CEEMDAN-MRAL Transformer Vibration Signal Fault Diagnosis Method Based on FBG

In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately...

Full description

Saved in:
Bibliographic Details
Published inPhotonics Vol. 12; no. 5; p. 468
Main Authors Jiang, Hong, Wang, Zhichao, Cui, Lina, Zhao, Yihan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately evaluate the vibration fault state of transformer.The FBG sends the wavelength change in the optical signal center caused by the vibration of the transformer to the demodulation system, which obtains the vibration signal and effectively avoids the noise influence caused by strong electromagnetic interference inside the transformer. The vibration signal is decomposed into several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the wavelet threshold denoising algorithm improves the signal-to-noise ratio (SNR) to 1.6 times. The Markov transition field (MTF) is used to construct a training and test set. The unique MRAL-Net is proposed to extract the spatial features of the signal and analyze the time series dependence of the features to improve the richness of the signal feature scale. This proposed method effectively removes the noise interference. The average accuracy of fault diagnosis of the transformer winding core reaches 97.9375%, and the time taken on the large-scale complex training set is only 1705 s, which has higher diagnostic accuracy and shorter training time than other models.
AbstractList In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of fault diagnosis mode recognition, a CEEMDAN-MRAL fault diagnosis method based on Fiber Bragg Grating (FBG) was proposed to quickly and accurately evaluate the vibration fault state of transformer.The FBG sends the wavelength change in the optical signal center caused by the vibration of the transformer to the demodulation system, which obtains the vibration signal and effectively avoids the noise influence caused by strong electromagnetic interference inside the transformer. The vibration signal is decomposed into several intrinsic mode functions (IMFs) by complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and the wavelet threshold denoising algorithm improves the signal-to-noise ratio (SNR) to 1.6 times. The Markov transition field (MTF) is used to construct a training and test set. The unique MRAL-Net is proposed to extract the spatial features of the signal and analyze the time series dependence of the features to improve the richness of the signal feature scale. This proposed method effectively removes the noise interference. The average accuracy of fault diagnosis of the transformer winding core reaches 97.9375%, and the time taken on the large-scale complex training set is only 1705 s, which has higher diagnostic accuracy and shorter training time than other models.
Audience Academic
Author Wang, Zhichao
Jiang, Hong
Cui, Lina
Zhao, Yihan
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0002-1915-2931
  surname: Jiang
  fullname: Jiang, Hong
– sequence: 2
  givenname: Zhichao
  surname: Wang
  fullname: Wang, Zhichao
– sequence: 3
  givenname: Lina
  surname: Cui
  fullname: Cui, Lina
– sequence: 4
  givenname: Yihan
  orcidid: 0000-0001-6951-4809
  surname: Zhao
  fullname: Zhao, Yihan
BookMark eNplUclOwzAQtVCRKMsHcIvEOcVb4uTYFSq1ILFdrbFjt67auNjpgb_HUISQmDnMaPTm6c28c9RrfWsQuiZ4wFiNb_dr3_nW6UgoLjAvqxPUpwzzvBSM9v70Z-gqxg1OURNWFbyPluPpdDkZPuTLp-EiewnQRuvDzoTszakAnfNt9uxWLWyzGRy2XTZxsGp9dDFbmm7tm2wE0TRZgs1Gd5fo1MI2mqufeoFeZ9OX8X2-eLybj4eLXDNRdHllMfBaaU4JJSWGynKqSpU0YSCF5aAw4IKKWtWcVpZRpYgipWLQAKu0ZRdofuRtPGzkPrgdhA_pwcnvgQ8rCaFzemtkWVomWMOsKjU3mNZM1LSuioJoYbQVievmyLUP_v1gYic3_hDSwVGypC99ShCaUIMjagWJ1LXWdwF0ysbsnE52WJfmw4pTwQssSFogxwUdfIzB2F-ZBMsv1-Q_19gnlBGKxg
Cites_doi 10.1016/j.yofte.2024.103912
10.1364/OE.446768
10.1016/j.measurement.2021.109864
10.1109/MEI.2023.10220242
10.1016/j.apacoust.2016.07.024
10.1364/OE.452418
10.3390/photonics11020137
10.1016/j.measurement.2024.116191
10.1109/TPWRD.2020.2988820
10.1016/j.yofte.2025.104132
10.3390/electronics10111248
10.1109/JSEN.2018.2833885
10.1155/2021/8850780
10.3390/app14135847
10.1109/TIM.2022.3168929
10.1016/j.egyr.2022.08.237
10.1364/OE.416537
10.1109/TII.2023.3245193
10.1016/j.yofte.2022.103081
10.1016/j.rser.2024.114327
10.1016/j.ijepes.2021.106854
10.3390/photonics11020152
10.1109/JSEN.2023.3251654
10.1016/j.yofte.2024.103850
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L7M
LK8
L~C
L~D
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/photonics12050468
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2304-6732
ExternalDocumentID oai_doaj_org_article_66f373d3fb6c4e029379298551c7ecf7
A842745071
10_3390_photonics12050468
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABHFT
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
GS5
GX1
HCIFZ
IAO
ITC
KQ8
KZ1
LK8
LMP
M7P
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
PMFND
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c375t-8f0a49bc4212160a8f42b6b9130a15f4ab0a05279b9428f32bb1b16b3ada38cf3
IEDL.DBID BENPR
ISSN 2304-6732
IngestDate Wed Aug 27 01:32:57 EDT 2025
Fri Jul 25 09:37:37 EDT 2025
Tue Jun 10 03:40:42 EDT 2025
Tue Jul 01 04:44:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-8f0a49bc4212160a8f42b6b9130a15f4ab0a05279b9428f32bb1b16b3ada38cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6951-4809
0000-0002-1915-2931
OpenAccessLink https://www.proquest.com/docview/3212091712?pq-origsite=%requestingapplication%
PQID 3212091712
PQPubID 2032352
ParticipantIDs doaj_primary_oai_doaj_org_article_66f373d3fb6c4e029379298551c7ecf7
proquest_journals_3212091712
gale_infotracacademiconefile_A842745071
crossref_primary_10_3390_photonics12050468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Photonics
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_15) 2022; 30
Wu (ref_14) 2021; 29
Jiang (ref_11) 2025; 242 Pt D
Liu (ref_12) 2022; 30
Yuan (ref_1) 2023; 39
Xiao (ref_18) 2022; 71
Wang (ref_23) 2018; 18
Zhao (ref_5) 2024; 86
ref_19
Zhou (ref_4) 2016; 114
Chang (ref_17) 2023; 23
Wang (ref_24) 2022; 8
Wei (ref_16) 2021; 183
Sun (ref_3) 2024; 196
Mao (ref_8) 2022; 74
Xing (ref_22) 2023; 19
Zhu (ref_7) 2025; 90
ref_25
Qiang (ref_20) 2021; 2021
Hong (ref_21) 2021; 36
ref_2
ref_9
Shamlou (ref_13) 2021; 129
Chen (ref_10) 2024; 87
ref_6
References_xml – volume: 87
  start-page: 103912
  year: 2024
  ident: ref_10
  article-title: Vibration signal denoising algorithm based on corrosion detection of petroleum volatilization pipeline
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.103912
– volume: 30
  start-page: 1818
  year: 2022
  ident: ref_15
  article-title: Dual-model hybrid pattern recognition method based on a fiber optic line-based sensor with a large amount of data
  publication-title: Opt. Express
  doi: 10.1364/OE.446768
– volume: 183
  start-page: 109864
  year: 2021
  ident: ref_16
  article-title: Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109864
– volume: 39
  start-page: 26
  year: 2023
  ident: ref_1
  article-title: Types and Mechanisms of Condenser Transformer Bushing Failures
  publication-title: IEEE Electr. Insul. Mag.
  doi: 10.1109/MEI.2023.10220242
– volume: 114
  start-page: 136
  year: 2016
  ident: ref_4
  article-title: Transformer winding fault detection by vibration analysis methods
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2016.07.024
– volume: 30
  start-page: 17307
  year: 2022
  ident: ref_12
  article-title: Intrusion identification using GMM-HMM for perimeter monitoring based on ultra-weak FBG arrays
  publication-title: Opt. Express
  doi: 10.1364/OE.452418
– ident: ref_9
  doi: 10.3390/photonics11020137
– volume: 242 Pt D
  start-page: 116191
  year: 2025
  ident: ref_11
  article-title: A small-sized fire detection method based on the combination of the SIC algorithm and 1-DCNN
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.116191
– volume: 36
  start-page: 676
  year: 2021
  ident: ref_21
  article-title: Transformer Winding Fault Diagnosis Using Vibration Image and Deep Learning
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2020.2988820
– volume: 90
  start-page: 104132
  year: 2025
  ident: ref_7
  article-title: Asymmetric fiber grating overlapping spectrum demodulation technology based on convolutional network and wavelet transform noise reduction
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2025.104132
– ident: ref_19
  doi: 10.3390/electronics10111248
– volume: 18
  start-page: 4954
  year: 2018
  ident: ref_23
  article-title: High-Frequency Optical Fiber Bragg Grating Accelerometer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2833885
– ident: ref_2
– volume: 2021
  start-page: 8850780
  year: 2021
  ident: ref_20
  article-title: Study of transformer core vibration and noise generation mechanism induced by magnetostriction of grain-oriented silicon steel sheet
  publication-title: Shock Vib.
  doi: 10.1155/2021/8850780
– ident: ref_25
  doi: 10.3390/app14135847
– volume: 71
  start-page: 2508512
  year: 2022
  ident: ref_18
  article-title: Multifeature Extraction and Semi-Supervised Deep Learning Scheme for State Diagnosis of Converter Transformer
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3168929
– volume: 8
  start-page: 10950
  year: 2022
  ident: ref_24
  article-title: Research on a hybrid model for cooling load prediction based on wavelet threshold denoising and deep learning: A study in China
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.08.237
– volume: 29
  start-page: 3269
  year: 2021
  ident: ref_14
  article-title: Pattern recognition in distributed fiber-optic acoustic sensor using an intensity and phase stacked convolutional neural network with data augmentation
  publication-title: Opt. Express
  doi: 10.1364/OE.416537
– volume: 19
  start-page: 11239
  year: 2023
  ident: ref_22
  article-title: Vibration-Signal-Based Deep Noisy Filtering Model for Online Transformer Diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3245193
– volume: 74
  start-page: 103081
  year: 2022
  ident: ref_8
  article-title: Denoising method based on VMD-PCC in φ-OTDR system
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2022.103081
– volume: 196
  start-page: 114327
  year: 2024
  ident: ref_3
  article-title: Research progress on oil-immersed transformer mechanical condition identification based on vibration signals
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.114327
– volume: 129
  start-page: 106854
  year: 2021
  ident: ref_13
  article-title: Winding deformation classification in a power transformer based on the time-frequency image of frequency response analysis using Hilbert-Huang transform and evidence theory
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.106854
– ident: ref_6
  doi: 10.3390/photonics11020152
– volume: 23
  start-page: 9136
  year: 2023
  ident: ref_17
  article-title: Intelligent Fault Diagnosis of Rolling Bearings Using Efficient and Lightweight ResNet Networks Based on an Attention Mechanism (September 2022)
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3251654
– volume: 86
  start-page: 103850
  year: 2024
  ident: ref_5
  article-title: Nonlinear impairment compensationin multi-channel communication systems based on correlated digital backpropagation with separation of walk-off effect
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.103850
SSID ssj0000913854
Score 2.2901864
Snippet In order to solve the problem that the vibration signal of transformer is affected by noise and electromagnetic interference, resulting in low accuracy of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 468
SubjectTerms Accelerometers
Accuracy
Algorithms
Analysis
Bragg gratings
CNN
Demodulation
denoising algorithm
Electric transformers
Electromagnetic interference
Electromagnetism
Fault diagnosis
FBG
Fourier transforms
Methods
Neural networks
Signal processing
Signal to noise ratio
Time dependence
Time series
Venus
Vibration
Vibration analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA7iyYu2tcWttuQgCIXBTH5N5riru4o4e2jX4i3kpwqyu-zO_v99ycwWRaSXXocwvPneJN_7SPI9hE5ZRaRTUhbBS1FwT1hhnReFooFVntTUZSemZiqv7_jNvbh_0eornQnr7IE74M6ljKxinkUrHQ8E2KkCRldA9K4KLuZ75MB5L8RUXoPrkinBu21MBrr-fPm4aJPZ7LqkRIAoVK-IKPv1v7cqZ6qZfED7fY2Ih11sH9FOmH9CB329iPvZuD5EzcV43FwOp0Xzc3iLZ9sSNKzw7ySCE-T419NDetfEbJ5bfNmdq3ta4yY3jsYj4DCPYdhkdPUZ3U3Gs4vrom-PUDhWibZQkRheW5f2dEtJjIqcWmnhy4kpReTGEkMErWpbg8aIjFpb2lJaZrxhykX2Be3OF_NwhLCDItD7KGMMnHuAjlkmgxQJ9UhkGKAfW6z0snPB0KAeErD6DbADNEpo_h2YDKzzA0ir7tOq_5XWATpLudBpmrUr40x_WwDiTYZVeqg46OlUzA7QyTZdup9_a81ouhNcViX9-j-iOUZ7NPX9zQcdT9Buu9qEb1CMtPZ7_u_-AFuZ2js
  priority: 102
  providerName: Directory of Open Access Journals
Title CEEMDAN-MRAL Transformer Vibration Signal Fault Diagnosis Method Based on FBG
URI https://www.proquest.com/docview/3212091712
https://doaj.org/article/66f373d3fb6c4e029379298551c7ecf7
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoeuHCGxEokQ9ISEhWvetnTihps60QG6HSot4sP0sllITs9v_j2ThFCMF1bXl3xx77-zz2Nwi9Y4pKr6UkMUhBeKCMOB8E0XVkKtBp7QclpnYpz6_4p2txXTbcunKscj8nDhN1WHvYIz9mNdzyrFRVf9z8JJA1CqKrJYXGATrMxVqP0OF8sfxycb_LAqqXWvBdOJNlfn-8-b7uQXS2y82JTA71HwvSoNv_r9l5WHKaJ-hRwYp4tuvcp-hBXD1DjwtuxMUru-eoPVks2tPZkrQXs8_4cg9F4xZ_AzIMpsdfb2-grcbe_ejx6e583W2H2yGBNJ7ntSzgXK2Zn71AV83i8uSclDQJxDMleqITtXzqPMR2K0mtTrx20uU_p7YSiVtHLRW1mrpp5hqJ1c5VrpKO2WCZ9om9RKPVehVfIewzGAwhyZQi5yGbjjkmoxQsOZmojGP0YW8rs9mpYZjMIsCw5i_DjtEcrHlfEYSshwfr7Y0pfmGkTEyxAC_wPNIMPlQGbDrjOK-iT2qM3kNfGHC3fmu9LbcG8veCcJWZaZ55NYDaMTrad5cpftiZ36Pm9f-L36CHNWT2HY4yHqFRv72LbzPc6N0EHejmbFJG1mQg7b8At6_VVg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOcCFNyJQwAcQEtKqXtvr3T0glDRJU5rNAVLU29bPUgklIbsV4k_xG5nZRxFCcOt1bXmtmfHMNx7PDCGvRMqUzZSKvFNJJB0TkbEuiTLuRepYzm1TialYqNmJ_HCanO6Qn30uDD6r7HVio6jd2uId-b7gmOUZpzF_v_kWYdcojK72LTRasTj2P76Dy1a9OxoDf19zPp0sD2ZR11UgsiJN6igLTMvcWAyFxorpLEhulMlBmes4CVIbplnC09zkAM2D4MbEJlZGaKdFZoOAdW-Qm1KAJcfM9Onh1Z0O1tjMEtkGT2Gc7W--rGsscVvB5hNwRbM_zF_TJeBftqAxcNN75E6HTOmwFaX7ZMevHpC7HUqlnQ6oHpLiYDIpxsNFVHwczumyB75-Sz-j642Mpp8uznGtqb78WtNx-5rvoqJF066ajsByOgrTpqPDR-TkWsj3mOyu1iv_hFAL0NO5oELwUjognTBCeZWIYFRgyg_I255W5aatvVGCz4KELf8i7ICMkJpXE7FsdvNhvT0vu1NYKhVEKhz-wErPAOqkAA8zQI029TakA_IGeVHi4a632uouRwH2i2WyymEmwYtHCD0gez27yu7UV-VvGX36_-GX5NZsWczL-dHi-Bm5zbGncPOIco_s1ttL_xyATm1eNNJFydl1i_MvY3gOgA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFe-EYUBvgBhIQU1bEdO3lAqF0bNrZW09jQ3ow_xyTUliYT4l_jr8OXjyGE4G2viWUnd-e73_nOdwi9ZJIImwuReCeyhDvCEmNdluTUM-lIQW1TiWm-EHun_MNZdraFfvZ3YSCtsteJjaJ2Kwtn5CNG4ZZnKlM6Cl1axNG0fLf-lkAHKYi09u00WhE58D--R_eters_jbx-RWk5O9ndS7oOA4llMquTPBDNC2MhLJoKovPAqRGmiIpdp1ng2hBNMioLU0SYHhg1JjWpMEw7zXIbWJz3BtqW4BUN0PZktjg6vjrhgYqbecbbUCpjBRmtv6xqKHhbxV_JomOa_2EMm54B_7IMjbkr76LbHU7F41aw7qEtv7yP7nSYFXcaoXqA5ruz2Xw6XiTz4_EhPulhsN_gT-CIA9vxx4tzmKvUl19rPG1z-y4qPG-aV-NJtKMOx2Hl5P1DdHotBHyEBsvV0j9G2EYg6lwQIXjOXSQdM0x4kbFgRCDCD9GbnlZq3VbiUNGDAcKqvwg7RBOg5tVAKKLdPFhtzlW3J5UQgUnmYAHLPYnAR0awmEcMaaW3QQ7Ra-CFgq1eb7TV3Y2F-L1QNEuNcx59egDUQ7TTs0t1OqBSvyX2yf9fv0A3oyirw_3FwVN0i0KD4SajcgcN6s2lfxZRT22ed-KF0efrluhfb-IUEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CEEMDAN-MRAL+Transformer+Vibration+Signal+Fault+Diagnosis+Method+Based+on+FBG&rft.jtitle=Photonics&rft.au=Jiang%2C+Hong&rft.au=Wang%2C+Zhichao&rft.au=Cui%2C+Lina&rft.au=Zhao+Yihan&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2304-6732&rft.volume=12&rft.issue=5&rft.spage=468&rft_id=info:doi/10.3390%2Fphotonics12050468&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon