
740_CR4
N Kopell (740_CR67) 2000; 97
G Cybenko (740_CR117) 1989; 2
D Durstewitz (740_CR7) 2000; 3
M London (740_CR64) 2010; 466
W Chaisangmongkon (740_CR78) 2017; 93
K Rajan (740_CR93) 2016; 90
D Zipser (740_CR70) 1993; 13
S Vyas (740_CR46) 2020; 43
740_CR119
EK Miller (740_CR50) 1996; 16
740_CR115
740_CR236
X-J Wang (740_CR16) 2002; 36
740_CR116
740_CR237
TA Machado (740_CR28) 2022; 23
740_CR113
740_CR235
740_CR111
740_CR233
740_CR110
M Raissi (740_CR184) 2019; 378
D Durstewitz (740_CR5) 2003; 23
B Mai (740_CR230) 2012; 12
JM Hyman (740_CR222) 2012; 109
AA Russo (740_CR61) 2018; 97
740_CR38
S Naze (740_CR239) 2015; 11
D Durstewitz (740_CR246) 2009; 22
RD Traub (740_CR69) 1996; 383
740_CR40
X-J Wang (740_CR15) 1999; 19
OG Sani (740_CR128) 2021; 24
AS Ecker (740_CR229) 2010; 327
740_CR45
U Pereira-Obilinovic (740_CR245) 2023; 13
740_CR44
740_CR43
K Zhang (740_CR57) 1996; 16
HR Wilson (740_CR18) 1972; 12
R Rajalingham (740_CR79) 2022; 13
A Nair (740_CR106) 2023; 186
HDI Abarbanel (740_CR162) 2009; 8
M Spitmaan (740_CR242) 2020; 117
US Bhalla (740_CR23) 2001; 11
ID Landau (740_CR63) 2018; 14
S Funahashi (740_CR47) 1989; 61
L Paninski (740_CR42) 2018; 50
PR Vlachas (740_CR135) 2020; 126
N Brunel (740_CR2) 2000; 8
AA Kaptanoglu (740_CR173) 2022; 7
D Durstewitz (740_CR25) 2002; 15
740_CR37
SN Wood (740_CR205) 2010; 466
740_CR36
KJ Friston (740_CR127) 2003; 19
J Botvinick-Greenhouse (740_CR168) 2023; 33
D Sussillo (740_CR84) 2015; 18
D Patel (740_CR178) 2023; 33
N Bertschinger (740_CR174) 2004; 16
JM Hyman (740_CR249) 2013; 23
740_CR17
M Storace (740_CR120) 2005; 22
D Durstewitz (740_CR65) 2010; 66
JA Platt (740_CR164) 2021; 31
S Sadeh (740_CR224) 2022; 11
A Dubreuil (740_CR89) 2022; 25
A Seleznev (740_CR133) 2019; 29
JP Roach (740_CR81) 2023; 14
C Pandarinath (740_CR41) 2018; 15
E Marder (740_CR58) 2001; 11
KI Funahashi (740_CR122) 1993; 6
T Chen (740_CR121) 1995; 6
D Durstewitz (740_CR24) 2007; 17
HS Seung (740_CR54) 1996; 93
D Floryan (740_CR214) 2022; 4
JL Elman (740_CR72) 1990; 14
JB Tenenbaum (740_CR114) 2000; 290
Z Ghahramani (740_CR104) 2000; 12
740_CR14
740_CR10
S Fusi (740_CR240) 2007; 54
References_xml – ident: CR45
– volume: 15
  start-page: 965
  year: 2003
  end-page: 991
  ident: CR103
  article-title: Estimating a state-space model from point process observations
  publication-title: Neural Comput.
  doi: 10.1162/089976603765202622
– ident: CR150
– ident: CR97
– ident: CR196
– ident: CR115
– ident: CR138
– volume: 17
  year: 2021
  ident: CR225
  article-title: Neural manifold under plasticity in a goal driven learning behaviour
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008621
– volume: 107
  start-page: 745
  year: 2020
  end-page: 758.e6
  ident: CR62
  article-title: Neural trajectories in the supplementary motor area and motor cortex exhibit distinct geometries, compatible with different classes of computation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.05.020
– ident: CR201
– volume: 99
  start-page: 609
  year: 2018
  end-page: 623.e29
  ident: CR90
  article-title: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– volume: 22
  start-page: 002
  year: 2005
  ident: CR186
  article-title: PWL approximation of nonlinear dynamical systems, part II: identification issues
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/22/1/002
– volume: 137
  start-page: 2210
  year: 2014
  end-page: 2230
  ident: CR238
  article-title: On the nature of seizure dynamics
  publication-title: Brain
  doi: 10.1093/brain/awu133
– ident: CR144
– ident: CR235
– volume: 14
  year: 2023
  ident: CR88
  article-title: Abstract representations emerge naturally in neural networks trained to perform multiple tasks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36583-0
– ident: CR92
– ident: CR191
– volume: 50
  start-page: 132
  year: 1995
  end-page: 150
  ident: CR21
  article-title: On the computational power of neural nets
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1995.1013
– volume: 93
  start-page: 13339
  year: 1996
  end-page: 13344
  ident: CR54
  article-title: How the brain keeps the eyes still
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.23.13339
– volume: 13
  start-page: 3406
  year: 1993
  ident: CR70
  article-title: A spiking network model of short-term active memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.13-08-03406.1993
– ident: CR109
– ident: CR207
– volume: 111
  start-page: 739
  year: 2023
  end-page: 753.e8
  ident: CR76
  article-title: Parametric control of flexible timing through low-dimensional neural manifolds
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.12.016
– ident: CR91
– volume: 19
  start-page: 1572
  year: 2022
  end-page: 1577
  ident: CR95
  article-title: A large-scale neural network training framework for generalized estimation of single-trial population dynamics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01675-0
– volume: 63
  start-page: 544
  year: 2009
  end-page: 557
  ident: CR75
  article-title: Generating coherent patterns of activity from chaotic neural networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.018
– ident: CR213
– volume: 3
  year: 2017
  ident: CR185
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 8
  start-page: 183
  year: 2000
  end-page: 208
  ident: CR2
  article-title: Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
  publication-title: J. Comput. Neurosci.
  doi: 10.1023/A:1008925309027
– volume: 338
  start-page: 135
  year: 2012
  end-page: 139
  ident: CR66
  article-title: Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty
  publication-title: Science
  doi: 10.1126/science.1226518
– ident: CR190
– ident: CR10
– volume: 24
  start-page: 140
  year: 2021
  end-page: 149
  ident: CR128
  article-title: Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00733-0
– volume: 77
  start-page: 016208
  year: 2008
  ident: CR163
  article-title: Estimation of parameters in nonlinear systems using balanced synchronization
  publication-title: Phys. Rev.
– ident: CR86
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: CR137
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 72
  start-page: 3811
  year: 1994
  end-page: 3814
  ident: CR226
  article-title: Reconstruction of dynamical systems from interspike intervals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3811
– volume: 6
  start-page: 911
  year: 1995
  end-page: 917
  ident: CR121
  article-title: Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– ident: CR236
– ident: CR108
– volume: 11
  start-page: 1589
  year: 1998
  end-page: 1599
  ident: CR124
  article-title: Learning dynamical systems by recurrent neural networks from orbits
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00098-7
– volume: 13
  year: 2017
  ident: CR35
  article-title: A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005542
– ident: CR44
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: CR74
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 18
  start-page: 1025
  year: 2015
  end-page: 1033
  ident: CR84
  article-title: A neural network that finds a naturalistic solution for the production of muscle activity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4042
– ident: CR38
– volume: 13
  year: 2022
  ident: CR221
  article-title: Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35115-6
– ident: CR139
– ident: CR151
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: CR33
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1517384113
– volume: 102
  start-page: 614
  year: 2009
  end-page: 635
  ident: CR129
  article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90941.2008
– volume: 12
  start-page: 74
  year: 2012
  end-page: 84
  ident: CR230
  article-title: Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-011-0068-4
– volume: 90
  start-page: 128
  year: 2016
  end-page: 142
  ident: CR93
  article-title: Recurrent network models of sequence generation and memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.009
– volume: 31
  start-page: 123118
  year: 2021
  ident: CR164
  article-title: Robust forecasting using predictive generalized synchronization in reservoir computing
  publication-title: Chaos
  doi: 10.1063/5.0066013
– ident: CR202
– volume: 70
  start-page: 113
  year: 2021
  end-page: 120
  ident: CR220
  article-title: Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.08.002
– volume: 36
  start-page: 955
  year: 2002
  end-page: 968
  ident: CR16
  article-title: Probabilistic decision making by slow reverberation in cortical circuits
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01092-9
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: CR160
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– ident: CR145
– volume: 9
  year: 2018
  ident: CR156
  article-title: Deep learning for universal linear embeddings of nonlinear dynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07210-0
– volume: 327
  start-page: 584
  year: 2010
  end-page: 587
  ident: CR229
  article-title: Decorrelated neuronal firing in cortical microcircuits
  publication-title: Science
  doi: 10.1126/science.1179867
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: CR9
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– ident: CR148
– ident: CR177
– ident: CR49
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: CR184
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 11
  year: 2022
  ident: CR224
  article-title: Contribution of behavioural variability to representational drift
  publication-title: eLife
  doi: 10.7554/eLife.77907
– volume: 22
  start-page: 297
  year: 2019
  end-page: 306
  ident: CR85
  article-title: Task representations in neural networks trained to perform many cognitive tasks
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0310-2
– ident: CR154
– volume: 146
  start-page: 272
  year: 2022
  end-page: 289
  ident: CR192
  article-title: Transformers for modeling physical systems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.11.022
– ident: CR111
– volume: 30
  start-page: 2025
  year: 2018
  end-page: 2055
  ident: CR180
  article-title: Machine learning: deepest learning as statistical data assimilation problems
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01094
– volume: 3
  start-page: 179
  year: 1991
  end-page: 193
  ident: CR71
  article-title: Recurrent network model of the neural mechanism of short-term active memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.179
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: CR72
  article-title: Finding structure in time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– ident: CR195
– volume: 61
  start-page: 331
  year: 1989
  end-page: 349
  ident: CR47
  article-title: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1989.61.2.331
– volume: 13
  start-page: 011009
  year: 2023
  ident: CR245
  article-title: Forgetting leads to chaos in attractor networks
  publication-title: Phys. Rev. X
– ident: CR116
– volume: 8
  start-page: 1341
  year: 2009
  end-page: 1381
  ident: CR162
  article-title: Dynamical state and parameter estimation
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/090749761
– ident: CR189
– volume: 307
  start-page: 1121
  year: 2005
  end-page: 1124
  ident: CR11
  article-title: Flexible control of mutual inhibition: a neural model of two-interval discrimination
  publication-title: Science
  doi: 10.1126/science.1104171
– volume: 65
  start-page: 579
  year: 1991
  end-page: 616
  ident: CR112
  article-title: Embedology
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01053745
– volume: 15
  start-page: 561
  year: 2002
  end-page: 572
  ident: CR25
  article-title: The computational role of dopamine D1 receptors in working memory
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00049-7
– ident: CR105
– ident: CR99
– ident: CR143
– volume: 14
  year: 2023
  ident: CR81
  article-title: Choice selective inhibition drives stability and competition in decision circuits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35822-8
– ident: CR43
– volume: 602
  start-page: 123
  year: 2022
  end-page: 128
  ident: CR53
  article-title: Toroidal topology of population activity in grid cells
  publication-title: Nature
  doi: 10.1038/s41586-021-04268-7
– ident: CR14
– volume: 3
  start-page: 218
  year: 2021
  end-page: 229
  ident: CR125
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– volume: 5
  start-page: F1000
  year: 2016
  ident: CR13
  article-title: Dynamical systems, attractors, and neural circuits
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7698.1
– volume: 116
  start-page: 22445
  year: 2019
  end-page: 22451
  ident: CR34
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906995116
– ident: CR37
– volume: 22
  start-page: 1189
  year: 2009
  end-page: 1200
  ident: CR246
  article-title: Implications of synaptic biophysics for recurrent network dynamics and active memory
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.07.016
– volume: 43
  start-page: 249
  year: 2020
  end-page: 275
  ident: CR46
  article-title: Computation through neural population dynamics
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-092619-094115
– volume: 12
  year: 2016
  ident: CR83
  article-title: Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004792
– volume: 372
  start-page: 20160161
  year: 2017
  ident: CR228
  article-title: Variance and invariance of neuronal long-term representations
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2016.0161
– volume: 106
  start-page: 10308
  year: 2009
  end-page: 10313
  ident: CR51
  article-title: The encoding of alternatives in multiple-choice decision making
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0901621106
– volume: 41
  start-page: 2406
  year: 2021
  end-page: 2419
  ident: CR231
  article-title: Coordinated prefrontal state transition leads extinction of reward-seeking behaviors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2588-20.2021
– volume: 97
  start-page: 953
  year: 2018
  end-page: 966.e8
  ident: CR61
  article-title: Motor cortex embeds muscle-like commands in an untangled population response
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.004
– ident: CR188
– volume: 25
  start-page: 252
  year: 2022
  end-page: 263
  ident: CR29
  article-title: Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00997-0
– volume: 3
  start-page: 316
  year: 2021
  end-page: 323
  ident: CR234
  article-title: Teaching recurrent neural networks to infer global temporal structure from local examples
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00321-2
– volume: 466
  start-page: 123
  year: 2010
  end-page: 127
  ident: CR64
  article-title: Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
  publication-title: Nature
  doi: 10.1038/nature09086
– volume: 22
  start-page: 208
  year: 2005
  ident: CR120
  article-title: PWL approximation of nonlinear dynamical systems, part I: structural stability
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/22/1/014
– ident: CR161
– ident: CR149
– volume: 20
  start-page: 130
  year: 1963
  end-page: 141
  ident: CR247
  article-title: Deterministic nonperiodic flow
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 60
  start-page: 215
  year: 2008
  end-page: 234
  ident: CR52
  article-title: Decision making in recurrent neuronal circuits
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.034
– volume: 16
  start-page: 2112
  year: 1996
  end-page: 2126
  ident: CR57
  article-title: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-06-02112.1996
– volume: 29
  start-page: 123115
  year: 2019
  ident: CR133
  article-title: Bayesian framework for simulation of dynamical systems from multidimensional data using recurrent neural network
  publication-title: Chaos
  doi: 10.1063/1.5128372
– volume: 11
  start-page: R986
  year: 2001
  end-page: R996
  ident: CR58
  article-title: Central pattern generators and the control of rhythmic movements
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00581-4
– volume: 19
  start-page: 1
  year: 2018
  end-page: 24
  ident: CR179
  article-title: Deep hidden physics models: deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– ident: CR155
– volume: 117
  start-page: 22522
  year: 2020
  end-page: 22531
  ident: CR242
  article-title: Multiple timescales of neural dynamics and integration of task-relevant signals across cortex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2005993117
– volume: 12
  year: 2021
  ident: CR216
  article-title: Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23479-0
– volume: 11
  start-page: 221
  year: 2001
  end-page: 226
  ident: CR23
  article-title: Robustness of the bistable behavior of a biological signaling feedback loop
  publication-title: Chaos
  doi: 10.1063/1.1350440
– ident: CR172
– volume: 29
  start-page: 1293
  year: 2017
  end-page: 1316
  ident: CR198
  article-title: Variational latent Gaussian process for recovering single-trial dynamics from population spike trains
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00953
– volume: 21
  start-page: 102
  year: 2018
  end-page: 110
  ident: CR56
  article-title: Flexible timing by temporal scaling of cortical responses
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0028-6
– ident: CR110
– volume: 12
  start-page: 831
  year: 2000
  end-page: 864
  ident: CR104
  article-title: Variational learning for switching state-space models
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015619
– ident: CR166
– ident: CR237
– ident: CR183
– volume: 25
  start-page: 11
  year: 2022
  end-page: 19
  ident: CR31
  article-title: Large-scale neural recordings call for new insights to link brain and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00980-9
– volume: 54
  start-page: 319
  year: 2007
  end-page: 333
  ident: CR240
  article-title: A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.017
– volume: 50
  start-page: 232
  year: 2018
  end-page: 241
  ident: CR42
  article-title: Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.04.007
– volume: 120
  start-page: 024102
  year: 2018
  ident: CR132
  article-title: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.024102
– volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: CR176
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput.
  doi: 10.1162/089976602760407955
– ident: CR158
– volume: 17
  start-page: 894
  year: 2007
  end-page: 908
  ident: CR24
  article-title: Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhk044
– ident: CR77
– volume: 31
  start-page: 083119
  year: 2021
  ident: CR165
  article-title: Learn to synchronize, synchronize to learn
  publication-title: Chaos
  doi: 10.1063/5.0056425
– ident: CR215
– volume: 4
  start-page: L032014
  year: 2022
  ident: CR243
  article-title: Reservoir computing with diverse timescales for prediction of multiscale dynamics
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.L032014
– volume: 19
  start-page: 1273
  year: 2003
  end-page: 1302
  ident: CR127
  article-title: Dynamic causal modelling
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 29
  start-page: 107
  year: 2010
  end-page: 126
  ident: CR101
  article-title: A new look at state-space models for neural data
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0179-x
– volume: 8
  year: 2012
  ident: CR232
  article-title: State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002385
– volume: 3
  start-page: 1184
  year: 2000
  end-page: 1191
  ident: CR7
  article-title: Neurocomputational models of working memory
  publication-title: Nat. Neurosci.
  doi: 10.1038/81460
– volume: 118
  year: 2021
  ident: CR223
  article-title: Drifting assemblies for persistent memory: neuron transitions and unsupervised compensation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2023832118
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: CR117
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– ident: CR199
– ident: CR204
– volume: 466
  start-page: 1102
  year: 2010
  end-page: 1104
  ident: CR205
  article-title: Statistical inference for noisy nonlinear ecological dynamic systems
  publication-title: Nature
  doi: 10.1038/nature09319
– volume: 66
  start-page: 438
  year: 2010
  end-page: 448
  ident: CR65
  article-title: Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.029
– ident: CR153
– volume: 6
  year: 2017
  ident: CR241
  article-title: Cell assemblies at multiple time scales with arbitrary lag constellations
  publication-title: eLife
  doi: 10.7554/eLife.19428
– ident: CR170
– volume: 70
  start-page: 163
  year: 2021
  end-page: 170
  ident: CR218
  article-title: Dynamics on the manifold: identifying computational dynamical activity from neural population recordings
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.10.014
– volume: 23
  start-page: 683
  year: 2022
  end-page: 704
  ident: CR28
  article-title: Multiregion neuronal activity: the forest and the trees
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-022-00634-0
– ident: CR36
– volume: 138
  start-page: 67
  year: 1995
  end-page: 100
  ident: CR19
  article-title: Universal computation and other capabilities of hybrid and continuous dynamical systems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)00147-B
– volume: 138
  start-page: 13
  year: 2011
  end-page: 19
  ident: CR27
  article-title: Dynamical systems theory in physiology
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201110668
– volume: 19
  start-page: 9587
  year: 1999
  end-page: 9603
  ident: CR15
  article-title: Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-21-09587.1999
– ident: CR147
– volume: 25
  start-page: 783
  year: 2022
  end-page: 794
  ident: CR89
  article-title: The role of population structure in computations through neural dynamics
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01088-4
– volume: 212
  start-page: 372
  year: 2018
  end-page: 385
  ident: CR203
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– ident: CR100
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: CR175
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 132
  start-page: 113
  year: 1994
  end-page: 128
  ident: CR20
  article-title: Computability with low-dimensional dynamical systems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)90229-1
– volume: 15
  start-page: 805
  year: 2018
  end-page: 815
  ident: CR41
  article-title: Inferring single-trial neural population dynamics using sequential auto-encoders
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0109-9
– volume: 14
  start-page: 1905
  year: 2004
  end-page: 1933
  ident: CR167
  article-title: Nonlinear dynamical system identification from uncertain and indirect measurements
  publication-title: Int. J. Bifurcat. Chaos
  doi: 10.1142/S0218127404010345
– volume: 15
  year: 2019
  ident: CR39
  article-title: Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007263
– ident: CR171
– volume: 33
  start-page: 023143
  year: 2023
  ident: CR178
  article-title: Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems
  publication-title: Chaos
  doi: 10.1063/5.0131787
– volume: 186
  start-page: 178
  year: 2023
  end-page: 193.e15
  ident: CR106
  article-title: An approximate line attractor in the hypothalamus encodes an aggressive state
  publication-title: Cell
  doi: 10.1016/j.cell.2022.11.027
– volume: 274
  start-page: 1724
  year: 1996
  end-page: 1726
  ident: CR244
  article-title: Chaos in neuronal networks with balanced excitatory and inhibitory activity
  publication-title: Science
  doi: 10.1126/science.274.5293.1724
– volume: 503
  start-page: 78
  year: 2013
  end-page: 84
  ident: CR12
  article-title: Context-dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 23
  start-page: 1257
  year: 2013
  end-page: 1268
  ident: CR249
  article-title: Action and outcome activity state patterns in the anterior cingulate cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs104
– ident: CR123
– volume: 23
  start-page: 1
  year: 2011
  end-page: 45
  ident: CR102
  article-title: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00058
– ident: CR94
– ident: CR233
– volume: 93
  start-page: 1504
  year: 2017
  end-page: 1517.e4
  ident: CR78
  article-title: Computing by robust transience: how the fronto-parietal network performs sequential, category-based decisions
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.002
– volume: 17
  year: 2021
  ident: CR217
  article-title: Estimating the dimensionality of the manifold underlying multi-electrode neural recordings
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008591
– volume: 5
  start-page: 127
  year: 1995
  end-page: 132
  ident: CR227
  article-title: Interspike interval embedding of chaotic signals
  publication-title: Chaos
  doi: 10.1063/1.166094
– volume: 283
  start-page: 381
  year: 1999
  end-page: 387
  ident: CR22
  article-title: Emergent properties of networks of biological signaling pathways
  publication-title: Science
  doi: 10.1126/science.283.5400.381
– volume: 161
  start-page: 68
  year: 2006
  end-page: 85
  ident: CR68
  article-title: Rate models with delays and the dynamics of large networks of spiking neurons
  publication-title: Prog. Theor. Phys. Supp.
  doi: 10.1143/PTPS.161.68
– ident: CR193
– volume: 6
  start-page: 801
  year: 1993
  end-page: 806
  ident: CR122
  article-title: Approximation of dynamical systems by continuous time recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80125-X
– ident: CR134
– volume: 31
  start-page: 156
  year: 2015
  end-page: 163
  ident: CR59
  article-title: Robust circuit rhythms in small circuits arise from variable circuit components and mechanisms
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.10.012
– volume: 36
  start-page: 61
  year: 1973
  end-page: 78
  ident: CR48
  article-title: Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1973.36.1.61
– volume: 13
  year: 2022
  ident: CR79
  article-title: Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33581-6
– volume: 11
  year: 2015
  ident: CR239
  article-title: Computational modeling of seizure dynamics using coupled neuronal networks: factors shaping epileptiform activity
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004209
– volume: 197
  start-page: 287
  year: 1977
  end-page: 289
  ident: CR26
  article-title: Oscillation and chaos in physiological control systems
  publication-title: Science
  doi: 10.1126/science.267326
– ident: CR159
– volume: 126
  start-page: 191
  year: 2020
  end-page: 217
  ident: CR135
  article-title: Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.02.016
– volume: 23
  start-page: 5342
  year: 2003
  end-page: 5353
  ident: CR5
  article-title: Self-organizing neural integrator predicts interval times through climbing activity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-12-05342.2003
– volume: 23
  start-page: 24
  year: 2012
  end-page: 47
  ident: CR98
  article-title: Learning stable, regularised latent models of neural population dynamics
  publication-title: Network
  doi: 10.3109/0954898X.2012.677095
– ident: CR4
– ident: CR131
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: CR140
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: CR119
– volume: 1
  start-page: 339
  year: 1988
  end-page: 356
  ident: CR142
  article-title: Generalization of backpropagation with application to a recurrent gas market model
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(88)90007-X
– volume: 91
  start-page: 10380
  year: 1994
  end-page: 10383
  ident: CR197
  article-title: An evaluation of causes for unreliability of synaptic transmission
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.22.10380
– volume: 4
  start-page: 1113
  year: 2022
  end-page: 1120
  ident: CR214
  article-title: Data-driven discovery of intrinsic dynamics
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00575-4
– volume: 26
  start-page: 879
  year: 2023
  end-page: 890
  ident: CR87
  article-title: Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01293-9
– volume: 94
  start-page: 978
  year: 2017
  end-page: 984
  ident: CR219
  article-title: Neural manifolds for the control of movement
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.025
– volume: 51
  start-page: 1034
  year: 2004
  end-page: 1043
  ident: CR248
  article-title: BCI2000: a general-purpose brain–computer interface (BCI) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– volume: 16
  start-page: 5154
  year: 1996
  ident: CR50
  article-title: Neural mechanisms of visual working memory in prefrontal cortex of the macaque
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-16-05154.1996
– volume: 383
  start-page: 621
  year: 1996
  end-page: 624
  ident: CR69
  article-title: A mechanism for generation of long-range synchronous fast oscillations in the cortex
  publication-title: Nature
  doi: 10.1038/383621a0
– volume: 7
  start-page: 237
  year: 1997
  end-page: 252
  ident: CR1
  article-title: Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.3.237
– volume: 26
  start-page: 259
  year: 2000
  end-page: 271
  ident: CR55
  article-title: Stability of the memory of eye position in a recurrent network of conductance-based model neurons
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81155-1
– volume: 97
  start-page: 1867
  year: 2000
  end-page: 1872
  ident: CR67
  article-title: Gamma rhythms and beta rhythms have different synchronization properties
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.4.1867
– volume: 103
  start-page: 934
  year: 2019
  end-page: 947.e5
  ident: CR82
  article-title: Bayesian computation through cortical latent dynamics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.06.012
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: CR118
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: CR157
– ident: CR136
– volume: 33
  start-page: 063152
  year: 2023
  ident: CR168
  article-title: Learning dynamics on invariant measures using PDE-constrained optimization
  publication-title: Chaos
  doi: 10.1063/5.0149673
– volume: 16
  start-page: 1079
  year: 2019
  end-page: 1079
  ident: CR32
  article-title: Massively parallel intracellular recordings
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0644-z
– ident: CR200
– ident: CR181
– volume: 117
  start-page: 919
  year: 2016
  end-page: 936
  ident: CR96
  article-title: Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00698.2016
– volume: 12
  start-page: 1
  year: 1972
  end-page: 24
  ident: CR18
  article-title: Excitatory and inhibitory interactions in localized populations of model neurons
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 369
  start-page: 20120460
  year: 2014
  ident: CR8
  article-title: Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2012.0460
– volume: 372
  start-page: eabf4588
  year: 2021
  ident: CR30
  article-title: Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings
  publication-title: Science
  doi: 10.1126/science.abf4588
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR187
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. B Stat. Methodol.
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: CR114
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: CR152
– ident: CR113
– volume: 16
  start-page: 1413
  year: 2004
  end-page: 1436
  ident: CR174
  article-title: Real-time computation at the edge of chaos in recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/089976604323057443
– ident: CR40
– ident: CR169
– ident: CR146
– volume: 10
  start-page: 113
  year: 1998
  end-page: 132
  ident: CR209
  article-title: Near-saddle-node bifurcation behavior as dynamics in working memory for goal-directed behavior
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017917
– volume: 25
  start-page: 626
  year: 2013
  end-page: 649
  ident: CR210
  article-title: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00409
– volume: 26
  start-page: 326
  year: 2023
  end-page: 338
  ident: CR208
  article-title: Residual dynamics resolves recurrent contributions to neural computation
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01230-2
– volume: 6
  start-page: 865
  year: 2021
  end-page: 876
  ident: CR6
  article-title: Psychiatric illnesses as disorders of network dynamics
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– ident: CR73
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR194
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: CR212
– ident: CR206
– volume: 98
  start-page: 1005
  year: 2018
  end-page: 1019.e5
  ident: CR80
  article-title: Flexible sensorimotor computations through rapid reconfiguration of cortical dynamics
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.020
– volume: 109
  start-page: 5086
  year: 2012
  end-page: 5091
  ident: CR222
  article-title: Contextual encoding by ensembles of medial prefrontal cortex neurons
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1114415109
– volume: 86
  start-page: 1067
  year: 2015
  end-page: 1077
  ident: CR3
  article-title: Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.04.014
– ident: CR130
– volume: 80
  start-page: 67
  year: 2016
  end-page: 78
  ident: CR126
  article-title: Synthesis of recurrent neural networks for dynamical system simulation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.04.001
– ident: CR17
– volume: 64
  start-page: 229
  year: 2022
  end-page: 340
  ident: CR211
  article-title: Modern Koopman Theory for Dynamical Systems
  publication-title: SIAM Rev.
  doi: 10.1137/21M1401243
– volume: 610
  start-page: 526
  year: 2022
  end-page: 531
  ident: CR60
  article-title: Movement is governed by rotational neural dynamics in spinal motor networks
  publication-title: Nature
  doi: 10.1038/s41586-022-05293-w
– volume: 14
  year: 2018
  ident: CR63
  article-title: Coherent chaos in a recurrent neural network with structured connectivity
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006309
– volume: 23
  start-page: 043005
  year: 2021
  ident: CR182
  article-title: Neural partial differential equations for chaotic systems
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/abeb90
– ident: CR107
– ident: CR141
– volume: 7
  start-page: 3994
  year: 2022
  ident: CR173
  article-title: PySINDy: a comprehensive python package for robust sparse system identification
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.03994
– volume: 117
  start-page: 919
  year: 2016
  ident: 740_CR96
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00698.2016
– volume: 8
  start-page: 1341
  year: 2009
  ident: 740_CR162
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/090749761
– volume: 23
  start-page: 683
  year: 2022
  ident: 740_CR28
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-022-00634-0
– volume: 8
  year: 2012
  ident: 740_CR232
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002385
– volume: 116
  start-page: 22445
  year: 2019
  ident: 740_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906995116
– volume: 503
  start-page: 78
  year: 2013
  ident: 740_CR12
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 31
  start-page: 123118
  year: 2021
  ident: 740_CR164
  publication-title: Chaos
  doi: 10.1063/5.0066013
– volume: 6
  start-page: 865
  year: 2021
  ident: 740_CR6
  publication-title: Biol. Psychiatry Cogn. Neurosci. Neuroimaging
– ident: 740_CR188
  doi: 10.48550/arXiv.1409.0473
– volume: 25
  start-page: 783
  year: 2022
  ident: 740_CR89
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01088-4
– volume: 118
  year: 2021
  ident: 740_CR223
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2023832118
– volume: 33
  start-page: 063152
  year: 2023
  ident: 740_CR168
  publication-title: Chaos
  doi: 10.1063/5.0149673
– volume: 138
  start-page: 67
  year: 1995
  ident: 740_CR19
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)00147-B
– ident: 740_CR99
– ident: 740_CR136
  doi: 10.3115/v1/W14-4012
– ident: 740_CR130
– volume: 5
  start-page: 157
  year: 1994
  ident: 740_CR140
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– ident: 740_CR169
  doi: 10.48550/arXiv.2306.01187
– ident: 740_CR233
– ident: 740_CR170
  doi: 10.48550/arXiv.2302.03358
– ident: 740_CR107
– volume: 197
  start-page: 287
  year: 1977
  ident: 740_CR26
  publication-title: Science
  doi: 10.1126/science.267326
– ident: 740_CR100
  doi: 10.1017/CBO9781139941433.007
– volume: 23
  start-page: 24
  year: 2012
  ident: 740_CR98
  publication-title: Network
  doi: 10.3109/0954898X.2012.677095
– ident: 740_CR86
  doi: 10.1101/2022.08.15.503870
– volume: 24
  start-page: 140
  year: 2021
  ident: 740_CR128
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00733-0
– ident: 740_CR157
  doi: 10.48550/arXiv.2304.12865
– volume: 72
  start-page: 3811
  year: 1994
  ident: 740_CR226
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.3811
– volume: 63
  start-page: 544
  year: 2009
  ident: 740_CR75
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.018
– ident: 740_CR148
– ident: 740_CR171
  doi: 10.48550/arXiv.2001.04385
– volume: 19
  start-page: 1
  year: 2018
  ident: 740_CR179
  publication-title: J. Mach. Learn. Res.
– volume: 65
  start-page: 579
  year: 1991
  ident: 740_CR112
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01053745
– volume: 17
  year: 2021
  ident: 740_CR217
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008591
– volume: 466
  start-page: 1102
  year: 2010
  ident: 740_CR205
  publication-title: Nature
  doi: 10.1038/nature09319
– ident: 740_CR193
– volume: 9
  year: 2018
  ident: 740_CR156
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07210-0
– volume: 99
  start-page: 609
  year: 2018
  ident: 740_CR90
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.07.003
– ident: 740_CR111
  doi: 10.1017/CBO9780511755798
– volume: 23
  start-page: 1
  year: 2011
  ident: 740_CR102
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00058
– volume: 15
  start-page: 965
  year: 2003
  ident: 740_CR103
  publication-title: Neural Comput.
  doi: 10.1162/089976603765202622
– volume: 12
  start-page: 74
  year: 2012
  ident: 740_CR230
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-011-0068-4
– volume: 14
  year: 2023
  ident: 740_CR88
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36583-0
– volume: 3
  start-page: 218
  year: 2021
  ident: 740_CR125
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– volume: 26
  start-page: 259
  year: 2000
  ident: 740_CR55
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)81155-1
– volume: 14
  year: 2018
  ident: 740_CR63
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006309
– ident: 740_CR199
– volume: 18
  start-page: 1025
  year: 2015
  ident: 740_CR84
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4042
– ident: 740_CR159
  doi: 10.48550/arXiv.2302.11101
– volume: 80
  start-page: 67
  year: 2016
  ident: 740_CR126
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2016.04.001
– volume: 3
  year: 2017
  ident: 740_CR185
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– ident: 740_CR94
– volume: 90
  start-page: 128
  year: 2016
  ident: 740_CR93
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.009
– volume: 4
  start-page: L032014
  year: 2022
  ident: 740_CR243
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.L032014
– ident: 740_CR154
– volume: 31
  start-page: 156
  year: 2015
  ident: 740_CR59
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.10.012
– volume: 16
  start-page: 1079
  year: 2019
  ident: 740_CR32
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0644-z
– ident: 740_CR108
– volume: 17
  year: 2021
  ident: 740_CR225
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008621
– ident: 740_CR181
– volume: 5
  start-page: F1000
  year: 2016
  ident: 740_CR13
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7698.1
– volume: 11
  year: 2015
  ident: 740_CR239
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004209
– volume: 132
  start-page: 113
  year: 1994
  ident: 740_CR20
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)90229-1
– volume: 11
  start-page: 221
  year: 2001
  ident: 740_CR23
  publication-title: Chaos
  doi: 10.1063/1.1350440
– volume: 6
  start-page: 911
  year: 1995
  ident: 740_CR121
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– volume: 3
  start-page: 1184
  year: 2000
  ident: 740_CR7
  publication-title: Nat. Neurosci.
  doi: 10.1038/81460
– ident: 740_CR161
  doi: 10.1007/978-1-4614-7218-6
– ident: 740_CR146
– ident: 740_CR44
  doi: 10.1007/978-1-4613-0003-8
– ident: 740_CR10
  doi: 10.7551/mitpress/2526.001.0001
– volume: 22
  start-page: 208
  year: 2005
  ident: 740_CR120
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/22/1/014
– ident: 740_CR212
– volume: 15
  start-page: 805
  year: 2018
  ident: 740_CR41
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0109-9
– ident: 740_CR43
  doi: 10.1007/b97589
– volume: 283
  start-page: 381
  year: 1999
  ident: 740_CR22
  publication-title: Science
  doi: 10.1126/science.283.5400.381
– ident: 740_CR207
  doi: 10.1007/978-3-319-59976-2
– ident: 740_CR92
  doi: 10.3389/fncom.2020.00071
– volume: 12
  start-page: 831
  year: 2000
  ident: 740_CR104
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015619
– volume: 16
  start-page: 2112
  year: 1996
  ident: 740_CR57
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-06-02112.1996
– volume: 338
  start-page: 135
  year: 2012
  ident: 740_CR66
  publication-title: Science
  doi: 10.1126/science.1226518
– volume: 15
  year: 2019
  ident: 740_CR39
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007263
– volume: 10
  start-page: 113
  year: 1998
  ident: 740_CR209
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017917
– ident: 740_CR152
– volume: 107
  start-page: 745
  year: 2020
  ident: 740_CR62
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.05.020
– volume: 466
  start-page: 123
  year: 2010
  ident: 740_CR64
  publication-title: Nature
  doi: 10.1038/nature09086
– volume: 109
  start-page: 5086
  year: 2012
  ident: 740_CR222
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1114415109
– volume: 313
  start-page: 504
  year: 2006
  ident: 740_CR194
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 111
  start-page: 739
  year: 2023
  ident: 740_CR76
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.12.016
– ident: 740_CR131
– ident: 740_CR45
  doi: 10.1201/9780429399640
– volume: 212
  start-page: 372
  year: 2018
  ident: 740_CR203
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 23
  start-page: 5342
  year: 2003
  ident: 740_CR5
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-12-05342.2003
– ident: 740_CR144
  doi: 10.48550/arXiv.1412.3555
– volume: 12
  year: 2021
  ident: 740_CR216
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23479-0
– ident: 740_CR141
– volume: 70
  start-page: 163
  year: 2021
  ident: 740_CR218
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.10.014
– ident: 740_CR119
– ident: 740_CR201
– volume: 66
  start-page: 438
  year: 2010
  ident: 740_CR65
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.03.029
– volume: 126
  start-page: 191
  year: 2020
  ident: 740_CR135
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.02.016
– volume: 33
  start-page: 023143
  year: 2023
  ident: 740_CR178
  publication-title: Chaos
  doi: 10.1063/5.0131787
– volume: 70
  start-page: 113
  year: 2021
  ident: 740_CR220
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2021.08.002
– ident: 740_CR36
– ident: 740_CR191
  doi: 10.48550/arXiv.2303.08774
– volume: 22
  start-page: 002
  year: 2005
  ident: 740_CR186
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/22/1/002
– volume: 19
  start-page: 1572
  year: 2022
  ident: 740_CR95
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01675-0
– volume: 36
  start-page: 61
  year: 1973
  ident: 740_CR48
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1973.36.1.61
– volume: 29
  start-page: 123115
  year: 2019
  ident: 740_CR133
  publication-title: Chaos
  doi: 10.1063/1.5128372
– ident: 740_CR77
  doi: 10.1101/2022.07.21.500962
– volume: 610
  start-page: 526
  year: 2022
  ident: 740_CR60
  publication-title: Nature
  doi: 10.1038/s41586-022-05293-w
– ident: 740_CR235
– volume: 50
  start-page: 232
  year: 2018
  ident: 740_CR42
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2018.04.007
– volume: 61
  start-page: 331
  year: 1989
  ident: 740_CR47
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1989.61.2.331
– ident: 740_CR200
  doi: 10.48550/arXiv.2006.08973
– volume: 11
  year: 2022
  ident: 740_CR224
  publication-title: eLife
  doi: 10.7554/eLife.77907
– volume: 137
  start-page: 2210
  year: 2014
  ident: 740_CR238
  publication-title: Brain
  doi: 10.1093/brain/awu133
– ident: 740_CR147
– volume: 290
  start-page: 2319
  year: 2000
  ident: 740_CR114
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 1
  start-page: 339
  year: 1988
  ident: 740_CR142
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(88)90007-X
– volume: 51
  start-page: 1034
  year: 2004
  ident: 740_CR248
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– ident: 740_CR14
– volume: 327
  start-page: 584
  year: 2010
  ident: 740_CR229
  publication-title: Science
  doi: 10.1126/science.1179867
– volume: 117
  start-page: 22522
  year: 2020
  ident: 740_CR242
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2005993117
– volume: 2
  start-page: 303
  year: 1989
  ident: 740_CR117
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– ident: 740_CR110
– ident: 740_CR213
– volume: 11
  start-page: 1589
  year: 1998
  ident: 740_CR124
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00098-7
– ident: 740_CR4
  doi: 10.1007/978-3-642-00616-6_3
– volume: 3
  start-page: 179
  year: 1991
  ident: 740_CR71
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.179
– ident: 740_CR236
– volume: 5
  start-page: 127
  year: 1995
  ident: 740_CR227
  publication-title: Chaos
  doi: 10.1063/1.166094
– volume: 22
  start-page: 297
  year: 2019
  ident: 740_CR85
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0310-2
– ident: 740_CR166
  doi: 10.1109/ICMLA.2019.00015
– volume: 43
  start-page: 249
  year: 2020
  ident: 740_CR46
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-092619-094115
– volume: 23
  start-page: 1257
  year: 2013
  ident: 740_CR249
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs104
– volume: 60
  start-page: 215
  year: 2008
  ident: 740_CR52
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.034
– volume: 16
  start-page: 5154
  year: 1996
  ident: 740_CR50
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.16-16-05154.1996
– ident: 740_CR38
– volume: 14
  start-page: 179
  year: 1990
  ident: 740_CR72
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– ident: 740_CR91
– volume: 64
  start-page: 229
  year: 2022
  ident: 740_CR211
  publication-title: SIAM Rev.
  doi: 10.1137/21M1401243
– volume: 54
  start-page: 319
  year: 2007
  ident: 740_CR240
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.03.017
– volume: 307
  start-page: 1121
  year: 2005
  ident: 740_CR11
  publication-title: Science
  doi: 10.1126/science.1104171
– volume: 6
  start-page: 801
  year: 1993
  ident: 740_CR122
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80125-X
– volume: 50
  start-page: 132
  year: 1995
  ident: 740_CR21
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1995.1013
– ident: 740_CR145
– volume: 21
  start-page: 102
  year: 2018
  ident: 740_CR56
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-017-0028-6
– ident: 740_CR37
  doi: 10.1007/978-1-4614-9602-1
– ident: 740_CR202
– ident: 740_CR115
  doi: 10.7551/mitpress/1120.003.0080
– volume: 29
  start-page: 1293
  year: 2017
  ident: 740_CR198
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00953
– ident: 740_CR139
– volume: 1
  start-page: 270
  year: 1989
  ident: 740_CR160
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 14
  start-page: 2531
  year: 2002
  ident: 740_CR176
  publication-title: Neural Comput.
  doi: 10.1162/089976602760407955
– volume: 26
  start-page: 879
  year: 2023
  ident: 740_CR87
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-023-01293-9
– volume: 25
  start-page: 626
  year: 2013
  ident: 740_CR210
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00409
– volume: 113
  start-page: 3932
  year: 2016
  ident: 740_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1517384113
– ident: 740_CR177
  doi: 10.1109/ISCAS.2019.8702137
– volume: 372
  start-page: eabf4588
  year: 2021
  ident: 740_CR30
  publication-title: Science
  doi: 10.1126/science.abf4588
– ident: 740_CR134
  doi: 10.1098/rspa.2017.0844
– volume: 13
  start-page: 3406
  year: 1993
  ident: 740_CR70
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.13-08-03406.1993
– ident: 740_CR97
– volume: 323
  start-page: 533
  year: 1986
  ident: 740_CR74
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 740_CR151
– volume: 6
  year: 2017
  ident: 740_CR241
  publication-title: eLife
  doi: 10.7554/eLife.19428
– volume: 79
  start-page: 2554
  year: 1982
  ident: 740_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 9
  start-page: 1735
  year: 1997
  ident: 740_CR137
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 25
  start-page: 11
  year: 2022
  ident: 740_CR31
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00980-9
– ident: 740_CR195
  doi: 10.48550/arXiv.2201.05136
– volume: 93
  start-page: 1504
  year: 2017
  ident: 740_CR78
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.002
– volume: 103
  start-page: 934
  year: 2019
  ident: 740_CR82
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.06.012
– ident: 740_CR109
– ident: 740_CR113
  doi: 10.1007/BFb0091924
– ident: 740_CR49
  doi: 10.1016/B978-0-12-407815-4.00002-7
– volume: 146
  start-page: 272
  year: 2022
  ident: 740_CR192
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.11.022
– ident: 740_CR196
– volume: 91
  start-page: 10380
  year: 1994
  ident: 740_CR197
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.22.10380
– volume: 3
  start-page: 316
  year: 2021
  ident: 740_CR234
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00321-2
– volume: 138
  start-page: 13
  year: 2011
  ident: 740_CR27
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201110668
– volume: 12
  start-page: 1
  year: 1972
  ident: 740_CR18
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(72)86068-5
– volume: 304
  start-page: 78
  year: 2004
  ident: 740_CR175
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 98
  start-page: 1005
  year: 2018
  ident: 740_CR80
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.05.020
– volume: 369
  start-page: 20120460
  year: 2014
  ident: 740_CR8
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2012.0460
– volume: 102
  start-page: 614
  year: 2009
  ident: 740_CR129
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90941.2008
– volume: 30
  start-page: 2025
  year: 2018
  ident: 740_CR180
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01094
– ident: 740_CR40
– ident: 740_CR143
– volume: 11
  start-page: R986
  year: 2001
  ident: 740_CR58
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00581-4
– volume: 383
  start-page: 621
  year: 1996
  ident: 740_CR69
  publication-title: Nature
  doi: 10.1038/383621a0
– volume: 12
  year: 2016
  ident: 740_CR83
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004792
– ident: 740_CR123
– volume: 19
  start-page: 9587
  year: 1999
  ident: 740_CR15
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-21-09587.1999
– ident: 740_CR172
– volume: 77
  start-page: 016208
  year: 2008
  ident: 740_CR163
  publication-title: Phys. Rev.
– volume: 58
  start-page: 267
  year: 1996
  ident: 740_CR187
  publication-title: J. R. Stat. Soc. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 17
  start-page: 894
  year: 2007
  ident: 740_CR24
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhk044
– volume: 602
  start-page: 123
  year: 2022
  ident: 740_CR53
  publication-title: Nature
  doi: 10.1038/s41586-021-04268-7
– volume: 106
  start-page: 10308
  year: 2009
  ident: 740_CR51
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0901621106
– volume: 274
  start-page: 1724
  year: 1996
  ident: 740_CR244
  publication-title: Science
  doi: 10.1126/science.274.5293.1724
– volume: 4
  start-page: 1113
  year: 2022
  ident: 740_CR214
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00575-4
– ident: 740_CR155
– volume: 93
  start-page: 13339
  year: 1996
  ident: 740_CR54
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.23.13339
– volume: 26
  start-page: 326
  year: 2023
  ident: 740_CR208
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-022-01230-2
– ident: 740_CR149
– volume: 13
  year: 2017
  ident: 740_CR35
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005542
– volume: 22
  start-page: 1189
  year: 2009
  ident: 740_CR246
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.07.016
– volume: 120
  start-page: 024102
  year: 2018
  ident: 740_CR132
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.024102
– ident: 740_CR158
  doi: 10.1109/ISCAS.1992.230622
– volume: 97
  start-page: 953
  year: 2018
  ident: 740_CR61
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.01.004
– ident: 740_CR190
– ident: 740_CR237
  doi: 10.1007/978-0-387-84858-7
– volume: 13
  start-page: 011009
  year: 2023
  ident: 740_CR245
  publication-title: Phys. Rev. X
– ident: 740_CR183
– ident: 740_CR215
– ident: 740_CR204
  doi: 10.1109/ITSC.2017.8317943
– volume: 13
  year: 2022
  ident: 740_CR79
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33581-6
– volume: 7
  start-page: 3994
  year: 2022
  ident: 740_CR173
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.03994
– volume: 15
  start-page: 561
  year: 2002
  ident: 740_CR25
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00049-7
– volume: 97
  start-page: 1867
  year: 2000
  ident: 740_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.4.1867
– volume: 186
  start-page: 178
  year: 2023
  ident: 740_CR106
  publication-title: Cell
  doi: 10.1016/j.cell.2022.11.027
– volume: 161
  start-page: 68
  year: 2006
  ident: 740_CR68
  publication-title: Prog. Theor. Phys. Supp.
  doi: 10.1143/PTPS.161.68
– volume: 372
  start-page: 20160161
  year: 2017
  ident: 740_CR228
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2016.0161
– ident: 740_CR153
  doi: 10.48550/arXiv.2006.02427
– volume: 23
  start-page: 043005
  year: 2021
  ident: 740_CR182
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/abeb90
– volume: 86
  start-page: 1067
  year: 2015
  ident: 740_CR3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.04.014
– volume: 8
  start-page: 183
  year: 2000
  ident: 740_CR2
  publication-title: J. Comput. Neurosci.
  doi: 10.1023/A:1008925309027
– ident: 740_CR138
– volume: 19
  start-page: 1273
  year: 2003
  ident: 740_CR127
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00202-7
– volume: 41
  start-page: 2406
  year: 2021
  ident: 740_CR231
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2588-20.2021
– ident: 740_CR17
– volume: 14
  year: 2023
  ident: 740_CR81
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-35822-8
– volume: 94
  start-page: 978
  year: 2017
  ident: 740_CR219
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.025
– volume: 16
  start-page: 1413
  year: 2004
  ident: 740_CR174
  publication-title: Neural Comput.
  doi: 10.1162/089976604323057443
– volume: 14
  start-page: 1905
  year: 2004
  ident: 740_CR167
  publication-title: Int. J. Bifurcat. Chaos
  doi: 10.1142/S0218127404010345
– volume: 20
  start-page: 130
  year: 1963
  ident: 740_CR247
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 36
  start-page: 955
  year: 2002
  ident: 740_CR16
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01092-9
– volume: 29
  start-page: 107
  year: 2010
  ident: 740_CR101
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-009-0179-x
– volume: 2
  start-page: 359
  year: 1989
  ident: 740_CR118
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: 740_CR206
  doi: 10.48550/arXiv.2004.02172
– volume: 13
  year: 2022
  ident: 740_CR221
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35115-6
– ident: 740_CR105
– volume: 378
  start-page: 686
  year: 2019
  ident: 740_CR184
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 25
  start-page: 252
  year: 2022
  ident: 740_CR29
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00997-0
– volume: 31
  start-page: 083119
  year: 2021
  ident: 740_CR165
  publication-title: Chaos
  doi: 10.1063/5.0056425
– ident: 740_CR189
– volume: 7
  start-page: 237
  year: 1997
  ident: 740_CR1
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/7.3.237
– ident: 740_CR150
– ident: 740_CR73
– ident: 740_CR116
SSID ssj0016176
Score 2.589698
SecondaryResourceType review_article
Snippet Computational models in neuroscience usually take the form of systems of differential equations. The behaviour of such systems is the subject of dynamical...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 693
SubjectTerms 631/378/116/2393
631/378/116/2396
Animal Genetics and Genomics
Animals
Artificial Intelligence
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Computational neuroscience
Dynamical systems
Humans
Learning algorithms
Machine learning
Mathematical models
Nervous system
Neural networks
Neural Networks, Computer
Neurobiology
Neurosciences
Perspective
System theory
Title Reconstructing computational system dynamics from neural data with recurrent neural networks
URI https://link.springer.com/article/10.1038/s41583-023-00740-7
https://www.ncbi.nlm.nih.gov/pubmed/37794121
https://www.proquest.com/docview/2878561374
https://www.proquest.com/docview/2873250244
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEB-qQvFFrP26aiVC39rF7CUx2afiiYcIPaRUuIfCkmSTvpQ9dfX_70ySPSmiD8s-JLubnUkyX5nfAHzhXei0TysNbVWJAq-yUsdKhUgCxgtlE9rn4uTiWl4u1bI43IZyrHLcE9NG3a08-ciPUbM3pOxq-f3mtqKqURRdLSU0NmCLoMtoVuvl2uAi1T1nF2k0mblYlqQZLszxgILLUAQTL5SivNL_C6Yn2uaTSGkSQPNd2CmaIzvNrH4Dr0K_B69_lNj4W_hNluSIB9v_YT7Vayi-PpYRm1mXC9APjNJKGIFZYhudEmXkkGV35H0nvKaxqc-nxId3cD0__3V2UZXaCZUXWt1XjbKdiXrqtIpWiDpohf8bonLCuq7xwamGO-mlc3VsGjsNmksrgjXcnoipEu9hs1_14SMwx4MOKkpng0f1xRvdcBNxqwjCGxXjBOqRcK0vwOJU3-JvmwLcwrSZ2C0Su03EbvUEvq6fucmwGi_2Phj50ZYlNrSPE2ICR-tmXBwU8bB9WD2kPvgvqIZgnw-Zj-vPEdKirKf1BL6NjH18-fNj-fTyWPZhmwrS52zFA9hEpofPqLbcu8M0Nw9h63Q-my3wPjtfXP38B6lI640
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtUwcFS1EnBBZe2DAkaCE0R1Yrt2DgghoHqly6mV3gHJ2I7NBeUVUoT4Kb6RGTt5FarorYec7GyzL54ZgBe8i50OmdPQV5Wo8CondapUTKRgglAud_s83p2fyk8LtViDP1MtDB2rnGRiFtTdMlCMfActe0PGrpZvz75XNDWKsqvTCI1CFgfx9y902YY3-x8Qvy-bZu_jyft5NU4VqILQ6rxqletM0o3XKjkh6qiVMiIm5YXzXRuiVy33Mkjv69S2romaSyeiM9ztioamRKDI30DFy8nZ04uVg0euQqlm0uiic7EYi3S4MDsDKkpDGVO8UGvzSv-rCC9Zt5cys1nh7W3C7dFSZe8Kad2BtdjfhRtHYy7-Hnwmz3XqP9t_ZSHPhxhji6x0iGZdGXg_MCpjYdQ8E9foVCqjADD7QdF-6g81LfXlVPpwH06vBaoPYL1f9nELmOdRR5WkdzGguRSMbrlJKJqiCEalNIN6ApwNYyNzmqfxzeaEujC2ANsisG0GttUzeLW656y08bhy9_aEDzuy9GAvCHAGz1fLyIyUYXF9XP7Me_Bf0OzBPQ8LHlevo86Osm7qGbyeEHvx8P9_y6Orv-UZ3JyfHB3aw_3jg8dwqyECy5WS27COBBCfoMl07p9mOmXw5boZ4y-dAiZJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bahQx9FC2UHyR1uu2VSPokw6bmSRN5kFEbZfW6lLEwj4IMckkIuhs26lIf82v85y5bJFi3_owT8ncziXnfg7AM17FSoeW09BWlSjwMid1ylRMJGCCUK7t9jnb2T-W7-dqvgJ_hloYSqsczsT2oK4WgXzkE9TsDSm7Wk5SnxZxtDt9fXKa0QQpirQO4zQ6EjmMF7_RfGteHewirp8XxXTv87v9rJ8wkAWh1XlWKleZpAuvVXJC5FErZURMygvnqzJEr0ruZZDe56ksXRE1l05EZ7jbEQVNjMDjf1WTVTSC1bd7s6NPyxgG6gZdbZNGg52LeV-yw4WZNCg2DcVP8UIZzjP9r1i8outeidO24m-6Drd7vZW96QhtA1ZifQfWPvaR-bvwhezYoRtt_Y2FdlpE72lkXb9oVl3U7uf30DAqamHUShPXKEeVkTuYnZHvn7pFDUt1l6Pe3IPjG4HrfRjVizo-BOZ51FEl6V0MqDwFo0tuEh5UUQSjUhpDPgDOhr6tOU3X-GHb8LowtgO2RWDbFthWj-HF8p6TrqnHtbu3B3zYnsEbe0mOY3i6XEbWpHiLq-PiV7sH_wWVINzzoMPj8nXU51HmRT6GlwNiLx_-_2_ZvP5bnsAaMoX9cDA73IJbBdFXWza5DSPEf3yE-tO5f9wTKoOvN80bfwFj6ivk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstructing+computational+system+dynamics+from+neural+data+with+recurrent+neural+networks&rft.jtitle=Nature+reviews.+Neuroscience&rft.au=Durstewitz%2C+Daniel&rft.au=Koppe%2C+Georgia&rft.au=Thurm%2C+Max+Ingo&rft.date=2023-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-003X&rft.eissn=1469-3178&rft.volume=24&rft.issue=11&rft.spage=693&rft.epage=710&rft_id=info:doi/10.1038%2Fs41583-023-00740-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-003X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-003X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-003X&client=summon