A review: On the development of low melting temperature Pb-free solders

Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established ben...

Full description

Saved in:
Bibliographic Details
Published inMicroelectronics and reliability Vol. 54; no. 6-7; pp. 1253 - 1273
Main Authors Kotadia, Hiren R., Howes, Philip D., Mannan, Samjid H.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.06.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SAC105 and SAC305. Although this poses a great challenge to researchers around the world, significant progress is being made in developing new solder alloys with promising properties. In this review, we discuss fundamental research activity and its focus on the solidification and interfacial reactions of Sn-based solder systems. We first explain the reactions between common base materials, coatings, and metallisations, and then proceed to more complex systems with additional alloying elements. We also discuss the continued improvement of substrate resistance to attack from molten Sn which will help maintain the interface stability of interconnections. Finally, we discuss the various studies which have looked at employing nanoparticles as solder additives, and the future prospects of this field.
AbstractList Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SAC105 and SAC305. Although this poses a great challenge to researchers around the world, significant progress is being made in developing new solder alloys with promising properties. In this review, we discuss fundamental research activity and its focus on the solidification and interfacial reactions of Sn-based solder systems. We first explain the reactions between common base materials, coatings, and metallisations, and then proceed to more complex systems with additional alloying elements. We also discuss the continued improvement of substrate resistance to attack from molten Sn which will help maintain the interface stability of interconnections. Finally, we discuss the various studies which have looked at employing nanoparticles as solder additives, and the future prospects of this field.
Author Howes, Philip D.
Mannan, Samjid H.
Kotadia, Hiren R.
Author_xml – sequence: 1
  givenname: Hiren R.
  surname: Kotadia
  fullname: Kotadia, Hiren R.
  email: hkotadia@gmail.com
  organization: Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
– sequence: 2
  givenname: Philip D.
  surname: Howes
  fullname: Howes, Philip D.
  organization: Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK
– sequence: 3
  givenname: Samjid H.
  surname: Mannan
  fullname: Mannan, Samjid H.
  organization: Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28559319$$DView record in Pascal Francis
BookMark eNqFkcFq3DAQhkVJoZu0r1B0CeTirUa2JbnkkBDStBBIDy30JmRp3GqRpY2kTcjb18smPfQSGJjL9_8M3xyTo5giEvIR2BoYiE-b9extThnDmjPo1owv078hK1CSN0MHv47IijEuGi6he0eOS9kwxiQDWJGbS5rxwePjZ3oXaf2D1OEDhrSdMVaaJhrSI50xVB9_04rzFrOpu4z0-9hMGZGWFBzm8p68nUwo-OF5n5CfX65_XH1tbu9uvl1d3ja2lX1tFAo3GietGIfOIkJrOYATnZFucmNnRavMCGKYuGHQj0qOSkkmVCfloHjfnpCzQ-82p_sdlqpnXyyGYCKmXdEgJAgmQPIFPX1GTbEmTNlE64veZj-b_KS56vuhhWHhxIFbJJaScfqHANN7w3qjXwzrvWHN-DL7W87_C1pfTfUp1mx8eD1-cYjj4mt5QdbFeowWnc9oq3bJv1bxF037nao
CODEN MCRLAS
CitedBy_id crossref_primary_10_1155_2016_9265195
crossref_primary_10_1007_s10854_022_09722_4
crossref_primary_10_1016_j_matchemphys_2023_127399
crossref_primary_10_1016_S1003_6326_22_65869_2
crossref_primary_10_1088_1755_1315_505_1_012004
crossref_primary_10_1016_j_matdes_2024_112702
crossref_primary_10_3390_met10030370
crossref_primary_10_12693_APhysPolA_131_102
crossref_primary_10_1016_j_mtcomm_2023_106956
crossref_primary_10_1007_s10853_019_04153_9
crossref_primary_10_1016_j_microrel_2014_12_017
crossref_primary_10_1007_s10854_016_6136_3
crossref_primary_10_1016_j_matpr_2021_01_335
crossref_primary_10_1088_2053_1591_ab484e
crossref_primary_10_1007_s11664_024_11029_5
crossref_primary_10_1007_s10854_020_04466_5
crossref_primary_10_3390_app8112024
crossref_primary_10_1007_s10854_017_6675_2
crossref_primary_10_1007_s10973_021_10755_w
crossref_primary_10_1007_s10854_018_8907_5
crossref_primary_10_1007_s10854_024_12405_x
crossref_primary_10_1016_j_jallcom_2018_12_098
crossref_primary_10_1016_j_mtcomm_2025_111520
crossref_primary_10_1007_s10854_022_07952_0
crossref_primary_10_1016_j_jallcom_2023_169205
crossref_primary_10_5781_JWJ_2020_38_6_8
crossref_primary_10_1007_s10854_018_8749_1
crossref_primary_10_1016_j_msea_2018_12_012
crossref_primary_10_1007_s10854_020_04095_y
crossref_primary_10_7844_kirr_2022_31_3_61
crossref_primary_10_3390_ma12244240
crossref_primary_10_1016_j_mtcomm_2022_104025
crossref_primary_10_1007_s00339_018_2255_4
crossref_primary_10_1088_2053_1591_aaf20d
crossref_primary_10_3390_ma16186186
crossref_primary_10_1088_1757_899X_864_1_012182
crossref_primary_10_1016_j_jallcom_2018_06_251
crossref_primary_10_1016_j_matdes_2021_110222
crossref_primary_10_1007_s42243_024_01338_8
crossref_primary_10_1007_s13204_015_0489_4
crossref_primary_10_1016_j_surfcoat_2017_11_013
crossref_primary_10_2207_qjjws_35_127s
crossref_primary_10_2339_politeknik_1313792
crossref_primary_10_1016_j_microrel_2023_115217
crossref_primary_10_1088_1757_899X_701_1_012026
crossref_primary_10_1016_j_jmrt_2023_09_139
crossref_primary_10_1007_s11664_023_10719_w
crossref_primary_10_1016_j_cep_2019_107591
crossref_primary_10_1108_SSMT_08_2015_0022
crossref_primary_10_1680_jemmr_16_00008
crossref_primary_10_1007_s12598_019_01356_6
crossref_primary_10_1016_j_jmrt_2021_10_022
crossref_primary_10_1016_j_microrel_2016_08_011
crossref_primary_10_1007_s10854_021_07210_9
crossref_primary_10_1080_09506608_2017_1301014
crossref_primary_10_1142_S0217984924503147
crossref_primary_10_1016_j_ceramint_2022_05_237
crossref_primary_10_1038_s41598_024_61166_4
crossref_primary_10_1155_2018_6580750
crossref_primary_10_2320_matertrans_MT_M2024004
crossref_primary_10_1007_s11837_024_06426_4
crossref_primary_10_1149_1945_7111_ada9d6
crossref_primary_10_3390_ma12060936
crossref_primary_10_3390_machines9050093
crossref_primary_10_1016_j_colsurfa_2020_125083
crossref_primary_10_1016_j_jallcom_2016_02_244
crossref_primary_10_1007_s12540_019_00250_1
crossref_primary_10_1016_j_tca_2022_179344
crossref_primary_10_1007_s10854_021_05742_8
crossref_primary_10_3390_ma12020289
crossref_primary_10_1007_s10854_019_00701_w
crossref_primary_10_4028_www_scientific_net_SSP_280_169
crossref_primary_10_1088_1742_6596_2931_1_012012
crossref_primary_10_1088_2053_1591_ab58f9
crossref_primary_10_1007_s10854_021_06691_y
crossref_primary_10_1016_j_microrel_2016_03_005
crossref_primary_10_3390_met9070791
crossref_primary_10_1007_s11664_025_11861_3
crossref_primary_10_1016_j_matchar_2024_114141
crossref_primary_10_1016_j_mtla_2019_100309
crossref_primary_10_1016_j_scriptamat_2023_115618
crossref_primary_10_3390_ma15041451
crossref_primary_10_1016_j_msea_2017_09_129
crossref_primary_10_1007_s11665_020_04996_3
crossref_primary_10_1016_j_jmrt_2024_04_257
crossref_primary_10_1016_j_msea_2017_04_105
crossref_primary_10_1016_j_calphad_2020_102205
crossref_primary_10_1016_j_matdes_2015_05_065
crossref_primary_10_1007_s11664_016_4832_7
crossref_primary_10_1007_s10854_019_01055_z
crossref_primary_10_1016_j_msea_2021_141131
crossref_primary_10_1007_s11664_016_5130_0
crossref_primary_10_1007_s10854_022_09035_6
crossref_primary_10_3390_cryst12070924
crossref_primary_10_1109_TPEL_2023_3339759
crossref_primary_10_1016_j_jmrt_2016_05_007
crossref_primary_10_3390_met10101295
crossref_primary_10_1088_2053_1591_ab30da
crossref_primary_10_1007_s10854_021_07545_3
crossref_primary_10_14775_ksmpe_2024_23_012_132
crossref_primary_10_1007_s10854_019_00771_w
crossref_primary_10_1007_s10853_022_07729_0
crossref_primary_10_1007_s10854_016_4287_x
crossref_primary_10_1016_j_matchemphys_2020_123663
crossref_primary_10_1088_1757_899X_381_1_012157
crossref_primary_10_3390_ma15238385
crossref_primary_10_1016_j_jmrt_2020_09_045
crossref_primary_10_1016_j_matchar_2023_113512
crossref_primary_10_1016_j_promfg_2019_02_084
crossref_primary_10_1016_j_corsci_2022_110958
crossref_primary_10_3390_ma13040831
crossref_primary_10_3390_app9020227
crossref_primary_10_1007_s11664_017_5669_4
crossref_primary_10_1007_s11664_014_3359_z
crossref_primary_10_1016_j_msea_2015_11_038
crossref_primary_10_1016_j_matdes_2017_01_061
crossref_primary_10_1088_2053_1591_ab0225
crossref_primary_10_1108_SSMT_01_2017_0002
crossref_primary_10_1088_2053_1591_ab0cd4
crossref_primary_10_1016_j_jmrt_2025_03_146
crossref_primary_10_1007_s10854_017_7465_6
crossref_primary_10_3390_ma15041397
crossref_primary_10_1007_s10854_024_12440_8
crossref_primary_10_3390_app8122703
crossref_primary_10_1016_j_microrel_2018_03_027
crossref_primary_10_1016_j_matdes_2019_107794
crossref_primary_10_1007_s11664_023_10371_4
crossref_primary_10_1021_acsanm_3c04209
crossref_primary_10_1007_s40194_023_01621_4
crossref_primary_10_1016_j_matchar_2024_114316
crossref_primary_10_1016_j_mtcomm_2024_109113
crossref_primary_10_1557_jmr_2019_201
crossref_primary_10_1149_2_0801816jes
crossref_primary_10_1007_s11664_023_10428_4
crossref_primary_10_1016_j_ceramint_2017_01_067
crossref_primary_10_1007_s11664_017_5380_5
crossref_primary_10_3390_met9020209
crossref_primary_10_1007_s10854_017_7866_6
crossref_primary_10_1007_s10854_021_07437_6
crossref_primary_10_1016_j_jmrt_2025_03_153
crossref_primary_10_1109_TCPMT_2023_3240367
crossref_primary_10_1016_j_microrel_2017_07_054
crossref_primary_10_1016_j_mtla_2022_101444
crossref_primary_10_1007_s10854_018_9586_y
crossref_primary_10_1007_s10854_019_01038_0
crossref_primary_10_1021_acs_inorgchem_7b00608
crossref_primary_10_3390_ma15030914
crossref_primary_10_1007_s11664_021_08844_5
crossref_primary_10_1016_j_jallcom_2019_153077
crossref_primary_10_1016_j_jallcom_2018_06_121
crossref_primary_10_1016_j_mtcomm_2024_109240
crossref_primary_10_1038_srep40010
crossref_primary_10_3390_met12010121
crossref_primary_10_3390_ma12040631
crossref_primary_10_1016_j_hydromet_2020_105347
crossref_primary_10_1007_s10854_016_5407_3
crossref_primary_10_1016_j_mtadv_2020_100115
crossref_primary_10_3390_met6040074
crossref_primary_10_1002_mawe_201900246
crossref_primary_10_1007_s10854_016_4943_1
crossref_primary_10_3390_ma18051130
crossref_primary_10_1007_s11664_019_07688_4
crossref_primary_10_1016_j_matpr_2022_03_358
crossref_primary_10_1016_j_jmrt_2024_06_048
crossref_primary_10_1007_s10854_015_3524_z
crossref_primary_10_1016_j_jajp_2022_100118
crossref_primary_10_1155_2020_7612186
crossref_primary_10_1016_j_microrel_2017_06_016
crossref_primary_10_1088_1757_899X_743_1_012023
crossref_primary_10_3390_met9050518
crossref_primary_10_1007_s10854_023_11647_5
crossref_primary_10_20964_2020_08_80
crossref_primary_10_1016_j_jallcom_2019_152893
crossref_primary_10_2320_matertrans_MD201515
crossref_primary_10_1007_s11664_019_07473_3
crossref_primary_10_1016_j_mtla_2019_100234
crossref_primary_10_1088_1757_899X_551_1_012091
crossref_primary_10_1134_S0031918X1913009X
crossref_primary_10_1016_j_microrel_2020_113933
crossref_primary_10_1016_j_jallcom_2018_01_054
crossref_primary_10_1002_adma_202002800
crossref_primary_10_1007_s10854_022_09091_y
crossref_primary_10_1007_s11669_022_00953_w
crossref_primary_10_1039_C4NR06757F
crossref_primary_10_3390_app9173590
crossref_primary_10_1007_s11664_020_07960_y
crossref_primary_10_1007_s10854_022_08286_7
crossref_primary_10_1016_j_microrel_2021_114065
crossref_primary_10_1002_mawe_202200320
crossref_primary_10_1115_1_4037462
crossref_primary_10_3390_met10091137
crossref_primary_10_1016_j_actamat_2020_01_052
crossref_primary_10_1016_j_apt_2016_04_010
crossref_primary_10_1109_ACCESS_2020_3010771
crossref_primary_10_3390_ma16093290
crossref_primary_10_1007_s10854_015_3325_4
crossref_primary_10_1016_j_ultsonch_2018_03_005
crossref_primary_10_1080_00325899_2020_1820664
crossref_primary_10_1038_s41598_024_61643_w
crossref_primary_10_1007_s10854_023_10783_2
crossref_primary_10_3390_met11040538
crossref_primary_10_1007_s10854_019_02279_9
crossref_primary_10_3390_ma11081384
crossref_primary_10_1016_j_matlet_2015_10_165
crossref_primary_10_1016_j_msea_2016_03_072
crossref_primary_10_1016_j_mee_2016_07_012
crossref_primary_10_1007_s10973_017_6838_7
crossref_primary_10_1007_s10854_024_13936_z
crossref_primary_10_1021_acsami_1c05685
crossref_primary_10_1021_acsnano_5b02176
crossref_primary_10_1016_j_matchemphys_2023_127774
crossref_primary_10_1021_acssuschemeng_7b02903
crossref_primary_10_1007_s10765_023_03236_9
crossref_primary_10_3390_cryst11070733
crossref_primary_10_4028_www_scientific_net_SSP_273_40
crossref_primary_10_3390_met10101276
crossref_primary_10_1109_TCPMT_2021_3056218
crossref_primary_10_7567_1347_4065_ab1e39
crossref_primary_10_1007_s11664_024_11009_9
crossref_primary_10_1016_j_jmst_2024_10_044
crossref_primary_10_1016_j_microrel_2018_03_038
crossref_primary_10_1007_s11664_023_10850_8
crossref_primary_10_1007_s11669_017_0536_9
crossref_primary_10_1016_j_msea_2017_07_024
crossref_primary_10_3390_met9050548
crossref_primary_10_1016_j_matdes_2015_10_142
crossref_primary_10_1080_02670836_2022_2050647
crossref_primary_10_1007_s10854_016_5250_6
crossref_primary_10_1016_j_msea_2017_08_059
crossref_primary_10_1007_s11665_023_08187_8
crossref_primary_10_1007_s11837_021_05146_3
crossref_primary_10_3390_met13071209
crossref_primary_10_1016_j_engfailanal_2020_104558
crossref_primary_10_1016_j_jmrt_2023_04_234
crossref_primary_10_1007_s11664_019_06941_0
crossref_primary_10_3390_met11020364
crossref_primary_10_1007_s10853_019_03784_2
crossref_primary_10_1016_j_jajp_2021_100093
crossref_primary_10_1142_S1758825118501107
crossref_primary_10_1007_s10854_023_10959_w
crossref_primary_10_1016_j_mser_2018_09_002
crossref_primary_10_1209_0295_5075_ac8ece
crossref_primary_10_1007_s10854_023_10946_1
crossref_primary_10_1016_j_mtla_2018_10_009
crossref_primary_10_1007_s10854_015_3817_2
crossref_primary_10_1016_j_jmrt_2021_06_100
crossref_primary_10_1080_14786435_2020_1756500
crossref_primary_10_1016_j_tca_2020_178642
crossref_primary_10_1016_j_jallcom_2015_05_023
crossref_primary_10_1007_s11664_020_08562_4
crossref_primary_10_1016_j_microrel_2017_03_013
crossref_primary_10_1016_j_jallcom_2016_01_006
crossref_primary_10_1016_j_jmatprotec_2021_117468
crossref_primary_10_1016_j_matchar_2023_112707
crossref_primary_10_1007_s11663_024_03103_4
crossref_primary_10_1016_j_jmrt_2022_01_085
crossref_primary_10_1016_j_scriptamat_2020_02_045
crossref_primary_10_1016_j_mtcomm_2024_109860
crossref_primary_10_1016_j_jmrt_2024_07_151
crossref_primary_10_1016_j_microrel_2019_113555
crossref_primary_10_1007_s10854_018_0197_4
crossref_primary_10_1016_j_matchemphys_2022_127223
crossref_primary_10_1038_s41598_019_44758_3
crossref_primary_10_1007_s10854_022_09465_2
crossref_primary_10_1016_j_matdes_2015_09_097
crossref_primary_10_1016_j_microrel_2021_114378
crossref_primary_10_1016_j_jmapro_2022_08_045
crossref_primary_10_1016_S1003_6326_21_65585_1
crossref_primary_10_1007_s10854_022_09028_5
crossref_primary_10_3390_met9040462
crossref_primary_10_1007_s00396_021_04914_6
crossref_primary_10_1016_j_microrel_2018_11_007
crossref_primary_10_1520_MPC20240039
crossref_primary_10_1016_j_microrel_2018_07_046
crossref_primary_10_1088_1757_899X_701_1_012032
crossref_primary_10_1016_j_mee_2019_01_011
crossref_primary_10_1080_02670836_2017_1415791
crossref_primary_10_1002_admi_201700387
crossref_primary_10_1007_s10854_019_01656_8
crossref_primary_10_1016_j_intermet_2021_107168
crossref_primary_10_3390_e23010078
crossref_primary_10_1016_j_microrel_2018_07_053
crossref_primary_10_1007_s11665_020_04838_2
crossref_primary_10_1007_s11664_021_09255_2
crossref_primary_10_1016_j_corsci_2023_110965
crossref_primary_10_1016_j_jallcom_2016_06_296
crossref_primary_10_1115_1_4038861
crossref_primary_10_1016_j_calphad_2022_102453
crossref_primary_10_1016_j_jmrt_2022_03_110
crossref_primary_10_1016_j_matpr_2021_02_761
crossref_primary_10_1007_s10854_025_14249_5
crossref_primary_10_1088_2053_1591_ab07f6
crossref_primary_10_1016_j_microrel_2018_05_006
crossref_primary_10_1016_j_msea_2019_138323
crossref_primary_10_1016_j_matchemphys_2019_122309
crossref_primary_10_1557_s43578_021_00157_x
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_083
crossref_primary_10_1016_j_jallcom_2016_12_037
crossref_primary_10_1109_TED_2022_3175764
crossref_primary_10_1007_s10854_023_10971_0
crossref_primary_10_1007_s11664_017_5834_9
crossref_primary_10_1016_j_microrel_2023_115135
crossref_primary_10_1016_S1003_6326_19_65076_4
crossref_primary_10_1016_j_pmatsci_2014_08_001
crossref_primary_10_1002_pssa_202200432
crossref_primary_10_3390_s22155766
crossref_primary_10_1007_s11664_015_3796_3
crossref_primary_10_1007_s10854_020_02975_x
crossref_primary_10_1016_j_jmrt_2024_08_166
crossref_primary_10_3390_ma10080920
crossref_primary_10_1016_j_calphad_2023_102623
crossref_primary_10_1016_j_microrel_2022_114536
crossref_primary_10_1007_s10854_015_4252_0
crossref_primary_10_1016_j_measurement_2018_12_051
crossref_primary_10_1016_j_apsusc_2024_161778
crossref_primary_10_1016_j_intermet_2023_107986
crossref_primary_10_1007_s10854_015_3640_9
crossref_primary_10_1007_s10854_021_06881_8
crossref_primary_10_1016_j_jmatprotec_2018_04_017
crossref_primary_10_1016_j_matlet_2019_06_068
crossref_primary_10_1016_j_microrel_2017_08_007
crossref_primary_10_1088_1755_1315_657_1_012018
crossref_primary_10_3390_ma14195694
Cites_doi 10.1016/j.jallcom.2003.12.029
10.1007/BF02653357
10.1016/j.jallcom.2004.04.129
10.1007/s11837-007-0087-3
10.1007/s11664-008-0541-1
10.1007/s11664-000-0003-x
10.1007/s11664-002-0024-8
10.1007/s11664-998-0070-y
10.1002/adem.200500109
10.1016/0040-6090(94)90761-7
10.1063/1.1321791
10.1063/1.3177335
10.1016/j.cis.2011.05.005
10.1016/j.colsurfa.2008.07.004
10.1109/ECTC.2007.374008
10.1109/ECTC.2003.1216254
10.1109/TADVP.2004.831843
10.1179/174328405X13994
10.1007/s11837-004-0111-9
10.1108/09540911011054145
10.1007/s10853-008-2580-7
10.1016/j.tsf.2004.05.058
10.1063/1.113975
10.1007/s11664-998-0066-7
10.1109/NANO.2012.6321891
10.1016/j.jallcom.2008.11.027
10.1557/JMR.2000.0363
10.1179/174328009X461069
10.1016/j.msea.2006.11.117
10.1007/s11664-003-0109-z
10.1063/1.2058186
10.1016/j.mee.2009.01.087
10.1007/s11664-001-0131-y
10.1557/jmr.2006.0198
10.1007/s11664-006-0190-1
10.1007/s11664-004-0090-1
10.1007/s11664-009-0992-z
10.1103/PhysRevB.53.16027
10.1007/BF02651368
10.1007/s11664-010-1346-6
10.1016/j.jallcom.2005.03.053
10.1016/S0927-796X(00)00010-3
10.1007/s11664-003-0012-7
10.1016/j.actamat.2006.02.030
10.1007/s11664-005-0170-x
10.1007/s11664-004-0091-0
10.1016/S0927-796X(01)00029-8
10.1007/s11664-010-1358-2
10.1063/1.3592182
10.1016/j.jallcom.2004.09.001
10.1016/j.tsf.2005.09.059
10.1007/s11664-007-0254-x
10.1016/j.jallcom.2005.06.050
10.1109/ICEPT.2008.4607089
10.1007/s11664-010-1371-5
10.2320/matertrans.M2010325
10.1007/s11837-003-0143-6
10.1007/s11664-009-0925-x
10.1016/j.microrel.2008.10.004
10.1016/j.mser.2009.12.001
10.1007/s11664-009-0926-9
10.1016/S1359-6462(99)00392-9
10.1016/S0921-5093(03)00466-0
10.1007/BF02653344
10.1016/S0026-2714(02)00259-7
10.1007/s11664-001-0129-5
10.1007/BF02651364
10.1109/TCAPT.2008.2001160
10.1016/j.mser.2005.03.001
10.1109/TCAPT.2008.921641
10.1016/j.actamat.2006.01.014
10.1109/ECTC.2010.5490894
10.1007/s11664-012-1976-y
10.1016/S0167-577X(03)00023-5
10.1007/s11664-000-0015-6
10.1063/1.1517165
10.1007/BF02653345
10.1016/S1359-6462(97)00129-2
10.1016/j.jallcom.2011.09.024
10.1109/EPTC.2007.4469800
10.1007/s11664-999-0250-4
10.1109/ECTC.2007.374006
10.1007/s11661-007-9222-6
10.1557/jmr.2006.0369
10.2320/matertrans.46.2419
10.1007/s11661-000-0111-5
10.1063/1.1445283
10.1016/j.scriptamat.2005.05.013
10.1007/BF02692455
10.1361/105497103770330938
10.1007/s11664-005-0197-z
10.1557/JMR.2005.0361
10.1016/j.jallcom.2004.01.012
10.1007/s11664-010-1180-x
10.1007/s11664-009-0936-7
10.1007/s11664-004-0026-9
10.1016/j.actamat.2006.12.019
10.1109/ECTC.2009.5073996
10.1016/S1359-6454(96)00253-4
10.1016/S1359-6462(02)00647-4
10.1016/j.microrel.2007.05.004
10.1007/BF03026302
10.1109/ESTC.2008.4684476
10.1109/TCAPT.2006.885946
10.1016/j.jallcom.2007.05.087
10.1063/1.3699359
10.1007/BF02651371
10.1016/j.tsf.2005.09.112
10.1007/BF01159320
10.1016/S0257-8972(01)01462-1
10.1016/j.msea.2005.08.185
10.1007/s11664-006-0216-8
10.1007/s11664-999-0251-3
10.1007/s11664-006-0202-1
10.2320/jinstmet1952.34.5_539
10.1007/s11664-010-1382-2
10.1016/j.msea.2006.01.032
10.1063/1.2717564
10.1007/s11664-010-1386-y
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8BQ
8FD
JG9
L7M
DOI 10.1016/j.microrel.2014.02.025
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1872-941X
EndPage 1273
ExternalDocumentID 28559319
10_1016_j_microrel_2014_02_025
S0026271414000821
GeographicLocations Europe
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSM
SST
SSV
SSZ
T5K
T9H
TAE
UHS
UNMZH
WUQ
XOL
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
7SP
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c375t-8e6dbad7c6b94cee13c211d64a7dfdb4c638ab169f2a015b87b88706847798253
IEDL.DBID .~1
ISSN 0026-2714
IngestDate Fri Jul 11 00:09:50 EDT 2025
Wed Apr 02 07:26:07 EDT 2025
Sun Jul 06 05:05:32 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Fri Feb 23 02:18:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords Nanocomposite solders
Lead-free solder
Intermetallic compounds
Soldering
Interfacial reactions
Nanoparticle
Legislation
Complex system
Metallizing
Common base
Solder metal
Alloying element
Coatings
Solidification
Prospective
Integrated circuit bonding
Additive
Microelectronic fabrication
Interconnection
Soldered joint
Integrated circuit
Lead free soldering
Interface reaction
Low temperature
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-8e6dbad7c6b94cee13c211d64a7dfdb4c638ab169f2a015b87b88706847798253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671606172
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1671606172
pascalfrancis_primary_28559319
crossref_primary_10_1016_j_microrel_2014_02_025
crossref_citationtrail_10_1016_j_microrel_2014_02_025
elsevier_sciencedirect_doi_10_1016_j_microrel_2014_02_025
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Microelectronics and reliability
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yang, Ho, Chang, Kao (b0355) 2007; 101
Braunovic, Myshkin, Konchits (b0740) 2006
Teck Kheng, Zhang, Wong, Tan, Hadikusuma (b0300) 2006; 504
Ghosh (b0175) 2000; 88
Qi, Zbrzezny, Agia, Lam, Ghorbani, Snugovsky (b0085) 2004; 33
Wang, Chen (b0350) 2010; 39
Ashayer, Mannan, Sajjadi (b0710) 2008; 329
Massalski (b0220) 1996
Kotadia, Mokhtari, Bottrill, Clode, Green, Mannan (b0035) 2010; 39
Huang, Chen (b0555) 2011; 40
Hutter M, Schmidt R, Zerrer P, Rauschenbach S, Wittke K, Scheel W, et al. Effects of additional elements (Fe Co, Al) on SnAgCu solder joints. In: Electronic components and technology conference, 2009. ECTC 2009. 59th, 2009. p. 54–60.
Islam, Chan, Rizvi, Jillek (b0560) 2005; 400
Shen YD, Hu AM, Chen X, Li M, Mao DL. Interfacial reactions and reliability of Sn Zn–Bi–XCr solder joints with Cu pads. In: Electronic packaging technology & high density packaging, 2008. ICEPT-HDP 2008. International conference; 2008, p. 1–4.
Kivilahti (b0165) 1996
Shen, Liu, Han, Tian, Gao (b0695) 2006; 35
Wang, Chang, Kao (b0380) 2009; 478
Lin, Wang, Srivatsan, Al-Hajri, Petraroli (b0680) 2003; 57
Young Min, Hee-Ra, Sungtae, Young-Ho (b0315) 2010; 39
Amagai (b0725) 2008; 48
Huang, Loeher, Manessis, Boettcher, Ostmann, Reichl (b0435) 2006; 35
Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: Estc 2008: 2nd electronics system-integration technology conference, vols. 1 and 2, Proceedings; 2008. p. 929–33.
Yoon, Jung (b0500) 2004; 376
Kawakatsu, Osawa, Yamaguchi (b0200) 1970; 34
Tsai, Wu, Chen, Peng, Duh, Tsai (b0260) 2001; 146–147
Liu, Xian (b0405) 2009; 38
Alam, Nai, Gupta (b0415) 2009; 38
Lee, Subramanian (b0700) 2005; 34
Loomans, Fine (b0115) 2000; 31
Yu, Xie, Wang (b0575) 2004; 385
Huang, Shieu, Huang, Lu, Chen, Tseng (b0295) 2010; 39
Kim, Tu (b0180) 1996; 53
Ochoa, Williams, Chawla (b0485) 2003; 32
Tsai, Hwang (b0660) 2005; 413–414
Lin, Hsu (b0640) 2001; 30
Chawla (b0040) 2009; 54
Li, Mannan, Clode, Whalley, Hutt (b0525) 2006; 54
Laurila, Vuorinen, Paulasto-Krockel (b0025) 2010; 68
Kattner, Boettinger (b0540) 1994; 23
Tu, Zeng (b0160) 2001; 34
Klein (b0490) 1989
Chao, Chae, Zhang, Lu, Im, Ho (b0210) 2007; 55
Sweatman K, Nishimura T. IPC printed circuits expo®, APEX® and the designers summit; 2006.
Anderson, Walleser, Harringa, Laabs, Kracher (b0105) 2009; 38
Kotadia, Panneerselvam, Sugden, Steen, Green, Mannan (b0365) 2013; 3
Yang, Chang, Wang, Kao (b0450) 2009; 38
Zhu, Wang, Liu, Jin, Gong (b0290) 2007; 456
Chada, Fournelle, Laub, Shangguan (b0495) 2000; 29
Rahn (b0010) 1993
Tu (b0015) 2007
Bradley E, Ieee I. Lead-free solder assembly: impact and opportunity. In: 53rd Electronic components & technology conference, proceedings; 2003. p. 41–6.
Pan, Lin (b0375) 2011; 109
McCormack, Jin (b0585) 1994; 23
Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: 2nd Electronics system-integration technology conference; 2008.
Abtew, Selvaduray (b0030) 2000; 27
Shen, Liu, Han, Gao (b0400) 2007; 18
Mannan, Clode (b0055) 2004; 27
Okamoto (b0280) 2003; 24
Lin, Wang (b0595) 1998; 27
Anderson, Harringa (b0325) 2004; 33
Kang (b0410) 1999; 5
Vianco, Rejent (b0475) 1999; 28
Yoon, Jung (b0615) 2006; 21
Das, Sharif, Chan, Wong, Yung (b0625) 2009; 86
Kumar, Chen, Mhaisalkar, Wong, Teo, Kripesh (b0255) 2006; 504
Gao, Takemoto, Nishikawa (b0510) 2006; 420
Lee, Lin (b0240) 1994; 249
Cheng, Nishikawa, Takemoto (b0385) 2008; 43
Hae-Young C, Tae-Jin K, Young-Min K, Sun-Chul K, Jin-Young P, Kim Y-H. A new Ni–Zn under bump metallurgy for Pb-free solder bump flip chip application. In: Electronic components and technology conference (ECTC), 2010 proceedings 60th; 2010. p. 151–5.
Yen, Jao, Lee (b0620) 2006; 21
Laurila, Vuorinen, Kivilahti (b0020) 2005; 49
Sweatman K, Nishimura T. Proceedings of the ECWS 10 conference, Anaheim, USA; 2005. p. 22–4.
Hua F, Mei Z, Lavagnino A. Eutectic Sn–Bi as an alternative Pb-free solder. In: Proceedings of an international summit on lead-free electronics assemblies, IPC Works’99; 1999. p. S/03/08/01/06.
Shen, Liu, Gao, Wei, Yang (b0480) 2005; 34
Schaefer, Fournelle, Liang (b0185) 1998; 27
Yu, Zhao, Wang (b0550) 2004; 376
Yoon, Kim, Jung (b0430) 2005; 391
Anderson, Harringa (b0335) 2006; 35
Hwang (b0395) 2005
Kang, Choi, Shih, Henderson, Gosselin, Sarkhel (b0155) 2003; 55
Kotadia, Mokhtari, Clode, Green, Mannan (b0045) 2012; 511
Rizvi, Chan, Bailey, Lu, Islam (b0390) 2006; 407
Yang, Messler, Felton (b0470) 1994; 23
McCormack, Jin, Chen, Machusak (b0570) 1994; 23
Wang, Xue, Chen, Zhao (b0605) 2009; 20
Yoon, Soh, Lee, Lee (b0590) 1997; 45
Hansen, Anderko (b0535) 1958
Yu, Kivilahti (b0095) 2006; 29
Hung, Chan, Tang (b0245) 2000; 11
Chen, Hu, Li, Mao (b0630) 2008; 460
Vianco, Rejent, Hlava (b0330) 2004; 33
Hayashi, Kao, Chang (b0195) 1997; 37
Kotadia HR, Panneerselvam A, Green MA, Mannan SH. Limitations of nanoparticle enhanced solder pastes for electronics assembly. In: Nanotechnology (IEEE-NANO), 2012 12th IEEE conference; 2012, p. 1-5.
Hung, Chan, Tang, Ong (b0230) 2000; 15
Tsai, Hu, Tsai, Kao (b0515) 2003; 32
Mokhtari, Roshanghias, Ashayer, Kotadia, Khomamizadeh, Kokabi (b0665) 2012; 41
Nash, Nash (b0215) 1985; 6
Kim, Kim (b0275) 2004; 56
Kinyanjui, Lehman, Zavalij, Cotts (b0060) 2005; 20
He, Lau, Qi, Chen (b0250) 2004; 462–463
Lin, Liu, Guo, Wang, Srivatsan, Petraroli (b0685) 2003; 360
Miller, Anderson, Smith (b0145) 1994; 23
Ashayer R, Mannan SH, Sajjadi S, Clode MP, Miodownik MM. Nanoparticle enhanced solders for high temperature environments. In: Electronics packaging technology conference, 2007. EPTC 2007. 9th; 2007, p. 109–13.
Hwang, Lee, Lee (b0735) 2002; 31
Alam, Chan (b0235) 2008; 31
Takemoto, Funaki, Matsunawa (b0650) 2000; 46
Liang, Dariavach, Shangguan (b0135) 2007; 38
Bukat, Moser, Sitek, Gasior, Koscielski, Pstrus (b0600) 2010; 22
Li, Gupta (b0690) 2005; 7
Zhao, Ma, Xie, Wang (b0580) 2009; 25
Shiue, Tsay, Lin, Ou (b0565) 2003; 43
Kang SK, Moon-Gi C, Lauro P, Da-Yuan S. Critical factors affecting the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, p. 1597–603.
Li, Mannan, Clode, Liu, Chen, Whalley (b0530) 2008; 31
Anderson, Walleser, Harringa (b0080) 2007; 59
Moon, Boettinger, Kattner, Biancaniello, Handwerker (b0110) 2000; 29
Song, Lan, Lui, Chen (b0655) 2003; 48
Wang, Ma, Qian (b0075) 2005; 53
Yu, Wang, Duh (b0370) 2010; 39
Loomans, Vaynman, Ghosh, Fine (b0005) 1994; 23
Anderson, Foley, Cook, Harringa, Terpstra, Unal (b0100) 2001; 30
Snugovsky, Snugovsky, Perovic, Sack, Rutter (b0120) 2005; 21
Kang (b0340) 2012
Chen X, Li M, Ren X, Mao D. Effects of alloying elements on the characteristics of Sn-Zn lead-free solder. In: Electronic packaging technology, 2005 6th international conference on; 2005. p. 211–7.
Ma, Wang, Lahiri (b0205) 2002; 91
Mueller M, Wiese S, Roellig M, Wolter KJ. Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th; 2007. p. 1579–88.
Wu, Tsao, Chang, Jain, Chen (b0270) 2011; 22
Zhang, Xue, Gao, Sheng, Ye, Xiao (b0610) 2010; 21
Meagher, Schwarcz, Ohring (b0445) 1996; 31
Kim, Liou, Tu (b0170) 1995; 66
Wang, Kuo (b0285) 2010; 39
Kotadia, Panneerselvam, Mokhtari, Green, Mannan (b0050) 2012; 111
Shen, Chan (b0670) 2009; 49
Nowottnick M, Pape U, Wittke K, Scheel W. Solder joints for high temperature electronics. In: 2003 SMTA international conference proceedings, Chicago (IL), 23–26 September; 2003. p. 693–9.
Gebhardt, Petzow (b0130) 1959; 50
Lord, Umantsev (b0190) 2005; 98
Cho, Kang, Shih, Lee (b0345) 2007; 36
Tseng, Wang, Duh (b0310) 2010; 39
Bader W. Dissolution and formation on intermetallics in the soldering process. In: Proceedings of the conference on physical metallurgy, metal joining, St. Louis, MO, October 16–17, TMS/AIME, Warredale, USA, 1980.
Chou, Chen (b0360) 2006; 54
Takamatsu, Esaka, Shinozuka (b0125) 2011; 52
Vianco, Rejent (b0505) 1999; 28
Lee, Park, Heo, Lee, Shin, Kim (b0730) 2000; 42
Swenson (b0140) 2007
Cho, Kim, Seo, Lee (b0070) 2009; 95
Li, Chiou, Duh (b0425) 2006; 35
Tu, Gusak, Li (b0320) 2003; 93
Satyanarayan (b0440) 2011; 166
Nogita, Read, Nishimura, Sweatman, Suenaga, Dahle (b0465) 2005; 46
Ochoa (10.1016/j.microrel.2014.02.025_b0485) 2003; 32
Lin (10.1016/j.microrel.2014.02.025_b0595) 1998; 27
10.1016/j.microrel.2014.02.025_b0090
Shen (10.1016/j.microrel.2014.02.025_b0480) 2005; 34
Amagai (10.1016/j.microrel.2014.02.025_b0725) 2008; 48
Chawla (10.1016/j.microrel.2014.02.025_b0040) 2009; 54
Anderson (10.1016/j.microrel.2014.02.025_b0080) 2007; 59
Wang (10.1016/j.microrel.2014.02.025_b0605) 2009; 20
Takemoto (10.1016/j.microrel.2014.02.025_b0650) 2000; 46
Mokhtari (10.1016/j.microrel.2014.02.025_b0665) 2012; 41
Hung (10.1016/j.microrel.2014.02.025_b0230) 2000; 15
Das (10.1016/j.microrel.2014.02.025_b0625) 2009; 86
Zhao (10.1016/j.microrel.2014.02.025_b0580) 2009; 25
10.1016/j.microrel.2014.02.025_b0645
Tu (10.1016/j.microrel.2014.02.025_b0015) 2007
Kivilahti (10.1016/j.microrel.2014.02.025_b0165) 1996
10.1016/j.microrel.2014.02.025_b0520
Nogita (10.1016/j.microrel.2014.02.025_b0465) 2005; 46
Zhang (10.1016/j.microrel.2014.02.025_b0610) 2010; 21
Lee (10.1016/j.microrel.2014.02.025_b0700) 2005; 34
Vianco (10.1016/j.microrel.2014.02.025_b0475) 1999; 28
Hung (10.1016/j.microrel.2014.02.025_b0245) 2000; 11
Tsai (10.1016/j.microrel.2014.02.025_b0660) 2005; 413–414
Kim (10.1016/j.microrel.2014.02.025_b0275) 2004; 56
Anderson (10.1016/j.microrel.2014.02.025_b0335) 2006; 35
Chen (10.1016/j.microrel.2014.02.025_b0630) 2008; 460
Qi (10.1016/j.microrel.2014.02.025_b0085) 2004; 33
Lin (10.1016/j.microrel.2014.02.025_b0685) 2003; 360
Kang (10.1016/j.microrel.2014.02.025_b0410) 1999; 5
Chada (10.1016/j.microrel.2014.02.025_b0495) 2000; 29
10.1016/j.microrel.2014.02.025_b0635
Moon (10.1016/j.microrel.2014.02.025_b0110) 2000; 29
Zhu (10.1016/j.microrel.2014.02.025_b0290) 2007; 456
Ashayer (10.1016/j.microrel.2014.02.025_b0710) 2008; 329
Gebhardt (10.1016/j.microrel.2014.02.025_b0130) 1959; 50
Shen (10.1016/j.microrel.2014.02.025_b0400) 2007; 18
Yang (10.1016/j.microrel.2014.02.025_b0450) 2009; 38
Liu (10.1016/j.microrel.2014.02.025_b0405) 2009; 38
Kim (10.1016/j.microrel.2014.02.025_b0180) 1996; 53
Yang (10.1016/j.microrel.2014.02.025_b0470) 1994; 23
Kang (10.1016/j.microrel.2014.02.025_b0155) 2003; 55
Tsai (10.1016/j.microrel.2014.02.025_b0515) 2003; 32
Lin (10.1016/j.microrel.2014.02.025_b0640) 2001; 30
Yoon (10.1016/j.microrel.2014.02.025_b0430) 2005; 391
Yu (10.1016/j.microrel.2014.02.025_b0575) 2004; 385
Li (10.1016/j.microrel.2014.02.025_b0690) 2005; 7
Massalski (10.1016/j.microrel.2014.02.025_b0220) 1996
10.1016/j.microrel.2014.02.025_b0225
Pan (10.1016/j.microrel.2014.02.025_b0375) 2011; 109
Kotadia (10.1016/j.microrel.2014.02.025_b0050) 2012; 111
Shen (10.1016/j.microrel.2014.02.025_b0670) 2009; 49
10.1016/j.microrel.2014.02.025_b0065
Wang (10.1016/j.microrel.2014.02.025_b0350) 2010; 39
10.1016/j.microrel.2014.02.025_b0460
Schaefer (10.1016/j.microrel.2014.02.025_b0185) 1998; 27
Ghosh (10.1016/j.microrel.2014.02.025_b0175) 2000; 88
Li (10.1016/j.microrel.2014.02.025_b0525) 2006; 54
Wang (10.1016/j.microrel.2014.02.025_b0075) 2005; 53
Islam (10.1016/j.microrel.2014.02.025_b0560) 2005; 400
Vianco (10.1016/j.microrel.2014.02.025_b0330) 2004; 33
Anderson (10.1016/j.microrel.2014.02.025_b0100) 2001; 30
Yoon (10.1016/j.microrel.2014.02.025_b0500) 2004; 376
Shiue (10.1016/j.microrel.2014.02.025_b0565) 2003; 43
Song (10.1016/j.microrel.2014.02.025_b0655) 2003; 48
Loomans (10.1016/j.microrel.2014.02.025_b0005) 1994; 23
Hansen (10.1016/j.microrel.2014.02.025_b0535) 1958
Yoon (10.1016/j.microrel.2014.02.025_b0615) 2006; 21
10.1016/j.microrel.2014.02.025_b0455
Takamatsu (10.1016/j.microrel.2014.02.025_b0125) 2011; 52
Kang (10.1016/j.microrel.2014.02.025_b0340) 2012
Anderson (10.1016/j.microrel.2014.02.025_b0105) 2009; 38
Teck Kheng (10.1016/j.microrel.2014.02.025_b0300) 2006; 504
Satyanarayan (10.1016/j.microrel.2014.02.025_b0440) 2011; 166
Klein (10.1016/j.microrel.2014.02.025_b0490) 1989
Mannan (10.1016/j.microrel.2014.02.025_b0055) 2004; 27
Braunovic (10.1016/j.microrel.2014.02.025_b0740) 2006
Kumar (10.1016/j.microrel.2014.02.025_b0255) 2006; 504
Alam (10.1016/j.microrel.2014.02.025_b0415) 2009; 38
Young Min (10.1016/j.microrel.2014.02.025_b0315) 2010; 39
Wang (10.1016/j.microrel.2014.02.025_b0285) 2010; 39
Hwang (10.1016/j.microrel.2014.02.025_b0735) 2002; 31
Huang (10.1016/j.microrel.2014.02.025_b0555) 2011; 40
Cheng (10.1016/j.microrel.2014.02.025_b0385) 2008; 43
Yen (10.1016/j.microrel.2014.02.025_b0620) 2006; 21
Lord (10.1016/j.microrel.2014.02.025_b0190) 2005; 98
10.1016/j.microrel.2014.02.025_b0720
Anderson (10.1016/j.microrel.2014.02.025_b0325) 2004; 33
Yu (10.1016/j.microrel.2014.02.025_b0095) 2006; 29
Wang (10.1016/j.microrel.2014.02.025_b0380) 2009; 478
Kotadia (10.1016/j.microrel.2014.02.025_b0045) 2012; 511
Liang (10.1016/j.microrel.2014.02.025_b0135) 2007; 38
Chao (10.1016/j.microrel.2014.02.025_b0210) 2007; 55
Li (10.1016/j.microrel.2014.02.025_b0425) 2006; 35
Hayashi (10.1016/j.microrel.2014.02.025_b0195) 1997; 37
Alam (10.1016/j.microrel.2014.02.025_b0235) 2008; 31
Yang (10.1016/j.microrel.2014.02.025_b0355) 2007; 101
Wu (10.1016/j.microrel.2014.02.025_b0270) 2011; 22
Rizvi (10.1016/j.microrel.2014.02.025_b0390) 2006; 407
10.1016/j.microrel.2014.02.025_b0715
Huang (10.1016/j.microrel.2014.02.025_b0295) 2010; 39
Miller (10.1016/j.microrel.2014.02.025_b0145) 1994; 23
Bukat (10.1016/j.microrel.2014.02.025_b0600) 2010; 22
Kattner (10.1016/j.microrel.2014.02.025_b0540) 1994; 23
Cho (10.1016/j.microrel.2014.02.025_b0070) 2009; 95
Kawakatsu (10.1016/j.microrel.2014.02.025_b0200) 1970; 34
Meagher (10.1016/j.microrel.2014.02.025_b0445) 1996; 31
Tu (10.1016/j.microrel.2014.02.025_b0320) 2003; 93
10.1016/j.microrel.2014.02.025_b0675
Yu (10.1016/j.microrel.2014.02.025_b0550) 2004; 376
Snugovsky (10.1016/j.microrel.2014.02.025_b0120) 2005; 21
Chou (10.1016/j.microrel.2014.02.025_b0360) 2006; 54
Lee (10.1016/j.microrel.2014.02.025_b0730) 2000; 42
McCormack (10.1016/j.microrel.2014.02.025_b0585) 1994; 23
10.1016/j.microrel.2014.02.025_b0150
Ma (10.1016/j.microrel.2014.02.025_b0205) 2002; 91
Yu (10.1016/j.microrel.2014.02.025_b0370) 2010; 39
Kim (10.1016/j.microrel.2014.02.025_b0170) 1995; 66
Hwang (10.1016/j.microrel.2014.02.025_b0395) 2005
Kinyanjui (10.1016/j.microrel.2014.02.025_b0060) 2005; 20
Abtew (10.1016/j.microrel.2014.02.025_b0030) 2000; 27
Yoon (10.1016/j.microrel.2014.02.025_b0590) 1997; 45
10.1016/j.microrel.2014.02.025_b0705
Li (10.1016/j.microrel.2014.02.025_b0530) 2008; 31
10.1016/j.microrel.2014.02.025_b0545
McCormack (10.1016/j.microrel.2014.02.025_b0570) 1994; 23
Tu (10.1016/j.microrel.2014.02.025_b0160) 2001; 34
Huang (10.1016/j.microrel.2014.02.025_b0435) 2006; 35
Tsai (10.1016/j.microrel.2014.02.025_b0260) 2001; 146–147
10.1016/j.microrel.2014.02.025_b0305
Loomans (10.1016/j.microrel.2014.02.025_b0115) 2000; 31
10.1016/j.microrel.2014.02.025_b0265
Nash (10.1016/j.microrel.2014.02.025_b0215) 1985; 6
Lee (10.1016/j.microrel.2014.02.025_b0240) 1994; 249
Kotadia (10.1016/j.microrel.2014.02.025_b0365) 2013; 3
Vianco (10.1016/j.microrel.2014.02.025_b0505) 1999; 28
Kotadia (10.1016/j.microrel.2014.02.025_b0035) 2010; 39
Swenson (10.1016/j.microrel.2014.02.025_b0140) 2007
He (10.1016/j.microrel.2014.02.025_b0250) 2004; 462–463
Shen (10.1016/j.microrel.2014.02.025_b0695) 2006; 35
Okamoto (10.1016/j.microrel.2014.02.025_b0280) 2003; 24
Gao (10.1016/j.microrel.2014.02.025_b0510) 2006; 420
Laurila (10.1016/j.microrel.2014.02.025_b0020) 2005; 49
Rahn (10.1016/j.microrel.2014.02.025_b0010) 1993
Lin (10.1016/j.microrel.2014.02.025_b0680) 2003; 57
Tseng (10.1016/j.microrel.2014.02.025_b0310) 2010; 39
Laurila (10.1016/j.microrel.2014.02.025_b0025) 2010; 68
Cho (10.1016/j.microrel.2014.02.025_b0345) 2007; 36
References_xml – reference: Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: Estc 2008: 2nd electronics system-integration technology conference, vols. 1 and 2, Proceedings; 2008. p. 929–33.
– year: 1993
  ident: b0010
  article-title: The basics of soldering
– volume: 5
  start-page: 545
  year: 1999
  end-page: 549
  ident: b0410
  article-title: Development of lead (Pb)-free interconnection materials for microelectronics
  publication-title: Met Mater Int
– volume: 33
  start-page: 1497
  year: 2004
  end-page: 1506
  ident: b0085
  article-title: Accelerated thermal fatigue of lead-free solder joints as a function of reflow cooling rate
  publication-title: J Electron Mater
– volume: 95
  year: 2009
  ident: b0070
  article-title: Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures
  publication-title: Appl Phys Lett
– volume: 88
  start-page: 6887
  year: 2000
  end-page: 6896
  ident: b0175
  article-title: Coarsening kinetics of Ni
  publication-title: J Appl Phys
– volume: 22
  start-page: 1181
  year: 2011
  end-page: 1187
  ident: b0270
  article-title: Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and Ag substrates
  publication-title: J Mater Sci: Mater Electron
– volume: 391
  start-page: 82
  year: 2005
  end-page: 89
  ident: b0430
  article-title: Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging
  publication-title: J Alloy Compd
– volume: 40
  start-page: 62
  year: 2011
  end-page: 70
  ident: b0555
  article-title: Effects of Co alloying and size on solidification and interfacial reactions in Sn–57
  publication-title: J Electron Mater
– volume: 38
  start-page: 2353
  year: 2009
  end-page: 2361
  ident: b0405
  article-title: Tin whisker growth on the surface of Sn–0.7Cu lead-free solder with a rare earth (Nd) addition
  publication-title: J Electron Mater
– volume: 59
  start-page: 38
  year: 2007
  end-page: 43
  ident: b0080
  article-title: Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints
  publication-title: JOM
– volume: 55
  start-page: 2805
  year: 2007
  end-page: 2814
  ident: b0210
  article-title: Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing
  publication-title: Acta Mater
– volume: 55
  start-page: 61
  year: 2003
  end-page: 65
  ident: b0155
  article-title: Ag
  publication-title: Jom – J Miner Metals Mater Soc
– volume: 39
  start-page: 2720
  year: 2010
  end-page: 2731
  ident: b0035
  article-title: Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates
  publication-title: J Electron Mater
– volume: 166
  start-page: 87
  year: 2011
  end-page: 118
  ident: b0440
  article-title: Prabhu, Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn–Cu solder alloy
  publication-title: Adv Colloid Interface Sci
– volume: 111
  year: 2012
  ident: b0050
  article-title: Massive spalling of Cu–Zn and Cu–Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction
  publication-title: J Appl Phys
– volume: 43
  start-page: 3643
  year: 2008
  end-page: 3648
  ident: b0385
  article-title: Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co
  publication-title: J Mater Sci
– volume: 400
  start-page: 136
  year: 2005
  end-page: 144
  ident: b0560
  article-title: Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder
  publication-title: J Alloy Compd
– volume: 462–463
  start-page: 376
  year: 2004
  end-page: 383
  ident: b0250
  article-title: Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction
  publication-title: Thin Solid Films
– reference: Kotadia HR, Panneerselvam A, Green MA, Mannan SH. Limitations of nanoparticle enhanced solder pastes for electronics assembly. In: Nanotechnology (IEEE-NANO), 2012 12th IEEE conference; 2012, p. 1-5.
– start-page: 119
  year: 2012
  end-page: 159
  ident: b0340
  article-title: Effects of minor alloying additions on the properties and reliability of Pb-free solders and joints
  publication-title: Lead-free solders: materials reliability for electronics
– volume: 504
  start-page: 441
  year: 2006
  end-page: 445
  ident: b0300
  article-title: Interfacial microstructures and kinetics of Au/SnAgCu
  publication-title: Thin Solid Films
– year: 2006
  ident: b0740
  article-title: Electrical contacts: fundamentals, applications and technology
– volume: 25
  start-page: 410
  year: 2009
  end-page: 414
  ident: b0580
  article-title: Wetting behavior and interfacial reactions in (Sn–9Zn)–2Cu/Ni joints during soldering and isothermal aging
  publication-title: J Mater Sci Technol
– volume: 407
  start-page: 208
  year: 2006
  end-page: 214
  ident: b0390
  article-title: Effect of adding 1
  publication-title: J Alloy Compd
– volume: 18
  start-page: 1235
  year: 2007
  end-page: 1238
  ident: b0400
  article-title: Microstructure and mechanical properties of lead-free Sn–Cu solder composites prepared by rapid directional solidification
  publication-title: J Mater Sci: Mater Electron
– reference: Ashayer R, Mannan SH, Sajjadi S, Clode MP, Miodownik MM. Nanoparticle enhanced solders for high temperature environments. In: Electronics packaging technology conference, 2007. EPTC 2007. 9th; 2007, p. 109–13.
– year: 1996
  ident: b0165
  article-title: Soldex 2.0—the thermodynamic databank for interconnection and packaging materials
– volume: 49
  start-page: 1
  year: 2005
  end-page: 60
  ident: b0020
  article-title: Interfacial reactions between lead-free solders and common base materials
  publication-title: Mater Sci Eng R – Rep
– volume: 31
  start-page: 574
  year: 2008
  end-page: 585
  ident: b0530
  article-title: Interfacial reaction between molten Sn–Bi based solders and electroless Ni–P coatings for liquid solder interconnects
  publication-title: IEEE Trans Compon Packag Technol
– volume: 45
  start-page: 951
  year: 1997
  end-page: 960
  ident: b0590
  article-title: Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn–Bi–In–Zn system
  publication-title: Acta Mater
– volume: 54
  start-page: 368
  year: 2009
  end-page: 384
  ident: b0040
  article-title: Thermomechanical behaviour of environmentally benign Pb-free solders
  publication-title: Int Mater Rev
– volume: 35
  start-page: 181
  year: 2006
  end-page: 188
  ident: b0435
  article-title: Morphology and growth kinetics of intermetallic compounds in solid-state interfacial reaction of electroless Ni–P with Sn-based lead-free solders
  publication-title: J Electron Mater
– volume: 54
  start-page: 2907
  year: 2006
  end-page: 2922
  ident: b0525
  article-title: Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects
  publication-title: Acta Mater
– volume: 38
  start-page: 2770
  year: 2009
  end-page: 2779
  ident: b0105
  article-title: Nucleation control and thermal aging resistance of near-eutectic Sn–Ag–Cu–X solder joints by alloy design
  publication-title: J Electron Mater
– reference: Sweatman K, Nishimura T. IPC printed circuits expo®, APEX® and the designers summit; 2006.
– volume: 93
  start-page: 1335
  year: 2003
  end-page: 1353
  ident: b0320
  article-title: Physics and materials challenges for lead-free solders
  publication-title: J Appl Phys
– volume: 53
  start-page: 16027
  year: 1996
  end-page: 16034
  ident: b0180
  article-title: Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening
  publication-title: Phys Rev B
– volume: 42
  start-page: 827
  year: 2000
  end-page: 831
  ident: b0730
  article-title: Reflow characteristics of Sn–Ag matrix in situ composite solders
  publication-title: Scripta Mater
– volume: 420
  start-page: 39
  year: 2006
  end-page: 46
  ident: b0510
  article-title: Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing
  publication-title: Mater Sci Eng A
– volume: 56
  start-page: 45
  year: 2004
  end-page: 49
  ident: b0275
  article-title: Sn–Ag–Cu and Sn–Cu solders: interfacial reactions with platinum
  publication-title: JOM
– volume: 360
  start-page: 285
  year: 2003
  end-page: 292
  ident: b0685
  article-title: An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin–lead solder
  publication-title: Mater Sci Eng A
– reference: Shen YD, Hu AM, Chen X, Li M, Mao DL. Interfacial reactions and reliability of Sn Zn–Bi–XCr solder joints with Cu pads. In: Electronic packaging technology & high density packaging, 2008. ICEPT-HDP 2008. International conference; 2008, p. 1–4.
– reference: Kang SK, Moon-Gi C, Lauro P, Da-Yuan S. Critical factors affecting the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, p. 1597–603.
– volume: 38
  start-page: 1530
  year: 2007
  end-page: 1538
  ident: b0135
  article-title: Solidification condition effects on microstructures and creep resistance of Sn–3.8Ag–0.7Cu lead-free
  publication-title: Metall Mater Trans A
– volume: 66
  start-page: 2337
  year: 1995
  end-page: 2339
  ident: b0170
  article-title: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu
  publication-title: Appl Phys Lett
– volume: 21
  start-page: 2986
  year: 2006
  end-page: 2990
  ident: b0620
  article-title: Effect of Cu addition on interfacial reaction between Sn–9Zn solder and Ag
  publication-title: J Mater Res
– reference: Hae-Young C, Tae-Jin K, Young-Min K, Sun-Chul K, Jin-Young P, Kim Y-H. A new Ni–Zn under bump metallurgy for Pb-free solder bump flip chip application. In: Electronic components and technology conference (ECTC), 2010 proceedings 60th; 2010. p. 151–5.
– volume: 41
  start-page: 1907
  year: 2012
  end-page: 1914
  ident: b0665
  article-title: Disabling of nanoparticle effects at increased temperature in nanocomposite solders
  publication-title: J Electron Mater
– reference: Mueller M, Wiese S, Roellig M, Wolter KJ. Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th; 2007. p. 1579–88.
– volume: 101
  year: 2007
  ident: b0355
  article-title: Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element
  publication-title: J Appl Phys
– volume: 23
  start-page: 595
  year: 1994
  end-page: 601
  ident: b0145
  article-title: A viable tin-lead solder substitute Sn–Ag–Cu
  publication-title: J Electron Mater
– volume: 54
  start-page: 2393
  year: 2006
  end-page: 2400
  ident: b0360
  article-title: Phase equilibria of the Sn–Zn–Cu ternary system
  publication-title: Acta Mater
– year: 1989
  ident: b0490
  article-title: Soldering in electronics
– volume: 35
  start-page: 1672
  year: 2006
  end-page: 1679
  ident: b0695
  article-title: Strengthening effects of ZrO
  publication-title: J Electron Mater
– volume: 456
  start-page: 109
  year: 2007
  end-page: 113
  ident: b0290
  article-title: The interfacial reaction between Sn–Ag alloys and Co substrate
  publication-title: Mater Sci Eng, A
– volume: 27
  start-page: 1167
  year: 1998
  end-page: 1176
  ident: b0185
  article-title: Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control
  publication-title: J Electron Mater
– volume: 52
  start-page: 189
  year: 2011
  end-page: 195
  ident: b0125
  article-title: Formation mechanism of eutectic Cu
  publication-title: Mater Trans
– volume: 30
  start-page: 1050
  year: 2001
  end-page: 1059
  ident: b0100
  article-title: Alloying effects in near-eutectic Sn–Ag–Cu solder alloys for improved microstructural stability
  publication-title: J Electron Mater
– volume: 39
  start-page: 1303
  year: 2010
  end-page: 1308
  ident: b0285
  article-title: Coupling effect of the interfacial reaction in Co/Sn/Cu diffusion couples
  publication-title: J Electron Mater
– volume: 48
  start-page: 1
  year: 2008
  end-page: 16
  ident: b0725
  article-title: A study of nanoparticles in Sn–Ag based lead free solders
  publication-title: Microelectron Reliab
– volume: 478
  start-page: L1
  year: 2009
  end-page: L4
  ident: b0380
  article-title: Minimum effective Ni addition to SnAgCu solders for retarding Cu
  publication-title: J Alloy Compd
– volume: 34
  start-page: 1591
  year: 2005
  end-page: 1597
  ident: b0480
  article-title: Formation of bulk Ag
  publication-title: J Electron Mater
– volume: 48
  start-page: 1047
  year: 2003
  end-page: 1051
  ident: b0655
  article-title: Microstructure and tensile properties of Sn–9Zn–
  publication-title: Scripta Mater
– volume: 38
  start-page: 2479
  year: 2009
  end-page: 2488
  ident: b0415
  article-title: Effect of amount of Cu on the intermetallic layer thickness between Sn–Cu solders and Cu substrates
  publication-title: J Electron Mater
– volume: 37
  start-page: 393
  year: 1997
  end-page: 398
  ident: b0195
  article-title: Reactions of solid copper with pure liquid tin and liquid tin saturated with copper
  publication-title: Scripta Mater
– year: 2007
  ident: b0015
  publication-title: Solder joint technology: material, properties, and reliability
– volume: 29
  start-page: 1214
  year: 2000
  end-page: 1221
  ident: b0495
  article-title: Copper substrate dissolution in eutectic Sn–Ag solder and its effect on microstructure
  publication-title: J Electron Mater
– volume: 146–147
  start-page: 502
  year: 2001
  end-page: 507
  ident: b0260
  article-title: Thermal stability and mechanical properties of Ni–W–P electroless deposits
  publication-title: Surf Coat Technol
– volume: 31
  start-page: 5479
  year: 1996
  end-page: 5486
  ident: b0445
  article-title: Compound growth in platinum/tin–lead solder diffusion couples
  publication-title: J Mater Sci
– volume: 27
  start-page: 508
  year: 2004
  end-page: 514
  ident: b0055
  article-title: Materials and processes for implementing high-temperature liquid interconnects
  publication-title: IEEE Trans Adv Packag
– volume: 35
  start-page: 343
  year: 2006
  end-page: 352
  ident: b0425
  article-title: Phase distribution and phase analysis in Cu
  publication-title: J Electron Mater
– volume: 91
  start-page: 3312
  year: 2002
  end-page: 3317
  ident: b0205
  article-title: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow
  publication-title: J Appl Phys
– volume: 32
  start-page: 1203
  year: 2003
  end-page: 1208
  ident: b0515
  article-title: A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni
  publication-title: J Electron Mater
– reference: Sweatman K, Nishimura T. Proceedings of the ECWS 10 conference, Anaheim, USA; 2005. p. 22–4.
– volume: 68
  start-page: 1
  year: 2010
  end-page: 38
  ident: b0025
  article-title: Impurity and alloying effects on interfacial reaction layers in Pb-free soldering
  publication-title: Mater Sci Eng R – Rep
– volume: 23
  start-page: 603
  year: 1994
  end-page: 610
  ident: b0540
  article-title: On the Sn–Bi–Ag ternary phase diagram
  publication-title: J Electron Mater
– volume: 34
  start-page: 1
  year: 2001
  end-page: 58
  ident: b0160
  article-title: Tin–lead (SnPb) solder reaction in flip chip technology
  publication-title: Mater Sci Eng R – Rep
– volume: 11
  start-page: 587
  year: 2000
  end-page: 593
  ident: b0245
  article-title: Metallurgical reaction and mechanical strength of electroless Ni–P solder joints for advanced packaging applications
  publication-title: J Mater Sci: Mater Electron
– volume: 21
  start-page: 1
  year: 2010
  end-page: 15
  ident: b0610
  article-title: Development of Sn–Zn lead-free solders bearing alloying elements
  publication-title: J Mater Sci: Mater Electron
– volume: 34
  start-page: 1399
  year: 2005
  end-page: 1407
  ident: b0700
  article-title: Development of nano-composite lead-free electronic solders
  publication-title: J Electron Mater
– volume: 46
  start-page: 20
  year: 2000
  ident: b0650
  article-title: Electrochemical investigation on the effect of silver addition on wettability of Sn–Zn system lead-free solder
  publication-title: Weld Res Abroad
– year: 1996
  ident: b0220
  article-title: Binary alloy phase diagrams
– volume: 376
  start-page: 170
  year: 2004
  end-page: 175
  ident: b0550
  article-title: Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements
  publication-title: J Alloy Compd
– volume: 31
  start-page: 431
  year: 2008
  end-page: 438
  ident: b0235
  article-title: Effect of 0.5
  publication-title: IEEE Trans Compon Packag Technol
– volume: 46
  start-page: 2419
  year: 2005
  end-page: 2425
  ident: b0465
  article-title: Microstructure control in Sn–0.7mass%Cu alloys
  publication-title: Mater Trans
– volume: 53
  start-page: 699
  year: 2005
  end-page: 702
  ident: b0075
  article-title: Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition
  publication-title: Scripta Mater
– volume: 23
  start-page: 715
  year: 1994
  end-page: 720
  ident: b0585
  article-title: Improved mechanical properties in new, Pb-free solder alloys
  publication-title: J Electron Mater
– volume: 49
  start-page: 223
  year: 2009
  end-page: 234
  ident: b0670
  article-title: Research advances in nano-composite solders
  publication-title: Microelectron Reliab
– start-page: 39
  year: 2007
  end-page: 54
  ident: b0140
  article-title: The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints
  publication-title: Lead-free electronic solders
– volume: 22
  start-page: 10
  year: 2010
  end-page: 16
  ident: b0600
  article-title: Investigation of Sn–Zn–Bi solders – Part I: surface tension, interfacial tension and density measurements of SnZn7Bi solders
  publication-title: Solder Surf Mount Technol
– volume: 39
  start-page: 2403
  year: 2010
  end-page: 2411
  ident: b0295
  article-title: Study of interfacial reactions between Sn(Cu) solders and Ni–Co alloy layers
  publication-title: J Electron Mater
– volume: 33
  start-page: 1485
  year: 2004
  end-page: 1496
  ident: b0325
  article-title: Elevated temperature aging of solder joints based on Sn–Ag–Cu: effects on joint microstructure and shear strength
  publication-title: J Electron Mater
– volume: 7
  start-page: 1049
  year: 2005
  end-page: 1054
  ident: b0690
  article-title: High strength lead-free composite solder materials using nano-Al
  publication-title: Adv Eng Mater
– volume: 27
  start-page: 1205
  year: 1998
  end-page: 1210
  ident: b0595
  article-title: Wetting interaction of Pb-free Sn–Zn–Al solders on metal plated substrate
  publication-title: J Electron Mater
– volume: 511
  start-page: 176
  year: 2012
  end-page: 188
  ident: b0045
  article-title: Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates
  publication-title: J Alloy Compd
– volume: 33
  start-page: 991
  year: 2004
  end-page: 1004
  ident: b0330
  article-title: Solid-state intermetallic compound layer growth between copper and 95.5Sn–3.9Ag–0.6Cu solder
  publication-title: J Electron Mater
– volume: 35
  start-page: 94
  year: 2006
  end-page: 106
  ident: b0335
  article-title: Suppression of void coalescence in thermal aging of tin–silver–copper–X solder joints
  publication-title: J Electron Mater
– year: 2005
  ident: b0395
  article-title: Implementing lead-free electronics
– volume: 39
  start-page: 230
  year: 2010
  end-page: 237
  ident: b0370
  article-title: Interfacial reaction of Sn and Cu–xZn substrates after reflow and thermal aging
  publication-title: J Electron Mater
– volume: 6
  start-page: 350
  year: 1985
  end-page: 359
  ident: b0215
  article-title: The Ni–Sn (Nickel-Tin) system
  publication-title: J Phase Equilibr
– volume: 413–414
  start-page: 312
  year: 2005
  end-page: 316
  ident: b0660
  article-title: Solidification behavior of Sn–9Zn–
  publication-title: Mater Sci Eng A
– volume: 21
  start-page: 53
  year: 2005
  end-page: 60
  ident: b0120
  article-title: Some aspects of nucleation and growth in Pb free Sn–Ag–Cu solder
  publication-title: Mater Sci Technol
– volume: 29
  start-page: 1122
  year: 2000
  end-page: 1136
  ident: b0110
  article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys
  publication-title: J Electron Mater
– volume: 249
  start-page: 201
  year: 1994
  end-page: 206
  ident: b0240
  article-title: The interaction kinetics and compound formation between electroless NiP and solder
  publication-title: Thin Solid Films
– volume: 39
  start-page: 2522
  year: 2010
  end-page: 2527
  ident: b0310
  article-title: Interfacial reactions of Sn–3.0Ag–0.5Cu solder with Cu–Mn UBM during aging
  publication-title: J Electron Mater
– volume: 109
  year: 2011
  ident: b0375
  article-title: The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn–Zn solder on Cu substrate
  publication-title: J Appl Phys
– volume: 31
  start-page: 1155
  year: 2000
  end-page: 1162
  ident: b0115
  article-title: Tin–silver–copper eutectic temperature and composition
  publication-title: Metall Mater Trans A
– volume: 24
  start-page: 198
  year: 2003
  ident: b0280
  article-title: Pt–Sn (platinum–tin)
  publication-title: J Phase Equilibr
– volume: 15
  start-page: 2534
  year: 2000
  end-page: 2539
  ident: b0230
  article-title: Correlation between Ni, Sn, intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni–P metallization in advanced packages
  publication-title: J Mater Res
– volume: 36
  start-page: 1501
  year: 2007
  end-page: 1509
  ident: b0345
  article-title: Effects of minor additions of Zn on interfacial reactions of Sn–Ag–Cu and Sn–Cu solders with various Cu substrates during thermal aging
  publication-title: J Electron Mater
– volume: 376
  start-page: 105
  year: 2004
  end-page: 110
  ident: b0500
  article-title: Growth kinetics of Ni
  publication-title: J Alloy Compd
– reference: Nowottnick M, Pape U, Wittke K, Scheel W. Solder joints for high temperature electronics. In: 2003 SMTA international conference proceedings, Chicago (IL), 23–26 September; 2003. p. 693–9.
– volume: 20
  start-page: 2914
  year: 2005
  end-page: 2918
  ident: b0060
  article-title: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys
  publication-title: J Mater Res
– volume: 329
  start-page: 134
  year: 2008
  end-page: 141
  ident: b0710
  article-title: Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride)
  publication-title: Colloid Surf a – Physicochem Eng Aspect
– reference: Chen X, Li M, Ren X, Mao D. Effects of alloying elements on the characteristics of Sn-Zn lead-free solder. In: Electronic packaging technology, 2005 6th international conference on; 2005. p. 211–7.
– volume: 38
  start-page: 25
  year: 2009
  end-page: 32
  ident: b0450
  article-title: Interfacial reaction and wetting behavior between Pt and molten solder
  publication-title: J Electron Mater
– volume: 29
  start-page: 778
  year: 2006
  end-page: 786
  ident: b0095
  article-title: Nucleation kinetics and solidification temperatures of SnAgCu interconnections during reflow process
  publication-title: IEEE Trans Compon Packag Technol
– volume: 39
  start-page: 2375
  year: 2010
  end-page: 2381
  ident: b0350
  article-title: Study of the effects of Zn content on the interfacial reactions between Sn–Zn solders and Ni substrates at 250
  publication-title: J Electron Mater
– volume: 30
  start-page: 1068
  year: 2001
  end-page: 1072
  ident: b0640
  article-title: Sn–Zn–Al Pb-free solder—an inherent barrier solder for Cu contact
  publication-title: J Electron Mater
– volume: 23
  start-page: 687
  year: 1994
  end-page: 690
  ident: b0570
  article-title: New lead-free, Sn–Zn–In solder alloys
  publication-title: J Electron Mater
– reference: Bradley E, Ieee I. Lead-free solder assembly: impact and opportunity. In: 53rd Electronic components & technology conference, proceedings; 2003. p. 41–6.
– reference: Hua F, Mei Z, Lavagnino A. Eutectic Sn–Bi as an alternative Pb-free solder. In: Proceedings of an international summit on lead-free electronics assemblies, IPC Works’99; 1999. p. S/03/08/01/06.
– volume: 460
  start-page: 478
  year: 2008
  end-page: 484
  ident: b0630
  article-title: Study on the properties of Sn–9Zn–
  publication-title: J Alloy Compd
– volume: 34
  start-page: 539
  year: 1970
  end-page: 546
  ident: b0200
  article-title: On the growth of alloy layer between solid copper and liquid tin
  publication-title: J Jpn Inst Met
– volume: 43
  start-page: 453
  year: 2003
  end-page: 463
  ident: b0565
  article-title: The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate
  publication-title: Microelectron Reliab
– volume: 32
  start-page: 1414
  year: 2003
  end-page: 1420
  ident: b0485
  article-title: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5
  publication-title: J Electron Mater
– volume: 3
  start-page: 1786
  year: 2013
  end-page: 1793
  ident: b0365
  article-title: Electronics assembly and high temperature reliability using Sn–3.8Ag–0.7Cu solder paste with Zn additives, components, packaging and manufacturing technology
  publication-title: IEEE Trans
– volume: 31
  start-page: 1304
  year: 2002
  end-page: 1308
  ident: b0735
  article-title: Microstructure of a lead-free composite solder produced by an in situ process
  publication-title: J Electron Mater
– volume: 28
  start-page: 1127
  year: 1999
  end-page: 1137
  ident: b0475
  article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part I—thermal properties and microstructural analysis
  publication-title: J Electron Mater
– volume: 39
  year: 2010
  ident: b0315
  article-title: Kinetics of intermetallic compound formation at the interface between Sn–3.0Ag–0.5Cu solder and Cu–Zn alloy substrates
  publication-title: J Electron Mater
– reference: Hutter M, Schmidt R, Zerrer P, Rauschenbach S, Wittke K, Scheel W, et al. Effects of additional elements (Fe Co, Al) on SnAgCu solder joints. In: Electronic components and technology conference, 2009. ECTC 2009. 59th, 2009. p. 54–60.
– volume: 385
  start-page: 119
  year: 2004
  end-page: 125
  ident: b0575
  article-title: Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate
  publication-title: J Alloy Compd
– volume: 57
  start-page: 3193
  year: 2003
  end-page: 3198
  ident: b0680
  article-title: Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin–lead solder
  publication-title: Mater Lett
– volume: 98
  year: 2005
  ident: b0190
  article-title: Early stages of soldering reactions
  publication-title: J Appl Phys
– volume: 27
  start-page: 95
  year: 2000
  end-page: 141
  ident: b0030
  article-title: Lead-free solders in microelectronics
  publication-title: Mater Sci Eng R – Rep
– year: 1958
  ident: b0535
  article-title: Constitution of binary alloys
– volume: 20
  start-page: 1239
  year: 2009
  end-page: 1246
  ident: b0605
  article-title: Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders
  publication-title: J Mater Sci: Mater Electron
– volume: 86
  start-page: 2086
  year: 2009
  end-page: 2093
  ident: b0625
  article-title: Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads
  publication-title: Microelectron Eng
– volume: 504
  start-page: 410
  year: 2006
  end-page: 415
  ident: b0255
  article-title: Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate
  publication-title: Thin Solid Films
– volume: 23
  start-page: 765
  year: 1994
  end-page: 772
  ident: b0470
  article-title: Microstructure evolution of eutectic Sn–Ag solder joints
  publication-title: J Electron Mater
– volume: 50
  start-page: 597
  year: 1959
  end-page: 605
  ident: b0130
  article-title: The constitution of the silver–copper–tin system
  publication-title: Z Metallkd
– volume: 23
  start-page: 741
  year: 1994
  end-page: 746
  ident: b0005
  article-title: Investigation of multicomponent lead-free solders
  publication-title: J Electron Mater
– reference: Bader W. Dissolution and formation on intermetallics in the soldering process. In: Proceedings of the conference on physical metallurgy, metal joining, St. Louis, MO, October 16–17, TMS/AIME, Warredale, USA, 1980.
– volume: 21
  start-page: 1590
  year: 2006
  end-page: 1599
  ident: b0615
  article-title: Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn–Zn solder
  publication-title: J Mater Res
– reference: Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: 2nd Electronics system-integration technology conference; 2008.
– volume: 28
  start-page: 1138
  year: 1999
  end-page: 1143
  ident: b0505
  article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part II—wettability and mechanical properties analyses
  publication-title: J Electron Mater
– volume: 376
  start-page: 105
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0500
  article-title: Growth kinetics of Ni3Sn4 and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2003.12.029
– volume: 23
  start-page: 687
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0570
  article-title: New lead-free, Sn–Zn–In solder alloys
  publication-title: J Electron Mater
  doi: 10.1007/BF02653357
– volume: 385
  start-page: 119
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0575
  article-title: Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2004.04.129
– volume: 59
  start-page: 38
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0080
  article-title: Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints
  publication-title: JOM
  doi: 10.1007/s11837-007-0087-3
– volume: 38
  start-page: 25
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0450
  article-title: Interfacial reaction and wetting behavior between Pt and molten solder
  publication-title: J Electron Mater
  doi: 10.1007/s11664-008-0541-1
– volume: 29
  start-page: 1122
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0110
  article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys
  publication-title: J Electron Mater
  doi: 10.1007/s11664-000-0003-x
– volume: 31
  start-page: 1304
  year: 2002
  ident: 10.1016/j.microrel.2014.02.025_b0735
  article-title: Microstructure of a lead-free composite solder produced by an in situ process
  publication-title: J Electron Mater
  doi: 10.1007/s11664-002-0024-8
– volume: 27
  start-page: 1205
  year: 1998
  ident: 10.1016/j.microrel.2014.02.025_b0595
  article-title: Wetting interaction of Pb-free Sn–Zn–Al solders on metal plated substrate
  publication-title: J Electron Mater
  doi: 10.1007/s11664-998-0070-y
– volume: 7
  start-page: 1049
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0690
  article-title: High strength lead-free composite solder materials using nano-Al2O3 as reinforcement
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.200500109
– volume: 249
  start-page: 201
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0240
  article-title: The interaction kinetics and compound formation between electroless NiP and solder
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)90761-7
– volume: 88
  start-page: 6887
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0175
  article-title: Coarsening kinetics of Ni3Sn4 scallops during interfacial reaction between liquid eutectic solders and Cu/Ni/Pd metallization
  publication-title: J Appl Phys
  doi: 10.1063/1.1321791
– volume: 95
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0070
  article-title: Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures
  publication-title: Appl Phys Lett
  doi: 10.1063/1.3177335
– volume: 166
  start-page: 87
  year: 2011
  ident: 10.1016/j.microrel.2014.02.025_b0440
  article-title: Prabhu, Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn–Cu solder alloy
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2011.05.005
– volume: 329
  start-page: 134
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0710
  article-title: Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride)
  publication-title: Colloid Surf a – Physicochem Eng Aspect
  doi: 10.1016/j.colsurfa.2008.07.004
– ident: 10.1016/j.microrel.2014.02.025_b0065
  doi: 10.1109/ECTC.2007.374008
– ident: 10.1016/j.microrel.2014.02.025_b0090
  doi: 10.1109/ECTC.2003.1216254
– volume: 27
  start-page: 508
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0055
  article-title: Materials and processes for implementing high-temperature liquid interconnects
  publication-title: IEEE Trans Adv Packag
  doi: 10.1109/TADVP.2004.831843
– ident: 10.1016/j.microrel.2014.02.025_b0455
– volume: 20
  start-page: 1239
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0605
  article-title: Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders
  publication-title: J Mater Sci: Mater Electron
– volume: 21
  start-page: 53
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0120
  article-title: Some aspects of nucleation and growth in Pb free Sn–Ag–Cu solder
  publication-title: Mater Sci Technol
  doi: 10.1179/174328405X13994
– volume: 56
  start-page: 45
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0275
  article-title: Sn–Ag–Cu and Sn–Cu solders: interfacial reactions with platinum
  publication-title: JOM
  doi: 10.1007/s11837-004-0111-9
– volume: 22
  start-page: 10
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0600
  article-title: Investigation of Sn–Zn–Bi solders – Part I: surface tension, interfacial tension and density measurements of SnZn7Bi solders
  publication-title: Solder Surf Mount Technol
  doi: 10.1108/09540911011054145
– volume: 43
  start-page: 3643
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0385
  article-title: Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co
  publication-title: J Mater Sci
  doi: 10.1007/s10853-008-2580-7
– volume: 22
  start-page: 1181
  year: 2011
  ident: 10.1016/j.microrel.2014.02.025_b0270
  article-title: Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and Ag substrates
  publication-title: J Mater Sci: Mater Electron
– volume: 462–463
  start-page: 376
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0250
  article-title: Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.05.058
– volume: 66
  start-page: 2337
  year: 1995
  ident: 10.1016/j.microrel.2014.02.025_b0170
  article-title: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu
  publication-title: Appl Phys Lett
  doi: 10.1063/1.113975
– volume: 27
  start-page: 1167
  year: 1998
  ident: 10.1016/j.microrel.2014.02.025_b0185
  article-title: Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control
  publication-title: J Electron Mater
  doi: 10.1007/s11664-998-0066-7
– ident: 10.1016/j.microrel.2014.02.025_b0720
  doi: 10.1109/NANO.2012.6321891
– volume: 478
  start-page: L1
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0380
  article-title: Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2008.11.027
– volume: 15
  start-page: 2534
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0230
  article-title: Correlation between Ni, Sn, intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni–P metallization in advanced packages
  publication-title: J Mater Res
  doi: 10.1557/JMR.2000.0363
– volume: 54
  start-page: 368
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0040
  article-title: Thermomechanical behaviour of environmentally benign Pb-free solders
  publication-title: Int Mater Rev
  doi: 10.1179/174328009X461069
– volume: 456
  start-page: 109
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0290
  article-title: The interfacial reaction between Sn–Ag alloys and Co substrate
  publication-title: Mater Sci Eng, A
  doi: 10.1016/j.msea.2006.11.117
– volume: 32
  start-page: 1414
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0485
  article-title: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5wt.%Ag solder
  publication-title: J Electron Mater
  doi: 10.1007/s11664-003-0109-z
– volume: 98
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0190
  article-title: Early stages of soldering reactions
  publication-title: J Appl Phys
  doi: 10.1063/1.2058186
– volume: 86
  start-page: 2086
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0625
  article-title: Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2009.01.087
– volume: 30
  start-page: 1068
  year: 2001
  ident: 10.1016/j.microrel.2014.02.025_b0640
  article-title: Sn–Zn–Al Pb-free solder—an inherent barrier solder for Cu contact
  publication-title: J Electron Mater
  doi: 10.1007/s11664-001-0131-y
– year: 1996
  ident: 10.1016/j.microrel.2014.02.025_b0165
– volume: 21
  start-page: 1590
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0615
  article-title: Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn–Zn solder
  publication-title: J Mater Res
  doi: 10.1557/jmr.2006.0198
– volume: 35
  start-page: 94
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0335
  article-title: Suppression of void coalescence in thermal aging of tin–silver–copper–X solder joints
  publication-title: J Electron Mater
  doi: 10.1007/s11664-006-0190-1
– volume: 33
  start-page: 1485
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0325
  article-title: Elevated temperature aging of solder joints based on Sn–Ag–Cu: effects on joint microstructure and shear strength
  publication-title: J Electron Mater
  doi: 10.1007/s11664-004-0090-1
– volume: 39
  start-page: 230
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0370
  article-title: Interfacial reaction of Sn and Cu–xZn substrates after reflow and thermal aging
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-0992-z
– volume: 53
  start-page: 16027
  year: 1996
  ident: 10.1016/j.microrel.2014.02.025_b0180
  article-title: Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.53.16027
– volume: 23
  start-page: 741
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0005
  article-title: Investigation of multicomponent lead-free solders
  publication-title: J Electron Mater
  doi: 10.1007/BF02651368
– volume: 39
  start-page: 2403
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0295
  article-title: Study of interfacial reactions between Sn(Cu) solders and Ni–Co alloy layers
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1346-6
– volume: 400
  start-page: 136
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0560
  article-title: Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2005.03.053
– volume: 27
  start-page: 95
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0030
  article-title: Lead-free solders in microelectronics
  publication-title: Mater Sci Eng R – Rep
  doi: 10.1016/S0927-796X(00)00010-3
– ident: 10.1016/j.microrel.2014.02.025_b0225
– volume: 32
  start-page: 1203
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0515
  article-title: A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni
  publication-title: J Electron Mater
  doi: 10.1007/s11664-003-0012-7
– volume: 54
  start-page: 2907
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0525
  article-title: Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.02.030
– volume: 34
  start-page: 1591
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0480
  article-title: Formation of bulk Ag3Sn intermetallic compounds in Sn–Ag lead-free solders in solidification
  publication-title: J Electron Mater
  doi: 10.1007/s11664-005-0170-x
– ident: 10.1016/j.microrel.2014.02.025_b0520
– volume: 21
  start-page: 1
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0610
  article-title: Development of Sn–Zn lead-free solders bearing alloying elements
  publication-title: J Mater Sci: Mater Electron
– volume: 33
  start-page: 1497
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0085
  article-title: Accelerated thermal fatigue of lead-free solder joints as a function of reflow cooling rate
  publication-title: J Electron Mater
  doi: 10.1007/s11664-004-0091-0
– volume: 34
  start-page: 1
  year: 2001
  ident: 10.1016/j.microrel.2014.02.025_b0160
  article-title: Tin–lead (SnPb) solder reaction in flip chip technology
  publication-title: Mater Sci Eng R – Rep
  doi: 10.1016/S0927-796X(01)00029-8
– volume: 39
  start-page: 2375
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0350
  article-title: Study of the effects of Zn content on the interfacial reactions between Sn–Zn solders and Ni substrates at 250°C
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1358-2
– volume: 109
  year: 2011
  ident: 10.1016/j.microrel.2014.02.025_b0375
  article-title: The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn–Zn solder on Cu substrate
  publication-title: J Appl Phys
  doi: 10.1063/1.3592182
– volume: 391
  start-page: 82
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0430
  article-title: Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2004.09.001
– volume: 504
  start-page: 410
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0255
  article-title: Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.09.059
– volume: 36
  start-page: 1501
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0345
  article-title: Effects of minor additions of Zn on interfacial reactions of Sn–Ag–Cu and Sn–Cu solders with various Cu substrates during thermal aging
  publication-title: J Electron Mater
  doi: 10.1007/s11664-007-0254-x
– volume: 407
  start-page: 208
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0390
  article-title: Effect of adding 1wt% Bi into the Sn–2.8Ag–0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2005.06.050
– ident: 10.1016/j.microrel.2014.02.025_b0635
  doi: 10.1109/ICEPT.2008.4607089
– volume: 50
  start-page: 597
  year: 1959
  ident: 10.1016/j.microrel.2014.02.025_b0130
  article-title: The constitution of the silver–copper–tin system
  publication-title: Z Metallkd
– volume: 39
  start-page: 2522
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0310
  article-title: Interfacial reactions of Sn–3.0Ag–0.5Cu solder with Cu–Mn UBM during aging
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1371-5
– volume: 52
  start-page: 189
  year: 2011
  ident: 10.1016/j.microrel.2014.02.025_b0125
  article-title: Formation mechanism of eutectic Cu6Sn5 and Ag3Sn after growth of primary β-Sn in Sn–Ag–Cu alloy
  publication-title: Mater Trans
  doi: 10.2320/matertrans.M2010325
– volume: 55
  start-page: 61
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0155
  article-title: Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu
  publication-title: Jom – J Miner Metals Mater Soc
  doi: 10.1007/s11837-003-0143-6
– volume: 38
  start-page: 2479
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0415
  article-title: Effect of amount of Cu on the intermetallic layer thickness between Sn–Cu solders and Cu substrates
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-0925-x
– volume: 49
  start-page: 223
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0670
  article-title: Research advances in nano-composite solders
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2008.10.004
– volume: 68
  start-page: 1
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0025
  article-title: Impurity and alloying effects on interfacial reaction layers in Pb-free soldering
  publication-title: Mater Sci Eng R – Rep
  doi: 10.1016/j.mser.2009.12.001
– volume: 38
  start-page: 2353
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0405
  article-title: Tin whisker growth on the surface of Sn–0.7Cu lead-free solder with a rare earth (Nd) addition
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-0926-9
– volume: 46
  start-page: 20
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0650
  article-title: Electrochemical investigation on the effect of silver addition on wettability of Sn–Zn system lead-free solder
  publication-title: Weld Res Abroad
– volume: 42
  start-page: 827
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0730
  article-title: Reflow characteristics of Sn–Ag matrix in situ composite solders
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(99)00392-9
– volume: 360
  start-page: 285
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0685
  article-title: An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin–lead solder
  publication-title: Mater Sci Eng A
  doi: 10.1016/S0921-5093(03)00466-0
– volume: 23
  start-page: 595
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0145
  article-title: A viable tin-lead solder substitute Sn–Ag–Cu
  publication-title: J Electron Mater
  doi: 10.1007/BF02653344
– year: 1993
  ident: 10.1016/j.microrel.2014.02.025_b0010
– volume: 43
  start-page: 453
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0565
  article-title: The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate
  publication-title: Microelectron Reliab
  doi: 10.1016/S0026-2714(02)00259-7
– volume: 6
  start-page: 350
  year: 1985
  ident: 10.1016/j.microrel.2014.02.025_b0215
  article-title: The Ni–Sn (Nickel-Tin) system
  publication-title: J Phase Equilibr
– volume: 30
  start-page: 1050
  year: 2001
  ident: 10.1016/j.microrel.2014.02.025_b0100
  article-title: Alloying effects in near-eutectic Sn–Ag–Cu solder alloys for improved microstructural stability
  publication-title: J Electron Mater
  doi: 10.1007/s11664-001-0129-5
– volume: 23
  start-page: 715
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0585
  article-title: Improved mechanical properties in new, Pb-free solder alloys
  publication-title: J Electron Mater
  doi: 10.1007/BF02651364
– volume: 31
  start-page: 574
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0530
  article-title: Interfacial reaction between molten Sn–Bi based solders and electroless Ni–P coatings for liquid solder interconnects
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2008.2001160
– volume: 49
  start-page: 1
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0020
  article-title: Interfacial reactions between lead-free solders and common base materials
  publication-title: Mater Sci Eng R – Rep
  doi: 10.1016/j.mser.2005.03.001
– volume: 31
  start-page: 431
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0235
  article-title: Effect of 0.5wt% Cu in Sn–3.5%Ag solder to retard interfacial reactions with the electroless Ni–P metallization for BGA solder joints application
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2008.921641
– volume: 11
  start-page: 587
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0245
  article-title: Metallurgical reaction and mechanical strength of electroless Ni–P solder joints for advanced packaging applications
  publication-title: J Mater Sci: Mater Electron
– volume: 54
  start-page: 2393
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0360
  article-title: Phase equilibria of the Sn–Zn–Cu ternary system
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.01.014
– year: 1989
  ident: 10.1016/j.microrel.2014.02.025_b0490
– ident: 10.1016/j.microrel.2014.02.025_b0460
– ident: 10.1016/j.microrel.2014.02.025_b0545
– ident: 10.1016/j.microrel.2014.02.025_b0265
  doi: 10.1109/ECTC.2010.5490894
– volume: 41
  start-page: 1907
  year: 2012
  ident: 10.1016/j.microrel.2014.02.025_b0665
  article-title: Disabling of nanoparticle effects at increased temperature in nanocomposite solders
  publication-title: J Electron Mater
  doi: 10.1007/s11664-012-1976-y
– volume: 57
  start-page: 3193
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0680
  article-title: Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin–lead solder
  publication-title: Mater Lett
  doi: 10.1016/S0167-577X(03)00023-5
– volume: 29
  start-page: 1214
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0495
  article-title: Copper substrate dissolution in eutectic Sn–Ag solder and its effect on microstructure
  publication-title: J Electron Mater
  doi: 10.1007/s11664-000-0015-6
– volume: 93
  start-page: 1335
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0320
  article-title: Physics and materials challenges for lead-free solders
  publication-title: J Appl Phys
  doi: 10.1063/1.1517165
– volume: 23
  start-page: 603
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0540
  article-title: On the Sn–Bi–Ag ternary phase diagram
  publication-title: J Electron Mater
  doi: 10.1007/BF02653345
– volume: 37
  start-page: 393
  year: 1997
  ident: 10.1016/j.microrel.2014.02.025_b0195
  article-title: Reactions of solid copper with pure liquid tin and liquid tin saturated with copper
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(97)00129-2
– year: 1996
  ident: 10.1016/j.microrel.2014.02.025_b0220
– volume: 511
  start-page: 176
  year: 2012
  ident: 10.1016/j.microrel.2014.02.025_b0045
  article-title: Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2011.09.024
– ident: 10.1016/j.microrel.2014.02.025_b0715
  doi: 10.1109/EPTC.2007.4469800
– year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0740
– volume: 28
  start-page: 1127
  year: 1999
  ident: 10.1016/j.microrel.2014.02.025_b0475
  article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part I—thermal properties and microstructural analysis
  publication-title: J Electron Mater
  doi: 10.1007/s11664-999-0250-4
– ident: 10.1016/j.microrel.2014.02.025_b0150
  doi: 10.1109/ECTC.2007.374006
– volume: 38
  start-page: 1530
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0135
  article-title: Solidification condition effects on microstructures and creep resistance of Sn–3.8Ag–0.7Cu lead-free
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-007-9222-6
– start-page: 119
  year: 2012
  ident: 10.1016/j.microrel.2014.02.025_b0340
  article-title: Effects of minor alloying additions on the properties and reliability of Pb-free solders and joints
– volume: 21
  start-page: 2986
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0620
  article-title: Effect of Cu addition on interfacial reaction between Sn–9Zn solder and Ag
  publication-title: J Mater Res
  doi: 10.1557/jmr.2006.0369
– volume: 46
  start-page: 2419
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0465
  article-title: Microstructure control in Sn–0.7mass%Cu alloys
  publication-title: Mater Trans
  doi: 10.2320/matertrans.46.2419
– volume: 31
  start-page: 1155
  year: 2000
  ident: 10.1016/j.microrel.2014.02.025_b0115
  article-title: Tin–silver–copper eutectic temperature and composition
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-000-0111-5
– volume: 91
  start-page: 3312
  year: 2002
  ident: 10.1016/j.microrel.2014.02.025_b0205
  article-title: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow
  publication-title: J Appl Phys
  doi: 10.1063/1.1445283
– volume: 53
  start-page: 699
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0075
  article-title: Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2005.05.013
– volume: 35
  start-page: 343
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0425
  article-title: Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich corner in the ternary Sn–Cu–Ni isotherm at 240°C
  publication-title: J Electron Mater
  doi: 10.1007/BF02692455
– volume: 25
  start-page: 410
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0580
  article-title: Wetting behavior and interfacial reactions in (Sn–9Zn)–2Cu/Ni joints during soldering and isothermal aging
  publication-title: J Mater Sci Technol
– volume: 24
  start-page: 198
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0280
  article-title: Pt–Sn (platinum–tin)
  publication-title: J Phase Equilibr
  doi: 10.1361/105497103770330938
– start-page: 39
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0140
  article-title: The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints
– volume: 3
  start-page: 1786
  year: 2013
  ident: 10.1016/j.microrel.2014.02.025_b0365
  article-title: Electronics assembly and high temperature reliability using Sn–3.8Ag–0.7Cu solder paste with Zn additives, components, packaging and manufacturing technology
  publication-title: IEEE Trans
– year: 1958
  ident: 10.1016/j.microrel.2014.02.025_b0535
– volume: 34
  start-page: 1399
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0700
  article-title: Development of nano-composite lead-free electronic solders
  publication-title: J Electron Mater
  doi: 10.1007/s11664-005-0197-z
– volume: 20
  start-page: 2914
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0060
  article-title: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys
  publication-title: J Mater Res
  doi: 10.1557/JMR.2005.0361
– volume: 376
  start-page: 170
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0550
  article-title: Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2004.01.012
– year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0015
– volume: 39
  start-page: 1303
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0285
  article-title: Coupling effect of the interfacial reaction in Co/Sn/Cu diffusion couples
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1180-x
– volume: 38
  start-page: 2770
  year: 2009
  ident: 10.1016/j.microrel.2014.02.025_b0105
  article-title: Nucleation control and thermal aging resistance of near-eutectic Sn–Ag–Cu–X solder joints by alloy design
  publication-title: J Electron Mater
  doi: 10.1007/s11664-009-0936-7
– volume: 33
  start-page: 991
  year: 2004
  ident: 10.1016/j.microrel.2014.02.025_b0330
  article-title: Solid-state intermetallic compound layer growth between copper and 95.5Sn–3.9Ag–0.6Cu solder
  publication-title: J Electron Mater
  doi: 10.1007/s11664-004-0026-9
– volume: 55
  start-page: 2805
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0210
  article-title: Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2006.12.019
– ident: 10.1016/j.microrel.2014.02.025_b0305
  doi: 10.1109/ECTC.2009.5073996
– volume: 18
  start-page: 1235
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0400
  article-title: Microstructure and mechanical properties of lead-free Sn–Cu solder composites prepared by rapid directional solidification
  publication-title: J Mater Sci: Mater Electron
– volume: 45
  start-page: 951
  year: 1997
  ident: 10.1016/j.microrel.2014.02.025_b0590
  article-title: Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn–Bi–In–Zn system
  publication-title: Acta Mater
  doi: 10.1016/S1359-6454(96)00253-4
– volume: 48
  start-page: 1047
  year: 2003
  ident: 10.1016/j.microrel.2014.02.025_b0655
  article-title: Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys
  publication-title: Scripta Mater
  doi: 10.1016/S1359-6462(02)00647-4
– volume: 48
  start-page: 1
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0725
  article-title: A study of nanoparticles in Sn–Ag based lead free solders
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2007.05.004
– volume: 5
  start-page: 545
  year: 1999
  ident: 10.1016/j.microrel.2014.02.025_b0410
  article-title: Development of lead (Pb)-free interconnection materials for microelectronics
  publication-title: Met Mater Int
  doi: 10.1007/BF03026302
– ident: 10.1016/j.microrel.2014.02.025_b0675
  doi: 10.1109/ESTC.2008.4684476
– volume: 29
  start-page: 778
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0095
  article-title: Nucleation kinetics and solidification temperatures of SnAgCu interconnections during reflow process
  publication-title: IEEE Trans Compon Packag Technol
  doi: 10.1109/TCAPT.2006.885946
– volume: 460
  start-page: 478
  year: 2008
  ident: 10.1016/j.microrel.2014.02.025_b0630
  article-title: Study on the properties of Sn–9Zn–xCr lead-free solder
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2007.05.087
– volume: 111
  year: 2012
  ident: 10.1016/j.microrel.2014.02.025_b0050
  article-title: Massive spalling of Cu–Zn and Cu–Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction
  publication-title: J Appl Phys
  doi: 10.1063/1.3699359
– volume: 23
  start-page: 765
  year: 1994
  ident: 10.1016/j.microrel.2014.02.025_b0470
  article-title: Microstructure evolution of eutectic Sn–Ag solder joints
  publication-title: J Electron Mater
  doi: 10.1007/BF02651371
– year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0395
– volume: 504
  start-page: 441
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0300
  article-title: Interfacial microstructures and kinetics of Au/SnAgCu
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2005.09.112
– volume: 31
  start-page: 5479
  year: 1996
  ident: 10.1016/j.microrel.2014.02.025_b0445
  article-title: Compound growth in platinum/tin–lead solder diffusion couples
  publication-title: J Mater Sci
  doi: 10.1007/BF01159320
– volume: 146–147
  start-page: 502
  year: 2001
  ident: 10.1016/j.microrel.2014.02.025_b0260
  article-title: Thermal stability and mechanical properties of Ni–W–P electroless deposits
  publication-title: Surf Coat Technol
  doi: 10.1016/S0257-8972(01)01462-1
– volume: 413–414
  start-page: 312
  year: 2005
  ident: 10.1016/j.microrel.2014.02.025_b0660
  article-title: Solidification behavior of Sn–9Zn–xAg lead-free solder alloys
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2005.08.185
– volume: 35
  start-page: 1672
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0695
  article-title: Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn–3.5Ag lead-free solder
  publication-title: J Electron Mater
  doi: 10.1007/s11664-006-0216-8
– ident: 10.1016/j.microrel.2014.02.025_b0705
  doi: 10.1109/ESTC.2008.4684476
– volume: 28
  start-page: 1138
  year: 1999
  ident: 10.1016/j.microrel.2014.02.025_b0505
  article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part II—wettability and mechanical properties analyses
  publication-title: J Electron Mater
  doi: 10.1007/s11664-999-0251-3
– volume: 35
  start-page: 181
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0435
  article-title: Morphology and growth kinetics of intermetallic compounds in solid-state interfacial reaction of electroless Ni–P with Sn-based lead-free solders
  publication-title: J Electron Mater
  doi: 10.1007/s11664-006-0202-1
– volume: 34
  start-page: 539
  year: 1970
  ident: 10.1016/j.microrel.2014.02.025_b0200
  article-title: On the growth of alloy layer between solid copper and liquid tin
  publication-title: J Jpn Inst Met
  doi: 10.2320/jinstmet1952.34.5_539
– ident: 10.1016/j.microrel.2014.02.025_b0645
– volume: 39
  start-page: 2720
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0035
  article-title: Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1382-2
– volume: 420
  start-page: 39
  year: 2006
  ident: 10.1016/j.microrel.2014.02.025_b0510
  article-title: Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.01.032
– volume: 101
  year: 2007
  ident: 10.1016/j.microrel.2014.02.025_b0355
  article-title: Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element
  publication-title: J Appl Phys
  doi: 10.1063/1.2717564
– volume: 40
  start-page: 62
  year: 2011
  ident: 10.1016/j.microrel.2014.02.025_b0555
  article-title: Effects of Co alloying and size on solidification and interfacial reactions in Sn–57wt.%Bi–(Co)/Cu couples
  publication-title: J Electron Mater
  doi: 10.1007/s11664-010-1386-y
– volume: 39
  year: 2010
  ident: 10.1016/j.microrel.2014.02.025_b0315
  article-title: Kinetics of intermetallic compound formation at the interface between Sn–3.0Ag–0.5Cu solder and Cu–Zn alloy substrates
  publication-title: J Electron Mater
SSID ssj0007011
Score 2.55088
SecondaryResourceType review_article
Snippet Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Applied sciences
Complex systems
Cross-disciplinary physics: materials science; rheology
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Integrated circuits
Interconnections
Interface reactions
Interfacial reactions
Intermetallic compounds
Lead (metal)
Lead-free solder
Legislation
Materials science
Microelectronic fabrication (materials and surfaces technology)
Nanocomposite solders
Nanoscale materials and structures: fabrication and characterization
Other topics in nanoscale materials and structures
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Soldering
Solders
Tin
Title A review: On the development of low melting temperature Pb-free solders
URI https://dx.doi.org/10.1016/j.microrel.2014.02.025
https://www.proquest.com/docview/1671606172
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-ygpe0zav3Y23UqxVsXqw0FvYZHehpU1LH3jztzuTRx8o9CDkkrCTLDOTebDfzBByr6UQOP7EMoIrSFBMA-ygryytZGTz2BZxWsf91mWdnvfS9_sl0ipqYRBWmdv-zKan1jp_Us-5WZ8OBljj6zCH2x6kCOjI0gp2j6OW177XMA_esLOpeQ6zcPVGlfCwNkbQ20zjEYTtpb07cWT23w7qcCrnwDaTzbv4ZbpTf9Q-Jkd5IEmb2V5PSEknp-Rgo73gGXlq0qwy5YG-JxQiParWECE6MXQ0-aJjPULkM8UeVXmDZfoRWWamNQW9RJzzOem1Hz9bHSsfnGDFLvcXltBMRVLxmEWBB17QdmPI8xTzJFdGRV4MPx2IggXGkRAORIJHAs87wVPxAFJG94KUk0miLwkVsQ6M6wa-ADrdMNI32DNOMldp4dlOhfgFt8I47yqOwy1GYQEfG4YFl0Pkcthw4PIrpL6im2Z9NXZSBIUwwi0NCcH476Stbklv9UlHQEYFVqhC7gpxwgvmeGgiEz1ZzkObQUaZxnlX_9jANdnHuwxjdkPKi9lS30I0s4iqqbpWyV7z-bXT_QEncPTt
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLRVhfpC3fKokegx7NpJbKcSBwSlS3m0B5C4uU5sS6Alu9pdhLjwp_iDncmDh4rEoULKKdE41ow9D803MwBr3mpN40-ioJXDACX0UA-mLvLO5lwVXBdVHffBoewfJz9P0pMZuGlrYQhW2ej-WqdX2rp502242R2dnlKNr5BC8QRDBDJkvEFW7vmrS4zbJhu72yjkr0LsfD_a6kfNaIGoiFU6jbSXLrdOFTLPErQTPC4wEnIyscoFlycFHkvcrMyCsGgwc61yTRlB1OUqw6AqxnVfwFyC6oLGJqxf3-FKVI_XY_qEjGh798qSz9bPCWU39pTz4EnVLJRmdD9uEd-M7ATlFOoBG__YisoA7ryF-cZzZZs1c97BjC_fw-t7_Qw_wI9NVpfCfGO_SoauJXN3mCQ2DGwwvGTnfkBQa0ZNsZqOzux3HoWx9wwvAgGrP8Lxs7BzAWbLYek_AdOFz0IcZ6lGOt8LNg3UpM7K2HmdcNGBtOWWKZo25jRNY2BavNqZablsiMumJ_BJO9C9pRvVjTyepMhaYZgHR9KgtXmSduWB9G5_KTSGcKj2OrDaihMXmFCWxpZ-eDExXGIIWzmWn_9jA1_gZf_oYN_s7x7uLcIr-lID3JZgdjq-8MvoSk3zleroMvjz3HflL0QTMIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+On+the+development+of+low+melting+temperature+Pb-free+solders&rft.jtitle=Microelectronics+and+reliability&rft.au=KOTADIA%2C+Hiren+R&rft.au=HOWES%2C+Philip+D&rft.au=MANNAN%2C+Samjid+H&rft.date=2014-06-01&rft.pub=Elsevier&rft.issn=0026-2714&rft.volume=54&rft.issue=6-7&rft.spage=1253&rft.epage=1273&rft_id=info:doi/10.1016%2Fj.microrel.2014.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=28559319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon