CEEMDAN-MRAL Transformer Vibration Signal Fault Diagnosis Method Based on FBG
In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately...
Saved in:
Published in | Photonics Vol. 12; no. 5; p. 468 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately evaluate the vibration fault state of transformer.The FBG sends the wavelength change in the optical signal center caused by the vibration of the transformer to the demodulation system, which obtains the vibration signal and effectively avoids the noise influence caused by strong electromagnetic interference inside the transformer. The vibration signal is decomposed into several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the wavelet threshold denoising algorithm improves the signal-to-noise ratio (SNR) to 1.6 times. The Markov transition field (MTF) is used to construct a training and test set. The unique MRAL-Net is proposed to extract the spatial features of the signal and analyze the time series dependence of the features to improve the richness of the signal feature scale. This proposed method effectively removes the noise interference. The average accuracy of fault diagnosis of the transformer winding core reaches 97.9375%, and the time taken on the large-scale complex training set is only 1705 s, which has higher diagnostic accuracy and shorter training time than other models. |
---|---|
AbstractList | In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately evaluate the vibration fault state of transformer.The FBG sends the wavelength change in the optical signal center caused by the vibration of the transformer to the demodulation system, which obtains the vibration signal and effectively avoids the noise influence caused by strong electromagnetic interference inside the transformer. The vibration signal is decomposed into several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the wavelet threshold denoising algorithm improves the signal-to-noise ratio (SNR) to 1.6 times. The Markov transition field (MTF) is used to construct a training and test set. The unique MRAL-Net is proposed to extract the spatial features of the signal and analyze the time series dependence of the features to improve the richness of the signal feature scale. This proposed method effectively removes the noise interference. The average accuracy of fault diagnosis of the transformer winding core reaches 97.9375%, and the time taken on the large-scale complex training set is only 1705 s, which has higher diagnostic accuracy and shorter training time than other models. |
Audience | Academic |
Author | Wang, Zhichao Jiang, Hong Cui, Lina Zhao, Yihan |
Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0002-1915-2931 surname: Jiang fullname: Jiang, Hong – sequence: 2 givenname: Zhichao surname: Wang fullname: Wang, Zhichao – sequence: 3 givenname: Lina surname: Cui fullname: Cui, Lina – sequence: 4 givenname: Yihan orcidid: 0000-0001-6951-4809 surname: Zhao fullname: Zhao, Yihan |
BookMark | eNplUclOwzAQtVCRKMsHcIvEOcVb4uTYFSq1ILFdrbFjt67auNjpgb_HUISQmDnMaPTm6c28c9RrfWsQuiZ4wFiNb_dr3_nW6UgoLjAvqxPUpwzzvBSM9v70Z-gqxg1OURNWFbyPluPpdDkZPuTLp-EiewnQRuvDzoTszakAnfNt9uxWLWyzGRy2XTZxsGp9dDFbmm7tm2wE0TRZgs1Gd5fo1MI2mqufeoFeZ9OX8X2-eLybj4eLXDNRdHllMfBaaU4JJSWGynKqSpU0YSCF5aAw4IKKWtWcVpZRpYgipWLQAKu0ZRdofuRtPGzkPrgdhA_pwcnvgQ8rCaFzemtkWVomWMOsKjU3mNZM1LSuioJoYbQVievmyLUP_v1gYic3_hDSwVGypC99ShCaUIMjagWJ1LXWdwF0ysbsnE52WJfmw4pTwQssSFogxwUdfIzB2F-ZBMsv1-Q_19gnlBGKxg |
Cites_doi | 10.1016/j.yofte.2024.103912 10.1364/OE.446768 10.1016/j.measurement.2021.109864 10.1109/MEI.2023.10220242 10.1016/j.apacoust.2016.07.024 10.1364/OE.452418 10.3390/photonics11020137 10.1016/j.measurement.2024.116191 10.1109/TPWRD.2020.2988820 10.1016/j.yofte.2025.104132 10.3390/electronics10111248 10.1109/JSEN.2018.2833885 10.1155/2021/8850780 10.3390/app14135847 10.1109/TIM.2022.3168929 10.1016/j.egyr.2022.08.237 10.1364/OE.416537 10.1109/TII.2023.3245193 10.1016/j.yofte.2022.103081 10.1016/j.rser.2024.114327 10.1016/j.ijepes.2021.106854 10.3390/photonics11020152 10.1109/JSEN.2023.3251654 10.1016/j.yofte.2024.103850 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KR7 L7M LK8 L~C L~D M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/photonics12050468 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2304-6732 |
ExternalDocumentID | oai_doaj_org_article_66f373d3fb6c4e029379298551c7ecf7 A842745071 10_3390_photonics12050468 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABHFT ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ GS5 GX1 HCIFZ IAO ITC KQ8 KZ1 LK8 LMP M7P MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c375t-8f0a49bc4212160a8f42b6b9130a15f4ab0a05279b9428f32bb1b16b3ada38cf3 |
IEDL.DBID | BENPR |
ISSN | 2304-6732 |
IngestDate | Wed Aug 27 01:32:57 EDT 2025 Fri Jul 25 09:37:37 EDT 2025 Tue Jun 10 03:40:42 EDT 2025 Tue Jul 01 04:44:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-8f0a49bc4212160a8f42b6b9130a15f4ab0a05279b9428f32bb1b16b3ada38cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6951-4809 0000-0002-1915-2931 |
OpenAccessLink | https://www.proquest.com/docview/3212091712?pq-origsite=%requestingapplication% |
PQID | 3212091712 |
PQPubID | 2032352 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_66f373d3fb6c4e029379298551c7ecf7 proquest_journals_3212091712 gale_infotracacademiconefile_A842745071 crossref_primary_10_3390_photonics12050468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Photonics |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_15) 2022; 30 Wu (ref_14) 2021; 29 Jiang (ref_11) 2025; 242 Pt D Liu (ref_12) 2022; 30 Yuan (ref_1) 2023; 39 Xiao (ref_18) 2022; 71 Wang (ref_23) 2018; 18 Zhao (ref_5) 2024; 86 ref_19 Zhou (ref_4) 2016; 114 Chang (ref_17) 2023; 23 Wang (ref_24) 2022; 8 Wei (ref_16) 2021; 183 Sun (ref_3) 2024; 196 Mao (ref_8) 2022; 74 Xing (ref_22) 2023; 19 Zhu (ref_7) 2025; 90 ref_25 Qiang (ref_20) 2021; 2021 Hong (ref_21) 2021; 36 ref_2 ref_9 Shamlou (ref_13) 2021; 129 Chen (ref_10) 2024; 87 ref_6 |
References_xml | – volume: 87 start-page: 103912 year: 2024 ident: ref_10 article-title: Vibration signal denoising algorithm based on corrosion detection of petroleum volatilization pipeline publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.103912 – volume: 30 start-page: 1818 year: 2022 ident: ref_15 article-title: Dual-model hybrid pattern recognition method based on a fiber optic line-based sensor with a large amount of data publication-title: Opt. Express doi: 10.1364/OE.446768 – volume: 183 start-page: 109864 year: 2021 ident: ref_16 article-title: Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform publication-title: Measurement doi: 10.1016/j.measurement.2021.109864 – volume: 39 start-page: 26 year: 2023 ident: ref_1 article-title: Types and Mechanisms of Condenser Transformer Bushing Failures publication-title: IEEE Electr. Insul. Mag. doi: 10.1109/MEI.2023.10220242 – volume: 114 start-page: 136 year: 2016 ident: ref_4 article-title: Transformer winding fault detection by vibration analysis methods publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2016.07.024 – volume: 30 start-page: 17307 year: 2022 ident: ref_12 article-title: Intrusion identification using GMM-HMM for perimeter monitoring based on ultra-weak FBG arrays publication-title: Opt. Express doi: 10.1364/OE.452418 – ident: ref_9 doi: 10.3390/photonics11020137 – volume: 242 Pt D start-page: 116191 year: 2025 ident: ref_11 article-title: A small-sized fire detection method based on the combination of the SIC algorithm and 1-DCNN publication-title: Measurement doi: 10.1016/j.measurement.2024.116191 – volume: 36 start-page: 676 year: 2021 ident: ref_21 article-title: Transformer Winding Fault Diagnosis Using Vibration Image and Deep Learning publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2020.2988820 – volume: 90 start-page: 104132 year: 2025 ident: ref_7 article-title: Asymmetric fiber grating overlapping spectrum demodulation technology based on convolutional network and wavelet transform noise reduction publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2025.104132 – ident: ref_19 doi: 10.3390/electronics10111248 – volume: 18 start-page: 4954 year: 2018 ident: ref_23 article-title: High-Frequency Optical Fiber Bragg Grating Accelerometer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2833885 – ident: ref_2 – volume: 2021 start-page: 8850780 year: 2021 ident: ref_20 article-title: Study of transformer core vibration and noise generation mechanism induced by magnetostriction of grain-oriented silicon steel sheet publication-title: Shock Vib. doi: 10.1155/2021/8850780 – ident: ref_25 doi: 10.3390/app14135847 – volume: 71 start-page: 2508512 year: 2022 ident: ref_18 article-title: Multifeature Extraction and Semi-Supervised Deep Learning Scheme for State Diagnosis of Converter Transformer publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3168929 – volume: 8 start-page: 10950 year: 2022 ident: ref_24 article-title: Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.08.237 – volume: 29 start-page: 3269 year: 2021 ident: ref_14 article-title: Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation publication-title: Opt. Express doi: 10.1364/OE.416537 – volume: 19 start-page: 11239 year: 2023 ident: ref_22 article-title: Vibration-Signal-Based Deep Noisy Filtering Model for Online Transformer Diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3245193 – volume: 74 start-page: 103081 year: 2022 ident: ref_8 article-title: Denoising method based on VMD-PCC in φ-OTDR system publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2022.103081 – volume: 196 start-page: 114327 year: 2024 ident: ref_3 article-title: Research progress on oil-immersed transformer mechanical condition identification based on vibration signals publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2024.114327 – volume: 129 start-page: 106854 year: 2021 ident: ref_13 article-title: Winding deformation classification in a power transformer based on the time-frequency image of frequency response analysis using Hilbert-Huang transform and evidence theory publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.106854 – ident: ref_6 doi: 10.3390/photonics11020152 – volume: 23 start-page: 9136 year: 2023 ident: ref_17 article-title: Intelligent Fault Diagnosis of Rolling Bearings Using Efficient and Lightweight ResNet Networks Based on an Attention Mechanism (September 2022) publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3251654 – volume: 86 start-page: 103850 year: 2024 ident: ref_5 article-title: Nonlinear impairment compensationin multi-channel communication systems based on correlated digital backpropagation with separation of walk-off effect publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2024.103850 |
SSID | ssj0000913854 |
Score | 2.2901864 |
Snippet | In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 468 |
SubjectTerms | Accelerometers Accuracy Algorithms Analysis Bragg gratings CNN Demodulation denoising algorithm Electric transformers Electromagnetic interference Electromagnetism Fault diagnosis FBG Fourier transforms Methods Neural networks Signal processing Signal to noise ratio Time dependence Time series Venus Vibration Vibration analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA7iyYu2tcWttuQgCIXBTH5N5riru4o4e2jX4i3kpwqyu-zO_v99ycwWRaSXXocwvPneJN_7SPI9hE5ZRaRTUhbBS1FwT1hhnReFooFVntTUZSemZiqv7_jNvbh_0eornQnr7IE74M6ljKxinkUrHQ8E2KkCRldA9K4KLuZ75MB5L8RUXoPrkinBu21MBrr-fPm4aJPZ7LqkRIAoVK-IKPv1v7cqZ6qZfED7fY2Ih11sH9FOmH9CB329iPvZuD5EzcV43FwOp0Xzc3iLZ9sSNKzw7ySCE-T419NDetfEbJ5bfNmdq3ta4yY3jsYj4DCPYdhkdPUZ3U3Gs4vrom-PUDhWibZQkRheW5f2dEtJjIqcWmnhy4kpReTGEkMErWpbg8aIjFpb2lJaZrxhykX2Be3OF_NwhLCDItD7KGMMnHuAjlkmgxQJ9UhkGKAfW6z0snPB0KAeErD6DbADNEpo_h2YDKzzA0ir7tOq_5XWATpLudBpmrUr40x_WwDiTYZVeqg46OlUzA7QyTZdup9_a81ouhNcViX9-j-iOUZ7NPX9zQcdT9Buu9qEb1CMtPZ7_u_-AFuZ2js priority: 102 providerName: Directory of Open Access Journals |
Title | CEEMDAN-MRAL Transformer Vibration Signal Fault Diagnosis Method Based on FBG |
URI | https://www.proquest.com/docview/3212091712 https://doaj.org/article/66f373d3fb6c4e029379298551c7ecf7 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoeuHCGxEokQ9ISEhWvetnTihps60QG6HSot4sP0sllITs9v_j2ThFCMF1bXl3xx77-zz2Nwi9Y4pKr6UkMUhBeKCMOB8E0XVkKtBp7QclpnYpz6_4p2txXTbcunKscj8nDhN1WHvYIz9mNdzyrFRVf9z8JJA1CqKrJYXGATrMxVqP0OF8sfxycb_LAqqXWvBdOJNlfn-8-b7uQXS2y82JTA71HwvSoNv_r9l5WHKaJ-hRwYp4tuvcp-hBXD1DjwtuxMUru-eoPVks2tPZkrQXs8_4cg9F4xZ_AzIMpsdfb2-grcbe_ejx6e583W2H2yGBNJ7ntSzgXK2Zn71AV83i8uSclDQJxDMleqITtXzqPMR2K0mtTrx20uU_p7YSiVtHLRW1mrpp5hqJ1c5VrpKO2WCZ9om9RKPVehVfIewzGAwhyZQi5yGbjjkmoxQsOZmojGP0YW8rs9mpYZjMIsCw5i_DjtEcrHlfEYSshwfr7Y0pfmGkTEyxAC_wPNIMPlQGbDrjOK-iT2qM3kNfGHC3fmu9LbcG8veCcJWZaZ55NYDaMTrad5cpftiZ36Pm9f-L36CHNWT2HY4yHqFRv72LbzPc6N0EHejmbFJG1mQg7b8At6_VVg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOcCFNyJQwAcQEtKqXtvr3T0glDRJU5rNAVLU29bPUgklIbsV4k_xG5nZRxFCcOt1bXmtmfHMNx7PDCGvRMqUzZSKvFNJJB0TkbEuiTLuRepYzm1TialYqNmJ_HCanO6Qn30uDD6r7HVio6jd2uId-b7gmOUZpzF_v_kWYdcojK72LTRasTj2P76Dy1a9OxoDf19zPp0sD2ZR11UgsiJN6igLTMvcWAyFxorpLEhulMlBmes4CVIbplnC09zkAM2D4MbEJlZGaKdFZoOAdW-Qm1KAJcfM9Onh1Z0O1tjMEtkGT2Gc7W--rGsscVvB5hNwRbM_zF_TJeBftqAxcNN75E6HTOmwFaX7ZMevHpC7HUqlnQ6oHpLiYDIpxsNFVHwczumyB75-Sz-j642Mpp8uznGtqb78WtNx-5rvoqJF066ajsByOgrTpqPDR-TkWsj3mOyu1iv_hFAL0NO5oELwUjognTBCeZWIYFRgyg_I255W5aatvVGCz4KELf8i7ICMkJpXE7FsdvNhvT0vu1NYKhVEKhz-wErPAOqkAA8zQI029TakA_IGeVHi4a632uouRwH2i2WyymEmwYtHCD0gez27yu7UV-VvGX36_-GX5NZsWczL-dHi-Bm5zbGncPOIco_s1ttL_xyATm1eNNJFydl1i_MvY3gOgA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFe-EYUBvgBhIQU1bEdO3lAqF0bNrZW09jQ3ow_xyTUliYT4l_jr8OXjyGE4G2viWUnd-e73_nOdwi9ZJIImwuReCeyhDvCEmNdluTUM-lIQW1TiWm-EHun_MNZdraFfvZ3YSCtsteJjaJ2Kwtn5CNG4ZZnKlM6Cl1axNG0fLf-lkAHKYi09u00WhE58D--R_eters_jbx-RWk5O9ndS7oOA4llMquTPBDNC2MhLJoKovPAqRGmiIpdp1ng2hBNMioLU0SYHhg1JjWpMEw7zXIbWJz3BtqW4BUN0PZktjg6vjrhgYqbecbbUCpjBRmtv6xqKHhbxV_JomOa_2EMm54B_7IMjbkr76LbHU7F41aw7qEtv7yP7nSYFXcaoXqA5ruz2Xw6XiTz4_EhPulhsN_gT-CIA9vxx4tzmKvUl19rPG1z-y4qPG-aV-NJtKMOx2Hl5P1DdHotBHyEBsvV0j9G2EYg6lwQIXjOXSQdM0x4kbFgRCDCD9GbnlZq3VbiUNGDAcKqvwg7RBOg5tVAKKLdPFhtzlW3J5UQgUnmYAHLPYnAR0awmEcMaaW3QQ7Ra-CFgq1eb7TV3Y2F-L1QNEuNcx59egDUQ7TTs0t1OqBSvyX2yf9fv0A3oyirw_3FwVN0i0KD4SajcgcN6s2lfxZRT22ed-KF0efrluhfb-IUEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEEMDAN-MRAL+Transformer+Vibration+Signal+Fault+Diagnosis+Method+Based+on+FBG&rft.jtitle=Photonics&rft.au=Jiang%2C+Hong&rft.au=Wang%2C+Zhichao&rft.au=Cui%2C+Lina&rft.au=Zhao+Yihan&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2304-6732&rft.volume=12&rft.issue=5&rft.spage=468&rft_id=info:doi/10.3390%2Fphotonics12050468&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon |