An NV− center in magnesium oxide as a spin qubit for hybrid quantum technologies

Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principl...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 11; no. 1; pp. 74 - 12
Main Authors Somjit, Vrindaa, Davidsson, Joel, Jin, Yu, Galli, Giulia
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2057-3960
2057-3960
DOI10.1038/s41524-025-01558-w

Cover

Loading…
Abstract Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV − center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV − center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV − defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates.
AbstractList Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV- center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV- center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV- defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates.
Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV− center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV− center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV− defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates.
Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV − center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV − center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV − defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates.
Abstract Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for quantum applications. However, in most cases, specific defects have not yet been identified. Here, by using a high-throughput first-principles framework and advanced electronic structure methods, we identify a negatively charged complex between a nitrogen interstitial and a magnesium vacancy in MgO with favorable electronic and optical properties for hybrid quantum technologies. We show that this NV− center has stable triplet ground and excited states, with singlet shelving states enabling optical initialization and spin-dependent readout. We predict several properties, including absorption, emission, and zero-phonon line energies, as well as zero-field splitting tensor, and hyperfine interaction parameters, which can aid in the experimental identification of this defect. Our calculations show that due to a strong pseudo-Jahn Teller effect and low-frequency phonon modes, the NV− center in MgO is subject to a substantial vibronic coupling. We discuss design strategies to reduce such coupling and increase the Debye-Waller factor, including the effect of strain and the localization of the defect states. We propose that the favorable properties of the NV− defect, along with the technological maturity of MgO, could enable hybrid classical-quantum applications, such as spintronic quantum sensors and single qubit gates.
ArticleNumber 74
Author Davidsson, Joel
Jin, Yu
Galli, Giulia
Somjit, Vrindaa
Author_xml – sequence: 1
  givenname: Vrindaa
  surname: Somjit
  fullname: Somjit, Vrindaa
  organization: Materials Science Division, Argonne National Laboratory
– sequence: 2
  givenname: Joel
  orcidid: 0000-0002-5349-3318
  surname: Davidsson
  fullname: Davidsson, Joel
  organization: Department of Physics, Chemistry and Biology, Linköping University
– sequence: 3
  givenname: Yu
  orcidid: 0000-0002-6073-9953
  surname: Jin
  fullname: Jin, Yu
  organization: Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago
– sequence: 4
  givenname: Giulia
  orcidid: 0000-0002-8001-5290
  surname: Galli
  fullname: Galli, Giulia
  email: gagalli@uchicago.edu
  organization: Materials Science Division, Argonne National Laboratory, Pritzker School of Molecular Engineering and Department of Chemistry, University of Chicago
BackLink https://www.osti.gov/servlets/purl/2574946$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-212741$$DView record from Swedish Publication Index
BookMark eNp9kUtuFDEQhlsoSISQC7CyYN3gZ3d7OQqQRIpAQiFby4_qiUcz9sR2a8gNsuaIOQme6YjHJitb5a--sup_3RyFGKBp3hL8gWA2fMycCMpbTEWLiRBDu3vRHFMs-pbJDh_9c3_VnOa8whgTSQfK8XHzfRHQ15vHh1_IQiiQkA9oo5cBsp82KP70DpDOSKO8rS93k_EFjTGh23uTvKsFHUoFC9jbENdx6SG_aV6Oep3h9Ok8aX58-Xx9dtFefTu_PFtctZb1orSSCZADZ5JrB5oRikdhqLHScEuMI52TAtPeDaa3AzDoOt0NIHphgHWGM3bSXM5eF_VKbZPf6HSvovbqUIhpqXQq3q5BaaepYwN2AjDHRppx1JTREfAIQoiuutrZlXewncx_tk_-ZnGwrf2kKKE9J5V_N_MxF6-y9fsF2BgC2KKo6Lnke-n7GdqmeDdBLmoVpxTqThQj_YAJ7aisFJ0pm2LOCcY_wwlW-3zVnK-q-apDvmpXm9jTfysclpD-qp_p-g0X_KpO
Cites_doi 10.1103/PhysRevB.80.184403
10.1063/1.3524336
10.1103/PhysRevB.86.075455
10.1073/pnas.1003052107
10.1016/j.cpc.2021.108091
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.59.1758
10.1103/PhysRevMaterials.7.033801
10.1021/acs.jctc.0c01258
10.1103/PhysRevMaterials.5.084603
10.1134/S1063785007070012
10.1063/1.2404663
10.21105/joss.02160
10.1038/s41524-024-01292-9
10.1038/s41467-022-35048-0
10.1103/PhysRevB.54.11169
10.1063/1.4793308
10.1515/revic-2015-0010
10.1038/nmat1257
10.1103/PhysRevB.88.085117
10.1103/PhysRevLett.102.016402
10.1038/srep20803
10.1103/PhysRevB.78.235104
10.1021/acs.jctc.2c00240
10.1063/5.0005082
10.1088/0022-3727/40/21/R01
10.1063/1.363626
10.1126/sciadv.abf8103
10.1021/ct500958p
10.1016/j.cplett.2012.11.063
10.1103/PhysRevB.28.1227
10.1016/S0039-6028(02)01263-3
10.1103/PhysRevLett.94.056601
10.1515/nanoph-2022-0400
10.1016/j.cpc.2013.03.003
10.1021/acs.jctc.2c00241
10.1021/acs.jctc.3c00986
10.1093/acprof:oso/9780198507802.001.0001
10.1103/PhysRevB.89.195112
10.1063/1.1646371
10.1103/PhysRevA.64.052306
10.1063/5.0203366
10.1088/1367-2630/16/7/073026
10.1103/PhysRevB.50.17953
10.1007/BF00209695
10.1038/s42005-022-01041-8
10.1073/pnas.2121808119
10.1038/s41534-024-00815-y
10.1063/1.1682673
10.1039/c2cp41378g
10.1126/science.abb2823
10.1038/srep42001
10.1109/TMAG.2011.2148170
10.1021/acs.nanolett.1c03013
10.1016/j.nimb.2012.12.012
10.1103/PhysRevB.97.205444
10.1103/PhysRevB.98.064102
10.1515/nanoph-2019-0154
10.1016/j.tsf.2009.02.038
10.1103/RevModPhys.86.253
10.1039/C8SC02820F
10.1103/PhysRevB.49.14251
10.1103/PhysRevLett.110.027601
10.1038/s41928-020-0461-5
10.1063/1.122943
10.1021/jp9097556
10.1038/s41524-021-00525-5
10.1103/PhysRevMaterials.1.075002
10.3390/condmat2040036
10.1103/PhysRevLett.103.186404
10.1063/1.4892544
10.1038/s41467-024-49057-8
10.1063/1.1804237
10.1038/s43588-022-00279-0
10.1007/s11082-016-0536-8
10.1103/PhysRevB.63.220403
10.1103/PhysRevB.53.7731
10.1038/nmat1256
10.1038/s41524-022-00928-y
10.1109/77.784846
10.1088/1674-1056/20/4/047505
10.1103/PhysRevB.63.054416
10.1016/j.cpc.2015.05.011
10.1073/pnas.2104556118
10.1103/PhysRevB.78.134427
10.1103/PhysRevLett.107.137203
10.1016/0301-0104(94)00173-1
10.1088/2053-1591/abfd13
10.1063/1.4966897
10.1088/2633-4356/ac6b76
10.1557/s43577-021-00137-w
10.1017/CBO9780511524769
10.1063/1.1904594
10.1103/PhysRevB.92.045208
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Nature Publishing Group 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Nature Publishing Group 2025
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.1038/s41524-025-01558-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 12
ExternalDocumentID oai_doaj_org_article_ada2d380d5e040b9bffa232fe0fe5556
oai_DiVA_org_liu_212741
2574946
10_1038_s41524_025_01558_w
GrantInformation_xml – fundername: Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
  grantid: 2018.0071
  funderid: 501100004063
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Research Laboratory (AFRL)
  grantid: FA95502310667
  funderid: 100006602
– fundername: Vetenskapsrådet (Swedish Research Council)
  grantid: 2022-00276
  funderid: 501100004359
– fundername: United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
  grantid: FA95502310667; FA95502310667
  funderid: 100000181
– fundername: DOE | Laboratory Directed Research and Development (LDRD)
  grantid: DE-AC02-06CH11357
  funderid: 100007000
– fundername: Midwest Integrated Center for Computational Materials, which is part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division through Argonne National Laboratory.
– fundername: Swedish e-science Research Centre (SeRC)
GroupedDBID 0R~
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PHGZT
PIMPY
PQQKQ
PROAC
RNT
UKHRP
AASML
AAYXX
CITATION
PHGZM
SNYQT
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
OIOZB
OTOTI
PUEGO
ABXSW
ADTPV
AOWAS
D8T
DG8
EJD
ZZAVC
ID FETCH-LOGICAL-c375t-935e984394adea3120f5b2bc9b4c1bd16d95027d8b7c8e3e66a68e575be36b433
IEDL.DBID 7X7
ISSN 2057-3960
IngestDate Wed Aug 27 01:31:53 EDT 2025
Thu Aug 21 07:01:07 EDT 2025
Mon Aug 25 02:21:06 EDT 2025
Wed Aug 13 01:48:44 EDT 2025
Sun Jul 06 05:08:02 EDT 2025
Tue Mar 18 01:12:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-935e984394adea3120f5b2bc9b4c1bd16d95027d8b7c8e3e66a68e575be36b433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Knut and Alice Wallenberg Foundation
National Energy Research Scientific Computing Center (NERSC)
AC02-06CH11357
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
Air Force Office of Scientific Research (AFOSR)
Swedish Research Council
USDOE Laboratory Directed Research and Development (LDRD) Program
ORCID 0000-0002-5349-3318
0000-0002-8001-5290
0000-0002-6073-9953
0000000260739953
0000000253493318
0000000280015290
OpenAccessLink https://www.proquest.com/docview/3178012629?pq-origsite=%requestingapplication%
PQID 3178012629
PQPubID 2041924
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_ada2d380d5e040b9bffa232fe0fe5556
swepub_primary_oai_DiVA_org_liu_212741
osti_scitechconnect_2574946
proquest_journals_3178012629
crossref_primary_10_1038_s41524_025_01558_w
springer_journals_10_1038_s41524_025_01558_w
PublicationCentury 2000
PublicationDate 2025-03-17
PublicationDateYYYYMMDD 2025-03-17
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 1558_CR14
1558_CR16
D Hamann (1558_CR93) 2013; 88
P Giannozzi (1558_CR91) 2009; 21
1558_CR92
K Harmon (1558_CR4) 2022; 2
1558_CR98
Q Li (1558_CR31) 2013; 556
TJ Smart (1558_CR48) 2021; 7
1558_CR24
1558_CR23
H Seo (1558_CR47) 2017; 1
1558_CR29
NP De Leon (1558_CR3) 2021; 372
V Bannikov (1558_CR41) 2007; 33
M Schlipf (1558_CR94) 2015; 196
J Davidsson (1558_CR22) 2021; 269
N Varini (1558_CR104) 2013; 184
M Grob (1558_CR33) 2012; 86
I Slipukhina (1558_CR36) 2011; 107
Y Lee (1558_CR62) 2022; 13
A Alkauskas (1558_CR58) 2014; 16
J Vassent (1558_CR70) 1996; 80
P Giannozzi (1558_CR90) 2017; 29
RE George (1558_CR80) 2013; 110
JH Skone (1558_CR42) 2014; 89
LV Rodgers (1558_CR1) 2021; 46
X Wang (1558_CR32) 2021; 8
NA Basit (1558_CR19) 1998; 73
JM Polfus (1558_CR40) 2012; 14
H Ma (1558_CR52) 2021; 17
V Pardo (1558_CR38) 2008; 78
C-M Liu (1558_CR30) 2011; 20
S Lany (1558_CR85) 2008; 78
Q Sun (1558_CR101) 2018; 8
X Jiang (1558_CR12) 2005; 94
1558_CR82
W Butler (1558_CR7) 2001; 63
S Yuasa (1558_CR11) 2007; 40
A Gali (1558_CR106) 2009; 103
PT Ruhoff (1558_CR105) 1994; 186
JH Lee (1558_CR59) 2021; 21
N Sheng (1558_CR53) 2022; 18
Á Gali (1558_CR60) 2019; 8
1558_CR56
A Viel (1558_CR65) 2004; 120
KA Schulte (1558_CR50) 2018; 9
J Davidsson (1558_CR6) 2024; 15
1558_CR102
1558_CR55
H Ma (1558_CR103) 2020; 5
J Mathon (1558_CR8) 2001; 63
VW-z Yu (1558_CR100) 2022; 18
J Davidsson (1558_CR25) 2024; 10
D Wing (1558_CR83) 2021; 118
J-Y Chen (1558_CR81) 2017; 7
J Davidsson (1558_CR26) 2022; 11
J Levy (1558_CR78) 2001; 64
G Kresse (1558_CR86) 1994; 49
1558_CR68
1558_CR61
J Liu (1558_CR79) 2021; 7
T Brudevoll (1558_CR28) 1996; 53
1558_CR66
M Pesci (1558_CR39) 2010; 114
1558_CR64
S Yuasa (1558_CR9) 2004; 3
1558_CR63
M Niknam (1558_CR77) 2022; 5
T Murphy (1558_CR20) 2004; 85
S Valanarasu (1558_CR18) 2014; 25
A-M El-Sayed (1558_CR27) 2018; 98
M Subramanian (1558_CR97) 1989; 16
C Vorwerk (1558_CR54) 2022; 2
M Kapilashrami (1558_CR13) 2010; 22
C-R Hong (1558_CR44) 2009; 517
J Weber (1558_CR72) 2010; 107
Y Jin (1558_CR51) 2023; 19
G Kresse (1558_CR87) 1996; 54
P Płóciennik (1558_CR17) 2016; 48
C Freysoldt (1558_CR96) 2009; 102
Y Jin (1558_CR67) 2022; 8
M Govoni (1558_CR99) 2015; 11
Q Li (1558_CR34) 2013; 297
L Gordon (1558_CR107) 2015; 92
A Perez (1558_CR45) 1983; 28
JP Singh (1558_CR15) 2017; 2
CG Van de Walle (1558_CR46) 2004; 95
C Vorwerk (1558_CR75) 2023; 7
B Dieny (1558_CR73) 2020; 3
NM Julkapli (1558_CR74) 2016; 36
C Freysoldt (1558_CR95) 2014; 86
P Mavropoulos (1558_CR37) 2009; 80
PE Blöchl (1558_CR88) 1994; 50
S Kanai (1558_CR5) 2022; 119
R Jansen (1558_CR76) 2024; 10
JP Perdew (1558_CR84) 1996; 77
H Seo (1558_CR69) 2016; 6
SS Parkin (1558_CR10) 2004; 3
JR Groves (1558_CR21) 1999; 9
1558_CR43
S Castelletto (1558_CR2) 2020; 2
Y-F Zhang (1558_CR35) 2011; 47
S Meesala (1558_CR49) 2018; 97
S Valeri (1558_CR71) 2002; 507
G Kresse (1558_CR89) 1999; 59
Y Jin (1558_CR57) 2021; 5
References_xml – volume: 80
  start-page: 184403
  year: 2009
  ident: 1558_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.184403
– ident: 1558_CR82
  doi: 10.1063/1.3524336
– volume: 86
  start-page: 075455
  year: 2012
  ident: 1558_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.075455
– volume: 107
  start-page: 8513
  year: 2010
  ident: 1558_CR72
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1003052107
– volume: 269
  start-page: 108091
  year: 2021
  ident: 1558_CR22
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108091
– volume: 77
  start-page: 3865
  year: 1996
  ident: 1558_CR84
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 59
  start-page: 1758
  year: 1999
  ident: 1558_CR89
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 7
  start-page: 033801
  year: 2023
  ident: 1558_CR75
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.7.033801
– volume: 17
  start-page: 2116
  year: 2021
  ident: 1558_CR52
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01258
– volume: 5
  start-page: 084603
  year: 2021
  ident: 1558_CR57
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.084603
– volume: 33
  start-page: 541
  year: 2007
  ident: 1558_CR41
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/S1063785007070012
– ident: 1558_CR98
  doi: 10.1063/1.2404663
– volume: 5
  start-page: 2160
  year: 2020
  ident: 1558_CR103
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02160
– volume: 10
  year: 2024
  ident: 1558_CR25
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-024-01292-9
– volume: 13
  year: 2022
  ident: 1558_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35048-0
– volume: 54
  start-page: 11169
  year: 1996
  ident: 1558_CR87
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– ident: 1558_CR14
  doi: 10.1063/1.4793308
– volume: 36
  start-page: 1
  year: 2016
  ident: 1558_CR74
  publication-title: Rev. Inorg. Chem.
  doi: 10.1515/revic-2015-0010
– volume: 3
  start-page: 868
  year: 2004
  ident: 1558_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1257
– volume: 88
  start-page: 085117
  year: 2013
  ident: 1558_CR93
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085117
– volume: 102
  start-page: 016402
  year: 2009
  ident: 1558_CR96
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.016402
– volume: 6
  year: 2016
  ident: 1558_CR69
  publication-title: Sci. Rep.
  doi: 10.1038/srep20803
– volume: 78
  start-page: 235104
  year: 2008
  ident: 1558_CR85
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.235104
– volume: 18
  start-page: 3512
  year: 2022
  ident: 1558_CR53
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00240
– ident: 1558_CR92
  doi: 10.1063/5.0005082
– volume: 40
  start-page: R337
  year: 2007
  ident: 1558_CR11
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/40/21/R01
– volume: 21
  start-page: 395502
  year: 2009
  ident: 1558_CR91
  publication-title: J. Phys.: Condens. Matter
– volume: 2
  start-page: 022001
  year: 2020
  ident: 1558_CR2
  publication-title: J. Phys.: Photonics
– volume: 80
  start-page: 5727
  year: 1996
  ident: 1558_CR70
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.363626
– volume: 7
  start-page: eabf8103
  year: 2021
  ident: 1558_CR79
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf8103
– volume: 11
  start-page: 2680
  year: 2015
  ident: 1558_CR99
  publication-title: J. Chem. theory Comput.
  doi: 10.1021/ct500958p
– volume: 556
  start-page: 237
  year: 2013
  ident: 1558_CR31
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2012.11.063
– volume: 8
  start-page: e1340
  year: 2018
  ident: 1558_CR101
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 28
  start-page: 1227
  year: 1983
  ident: 1558_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.1227
– volume: 507
  start-page: 311
  year: 2002
  ident: 1558_CR71
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(02)01263-3
– volume: 94
  start-page: 056601
  year: 2005
  ident: 1558_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.056601
– volume: 11
  start-page: 4565
  year: 2022
  ident: 1558_CR26
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2022-0400
– volume: 184
  start-page: 1827
  year: 2013
  ident: 1558_CR104
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.03.003
– volume: 18
  start-page: 4690
  year: 2022
  ident: 1558_CR100
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00241
– volume: 19
  start-page: 8689
  year: 2023
  ident: 1558_CR51
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00986
– ident: 1558_CR55
  doi: 10.1093/acprof:oso/9780198507802.001.0001
– volume: 89
  start-page: 195112
  year: 2014
  ident: 1558_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.195112
– volume: 120
  start-page: 4603
  year: 2004
  ident: 1558_CR65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1646371
– volume: 64
  start-page: 052306
  year: 2001
  ident: 1558_CR78
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.052306
– ident: 1558_CR63
  doi: 10.1063/5.0203366
– volume: 16
  start-page: 073026
  year: 2014
  ident: 1558_CR58
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/16/7/073026
– volume: 50
  start-page: 17953
  year: 1994
  ident: 1558_CR88
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 16
  start-page: 741
  year: 1989
  ident: 1558_CR97
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/BF00209695
– volume: 5
  start-page: 284
  year: 2022
  ident: 1558_CR77
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-01041-8
– volume: 119
  start-page: e2121808119
  year: 2022
  ident: 1558_CR5
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2121808119
– volume: 10
  year: 2024
  ident: 1558_CR76
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-024-00815-y
– volume: 95
  start-page: 3851
  year: 2004
  ident: 1558_CR46
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1682673
– volume: 14
  start-page: 11808
  year: 2012
  ident: 1558_CR40
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp41378g
– volume: 372
  start-page: eabb2823
  year: 2021
  ident: 1558_CR3
  publication-title: Science
  doi: 10.1126/science.abb2823
– volume: 7
  year: 2017
  ident: 1558_CR81
  publication-title: Sci. Rep.
  doi: 10.1038/srep42001
– volume: 47
  start-page: 2928
  year: 2011
  ident: 1558_CR35
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2148170
– volume: 21
  start-page: 9187
  year: 2021
  ident: 1558_CR59
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03013
– volume: 297
  start-page: 29
  year: 2013
  ident: 1558_CR34
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At.
  doi: 10.1016/j.nimb.2012.12.012
– volume: 97
  start-page: 205444
  year: 2018
  ident: 1558_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.205444
– ident: 1558_CR61
– volume: 98
  start-page: 064102
  year: 2018
  ident: 1558_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.064102
– volume: 8
  start-page: 1907
  year: 2019
  ident: 1558_CR60
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0154
– volume: 517
  start-page: 4170
  year: 2009
  ident: 1558_CR44
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.02.038
– volume: 86
  start-page: 253
  year: 2014
  ident: 1558_CR95
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.253
– volume: 9
  start-page: 9018
  year: 2018
  ident: 1558_CR50
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02820F
– volume: 49
  start-page: 14251
  year: 1994
  ident: 1558_CR86
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.14251
– volume: 110
  start-page: 027601
  year: 2013
  ident: 1558_CR80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.027601
– volume: 3
  start-page: 446
  year: 2020
  ident: 1558_CR73
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0461-5
– volume: 73
  start-page: 3941
  year: 1998
  ident: 1558_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122943
– ident: 1558_CR64
– volume: 114
  start-page: 1350
  year: 2010
  ident: 1558_CR39
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp9097556
– ident: 1558_CR23
– ident: 1558_CR43
– volume: 7
  year: 2021
  ident: 1558_CR48
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00525-5
– volume: 1
  start-page: 075002
  year: 2017
  ident: 1558_CR47
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.075002
– volume: 2
  start-page: 36
  year: 2017
  ident: 1558_CR15
  publication-title: Condens. Matter
  doi: 10.3390/condmat2040036
– volume: 29
  start-page: 465901
  year: 2017
  ident: 1558_CR90
  publication-title: J. Phys.: Condens. matter
– volume: 103
  start-page: 186404
  year: 2009
  ident: 1558_CR106
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.186404
– ident: 1558_CR68
  doi: 10.1063/1.4892544
– volume: 25
  start-page: 3846
  year: 2014
  ident: 1558_CR18
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 15
  year: 2024
  ident: 1558_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-49057-8
– volume: 85
  start-page: 3208
  year: 2004
  ident: 1558_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1804237
– volume: 2
  start-page: 424
  year: 2022
  ident: 1558_CR54
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00279-0
– ident: 1558_CR24
– ident: 1558_CR102
– volume: 48
  year: 2016
  ident: 1558_CR17
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-016-0536-8
– volume: 63
  start-page: 220403
  year: 2001
  ident: 1558_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.220403
– volume: 53
  start-page: 7731
  year: 1996
  ident: 1558_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.7731
– volume: 3
  start-page: 862
  year: 2004
  ident: 1558_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1256
– volume: 8
  year: 2022
  ident: 1558_CR67
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00928-y
– volume: 9
  start-page: 1964
  year: 1999
  ident: 1558_CR21
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/77.784846
– volume: 20
  start-page: 047505
  year: 2011
  ident: 1558_CR30
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/20/4/047505
– ident: 1558_CR29
– volume: 63
  start-page: 054416
  year: 2001
  ident: 1558_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.63.054416
– volume: 196
  start-page: 36
  year: 2015
  ident: 1558_CR94
  publication-title: Computer Phys. Commun.
  doi: 10.1016/j.cpc.2015.05.011
– volume: 118
  start-page: e2104556118
  year: 2021
  ident: 1558_CR83
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2104556118
– volume: 78
  start-page: 134427
  year: 2008
  ident: 1558_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.134427
– volume: 107
  start-page: 137203
  year: 2011
  ident: 1558_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.137203
– volume: 186
  start-page: 355
  year: 1994
  ident: 1558_CR105
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(94)00173-1
– volume: 8
  start-page: 066102
  year: 2021
  ident: 1558_CR32
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/abfd13
– ident: 1558_CR16
  doi: 10.1063/1.4966897
– volume: 2
  start-page: 023001
  year: 2022
  ident: 1558_CR4
  publication-title: Mater. Quantum Technol.
  doi: 10.1088/2633-4356/ac6b76
– volume: 22
  start-page: 345004
  year: 2010
  ident: 1558_CR13
  publication-title: J. Phys.: Condens. Matter
– volume: 46
  start-page: 623
  year: 2021
  ident: 1558_CR1
  publication-title: MRS Bull.
  doi: 10.1557/s43577-021-00137-w
– ident: 1558_CR56
  doi: 10.1017/CBO9780511524769
– ident: 1558_CR66
  doi: 10.1063/1.1904594
– volume: 92
  start-page: 045208
  year: 2015
  ident: 1558_CR107
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.045208
SSID ssj0001928240
Score 2.286036
Snippet Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising materials for...
Abstract Recent predictions suggest that oxides, such as MgO and CaO, could serve as hosts of spin defects with long coherence times and thus be promising...
SourceID doaj
swepub
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 74
SubjectTerms 639/301/1034/1038
639/301/119/995
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Coupling
Debye-Waller factor
Defects
Electronic properties and materials
Electronic structure
First principles
Interaction parameters
Localization
Magnesium
Magnesium oxide
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Molecular beam epitaxy
Nitrogen
Optical properties
oxide
Parameter identification
Phonons
Quantum sensors
Qubits (quantum computing)
spin defect
Superconductors (materials)
Tensors
Theoretical
Thin films
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQV7CoKFB1aEFeIDYQNRPbGXs5PEYVEl0gWnVn-XHTBnUybSejgT9gzSfyJdzrZMpMF3TDKpLtRM65tu_x4x4z9gpUEYWKMhMQPS3djDIfQpkVTkftjJTB0zrk5-Py6ER-OlNna1d90ZmwTh64A-7QRYdf03lUgO3NG19VDllABXkFSqkkto0-b20y9a3jLRp9VR8lkwt9OCdPJTO6vZVogs6WG54oCfbjY4Yda4Ns3u6P3tESTf5n8pht98SRj7sK77AH0Dxhj9bkBJ-yL-OGH5_-_vmL05FLuOF1w6fuHAezejHls-91BO7m3PH5FeZcL3zdcuSs_OIHhW1hAqKMBdvVajtOop-xk8nHr--Psv7OhCyIkWozIxQYTeGuLoITwyKvlC98MF6GoY_DMhqFM9Go_ShoEFCWrtSAnM2DKL0UYpdtNbMG9hh3MpoqdwVAcNK5wht8A3SuKgqfV37A3qzws1edNIZNW9pC2w5ti2jbhLZdDtg7gvi2JMlapwQ0tu2Nbe8z9oDtk4EssgPCItBZoNBaHHakkZh7sLKb7Xvi3CI_IidcFmbA3q5s-Tf7XxV-3dl7o8of6tNxqvJlvbCkji-Hz__Hn-2zh0VqmyQYe8C22psFvEC60_qXqWX_AR2S_Xg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDI5KucAB8RRLC8oBcYERs5PHJsdloaqQ6AHRqrcoD08ZqZ0tu7Mq_Qc98xP5JdjZmZZFCInTSHmMLDuxHcf-wthLUFUSKslCQAoUupkUIUZdVN4k462UMVAc8tOB3j-UH4_V8RarhlqYnLSfIS2zmh6yw94uydDIgh5fJStviotb7DZBt9OqnunZTVzF4iFCln19TCnMX6Zu2KAM1Y-fOW6pDTfz-mb0DxTRbHn27rN7vcvIp2siH7AtaB-yu78BCT5in6ctPzj6efWDU7IlLHjT8jN_gmqsWZ3x-fcmAfdL7vnyHHu-rULTcfRW-ddLKtjCBuQvDuyGODsenx-zw70PX2b7Rf9aQhHFRHWFFQqsoUJXn8CLcVXWKlQh2iDjOKSxTlbhGTSZMIkGBGjttQH01gIIHaQQT9h2O2_hKeNeJluXvgKIXnpfBYszwJSqpsJ5FUbs9cA_d74GxXD5MlsYt-a2Q267zG13MWLviMXXIwnQOjfMFyeuF7DzyeOiMWVSgGol2FDXHp29GsoalFJ6xHZIQA79AuJFpCyg2DlUONJK7N0d5Ob6Pbh06BmR-dWVHbE3gyxvuv9F8Ku1vDdIft8cTTPJp83KES6-HD_7v__usDtVXoUECrvLtrvFCp6jS9OFF3kN_wIFk_If
  priority: 102
  providerName: Springer Nature
Title An NV− center in magnesium oxide as a spin qubit for hybrid quantum technologies
URI https://link.springer.com/article/10.1038/s41524-025-01558-w
https://www.proquest.com/docview/3178012629
https://www.osti.gov/servlets/purl/2574946
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-212741
https://doaj.org/article/ada2d380d5e040b9bffa232fe0fe5556
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwELdge4EHNP6JslH5AfEC0dLYTuynqSsrUyUqNNjUN8v_skViadekGnwDnvmIfBLu0mSlPOwlkWxHse7Od-ez73eEvA0i8Ux4HrHgLYZussg6l0aJkV4axbmzGIf8PE1Pz_lkJmZtwK1qr1V2OrFR1H7uMEZ-CHYOlWmaqKPFTYRVo_B0tS2h8ZDsInQZXunKZtkmxqJgQ8HjNlcmZvKwQnvFI6zhis6CjG637FED2w-vOSyvLZfz7pT0P0TRxgqN98iT1n2kwzW_n5IHoXxGHv8DKvicnA1LOr348-s3xYuXYUmLkl6bS1Bpxeqazn8UPlBTUUOrBfTcrGxRU_Bc6dVPTN6CBqA1DKy7mDtspV-Q8_HJt9Fp1FZOiBzLRB0pJoKSmPRqfDBskMS5sIl1ynI3sH6QeiVgP-qlzZwMLKSpSWUAz80GllrO2EuyU87L8IpQw73KY5OE4Aw3JrEKvggyFjkm0QvbI-87-unFGiBDNwfbTOo1tTVQWzfU1rc9cowkvhuJ4NZNw3x5qdu1oo03IEAy9iKAirHK5rkBxy8PcR6EEGmP7CODNPgISAuHN4JcrUH5cMWh96Djm27XY6U30tMjHzpebrrvm_C7Nb-3pvyxuBg2U_5erDRi5PPB6_t_u08eJY3UISDsAdmpl6vwBtyZ2vYbmYWnHH_qk93hcPJ1Au_jk-mXM2gdpaN-Eyj4CzUi-bU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KraA3BA5SWWFvABuEDUbGJn7QNCC2XZ0nYPqK16M36lRKLJdpPV0j_gzIfwUXwJM3l0WQ699ZTIdhRr3jP2zBDywvPIxdyxIPbOYOhmEBhrkyDSwgktGbMG45CHk2R8zD6f8tM18rvLhcFrlZ1MrAW1KyzGyHdAz6EwTSL5bnoRYNcoPF3tWmg0ZLHvLxfgspVv93YBvy-jaPTx6MM4aLsKBDYe8CqQMfdSYEKodl7H_ShMuYmMlYbZvnH9xEkOvpoTZmCFj32S6ER4sGqMjxPDMAAKIn8DXiRylBh9WsZ0JDgwLGxzc8JY7JSoH1mAPWPROBHBYkX_1W0C4FEAO6-YuFensv9VMK213miT3G3NVTps6OseWfP5fXLnnyKGD8iXYU4nJ39-_qJ40dPPaJbTc30GIjSbn9PiR-Y81SXVtJzCzMXcZBUFS5l-u8RkMRgA3MLCqovxg-v-kBzfCEwfkfW8yP1jQjVzMg115L3VTOvISPjCi5CnmLTPTY-87uCnpk1BDlUfpMdCNdBWAG1VQ1steuQ9gvhqJRbTrgeK2ZlqeVNpp4FgRei4B5FmpElTDYZm6sPUc86THtlCBCmwSRAWFm8g2UqBsGOSwex2hzfV8n-pltTaI286XC6nr9vwqwbfK1vezU6G9Za_Z3OFNflZ_8n1v31Obo2PDg_Uwd5kf4vcjmoKxGK022S9ms39UzClKvOspl9Kvt40w_wFlmMwrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFQVCcEBsYrQAnMALmDFy4w9c0AoEKKWQoQQrXIbZnNriSZp7Cj0DzjzOXwOX8J7XhrCobeeLHnG8ujt781bCHnmeewS7liQeGcwdJMFxto0iLVwQkvGrME45KdxunfIPkz4ZIv87mphMK2yk4m1oHYzizHyPug5FKZpLPt5mxbxeTh6Mz8LcIIU3rR24zQaEjnw5ytw38rX-0PA9fM4Hr3_-m4vaCcMBDbJeBXIhHspsDhUO6-TKA5zbmJjpWE2Mi5KneTgtzlhMit84tNUp8KDhWN8khqGwVAQ_9eyhEfIY9kkW8d3JDgzLGzrdMJE9EvUlSzA-bFoqIhgtaEL65EB8JgBa2-Yuxc3tP91M6014Og2udWarnTQ0NodsuWnd8nNfxoa3iNfBlM6Pvrz8xfFpE-_oMWUnupjEKfF8pTOfhTOU11STcs5rJwtTVFRsJrpyTkWjsELwDNsrLp4P7jx98nhlcD0Admezqb-IaGaOZmHOvbeaqZ1bCR84UXIcyzg56ZHXnbwU_OmOYeqL9UToRpoK4C2qqGtVj3yFkF8sRMba9cvZotj1fKp0k4D8YrQcQ_izUiT5xqMztyHueecpz2ygwhSYJ8gLCxmI9lKgeBjksHqboc31cqCUq0pt0dedbhcL1924BcNvjeOPCyOBvWRvxdLhf35WfTo8t8-JdeBVdTH_fHBDrkR1wSIfWl3yXa1WPrHYFVV5klNvpR8u2p--QuQjDTb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+NV+-+center+in+magnesium+oxide+as+a+spin+qubit+for+hybrid+quantum+technologies&rft.jtitle=npj+computational+materials&rft.au=Somjit%2C+Vrindaa&rft.au=Davidsson%2C+Joel&rft.au=Jin%2C+Yu&rft.au=Galli%2C+Giulia&rft.date=2025-03-17&rft.issn=2057-3960&rft.eissn=2057-3960&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-025-01558-w&rft.externalDocID=oai_DiVA_org_liu_212741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon