An NV− center in magnesium oxide as a spin qubit for hybrid quantum technologies
Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principl...
Saved in:
Published in | npj computational materials Vol. 11; no. 1; pp. 74 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2057-3960 2057-3960 |
DOI | 10.1038/s41524-025-01558-w |
Cover
Loading…
Abstract | Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV
−
center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV
−
center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV
−
defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates. |
---|---|
AbstractList | Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV- center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV- center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV- defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates. Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV− center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV− center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV− defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates. Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV − center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV − center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV − defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates. Abstract Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV− center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV− center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV− defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates. |
ArticleNumber | 74 |
Author | Davidsson, Joel Jin, Yu Galli, Giulia Somjit, Vrindaa |
Author_xml | – sequence: 1 givenname: Vrindaa surname: Somjit fullname: Somjit, Vrindaa organization: Materials Science Division, Argonne National Laboratory – sequence: 2 givenname: Joel orcidid: 0000-0002-5349-3318 surname: Davidsson fullname: Davidsson, Joel organization: Department of Physics, Chemistry and Biology, Linköping University – sequence: 3 givenname: Yu orcidid: 0000-0002-6073-9953 surname: Jin fullname: Jin, Yu organization: Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago – sequence: 4 givenname: Giulia orcidid: 0000-0002-8001-5290 surname: Galli fullname: Galli, Giulia email: gagalli@uchicago.edu organization: Materials Science Division, Argonne National Laboratory, Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago |
BackLink | https://www.osti.gov/servlets/purl/2574946$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-212741$$DView record from Swedish Publication Index |
BookMark | eNp9kUtuFDEQhlsoSISQC7CyYN3gZ3d7OQqQRIpAQiFby4_qiUcz9sR2a8gNsuaIOQme6YjHJitb5a--sup_3RyFGKBp3hL8gWA2fMycCMpbTEWLiRBDu3vRHFMs-pbJDh_9c3_VnOa8whgTSQfK8XHzfRHQ15vHh1_IQiiQkA9oo5cBsp82KP70DpDOSKO8rS93k_EFjTGh23uTvKsFHUoFC9jbENdx6SG_aV6Oep3h9Ok8aX58-Xx9dtFefTu_PFtctZb1orSSCZADZ5JrB5oRikdhqLHScEuMI52TAtPeDaa3AzDoOt0NIHphgHWGM3bSXM5eF_VKbZPf6HSvovbqUIhpqXQq3q5BaaepYwN2AjDHRppx1JTREfAIQoiuutrZlXewncx_tk_-ZnGwrf2kKKE9J5V_N_MxF6-y9fsF2BgC2KKo6Lnke-n7GdqmeDdBLmoVpxTqThQj_YAJ7aisFJ0pm2LOCcY_wwlW-3zVnK-q-apDvmpXm9jTfysclpD-qp_p-g0X_KpO |
Cites_doi | 10.1103/PhysRevB.80.184403 10.1063/1.3524336 10.1103/PhysRevB.86.075455 10.1073/pnas.1003052107 10.1016/j.cpc.2021.108091 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.59.1758 10.1103/PhysRevMaterials.7.033801 10.1021/acs.jctc.0c01258 10.1103/PhysRevMaterials.5.084603 10.1134/S1063785007070012 10.1063/1.2404663 10.21105/joss.02160 10.1038/s41524-024-01292-9 10.1038/s41467-022-35048-0 10.1103/PhysRevB.54.11169 10.1063/1.4793308 10.1515/revic-2015-0010 10.1038/nmat1257 10.1103/PhysRevB.88.085117 10.1103/PhysRevLett.102.016402 10.1038/srep20803 10.1103/PhysRevB.78.235104 10.1021/acs.jctc.2c00240 10.1063/5.0005082 10.1088/0022-3727/40/21/R01 10.1063/1.363626 10.1126/sciadv.abf8103 10.1021/ct500958p 10.1016/j.cplett.2012.11.063 10.1103/PhysRevB.28.1227 10.1016/S0039-6028(02)01263-3 10.1103/PhysRevLett.94.056601 10.1515/nanoph-2022-0400 10.1016/j.cpc.2013.03.003 10.1021/acs.jctc.2c00241 10.1021/acs.jctc.3c00986 10.1093/acprof:oso/9780198507802.001.0001 10.1103/PhysRevB.89.195112 10.1063/1.1646371 10.1103/PhysRevA.64.052306 10.1063/5.0203366 10.1088/1367-2630/16/7/073026 10.1103/PhysRevB.50.17953 10.1007/BF00209695 10.1038/s42005-022-01041-8 10.1073/pnas.2121808119 10.1038/s41534-024-00815-y 10.1063/1.1682673 10.1039/c2cp41378g 10.1126/science.abb2823 10.1038/srep42001 10.1109/TMAG.2011.2148170 10.1021/acs.nanolett.1c03013 10.1016/j.nimb.2012.12.012 10.1103/PhysRevB.97.205444 10.1103/PhysRevB.98.064102 10.1515/nanoph-2019-0154 10.1016/j.tsf.2009.02.038 10.1103/RevModPhys.86.253 10.1039/C8SC02820F 10.1103/PhysRevB.49.14251 10.1103/PhysRevLett.110.027601 10.1038/s41928-020-0461-5 10.1063/1.122943 10.1021/jp9097556 10.1038/s41524-021-00525-5 10.1103/PhysRevMaterials.1.075002 10.3390/condmat2040036 10.1103/PhysRevLett.103.186404 10.1063/1.4892544 10.1038/s41467-024-49057-8 10.1063/1.1804237 10.1038/s43588-022-00279-0 10.1007/s11082-016-0536-8 10.1103/PhysRevB.63.220403 10.1103/PhysRevB.53.7731 10.1038/nmat1256 10.1038/s41524-022-00928-y 10.1109/77.784846 10.1088/1674-1056/20/4/047505 10.1103/PhysRevB.63.054416 10.1016/j.cpc.2015.05.011 10.1073/pnas.2104556118 10.1103/PhysRevB.78.134427 10.1103/PhysRevLett.107.137203 10.1016/0301-0104(94)00173-1 10.1088/2053-1591/abfd13 10.1063/1.4966897 10.1088/2633-4356/ac6b76 10.1557/s43577-021-00137-w 10.1017/CBO9780511524769 10.1063/1.1904594 10.1103/PhysRevB.92.045208 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Nature Publishing Group 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Nature Publishing Group 2025 |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI ABXSW ADTPV AOWAS D8T DG8 ZZAVC DOA |
DOI | 10.1038/s41524-025-01558-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_ada2d380d5e040b9bffa232fe0fe5556 oai_DiVA_org_liu_212741 2574946 10_1038_s41524_025_01558_w |
GrantInformation_xml | – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation) grantid: 2018.0071 funderid: 501100004063 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory (AFRL) grantid: FA95502310667 funderid: 100006602 – fundername: Vetenskapsrådet (Swedish Research Council) grantid: 2022-00276 funderid: 501100004359 – fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research) grantid: FA95502310667; FA95502310667 funderid: 100000181 – fundername: DOE | Laboratory Directed Research and Development (LDRD) grantid: DE-AC02-06CH11357 funderid: 100007000 – fundername: Midwest Integrated Center for Computational Materials, which is part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division through Argonne National Laboratory. – fundername: Swedish e-science Research Centre (SeRC) |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PHGZT PIMPY PQQKQ PROAC RNT UKHRP AASML AAYXX CITATION PHGZM SNYQT 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS OIOZB OTOTI PUEGO ABXSW ADTPV AOWAS D8T DG8 EJD ZZAVC |
ID | FETCH-LOGICAL-c375t-935e984394adea3120f5b2bc9b4c1bd16d95027d8b7c8e3e66a68e575be36b433 |
IEDL.DBID | 7X7 |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:31:53 EDT 2025 Thu Aug 21 07:01:07 EDT 2025 Mon Aug 25 02:21:06 EDT 2025 Wed Aug 13 01:48:44 EDT 2025 Sun Jul 06 05:08:02 EDT 2025 Tue Mar 18 01:12:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-935e984394adea3120f5b2bc9b4c1bd16d95027d8b7c8e3e66a68e575be36b433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Knut and Alice Wallenberg Foundation National Energy Research Scientific Computing Center (NERSC) AC02-06CH11357 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE) Air Force Office of Scientific Research (AFOSR) Swedish Research Council USDOE Laboratory Directed Research and Development (LDRD) Program |
ORCID | 0000-0002-5349-3318 0000-0002-8001-5290 0000-0002-6073-9953 0000000260739953 0000000253493318 0000000280015290 |
OpenAccessLink | https://www.proquest.com/docview/3178012629?pq-origsite=%requestingapplication% |
PQID | 3178012629 |
PQPubID | 2041924 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ada2d380d5e040b9bffa232fe0fe5556 swepub_primary_oai_DiVA_org_liu_212741 osti_scitechconnect_2574946 proquest_journals_3178012629 crossref_primary_10_1038_s41524_025_01558_w springer_journals_10_1038_s41524_025_01558_w |
PublicationCentury | 2000 |
PublicationDate | 2025-03-17 |
PublicationDateYYYYMMDD | 2025-03-17 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 1558_CR14 1558_CR16 D Hamann (1558_CR93) 2013; 88 P Giannozzi (1558_CR91) 2009; 21 1558_CR92 K Harmon (1558_CR4) 2022; 2 1558_CR98 Q Li (1558_CR31) 2013; 556 TJ Smart (1558_CR48) 2021; 7 1558_CR24 1558_CR23 H Seo (1558_CR47) 2017; 1 1558_CR29 NP De Leon (1558_CR3) 2021; 372 V Bannikov (1558_CR41) 2007; 33 M Schlipf (1558_CR94) 2015; 196 J Davidsson (1558_CR22) 2021; 269 N Varini (1558_CR104) 2013; 184 M Grob (1558_CR33) 2012; 86 I Slipukhina (1558_CR36) 2011; 107 Y Lee (1558_CR62) 2022; 13 A Alkauskas (1558_CR58) 2014; 16 J Vassent (1558_CR70) 1996; 80 P Giannozzi (1558_CR90) 2017; 29 RE George (1558_CR80) 2013; 110 JH Skone (1558_CR42) 2014; 89 LV Rodgers (1558_CR1) 2021; 46 X Wang (1558_CR32) 2021; 8 NA Basit (1558_CR19) 1998; 73 JM Polfus (1558_CR40) 2012; 14 H Ma (1558_CR52) 2021; 17 V Pardo (1558_CR38) 2008; 78 C-M Liu (1558_CR30) 2011; 20 S Lany (1558_CR85) 2008; 78 Q Sun (1558_CR101) 2018; 8 X Jiang (1558_CR12) 2005; 94 1558_CR82 W Butler (1558_CR7) 2001; 63 S Yuasa (1558_CR11) 2007; 40 A Gali (1558_CR106) 2009; 103 PT Ruhoff (1558_CR105) 1994; 186 JH Lee (1558_CR59) 2021; 21 N Sheng (1558_CR53) 2022; 18 Á Gali (1558_CR60) 2019; 8 1558_CR56 A Viel (1558_CR65) 2004; 120 KA Schulte (1558_CR50) 2018; 9 J Davidsson (1558_CR6) 2024; 15 1558_CR102 1558_CR55 H Ma (1558_CR103) 2020; 5 J Mathon (1558_CR8) 2001; 63 VW-z Yu (1558_CR100) 2022; 18 J Davidsson (1558_CR25) 2024; 10 D Wing (1558_CR83) 2021; 118 J-Y Chen (1558_CR81) 2017; 7 J Davidsson (1558_CR26) 2022; 11 J Levy (1558_CR78) 2001; 64 G Kresse (1558_CR86) 1994; 49 1558_CR68 1558_CR61 J Liu (1558_CR79) 2021; 7 T Brudevoll (1558_CR28) 1996; 53 1558_CR66 M Pesci (1558_CR39) 2010; 114 1558_CR64 S Yuasa (1558_CR9) 2004; 3 1558_CR63 M Niknam (1558_CR77) 2022; 5 T Murphy (1558_CR20) 2004; 85 S Valanarasu (1558_CR18) 2014; 25 A-M El-Sayed (1558_CR27) 2018; 98 M Subramanian (1558_CR97) 1989; 16 C Vorwerk (1558_CR54) 2022; 2 M Kapilashrami (1558_CR13) 2010; 22 C-R Hong (1558_CR44) 2009; 517 J Weber (1558_CR72) 2010; 107 Y Jin (1558_CR51) 2023; 19 G Kresse (1558_CR87) 1996; 54 P Płóciennik (1558_CR17) 2016; 48 C Freysoldt (1558_CR96) 2009; 102 Y Jin (1558_CR67) 2022; 8 M Govoni (1558_CR99) 2015; 11 Q Li (1558_CR34) 2013; 297 L Gordon (1558_CR107) 2015; 92 A Perez (1558_CR45) 1983; 28 JP Singh (1558_CR15) 2017; 2 CG Van de Walle (1558_CR46) 2004; 95 C Vorwerk (1558_CR75) 2023; 7 B Dieny (1558_CR73) 2020; 3 NM Julkapli (1558_CR74) 2016; 36 C Freysoldt (1558_CR95) 2014; 86 P Mavropoulos (1558_CR37) 2009; 80 PE Blöchl (1558_CR88) 1994; 50 S Kanai (1558_CR5) 2022; 119 R Jansen (1558_CR76) 2024; 10 JP Perdew (1558_CR84) 1996; 77 H Seo (1558_CR69) 2016; 6 SS Parkin (1558_CR10) 2004; 3 JR Groves (1558_CR21) 1999; 9 1558_CR43 S Castelletto (1558_CR2) 2020; 2 Y-F Zhang (1558_CR35) 2011; 47 S Meesala (1558_CR49) 2018; 97 S Valeri (1558_CR71) 2002; 507 G Kresse (1558_CR89) 1999; 59 Y Jin (1558_CR57) 2021; 5 |
References_xml | – volume: 80 start-page: 184403 year: 2009 ident: 1558_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.184403 – ident: 1558_CR82 doi: 10.1063/1.3524336 – volume: 86 start-page: 075455 year: 2012 ident: 1558_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.075455 – volume: 107 start-page: 8513 year: 2010 ident: 1558_CR72 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1003052107 – volume: 269 start-page: 108091 year: 2021 ident: 1558_CR22 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108091 – volume: 77 start-page: 3865 year: 1996 ident: 1558_CR84 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 59 start-page: 1758 year: 1999 ident: 1558_CR89 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 7 start-page: 033801 year: 2023 ident: 1558_CR75 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.7.033801 – volume: 17 start-page: 2116 year: 2021 ident: 1558_CR52 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.0c01258 – volume: 5 start-page: 084603 year: 2021 ident: 1558_CR57 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.084603 – volume: 33 start-page: 541 year: 2007 ident: 1558_CR41 publication-title: Tech. Phys. Lett. doi: 10.1134/S1063785007070012 – ident: 1558_CR98 doi: 10.1063/1.2404663 – volume: 5 start-page: 2160 year: 2020 ident: 1558_CR103 publication-title: J. Open Source Softw. doi: 10.21105/joss.02160 – volume: 10 year: 2024 ident: 1558_CR25 publication-title: npj Comput. Mater. doi: 10.1038/s41524-024-01292-9 – volume: 13 year: 2022 ident: 1558_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35048-0 – volume: 54 start-page: 11169 year: 1996 ident: 1558_CR87 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – ident: 1558_CR14 doi: 10.1063/1.4793308 – volume: 36 start-page: 1 year: 2016 ident: 1558_CR74 publication-title: Rev. Inorg. Chem. doi: 10.1515/revic-2015-0010 – volume: 3 start-page: 868 year: 2004 ident: 1558_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat1257 – volume: 88 start-page: 085117 year: 2013 ident: 1558_CR93 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085117 – volume: 102 start-page: 016402 year: 2009 ident: 1558_CR96 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.016402 – volume: 6 year: 2016 ident: 1558_CR69 publication-title: Sci. Rep. doi: 10.1038/srep20803 – volume: 78 start-page: 235104 year: 2008 ident: 1558_CR85 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.235104 – volume: 18 start-page: 3512 year: 2022 ident: 1558_CR53 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00240 – ident: 1558_CR92 doi: 10.1063/5.0005082 – volume: 40 start-page: R337 year: 2007 ident: 1558_CR11 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/40/21/R01 – volume: 21 start-page: 395502 year: 2009 ident: 1558_CR91 publication-title: J. Phys.: Condens. Matter – volume: 2 start-page: 022001 year: 2020 ident: 1558_CR2 publication-title: J. Phys.: Photonics – volume: 80 start-page: 5727 year: 1996 ident: 1558_CR70 publication-title: J. Appl. Phys. doi: 10.1063/1.363626 – volume: 7 start-page: eabf8103 year: 2021 ident: 1558_CR79 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf8103 – volume: 11 start-page: 2680 year: 2015 ident: 1558_CR99 publication-title: J. Chem. theory Comput. doi: 10.1021/ct500958p – volume: 556 start-page: 237 year: 2013 ident: 1558_CR31 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2012.11.063 – volume: 8 start-page: e1340 year: 2018 ident: 1558_CR101 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 28 start-page: 1227 year: 1983 ident: 1558_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1227 – volume: 507 start-page: 311 year: 2002 ident: 1558_CR71 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(02)01263-3 – volume: 94 start-page: 056601 year: 2005 ident: 1558_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.056601 – volume: 11 start-page: 4565 year: 2022 ident: 1558_CR26 publication-title: Nanophotonics doi: 10.1515/nanoph-2022-0400 – volume: 184 start-page: 1827 year: 2013 ident: 1558_CR104 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.03.003 – volume: 18 start-page: 4690 year: 2022 ident: 1558_CR100 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00241 – volume: 19 start-page: 8689 year: 2023 ident: 1558_CR51 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00986 – ident: 1558_CR55 doi: 10.1093/acprof:oso/9780198507802.001.0001 – volume: 89 start-page: 195112 year: 2014 ident: 1558_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.195112 – volume: 120 start-page: 4603 year: 2004 ident: 1558_CR65 publication-title: J. Chem. Phys. doi: 10.1063/1.1646371 – volume: 64 start-page: 052306 year: 2001 ident: 1558_CR78 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.64.052306 – ident: 1558_CR63 doi: 10.1063/5.0203366 – volume: 16 start-page: 073026 year: 2014 ident: 1558_CR58 publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/7/073026 – volume: 50 start-page: 17953 year: 1994 ident: 1558_CR88 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 16 start-page: 741 year: 1989 ident: 1558_CR97 publication-title: Phys. Chem. Miner. doi: 10.1007/BF00209695 – volume: 5 start-page: 284 year: 2022 ident: 1558_CR77 publication-title: Commun. Phys. doi: 10.1038/s42005-022-01041-8 – volume: 119 start-page: e2121808119 year: 2022 ident: 1558_CR5 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2121808119 – volume: 10 year: 2024 ident: 1558_CR76 publication-title: npj Quantum Inf. doi: 10.1038/s41534-024-00815-y – volume: 95 start-page: 3851 year: 2004 ident: 1558_CR46 publication-title: J. Appl. Phys. doi: 10.1063/1.1682673 – volume: 14 start-page: 11808 year: 2012 ident: 1558_CR40 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp41378g – volume: 372 start-page: eabb2823 year: 2021 ident: 1558_CR3 publication-title: Science doi: 10.1126/science.abb2823 – volume: 7 year: 2017 ident: 1558_CR81 publication-title: Sci. Rep. doi: 10.1038/srep42001 – volume: 47 start-page: 2928 year: 2011 ident: 1558_CR35 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2148170 – volume: 21 start-page: 9187 year: 2021 ident: 1558_CR59 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03013 – volume: 297 start-page: 29 year: 2013 ident: 1558_CR34 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. doi: 10.1016/j.nimb.2012.12.012 – volume: 97 start-page: 205444 year: 2018 ident: 1558_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.205444 – ident: 1558_CR61 – volume: 98 start-page: 064102 year: 2018 ident: 1558_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.064102 – volume: 8 start-page: 1907 year: 2019 ident: 1558_CR60 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0154 – volume: 517 start-page: 4170 year: 2009 ident: 1558_CR44 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.02.038 – volume: 86 start-page: 253 year: 2014 ident: 1558_CR95 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.253 – volume: 9 start-page: 9018 year: 2018 ident: 1558_CR50 publication-title: Chem. Sci. doi: 10.1039/C8SC02820F – volume: 49 start-page: 14251 year: 1994 ident: 1558_CR86 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.14251 – volume: 110 start-page: 027601 year: 2013 ident: 1558_CR80 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.027601 – volume: 3 start-page: 446 year: 2020 ident: 1558_CR73 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0461-5 – volume: 73 start-page: 3941 year: 1998 ident: 1558_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.122943 – ident: 1558_CR64 – volume: 114 start-page: 1350 year: 2010 ident: 1558_CR39 publication-title: J. Phys. Chem. C. doi: 10.1021/jp9097556 – ident: 1558_CR23 – ident: 1558_CR43 – volume: 7 year: 2021 ident: 1558_CR48 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00525-5 – volume: 1 start-page: 075002 year: 2017 ident: 1558_CR47 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.075002 – volume: 2 start-page: 36 year: 2017 ident: 1558_CR15 publication-title: Condens. Matter doi: 10.3390/condmat2040036 – volume: 29 start-page: 465901 year: 2017 ident: 1558_CR90 publication-title: J. Phys.: Condens. matter – volume: 103 start-page: 186404 year: 2009 ident: 1558_CR106 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.186404 – ident: 1558_CR68 doi: 10.1063/1.4892544 – volume: 25 start-page: 3846 year: 2014 ident: 1558_CR18 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 15 year: 2024 ident: 1558_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-024-49057-8 – volume: 85 start-page: 3208 year: 2004 ident: 1558_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1804237 – volume: 2 start-page: 424 year: 2022 ident: 1558_CR54 publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00279-0 – ident: 1558_CR24 – ident: 1558_CR102 – volume: 48 year: 2016 ident: 1558_CR17 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-016-0536-8 – volume: 63 start-page: 220403 year: 2001 ident: 1558_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.220403 – volume: 53 start-page: 7731 year: 1996 ident: 1558_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.7731 – volume: 3 start-page: 862 year: 2004 ident: 1558_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat1256 – volume: 8 year: 2022 ident: 1558_CR67 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00928-y – volume: 9 start-page: 1964 year: 1999 ident: 1558_CR21 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/77.784846 – volume: 20 start-page: 047505 year: 2011 ident: 1558_CR30 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/20/4/047505 – ident: 1558_CR29 – volume: 63 start-page: 054416 year: 2001 ident: 1558_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.63.054416 – volume: 196 start-page: 36 year: 2015 ident: 1558_CR94 publication-title: Computer Phys. Commun. doi: 10.1016/j.cpc.2015.05.011 – volume: 118 start-page: e2104556118 year: 2021 ident: 1558_CR83 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2104556118 – volume: 78 start-page: 134427 year: 2008 ident: 1558_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.134427 – volume: 107 start-page: 137203 year: 2011 ident: 1558_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.137203 – volume: 186 start-page: 355 year: 1994 ident: 1558_CR105 publication-title: Chem. Phys. doi: 10.1016/0301-0104(94)00173-1 – volume: 8 start-page: 066102 year: 2021 ident: 1558_CR32 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/abfd13 – ident: 1558_CR16 doi: 10.1063/1.4966897 – volume: 2 start-page: 023001 year: 2022 ident: 1558_CR4 publication-title: Mater. Quantum Technol. doi: 10.1088/2633-4356/ac6b76 – volume: 22 start-page: 345004 year: 2010 ident: 1558_CR13 publication-title: J. Phys.: Condens. Matter – volume: 46 start-page: 623 year: 2021 ident: 1558_CR1 publication-title: MRS Bull. doi: 10.1557/s43577-021-00137-w – ident: 1558_CR56 doi: 10.1017/CBO9780511524769 – ident: 1558_CR66 doi: 10.1063/1.1904594 – volume: 92 start-page: 045208 year: 2015 ident: 1558_CR107 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.045208 |
SSID | ssj0001928240 |
Score | 2.286036 |
Snippet | Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for... Abstract Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising... |
SourceID | doaj swepub osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 74 |
SubjectTerms | 639/301/1034/1038 639/301/119/995 Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Coupling Debye-Waller factor Defects Electronic properties and materials Electronic structure First principles Interaction parameters Localization Magnesium Magnesium oxide Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Molecular beam epitaxy Nitrogen Optical properties oxide Parameter identification Phonons Quantum sensors Qubits (quantum computing) spin defect Superconductors (materials) Tensors Theoretical Thin films |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV7CoKFB1aEFeIDYQNRPbGXs5PEYVEl0gWnVn-XHTBnUybSejgT9gzSfyJdzrZMpMF3TDKpLtRM65tu_x4x4z9gpUEYWKMhMQPS3djDIfQpkVTkftjJTB0zrk5-Py6ER-OlNna1d90ZmwTh64A-7QRYdf03lUgO3NG19VDllABXkFSqkkto0-b20y9a3jLRp9VR8lkwt9OCdPJTO6vZVogs6WG54oCfbjY4Yda4Ns3u6P3tESTf5n8pht98SRj7sK77AH0Dxhj9bkBJ-yL-OGH5_-_vmL05FLuOF1w6fuHAezejHls-91BO7m3PH5FeZcL3zdcuSs_OIHhW1hAqKMBdvVajtOop-xk8nHr--Psv7OhCyIkWozIxQYTeGuLoITwyKvlC98MF6GoY_DMhqFM9Go_ShoEFCWrtSAnM2DKL0UYpdtNbMG9hh3MpoqdwVAcNK5wht8A3SuKgqfV37A3qzws1edNIZNW9pC2w5ti2jbhLZdDtg7gvi2JMlapwQ0tu2Nbe8z9oDtk4EssgPCItBZoNBaHHakkZh7sLKb7Xvi3CI_IidcFmbA3q5s-Tf7XxV-3dl7o8of6tNxqvJlvbCkji-Hz__Hn-2zh0VqmyQYe8C22psFvEC60_qXqWX_AR2S_Xg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDI5KucAB8RRLC8oBcYERs5PHJsdloaqQ6AHRqrcoD08ZqZ0tu7Mq_Qc98xP5JdjZmZZFCInTSHmMLDuxHcf-wthLUFUSKslCQAoUupkUIUZdVN4k462UMVAc8tOB3j-UH4_V8RarhlqYnLSfIS2zmh6yw94uydDIgh5fJStviotb7DZBt9OqnunZTVzF4iFCln19TCnMX6Zu2KAM1Y-fOW6pDTfz-mb0DxTRbHn27rN7vcvIp2siH7AtaB-yu78BCT5in6ctPzj6efWDU7IlLHjT8jN_gmqsWZ3x-fcmAfdL7vnyHHu-rULTcfRW-ddLKtjCBuQvDuyGODsenx-zw70PX2b7Rf9aQhHFRHWFFQqsoUJXn8CLcVXWKlQh2iDjOKSxTlbhGTSZMIkGBGjttQH01gIIHaQQT9h2O2_hKeNeJluXvgKIXnpfBYszwJSqpsJ5FUbs9cA_d74GxXD5MlsYt-a2Q267zG13MWLviMXXIwnQOjfMFyeuF7DzyeOiMWVSgGol2FDXHp29GsoalFJ6xHZIQA79AuJFpCyg2DlUONJK7N0d5Ob6Pbh06BmR-dWVHbE3gyxvuv9F8Ku1vDdIft8cTTPJp83KES6-HD_7v__usDtVXoUECrvLtrvFCp6jS9OFF3kN_wIFk_If priority: 102 providerName: Springer Nature |
Title | An NV− center in magnesium oxide as a spin qubit for hybrid quantum technologies |
URI | https://link.springer.com/article/10.1038/s41524-025-01558-w https://www.proquest.com/docview/3178012629 https://www.osti.gov/servlets/purl/2574946 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-212741 https://doaj.org/article/ada2d380d5e040b9bffa232fe0fe5556 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdge4EHNP6JslH5AfEC0dLYTuynqSsrUyUqNNjUN8v_skViadekGnwDnvmIfBLu0mSlPOwlkWxHse7Od-ez73eEvA0i8Ux4HrHgLYZussg6l0aJkV4axbmzGIf8PE1Pz_lkJmZtwK1qr1V2OrFR1H7uMEZ-CHYOlWmaqKPFTYRVo_B0tS2h8ZDsInQZXunKZtkmxqJgQ8HjNlcmZvKwQnvFI6zhis6CjG637FED2w-vOSyvLZfz7pT0P0TRxgqN98iT1n2kwzW_n5IHoXxGHv8DKvicnA1LOr348-s3xYuXYUmLkl6bS1Bpxeqazn8UPlBTUUOrBfTcrGxRU_Bc6dVPTN6CBqA1DKy7mDtspV-Q8_HJt9Fp1FZOiBzLRB0pJoKSmPRqfDBskMS5sIl1ynI3sH6QeiVgP-qlzZwMLKSpSWUAz80GllrO2EuyU87L8IpQw73KY5OE4Aw3JrEKvggyFjkm0QvbI-87-unFGiBDNwfbTOo1tTVQWzfU1rc9cowkvhuJ4NZNw3x5qdu1oo03IEAy9iKAirHK5rkBxy8PcR6EEGmP7CODNPgISAuHN4JcrUH5cMWh96Djm27XY6U30tMjHzpebrrvm_C7Nb-3pvyxuBg2U_5erDRi5PPB6_t_u08eJY3UISDsAdmpl6vwBtyZ2vYbmYWnHH_qk93hcPJ1Au_jk-mXM2gdpaN-Eyj4CzUi-bU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KraA3BA5SWWFvABuEDUbGJn7QNCC2XZ0nYPqK16M36lRKLJdpPV0j_gzIfwUXwJM3l0WQ699ZTIdhRr3jP2zBDywvPIxdyxIPbOYOhmEBhrkyDSwgktGbMG45CHk2R8zD6f8tM18rvLhcFrlZ1MrAW1KyzGyHdAz6EwTSL5bnoRYNcoPF3tWmg0ZLHvLxfgspVv93YBvy-jaPTx6MM4aLsKBDYe8CqQMfdSYEKodl7H_ShMuYmMlYbZvnH9xEkOvpoTZmCFj32S6ER4sGqMjxPDMAAKIn8DXiRylBh9WsZ0JDgwLGxzc8JY7JSoH1mAPWPROBHBYkX_1W0C4FEAO6-YuFensv9VMK213miT3G3NVTps6OseWfP5fXLnnyKGD8iXYU4nJ39-_qJ40dPPaJbTc30GIjSbn9PiR-Y81SXVtJzCzMXcZBUFS5l-u8RkMRgA3MLCqovxg-v-kBzfCEwfkfW8yP1jQjVzMg115L3VTOvISPjCi5CnmLTPTY-87uCnpk1BDlUfpMdCNdBWAG1VQ1steuQ9gvhqJRbTrgeK2ZlqeVNpp4FgRei4B5FmpElTDYZm6sPUc86THtlCBCmwSRAWFm8g2UqBsGOSwex2hzfV8n-pltTaI286XC6nr9vwqwbfK1vezU6G9Za_Z3OFNflZ_8n1v31Obo2PDg_Uwd5kf4vcjmoKxGK022S9ms39UzClKvOspl9Kvt40w_wFlmMwrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFQVCcEBsYrQAnMALmDFy4w9c0AoEKKWQoQQrXIbZnNriSZp7Cj0DzjzOXwOX8J7XhrCobeeLHnG8ujt781bCHnmeewS7liQeGcwdJMFxto0iLVwQkvGrME45KdxunfIPkz4ZIv87mphMK2yk4m1oHYzizHyPug5FKZpLPt5mxbxeTh6Mz8LcIIU3rR24zQaEjnw5ytw38rX-0PA9fM4Hr3_-m4vaCcMBDbJeBXIhHspsDhUO6-TKA5zbmJjpWE2Mi5KneTgtzlhMit84tNUp8KDhWN8khqGwVAQ_9eyhEfIY9kkW8d3JDgzLGzrdMJE9EvUlSzA-bFoqIhgtaEL65EB8JgBa2-Yuxc3tP91M6014Og2udWarnTQ0NodsuWnd8nNfxoa3iNfBlM6Pvrz8xfFpE-_oMWUnupjEKfF8pTOfhTOU11STcs5rJwtTVFRsJrpyTkWjsELwDNsrLp4P7jx98nhlcD0Admezqb-IaGaOZmHOvbeaqZ1bCR84UXIcyzg56ZHXnbwU_OmOYeqL9UToRpoK4C2qqGtVj3yFkF8sRMba9cvZotj1fKp0k4D8YrQcQ_izUiT5xqMztyHueecpz2ygwhSYJ8gLCxmI9lKgeBjksHqboc31cqCUq0pt0dedbhcL1924BcNvjeOPCyOBvWRvxdLhf35WfTo8t8-JdeBVdTH_fHBDrkR1wSIfWl3yXa1WPrHYFVV5klNvpR8u2p--QuQjDTb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+NV+-+center+in+magnesium+oxide+as+a+spin+qubit+for+hybrid+quantum+technologies&rft.jtitle=npj+computational+materials&rft.au=Somjit%2C+Vrindaa&rft.au=Davidsson%2C+Joel&rft.au=Jin%2C+Yu&rft.au=Galli%2C+Giulia&rft.date=2025-03-17&rft.issn=2057-3960&rft.eissn=2057-3960&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-025-01558-w&rft.externalDocID=oai_DiVA_org_liu_212741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |