A review: On the development of low melting temperature Pb-free solders
Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established ben...
Saved in:
Published in | Microelectronics and reliability Vol. 54; no. 6-7; pp. 1253 - 1273 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SAC105 and SAC305. Although this poses a great challenge to researchers around the world, significant progress is being made in developing new solder alloys with promising properties. In this review, we discuss fundamental research activity and its focus on the solidification and interfacial reactions of Sn-based solder systems. We first explain the reactions between common base materials, coatings, and metallisations, and then proceed to more complex systems with additional alloying elements. We also discuss the continued improvement of substrate resistance to attack from molten Sn which will help maintain the interface stability of interconnections. Finally, we discuss the various studies which have looked at employing nanoparticles as solder additives, and the future prospects of this field. |
---|---|
AbstractList | Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and elsewhere having moved to restrict the use of Pb, it is imperative that new Pb-free solders are developed which can meet the long established benchmarks set by leaded solders and improve on the current generation of Pb free solders such as SAC105 and SAC305. Although this poses a great challenge to researchers around the world, significant progress is being made in developing new solder alloys with promising properties. In this review, we discuss fundamental research activity and its focus on the solidification and interfacial reactions of Sn-based solder systems. We first explain the reactions between common base materials, coatings, and metallisations, and then proceed to more complex systems with additional alloying elements. We also discuss the continued improvement of substrate resistance to attack from molten Sn which will help maintain the interface stability of interconnections. Finally, we discuss the various studies which have looked at employing nanoparticles as solder additives, and the future prospects of this field. |
Author | Howes, Philip D. Mannan, Samjid H. Kotadia, Hiren R. |
Author_xml | – sequence: 1 givenname: Hiren R. surname: Kotadia fullname: Kotadia, Hiren R. email: hkotadia@gmail.com organization: Department of Physics, King’s College London, Strand, London WC2R 2LS, UK – sequence: 2 givenname: Philip D. surname: Howes fullname: Howes, Philip D. organization: Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK – sequence: 3 givenname: Samjid H. surname: Mannan fullname: Mannan, Samjid H. organization: Department of Physics, King’s College London, Strand, London WC2R 2LS, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28559319$$DView record in Pascal Francis |
BookMark | eNqFkcFq3DAQhkVJoZu0r1B0CeTirUa2JbnkkBDStBBIDy30JmRp3GqRpY2kTcjb18smPfQSGJjL9_8M3xyTo5giEvIR2BoYiE-b9extThnDmjPo1owv078hK1CSN0MHv47IijEuGi6he0eOS9kwxiQDWJGbS5rxwePjZ3oXaf2D1OEDhrSdMVaaJhrSI50xVB9_04rzFrOpu4z0-9hMGZGWFBzm8p68nUwo-OF5n5CfX65_XH1tbu9uvl1d3ja2lX1tFAo3GietGIfOIkJrOYATnZFucmNnRavMCGKYuGHQj0qOSkkmVCfloHjfnpCzQ-82p_sdlqpnXyyGYCKmXdEgJAgmQPIFPX1GTbEmTNlE64veZj-b_KS56vuhhWHhxIFbJJaScfqHANN7w3qjXwzrvWHN-DL7W87_C1pfTfUp1mx8eD1-cYjj4mt5QdbFeowWnc9oq3bJv1bxF037nao |
CODEN | MCRLAS |
CitedBy_id | crossref_primary_10_1155_2016_9265195 crossref_primary_10_1007_s10854_022_09722_4 crossref_primary_10_1016_j_matchemphys_2023_127399 crossref_primary_10_1016_S1003_6326_22_65869_2 crossref_primary_10_1088_1755_1315_505_1_012004 crossref_primary_10_1016_j_matdes_2024_112702 crossref_primary_10_3390_met10030370 crossref_primary_10_12693_APhysPolA_131_102 crossref_primary_10_1016_j_mtcomm_2023_106956 crossref_primary_10_1007_s10853_019_04153_9 crossref_primary_10_1016_j_microrel_2014_12_017 crossref_primary_10_1007_s10854_016_6136_3 crossref_primary_10_1016_j_matpr_2021_01_335 crossref_primary_10_1088_2053_1591_ab484e crossref_primary_10_1007_s11664_024_11029_5 crossref_primary_10_1007_s10854_020_04466_5 crossref_primary_10_3390_app8112024 crossref_primary_10_1007_s10854_017_6675_2 crossref_primary_10_1007_s10973_021_10755_w crossref_primary_10_1007_s10854_018_8907_5 crossref_primary_10_1007_s10854_024_12405_x crossref_primary_10_1016_j_jallcom_2018_12_098 crossref_primary_10_1016_j_mtcomm_2025_111520 crossref_primary_10_1007_s10854_022_07952_0 crossref_primary_10_1016_j_jallcom_2023_169205 crossref_primary_10_5781_JWJ_2020_38_6_8 crossref_primary_10_1007_s10854_018_8749_1 crossref_primary_10_1016_j_msea_2018_12_012 crossref_primary_10_1007_s10854_020_04095_y crossref_primary_10_7844_kirr_2022_31_3_61 crossref_primary_10_3390_ma12244240 crossref_primary_10_1016_j_mtcomm_2022_104025 crossref_primary_10_1007_s00339_018_2255_4 crossref_primary_10_1088_2053_1591_aaf20d crossref_primary_10_3390_ma16186186 crossref_primary_10_1088_1757_899X_864_1_012182 crossref_primary_10_1016_j_jallcom_2018_06_251 crossref_primary_10_1016_j_matdes_2021_110222 crossref_primary_10_1007_s42243_024_01338_8 crossref_primary_10_1007_s13204_015_0489_4 crossref_primary_10_1016_j_surfcoat_2017_11_013 crossref_primary_10_2207_qjjws_35_127s crossref_primary_10_2339_politeknik_1313792 crossref_primary_10_1016_j_microrel_2023_115217 crossref_primary_10_1088_1757_899X_701_1_012026 crossref_primary_10_1016_j_jmrt_2023_09_139 crossref_primary_10_1007_s11664_023_10719_w crossref_primary_10_1016_j_cep_2019_107591 crossref_primary_10_1108_SSMT_08_2015_0022 crossref_primary_10_1680_jemmr_16_00008 crossref_primary_10_1007_s12598_019_01356_6 crossref_primary_10_1016_j_jmrt_2021_10_022 crossref_primary_10_1016_j_microrel_2016_08_011 crossref_primary_10_1007_s10854_021_07210_9 crossref_primary_10_1080_09506608_2017_1301014 crossref_primary_10_1142_S0217984924503147 crossref_primary_10_1016_j_ceramint_2022_05_237 crossref_primary_10_1038_s41598_024_61166_4 crossref_primary_10_1155_2018_6580750 crossref_primary_10_2320_matertrans_MT_M2024004 crossref_primary_10_1007_s11837_024_06426_4 crossref_primary_10_1149_1945_7111_ada9d6 crossref_primary_10_3390_ma12060936 crossref_primary_10_3390_machines9050093 crossref_primary_10_1016_j_colsurfa_2020_125083 crossref_primary_10_1016_j_jallcom_2016_02_244 crossref_primary_10_1007_s12540_019_00250_1 crossref_primary_10_1016_j_tca_2022_179344 crossref_primary_10_1007_s10854_021_05742_8 crossref_primary_10_3390_ma12020289 crossref_primary_10_1007_s10854_019_00701_w crossref_primary_10_4028_www_scientific_net_SSP_280_169 crossref_primary_10_1088_1742_6596_2931_1_012012 crossref_primary_10_1088_2053_1591_ab58f9 crossref_primary_10_1007_s10854_021_06691_y crossref_primary_10_1016_j_microrel_2016_03_005 crossref_primary_10_3390_met9070791 crossref_primary_10_1007_s11664_025_11861_3 crossref_primary_10_1016_j_matchar_2024_114141 crossref_primary_10_1016_j_mtla_2019_100309 crossref_primary_10_1016_j_scriptamat_2023_115618 crossref_primary_10_3390_ma15041451 crossref_primary_10_1016_j_msea_2017_09_129 crossref_primary_10_1007_s11665_020_04996_3 crossref_primary_10_1016_j_jmrt_2024_04_257 crossref_primary_10_1016_j_msea_2017_04_105 crossref_primary_10_1016_j_calphad_2020_102205 crossref_primary_10_1016_j_matdes_2015_05_065 crossref_primary_10_1007_s11664_016_4832_7 crossref_primary_10_1007_s10854_019_01055_z crossref_primary_10_1016_j_msea_2021_141131 crossref_primary_10_1007_s11664_016_5130_0 crossref_primary_10_1007_s10854_022_09035_6 crossref_primary_10_3390_cryst12070924 crossref_primary_10_1109_TPEL_2023_3339759 crossref_primary_10_1016_j_jmrt_2016_05_007 crossref_primary_10_3390_met10101295 crossref_primary_10_1088_2053_1591_ab30da crossref_primary_10_1007_s10854_021_07545_3 crossref_primary_10_14775_ksmpe_2024_23_012_132 crossref_primary_10_1007_s10854_019_00771_w crossref_primary_10_1007_s10853_022_07729_0 crossref_primary_10_1007_s10854_016_4287_x crossref_primary_10_1016_j_matchemphys_2020_123663 crossref_primary_10_1088_1757_899X_381_1_012157 crossref_primary_10_3390_ma15238385 crossref_primary_10_1016_j_jmrt_2020_09_045 crossref_primary_10_1016_j_matchar_2023_113512 crossref_primary_10_1016_j_promfg_2019_02_084 crossref_primary_10_1016_j_corsci_2022_110958 crossref_primary_10_3390_ma13040831 crossref_primary_10_3390_app9020227 crossref_primary_10_1007_s11664_017_5669_4 crossref_primary_10_1007_s11664_014_3359_z crossref_primary_10_1016_j_msea_2015_11_038 crossref_primary_10_1016_j_matdes_2017_01_061 crossref_primary_10_1088_2053_1591_ab0225 crossref_primary_10_1108_SSMT_01_2017_0002 crossref_primary_10_1088_2053_1591_ab0cd4 crossref_primary_10_1016_j_jmrt_2025_03_146 crossref_primary_10_1007_s10854_017_7465_6 crossref_primary_10_3390_ma15041397 crossref_primary_10_1007_s10854_024_12440_8 crossref_primary_10_3390_app8122703 crossref_primary_10_1016_j_microrel_2018_03_027 crossref_primary_10_1016_j_matdes_2019_107794 crossref_primary_10_1007_s11664_023_10371_4 crossref_primary_10_1021_acsanm_3c04209 crossref_primary_10_1007_s40194_023_01621_4 crossref_primary_10_1016_j_matchar_2024_114316 crossref_primary_10_1016_j_mtcomm_2024_109113 crossref_primary_10_1557_jmr_2019_201 crossref_primary_10_1149_2_0801816jes crossref_primary_10_1007_s11664_023_10428_4 crossref_primary_10_1016_j_ceramint_2017_01_067 crossref_primary_10_1007_s11664_017_5380_5 crossref_primary_10_3390_met9020209 crossref_primary_10_1007_s10854_017_7866_6 crossref_primary_10_1007_s10854_021_07437_6 crossref_primary_10_1016_j_jmrt_2025_03_153 crossref_primary_10_1109_TCPMT_2023_3240367 crossref_primary_10_1016_j_microrel_2017_07_054 crossref_primary_10_1016_j_mtla_2022_101444 crossref_primary_10_1007_s10854_018_9586_y crossref_primary_10_1007_s10854_019_01038_0 crossref_primary_10_1021_acs_inorgchem_7b00608 crossref_primary_10_3390_ma15030914 crossref_primary_10_1007_s11664_021_08844_5 crossref_primary_10_1016_j_jallcom_2019_153077 crossref_primary_10_1016_j_jallcom_2018_06_121 crossref_primary_10_1016_j_mtcomm_2024_109240 crossref_primary_10_1038_srep40010 crossref_primary_10_3390_met12010121 crossref_primary_10_3390_ma12040631 crossref_primary_10_1016_j_hydromet_2020_105347 crossref_primary_10_1007_s10854_016_5407_3 crossref_primary_10_1016_j_mtadv_2020_100115 crossref_primary_10_3390_met6040074 crossref_primary_10_1002_mawe_201900246 crossref_primary_10_1007_s10854_016_4943_1 crossref_primary_10_3390_ma18051130 crossref_primary_10_1007_s11664_019_07688_4 crossref_primary_10_1016_j_matpr_2022_03_358 crossref_primary_10_1016_j_jmrt_2024_06_048 crossref_primary_10_1007_s10854_015_3524_z crossref_primary_10_1016_j_jajp_2022_100118 crossref_primary_10_1155_2020_7612186 crossref_primary_10_1016_j_microrel_2017_06_016 crossref_primary_10_1088_1757_899X_743_1_012023 crossref_primary_10_3390_met9050518 crossref_primary_10_1007_s10854_023_11647_5 crossref_primary_10_20964_2020_08_80 crossref_primary_10_1016_j_jallcom_2019_152893 crossref_primary_10_2320_matertrans_MD201515 crossref_primary_10_1007_s11664_019_07473_3 crossref_primary_10_1016_j_mtla_2019_100234 crossref_primary_10_1088_1757_899X_551_1_012091 crossref_primary_10_1134_S0031918X1913009X crossref_primary_10_1016_j_microrel_2020_113933 crossref_primary_10_1016_j_jallcom_2018_01_054 crossref_primary_10_1002_adma_202002800 crossref_primary_10_1007_s10854_022_09091_y crossref_primary_10_1007_s11669_022_00953_w crossref_primary_10_1039_C4NR06757F crossref_primary_10_3390_app9173590 crossref_primary_10_1007_s11664_020_07960_y crossref_primary_10_1007_s10854_022_08286_7 crossref_primary_10_1016_j_microrel_2021_114065 crossref_primary_10_1002_mawe_202200320 crossref_primary_10_1115_1_4037462 crossref_primary_10_3390_met10091137 crossref_primary_10_1016_j_actamat_2020_01_052 crossref_primary_10_1016_j_apt_2016_04_010 crossref_primary_10_1109_ACCESS_2020_3010771 crossref_primary_10_3390_ma16093290 crossref_primary_10_1007_s10854_015_3325_4 crossref_primary_10_1016_j_ultsonch_2018_03_005 crossref_primary_10_1080_00325899_2020_1820664 crossref_primary_10_1038_s41598_024_61643_w crossref_primary_10_1007_s10854_023_10783_2 crossref_primary_10_3390_met11040538 crossref_primary_10_1007_s10854_019_02279_9 crossref_primary_10_3390_ma11081384 crossref_primary_10_1016_j_matlet_2015_10_165 crossref_primary_10_1016_j_msea_2016_03_072 crossref_primary_10_1016_j_mee_2016_07_012 crossref_primary_10_1007_s10973_017_6838_7 crossref_primary_10_1007_s10854_024_13936_z crossref_primary_10_1021_acsami_1c05685 crossref_primary_10_1021_acsnano_5b02176 crossref_primary_10_1016_j_matchemphys_2023_127774 crossref_primary_10_1021_acssuschemeng_7b02903 crossref_primary_10_1007_s10765_023_03236_9 crossref_primary_10_3390_cryst11070733 crossref_primary_10_4028_www_scientific_net_SSP_273_40 crossref_primary_10_3390_met10101276 crossref_primary_10_1109_TCPMT_2021_3056218 crossref_primary_10_7567_1347_4065_ab1e39 crossref_primary_10_1007_s11664_024_11009_9 crossref_primary_10_1016_j_jmst_2024_10_044 crossref_primary_10_1016_j_microrel_2018_03_038 crossref_primary_10_1007_s11664_023_10850_8 crossref_primary_10_1007_s11669_017_0536_9 crossref_primary_10_1016_j_msea_2017_07_024 crossref_primary_10_3390_met9050548 crossref_primary_10_1016_j_matdes_2015_10_142 crossref_primary_10_1080_02670836_2022_2050647 crossref_primary_10_1007_s10854_016_5250_6 crossref_primary_10_1016_j_msea_2017_08_059 crossref_primary_10_1007_s11665_023_08187_8 crossref_primary_10_1007_s11837_021_05146_3 crossref_primary_10_3390_met13071209 crossref_primary_10_1016_j_engfailanal_2020_104558 crossref_primary_10_1016_j_jmrt_2023_04_234 crossref_primary_10_1007_s11664_019_06941_0 crossref_primary_10_3390_met11020364 crossref_primary_10_1007_s10853_019_03784_2 crossref_primary_10_1016_j_jajp_2021_100093 crossref_primary_10_1142_S1758825118501107 crossref_primary_10_1007_s10854_023_10959_w crossref_primary_10_1016_j_mser_2018_09_002 crossref_primary_10_1209_0295_5075_ac8ece crossref_primary_10_1007_s10854_023_10946_1 crossref_primary_10_1016_j_mtla_2018_10_009 crossref_primary_10_1007_s10854_015_3817_2 crossref_primary_10_1016_j_jmrt_2021_06_100 crossref_primary_10_1080_14786435_2020_1756500 crossref_primary_10_1016_j_tca_2020_178642 crossref_primary_10_1016_j_jallcom_2015_05_023 crossref_primary_10_1007_s11664_020_08562_4 crossref_primary_10_1016_j_microrel_2017_03_013 crossref_primary_10_1016_j_jallcom_2016_01_006 crossref_primary_10_1016_j_jmatprotec_2021_117468 crossref_primary_10_1016_j_matchar_2023_112707 crossref_primary_10_1007_s11663_024_03103_4 crossref_primary_10_1016_j_jmrt_2022_01_085 crossref_primary_10_1016_j_scriptamat_2020_02_045 crossref_primary_10_1016_j_mtcomm_2024_109860 crossref_primary_10_1016_j_jmrt_2024_07_151 crossref_primary_10_1016_j_microrel_2019_113555 crossref_primary_10_1007_s10854_018_0197_4 crossref_primary_10_1016_j_matchemphys_2022_127223 crossref_primary_10_1038_s41598_019_44758_3 crossref_primary_10_1007_s10854_022_09465_2 crossref_primary_10_1016_j_matdes_2015_09_097 crossref_primary_10_1016_j_microrel_2021_114378 crossref_primary_10_1016_j_jmapro_2022_08_045 crossref_primary_10_1016_S1003_6326_21_65585_1 crossref_primary_10_1007_s10854_022_09028_5 crossref_primary_10_3390_met9040462 crossref_primary_10_1007_s00396_021_04914_6 crossref_primary_10_1016_j_microrel_2018_11_007 crossref_primary_10_1520_MPC20240039 crossref_primary_10_1016_j_microrel_2018_07_046 crossref_primary_10_1088_1757_899X_701_1_012032 crossref_primary_10_1016_j_mee_2019_01_011 crossref_primary_10_1080_02670836_2017_1415791 crossref_primary_10_1002_admi_201700387 crossref_primary_10_1007_s10854_019_01656_8 crossref_primary_10_1016_j_intermet_2021_107168 crossref_primary_10_3390_e23010078 crossref_primary_10_1016_j_microrel_2018_07_053 crossref_primary_10_1007_s11665_020_04838_2 crossref_primary_10_1007_s11664_021_09255_2 crossref_primary_10_1016_j_corsci_2023_110965 crossref_primary_10_1016_j_jallcom_2016_06_296 crossref_primary_10_1115_1_4038861 crossref_primary_10_1016_j_calphad_2022_102453 crossref_primary_10_1016_j_jmrt_2022_03_110 crossref_primary_10_1016_j_matpr_2021_02_761 crossref_primary_10_1007_s10854_025_14249_5 crossref_primary_10_1088_2053_1591_ab07f6 crossref_primary_10_1016_j_microrel_2018_05_006 crossref_primary_10_1016_j_msea_2019_138323 crossref_primary_10_1016_j_matchemphys_2019_122309 crossref_primary_10_1557_s43578_021_00157_x crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_083 crossref_primary_10_1016_j_jallcom_2016_12_037 crossref_primary_10_1109_TED_2022_3175764 crossref_primary_10_1007_s10854_023_10971_0 crossref_primary_10_1007_s11664_017_5834_9 crossref_primary_10_1016_j_microrel_2023_115135 crossref_primary_10_1016_S1003_6326_19_65076_4 crossref_primary_10_1016_j_pmatsci_2014_08_001 crossref_primary_10_1002_pssa_202200432 crossref_primary_10_3390_s22155766 crossref_primary_10_1007_s11664_015_3796_3 crossref_primary_10_1007_s10854_020_02975_x crossref_primary_10_1016_j_jmrt_2024_08_166 crossref_primary_10_3390_ma10080920 crossref_primary_10_1016_j_calphad_2023_102623 crossref_primary_10_1016_j_microrel_2022_114536 crossref_primary_10_1007_s10854_015_4252_0 crossref_primary_10_1016_j_measurement_2018_12_051 crossref_primary_10_1016_j_apsusc_2024_161778 crossref_primary_10_1016_j_intermet_2023_107986 crossref_primary_10_1007_s10854_015_3640_9 crossref_primary_10_1007_s10854_021_06881_8 crossref_primary_10_1016_j_jmatprotec_2018_04_017 crossref_primary_10_1016_j_matlet_2019_06_068 crossref_primary_10_1016_j_microrel_2017_08_007 crossref_primary_10_1088_1755_1315_657_1_012018 crossref_primary_10_3390_ma14195694 |
Cites_doi | 10.1016/j.jallcom.2003.12.029 10.1007/BF02653357 10.1016/j.jallcom.2004.04.129 10.1007/s11837-007-0087-3 10.1007/s11664-008-0541-1 10.1007/s11664-000-0003-x 10.1007/s11664-002-0024-8 10.1007/s11664-998-0070-y 10.1002/adem.200500109 10.1016/0040-6090(94)90761-7 10.1063/1.1321791 10.1063/1.3177335 10.1016/j.cis.2011.05.005 10.1016/j.colsurfa.2008.07.004 10.1109/ECTC.2007.374008 10.1109/ECTC.2003.1216254 10.1109/TADVP.2004.831843 10.1179/174328405X13994 10.1007/s11837-004-0111-9 10.1108/09540911011054145 10.1007/s10853-008-2580-7 10.1016/j.tsf.2004.05.058 10.1063/1.113975 10.1007/s11664-998-0066-7 10.1109/NANO.2012.6321891 10.1016/j.jallcom.2008.11.027 10.1557/JMR.2000.0363 10.1179/174328009X461069 10.1016/j.msea.2006.11.117 10.1007/s11664-003-0109-z 10.1063/1.2058186 10.1016/j.mee.2009.01.087 10.1007/s11664-001-0131-y 10.1557/jmr.2006.0198 10.1007/s11664-006-0190-1 10.1007/s11664-004-0090-1 10.1007/s11664-009-0992-z 10.1103/PhysRevB.53.16027 10.1007/BF02651368 10.1007/s11664-010-1346-6 10.1016/j.jallcom.2005.03.053 10.1016/S0927-796X(00)00010-3 10.1007/s11664-003-0012-7 10.1016/j.actamat.2006.02.030 10.1007/s11664-005-0170-x 10.1007/s11664-004-0091-0 10.1016/S0927-796X(01)00029-8 10.1007/s11664-010-1358-2 10.1063/1.3592182 10.1016/j.jallcom.2004.09.001 10.1016/j.tsf.2005.09.059 10.1007/s11664-007-0254-x 10.1016/j.jallcom.2005.06.050 10.1109/ICEPT.2008.4607089 10.1007/s11664-010-1371-5 10.2320/matertrans.M2010325 10.1007/s11837-003-0143-6 10.1007/s11664-009-0925-x 10.1016/j.microrel.2008.10.004 10.1016/j.mser.2009.12.001 10.1007/s11664-009-0926-9 10.1016/S1359-6462(99)00392-9 10.1016/S0921-5093(03)00466-0 10.1007/BF02653344 10.1016/S0026-2714(02)00259-7 10.1007/s11664-001-0129-5 10.1007/BF02651364 10.1109/TCAPT.2008.2001160 10.1016/j.mser.2005.03.001 10.1109/TCAPT.2008.921641 10.1016/j.actamat.2006.01.014 10.1109/ECTC.2010.5490894 10.1007/s11664-012-1976-y 10.1016/S0167-577X(03)00023-5 10.1007/s11664-000-0015-6 10.1063/1.1517165 10.1007/BF02653345 10.1016/S1359-6462(97)00129-2 10.1016/j.jallcom.2011.09.024 10.1109/EPTC.2007.4469800 10.1007/s11664-999-0250-4 10.1109/ECTC.2007.374006 10.1007/s11661-007-9222-6 10.1557/jmr.2006.0369 10.2320/matertrans.46.2419 10.1007/s11661-000-0111-5 10.1063/1.1445283 10.1016/j.scriptamat.2005.05.013 10.1007/BF02692455 10.1361/105497103770330938 10.1007/s11664-005-0197-z 10.1557/JMR.2005.0361 10.1016/j.jallcom.2004.01.012 10.1007/s11664-010-1180-x 10.1007/s11664-009-0936-7 10.1007/s11664-004-0026-9 10.1016/j.actamat.2006.12.019 10.1109/ECTC.2009.5073996 10.1016/S1359-6454(96)00253-4 10.1016/S1359-6462(02)00647-4 10.1016/j.microrel.2007.05.004 10.1007/BF03026302 10.1109/ESTC.2008.4684476 10.1109/TCAPT.2006.885946 10.1016/j.jallcom.2007.05.087 10.1063/1.3699359 10.1007/BF02651371 10.1016/j.tsf.2005.09.112 10.1007/BF01159320 10.1016/S0257-8972(01)01462-1 10.1016/j.msea.2005.08.185 10.1007/s11664-006-0216-8 10.1007/s11664-999-0251-3 10.1007/s11664-006-0202-1 10.2320/jinstmet1952.34.5_539 10.1007/s11664-010-1382-2 10.1016/j.msea.2006.01.032 10.1063/1.2717564 10.1007/s11664-010-1386-y |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SP 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.microrel.2014.02.025 |
DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1872-941X |
EndPage | 1273 |
ExternalDocumentID | 28559319 10_1016_j_microrel_2014_02_025 S0026271414000821 |
GeographicLocations | Europe |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SDF SDG SES SET SEW SPC SPCBC SPD SSM SST SSV SSZ T5K T9H TAE UHS UNMZH WUQ XOL ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW 7SP 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c375t-8e6dbad7c6b94cee13c211d64a7dfdb4c638ab169f2a015b87b88706847798253 |
IEDL.DBID | .~1 |
ISSN | 0026-2714 |
IngestDate | Fri Jul 11 00:09:50 EDT 2025 Wed Apr 02 07:26:07 EDT 2025 Sun Jul 06 05:05:32 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Fri Feb 23 02:18:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | Nanocomposite solders Lead-free solder Intermetallic compounds Soldering Interfacial reactions Nanoparticle Legislation Complex system Metallizing Common base Solder metal Alloying element Coatings Solidification Prospective Integrated circuit bonding Additive Microelectronic fabrication Interconnection Soldered joint Integrated circuit Lead free soldering Interface reaction Low temperature |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-8e6dbad7c6b94cee13c211d64a7dfdb4c638ab169f2a015b87b88706847798253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1671606172 |
PQPubID | 23500 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1671606172 pascalfrancis_primary_28559319 crossref_primary_10_1016_j_microrel_2014_02_025 crossref_citationtrail_10_1016_j_microrel_2014_02_025 elsevier_sciencedirect_doi_10_1016_j_microrel_2014_02_025 |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Microelectronics and reliability |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yang, Ho, Chang, Kao (b0355) 2007; 101 Braunovic, Myshkin, Konchits (b0740) 2006 Teck Kheng, Zhang, Wong, Tan, Hadikusuma (b0300) 2006; 504 Ghosh (b0175) 2000; 88 Qi, Zbrzezny, Agia, Lam, Ghorbani, Snugovsky (b0085) 2004; 33 Wang, Chen (b0350) 2010; 39 Ashayer, Mannan, Sajjadi (b0710) 2008; 329 Massalski (b0220) 1996 Kotadia, Mokhtari, Bottrill, Clode, Green, Mannan (b0035) 2010; 39 Huang, Chen (b0555) 2011; 40 Hutter M, Schmidt R, Zerrer P, Rauschenbach S, Wittke K, Scheel W, et al. Effects of additional elements (Fe Co, Al) on SnAgCu solder joints. In: Electronic components and technology conference, 2009. ECTC 2009. 59th, 2009. p. 54–60. Islam, Chan, Rizvi, Jillek (b0560) 2005; 400 Shen YD, Hu AM, Chen X, Li M, Mao DL. Interfacial reactions and reliability of Sn Zn–Bi–XCr solder joints with Cu pads. In: Electronic packaging technology & high density packaging, 2008. ICEPT-HDP 2008. International conference; 2008, p. 1–4. Kivilahti (b0165) 1996 Shen, Liu, Han, Tian, Gao (b0695) 2006; 35 Wang, Chang, Kao (b0380) 2009; 478 Lin, Wang, Srivatsan, Al-Hajri, Petraroli (b0680) 2003; 57 Young Min, Hee-Ra, Sungtae, Young-Ho (b0315) 2010; 39 Amagai (b0725) 2008; 48 Huang, Loeher, Manessis, Boettcher, Ostmann, Reichl (b0435) 2006; 35 Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: Estc 2008: 2nd electronics system-integration technology conference, vols. 1 and 2, Proceedings; 2008. p. 929–33. Yoon, Jung (b0500) 2004; 376 Kawakatsu, Osawa, Yamaguchi (b0200) 1970; 34 Tsai, Wu, Chen, Peng, Duh, Tsai (b0260) 2001; 146–147 Liu, Xian (b0405) 2009; 38 Alam, Nai, Gupta (b0415) 2009; 38 Lee, Subramanian (b0700) 2005; 34 Loomans, Fine (b0115) 2000; 31 Yu, Xie, Wang (b0575) 2004; 385 Huang, Shieu, Huang, Lu, Chen, Tseng (b0295) 2010; 39 Kim, Tu (b0180) 1996; 53 Ochoa, Williams, Chawla (b0485) 2003; 32 Tsai, Hwang (b0660) 2005; 413–414 Lin, Hsu (b0640) 2001; 30 Chawla (b0040) 2009; 54 Li, Mannan, Clode, Whalley, Hutt (b0525) 2006; 54 Laurila, Vuorinen, Paulasto-Krockel (b0025) 2010; 68 Kattner, Boettinger (b0540) 1994; 23 Tu, Zeng (b0160) 2001; 34 Klein (b0490) 1989 Chao, Chae, Zhang, Lu, Im, Ho (b0210) 2007; 55 Sweatman K, Nishimura T. IPC printed circuits expo®, APEX® and the designers summit; 2006. Anderson, Walleser, Harringa, Laabs, Kracher (b0105) 2009; 38 Kotadia, Panneerselvam, Sugden, Steen, Green, Mannan (b0365) 2013; 3 Yang, Chang, Wang, Kao (b0450) 2009; 38 Zhu, Wang, Liu, Jin, Gong (b0290) 2007; 456 Chada, Fournelle, Laub, Shangguan (b0495) 2000; 29 Rahn (b0010) 1993 Tu (b0015) 2007 Bradley E, Ieee I. Lead-free solder assembly: impact and opportunity. In: 53rd Electronic components & technology conference, proceedings; 2003. p. 41–6. Pan, Lin (b0375) 2011; 109 McCormack, Jin (b0585) 1994; 23 Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: 2nd Electronics system-integration technology conference; 2008. Abtew, Selvaduray (b0030) 2000; 27 Shen, Liu, Han, Gao (b0400) 2007; 18 Mannan, Clode (b0055) 2004; 27 Okamoto (b0280) 2003; 24 Lin, Wang (b0595) 1998; 27 Anderson, Harringa (b0325) 2004; 33 Kang (b0410) 1999; 5 Vianco, Rejent (b0475) 1999; 28 Yoon, Jung (b0615) 2006; 21 Das, Sharif, Chan, Wong, Yung (b0625) 2009; 86 Kumar, Chen, Mhaisalkar, Wong, Teo, Kripesh (b0255) 2006; 504 Gao, Takemoto, Nishikawa (b0510) 2006; 420 Lee, Lin (b0240) 1994; 249 Cheng, Nishikawa, Takemoto (b0385) 2008; 43 Hae-Young C, Tae-Jin K, Young-Min K, Sun-Chul K, Jin-Young P, Kim Y-H. A new Ni–Zn under bump metallurgy for Pb-free solder bump flip chip application. In: Electronic components and technology conference (ECTC), 2010 proceedings 60th; 2010. p. 151–5. Yen, Jao, Lee (b0620) 2006; 21 Laurila, Vuorinen, Kivilahti (b0020) 2005; 49 Sweatman K, Nishimura T. Proceedings of the ECWS 10 conference, Anaheim, USA; 2005. p. 22–4. Hua F, Mei Z, Lavagnino A. Eutectic Sn–Bi as an alternative Pb-free solder. In: Proceedings of an international summit on lead-free electronics assemblies, IPC Works’99; 1999. p. S/03/08/01/06. Shen, Liu, Gao, Wei, Yang (b0480) 2005; 34 Schaefer, Fournelle, Liang (b0185) 1998; 27 Yu, Zhao, Wang (b0550) 2004; 376 Yoon, Kim, Jung (b0430) 2005; 391 Anderson, Harringa (b0335) 2006; 35 Hwang (b0395) 2005 Kang, Choi, Shih, Henderson, Gosselin, Sarkhel (b0155) 2003; 55 Kotadia, Mokhtari, Clode, Green, Mannan (b0045) 2012; 511 Rizvi, Chan, Bailey, Lu, Islam (b0390) 2006; 407 Yang, Messler, Felton (b0470) 1994; 23 McCormack, Jin, Chen, Machusak (b0570) 1994; 23 Wang, Xue, Chen, Zhao (b0605) 2009; 20 Yoon, Soh, Lee, Lee (b0590) 1997; 45 Hansen, Anderko (b0535) 1958 Yu, Kivilahti (b0095) 2006; 29 Hung, Chan, Tang (b0245) 2000; 11 Chen, Hu, Li, Mao (b0630) 2008; 460 Vianco, Rejent, Hlava (b0330) 2004; 33 Hayashi, Kao, Chang (b0195) 1997; 37 Kotadia HR, Panneerselvam A, Green MA, Mannan SH. Limitations of nanoparticle enhanced solder pastes for electronics assembly. In: Nanotechnology (IEEE-NANO), 2012 12th IEEE conference; 2012, p. 1-5. Hung, Chan, Tang, Ong (b0230) 2000; 15 Tsai, Hu, Tsai, Kao (b0515) 2003; 32 Mokhtari, Roshanghias, Ashayer, Kotadia, Khomamizadeh, Kokabi (b0665) 2012; 41 Nash, Nash (b0215) 1985; 6 Kim, Kim (b0275) 2004; 56 Kinyanjui, Lehman, Zavalij, Cotts (b0060) 2005; 20 He, Lau, Qi, Chen (b0250) 2004; 462–463 Lin, Liu, Guo, Wang, Srivatsan, Petraroli (b0685) 2003; 360 Miller, Anderson, Smith (b0145) 1994; 23 Ashayer R, Mannan SH, Sajjadi S, Clode MP, Miodownik MM. Nanoparticle enhanced solders for high temperature environments. In: Electronics packaging technology conference, 2007. EPTC 2007. 9th; 2007, p. 109–13. Hwang, Lee, Lee (b0735) 2002; 31 Alam, Chan (b0235) 2008; 31 Takemoto, Funaki, Matsunawa (b0650) 2000; 46 Liang, Dariavach, Shangguan (b0135) 2007; 38 Bukat, Moser, Sitek, Gasior, Koscielski, Pstrus (b0600) 2010; 22 Li, Gupta (b0690) 2005; 7 Zhao, Ma, Xie, Wang (b0580) 2009; 25 Shiue, Tsay, Lin, Ou (b0565) 2003; 43 Kang SK, Moon-Gi C, Lauro P, Da-Yuan S. Critical factors affecting the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, p. 1597–603. Li, Mannan, Clode, Liu, Chen, Whalley (b0530) 2008; 31 Anderson, Walleser, Harringa (b0080) 2007; 59 Moon, Boettinger, Kattner, Biancaniello, Handwerker (b0110) 2000; 29 Song, Lan, Lui, Chen (b0655) 2003; 48 Wang, Ma, Qian (b0075) 2005; 53 Yu, Wang, Duh (b0370) 2010; 39 Loomans, Vaynman, Ghosh, Fine (b0005) 1994; 23 Anderson, Foley, Cook, Harringa, Terpstra, Unal (b0100) 2001; 30 Snugovsky, Snugovsky, Perovic, Sack, Rutter (b0120) 2005; 21 Kang (b0340) 2012 Chen X, Li M, Ren X, Mao D. Effects of alloying elements on the characteristics of Sn-Zn lead-free solder. In: Electronic packaging technology, 2005 6th international conference on; 2005. p. 211–7. Ma, Wang, Lahiri (b0205) 2002; 91 Mueller M, Wiese S, Roellig M, Wolter KJ. Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th; 2007. p. 1579–88. Wu, Tsao, Chang, Jain, Chen (b0270) 2011; 22 Zhang, Xue, Gao, Sheng, Ye, Xiao (b0610) 2010; 21 Meagher, Schwarcz, Ohring (b0445) 1996; 31 Kim, Liou, Tu (b0170) 1995; 66 Wang, Kuo (b0285) 2010; 39 Kotadia, Panneerselvam, Mokhtari, Green, Mannan (b0050) 2012; 111 Shen, Chan (b0670) 2009; 49 Nowottnick M, Pape U, Wittke K, Scheel W. Solder joints for high temperature electronics. In: 2003 SMTA international conference proceedings, Chicago (IL), 23–26 September; 2003. p. 693–9. Gebhardt, Petzow (b0130) 1959; 50 Lord, Umantsev (b0190) 2005; 98 Cho, Kang, Shih, Lee (b0345) 2007; 36 Tseng, Wang, Duh (b0310) 2010; 39 Bader W. Dissolution and formation on intermetallics in the soldering process. In: Proceedings of the conference on physical metallurgy, metal joining, St. Louis, MO, October 16–17, TMS/AIME, Warredale, USA, 1980. Chou, Chen (b0360) 2006; 54 Takamatsu, Esaka, Shinozuka (b0125) 2011; 52 Vianco, Rejent (b0505) 1999; 28 Lee, Park, Heo, Lee, Shin, Kim (b0730) 2000; 42 Swenson (b0140) 2007 Cho, Kim, Seo, Lee (b0070) 2009; 95 Li, Chiou, Duh (b0425) 2006; 35 Tu, Gusak, Li (b0320) 2003; 93 Satyanarayan (b0440) 2011; 166 Nogita, Read, Nishimura, Sweatman, Suenaga, Dahle (b0465) 2005; 46 Ochoa (10.1016/j.microrel.2014.02.025_b0485) 2003; 32 Lin (10.1016/j.microrel.2014.02.025_b0595) 1998; 27 10.1016/j.microrel.2014.02.025_b0090 Shen (10.1016/j.microrel.2014.02.025_b0480) 2005; 34 Amagai (10.1016/j.microrel.2014.02.025_b0725) 2008; 48 Chawla (10.1016/j.microrel.2014.02.025_b0040) 2009; 54 Anderson (10.1016/j.microrel.2014.02.025_b0080) 2007; 59 Wang (10.1016/j.microrel.2014.02.025_b0605) 2009; 20 Takemoto (10.1016/j.microrel.2014.02.025_b0650) 2000; 46 Mokhtari (10.1016/j.microrel.2014.02.025_b0665) 2012; 41 Hung (10.1016/j.microrel.2014.02.025_b0230) 2000; 15 Das (10.1016/j.microrel.2014.02.025_b0625) 2009; 86 Zhao (10.1016/j.microrel.2014.02.025_b0580) 2009; 25 10.1016/j.microrel.2014.02.025_b0645 Tu (10.1016/j.microrel.2014.02.025_b0015) 2007 Kivilahti (10.1016/j.microrel.2014.02.025_b0165) 1996 10.1016/j.microrel.2014.02.025_b0520 Nogita (10.1016/j.microrel.2014.02.025_b0465) 2005; 46 Zhang (10.1016/j.microrel.2014.02.025_b0610) 2010; 21 Lee (10.1016/j.microrel.2014.02.025_b0700) 2005; 34 Vianco (10.1016/j.microrel.2014.02.025_b0475) 1999; 28 Hung (10.1016/j.microrel.2014.02.025_b0245) 2000; 11 Tsai (10.1016/j.microrel.2014.02.025_b0660) 2005; 413–414 Kim (10.1016/j.microrel.2014.02.025_b0275) 2004; 56 Anderson (10.1016/j.microrel.2014.02.025_b0335) 2006; 35 Chen (10.1016/j.microrel.2014.02.025_b0630) 2008; 460 Qi (10.1016/j.microrel.2014.02.025_b0085) 2004; 33 Lin (10.1016/j.microrel.2014.02.025_b0685) 2003; 360 Kang (10.1016/j.microrel.2014.02.025_b0410) 1999; 5 Chada (10.1016/j.microrel.2014.02.025_b0495) 2000; 29 10.1016/j.microrel.2014.02.025_b0635 Moon (10.1016/j.microrel.2014.02.025_b0110) 2000; 29 Zhu (10.1016/j.microrel.2014.02.025_b0290) 2007; 456 Ashayer (10.1016/j.microrel.2014.02.025_b0710) 2008; 329 Gebhardt (10.1016/j.microrel.2014.02.025_b0130) 1959; 50 Shen (10.1016/j.microrel.2014.02.025_b0400) 2007; 18 Yang (10.1016/j.microrel.2014.02.025_b0450) 2009; 38 Liu (10.1016/j.microrel.2014.02.025_b0405) 2009; 38 Kim (10.1016/j.microrel.2014.02.025_b0180) 1996; 53 Yang (10.1016/j.microrel.2014.02.025_b0470) 1994; 23 Kang (10.1016/j.microrel.2014.02.025_b0155) 2003; 55 Tsai (10.1016/j.microrel.2014.02.025_b0515) 2003; 32 Lin (10.1016/j.microrel.2014.02.025_b0640) 2001; 30 Yoon (10.1016/j.microrel.2014.02.025_b0430) 2005; 391 Yu (10.1016/j.microrel.2014.02.025_b0575) 2004; 385 Li (10.1016/j.microrel.2014.02.025_b0690) 2005; 7 Massalski (10.1016/j.microrel.2014.02.025_b0220) 1996 10.1016/j.microrel.2014.02.025_b0225 Pan (10.1016/j.microrel.2014.02.025_b0375) 2011; 109 Kotadia (10.1016/j.microrel.2014.02.025_b0050) 2012; 111 Shen (10.1016/j.microrel.2014.02.025_b0670) 2009; 49 10.1016/j.microrel.2014.02.025_b0065 Wang (10.1016/j.microrel.2014.02.025_b0350) 2010; 39 10.1016/j.microrel.2014.02.025_b0460 Schaefer (10.1016/j.microrel.2014.02.025_b0185) 1998; 27 Ghosh (10.1016/j.microrel.2014.02.025_b0175) 2000; 88 Li (10.1016/j.microrel.2014.02.025_b0525) 2006; 54 Wang (10.1016/j.microrel.2014.02.025_b0075) 2005; 53 Islam (10.1016/j.microrel.2014.02.025_b0560) 2005; 400 Vianco (10.1016/j.microrel.2014.02.025_b0330) 2004; 33 Anderson (10.1016/j.microrel.2014.02.025_b0100) 2001; 30 Yoon (10.1016/j.microrel.2014.02.025_b0500) 2004; 376 Shiue (10.1016/j.microrel.2014.02.025_b0565) 2003; 43 Song (10.1016/j.microrel.2014.02.025_b0655) 2003; 48 Loomans (10.1016/j.microrel.2014.02.025_b0005) 1994; 23 Hansen (10.1016/j.microrel.2014.02.025_b0535) 1958 Yoon (10.1016/j.microrel.2014.02.025_b0615) 2006; 21 10.1016/j.microrel.2014.02.025_b0455 Takamatsu (10.1016/j.microrel.2014.02.025_b0125) 2011; 52 Kang (10.1016/j.microrel.2014.02.025_b0340) 2012 Anderson (10.1016/j.microrel.2014.02.025_b0105) 2009; 38 Teck Kheng (10.1016/j.microrel.2014.02.025_b0300) 2006; 504 Satyanarayan (10.1016/j.microrel.2014.02.025_b0440) 2011; 166 Klein (10.1016/j.microrel.2014.02.025_b0490) 1989 Mannan (10.1016/j.microrel.2014.02.025_b0055) 2004; 27 Braunovic (10.1016/j.microrel.2014.02.025_b0740) 2006 Kumar (10.1016/j.microrel.2014.02.025_b0255) 2006; 504 Alam (10.1016/j.microrel.2014.02.025_b0415) 2009; 38 Young Min (10.1016/j.microrel.2014.02.025_b0315) 2010; 39 Wang (10.1016/j.microrel.2014.02.025_b0285) 2010; 39 Hwang (10.1016/j.microrel.2014.02.025_b0735) 2002; 31 Huang (10.1016/j.microrel.2014.02.025_b0555) 2011; 40 Cheng (10.1016/j.microrel.2014.02.025_b0385) 2008; 43 Yen (10.1016/j.microrel.2014.02.025_b0620) 2006; 21 Lord (10.1016/j.microrel.2014.02.025_b0190) 2005; 98 10.1016/j.microrel.2014.02.025_b0720 Anderson (10.1016/j.microrel.2014.02.025_b0325) 2004; 33 Yu (10.1016/j.microrel.2014.02.025_b0095) 2006; 29 Wang (10.1016/j.microrel.2014.02.025_b0380) 2009; 478 Kotadia (10.1016/j.microrel.2014.02.025_b0045) 2012; 511 Liang (10.1016/j.microrel.2014.02.025_b0135) 2007; 38 Chao (10.1016/j.microrel.2014.02.025_b0210) 2007; 55 Li (10.1016/j.microrel.2014.02.025_b0425) 2006; 35 Hayashi (10.1016/j.microrel.2014.02.025_b0195) 1997; 37 Alam (10.1016/j.microrel.2014.02.025_b0235) 2008; 31 Yang (10.1016/j.microrel.2014.02.025_b0355) 2007; 101 Wu (10.1016/j.microrel.2014.02.025_b0270) 2011; 22 Rizvi (10.1016/j.microrel.2014.02.025_b0390) 2006; 407 10.1016/j.microrel.2014.02.025_b0715 Huang (10.1016/j.microrel.2014.02.025_b0295) 2010; 39 Miller (10.1016/j.microrel.2014.02.025_b0145) 1994; 23 Bukat (10.1016/j.microrel.2014.02.025_b0600) 2010; 22 Kattner (10.1016/j.microrel.2014.02.025_b0540) 1994; 23 Cho (10.1016/j.microrel.2014.02.025_b0070) 2009; 95 Kawakatsu (10.1016/j.microrel.2014.02.025_b0200) 1970; 34 Meagher (10.1016/j.microrel.2014.02.025_b0445) 1996; 31 Tu (10.1016/j.microrel.2014.02.025_b0320) 2003; 93 10.1016/j.microrel.2014.02.025_b0675 Yu (10.1016/j.microrel.2014.02.025_b0550) 2004; 376 Snugovsky (10.1016/j.microrel.2014.02.025_b0120) 2005; 21 Chou (10.1016/j.microrel.2014.02.025_b0360) 2006; 54 Lee (10.1016/j.microrel.2014.02.025_b0730) 2000; 42 McCormack (10.1016/j.microrel.2014.02.025_b0585) 1994; 23 10.1016/j.microrel.2014.02.025_b0150 Ma (10.1016/j.microrel.2014.02.025_b0205) 2002; 91 Yu (10.1016/j.microrel.2014.02.025_b0370) 2010; 39 Kim (10.1016/j.microrel.2014.02.025_b0170) 1995; 66 Hwang (10.1016/j.microrel.2014.02.025_b0395) 2005 Kinyanjui (10.1016/j.microrel.2014.02.025_b0060) 2005; 20 Abtew (10.1016/j.microrel.2014.02.025_b0030) 2000; 27 Yoon (10.1016/j.microrel.2014.02.025_b0590) 1997; 45 10.1016/j.microrel.2014.02.025_b0705 Li (10.1016/j.microrel.2014.02.025_b0530) 2008; 31 10.1016/j.microrel.2014.02.025_b0545 McCormack (10.1016/j.microrel.2014.02.025_b0570) 1994; 23 Tu (10.1016/j.microrel.2014.02.025_b0160) 2001; 34 Huang (10.1016/j.microrel.2014.02.025_b0435) 2006; 35 Tsai (10.1016/j.microrel.2014.02.025_b0260) 2001; 146–147 10.1016/j.microrel.2014.02.025_b0305 Loomans (10.1016/j.microrel.2014.02.025_b0115) 2000; 31 10.1016/j.microrel.2014.02.025_b0265 Nash (10.1016/j.microrel.2014.02.025_b0215) 1985; 6 Lee (10.1016/j.microrel.2014.02.025_b0240) 1994; 249 Kotadia (10.1016/j.microrel.2014.02.025_b0365) 2013; 3 Vianco (10.1016/j.microrel.2014.02.025_b0505) 1999; 28 Kotadia (10.1016/j.microrel.2014.02.025_b0035) 2010; 39 Swenson (10.1016/j.microrel.2014.02.025_b0140) 2007 He (10.1016/j.microrel.2014.02.025_b0250) 2004; 462–463 Shen (10.1016/j.microrel.2014.02.025_b0695) 2006; 35 Okamoto (10.1016/j.microrel.2014.02.025_b0280) 2003; 24 Gao (10.1016/j.microrel.2014.02.025_b0510) 2006; 420 Laurila (10.1016/j.microrel.2014.02.025_b0020) 2005; 49 Rahn (10.1016/j.microrel.2014.02.025_b0010) 1993 Lin (10.1016/j.microrel.2014.02.025_b0680) 2003; 57 Tseng (10.1016/j.microrel.2014.02.025_b0310) 2010; 39 Laurila (10.1016/j.microrel.2014.02.025_b0025) 2010; 68 Cho (10.1016/j.microrel.2014.02.025_b0345) 2007; 36 |
References_xml | – reference: Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: Estc 2008: 2nd electronics system-integration technology conference, vols. 1 and 2, Proceedings; 2008. p. 929–33. – year: 1993 ident: b0010 article-title: The basics of soldering – volume: 5 start-page: 545 year: 1999 end-page: 549 ident: b0410 article-title: Development of lead (Pb)-free interconnection materials for microelectronics publication-title: Met Mater Int – volume: 33 start-page: 1497 year: 2004 end-page: 1506 ident: b0085 article-title: Accelerated thermal fatigue of lead-free solder joints as a function of reflow cooling rate publication-title: J Electron Mater – volume: 95 year: 2009 ident: b0070 article-title: Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures publication-title: Appl Phys Lett – volume: 88 start-page: 6887 year: 2000 end-page: 6896 ident: b0175 article-title: Coarsening kinetics of Ni publication-title: J Appl Phys – volume: 22 start-page: 1181 year: 2011 end-page: 1187 ident: b0270 article-title: Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and Ag substrates publication-title: J Mater Sci: Mater Electron – volume: 391 start-page: 82 year: 2005 end-page: 89 ident: b0430 article-title: Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging publication-title: J Alloy Compd – volume: 40 start-page: 62 year: 2011 end-page: 70 ident: b0555 article-title: Effects of Co alloying and size on solidification and interfacial reactions in Sn–57 publication-title: J Electron Mater – volume: 38 start-page: 2353 year: 2009 end-page: 2361 ident: b0405 article-title: Tin whisker growth on the surface of Sn–0.7Cu lead-free solder with a rare earth (Nd) addition publication-title: J Electron Mater – volume: 59 start-page: 38 year: 2007 end-page: 43 ident: b0080 article-title: Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints publication-title: JOM – volume: 55 start-page: 2805 year: 2007 end-page: 2814 ident: b0210 article-title: Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing publication-title: Acta Mater – volume: 55 start-page: 61 year: 2003 end-page: 65 ident: b0155 article-title: Ag publication-title: Jom – J Miner Metals Mater Soc – volume: 39 start-page: 2720 year: 2010 end-page: 2731 ident: b0035 article-title: Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates publication-title: J Electron Mater – volume: 166 start-page: 87 year: 2011 end-page: 118 ident: b0440 article-title: Prabhu, Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn–Cu solder alloy publication-title: Adv Colloid Interface Sci – volume: 111 year: 2012 ident: b0050 article-title: Massive spalling of Cu–Zn and Cu–Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction publication-title: J Appl Phys – volume: 43 start-page: 3643 year: 2008 end-page: 3648 ident: b0385 article-title: Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co publication-title: J Mater Sci – volume: 400 start-page: 136 year: 2005 end-page: 144 ident: b0560 article-title: Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder publication-title: J Alloy Compd – volume: 462–463 start-page: 376 year: 2004 end-page: 383 ident: b0250 article-title: Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction publication-title: Thin Solid Films – reference: Kotadia HR, Panneerselvam A, Green MA, Mannan SH. Limitations of nanoparticle enhanced solder pastes for electronics assembly. In: Nanotechnology (IEEE-NANO), 2012 12th IEEE conference; 2012, p. 1-5. – start-page: 119 year: 2012 end-page: 159 ident: b0340 article-title: Effects of minor alloying additions on the properties and reliability of Pb-free solders and joints publication-title: Lead-free solders: materials reliability for electronics – volume: 504 start-page: 441 year: 2006 end-page: 445 ident: b0300 article-title: Interfacial microstructures and kinetics of Au/SnAgCu publication-title: Thin Solid Films – year: 2006 ident: b0740 article-title: Electrical contacts: fundamentals, applications and technology – volume: 25 start-page: 410 year: 2009 end-page: 414 ident: b0580 article-title: Wetting behavior and interfacial reactions in (Sn–9Zn)–2Cu/Ni joints during soldering and isothermal aging publication-title: J Mater Sci Technol – volume: 407 start-page: 208 year: 2006 end-page: 214 ident: b0390 article-title: Effect of adding 1 publication-title: J Alloy Compd – volume: 18 start-page: 1235 year: 2007 end-page: 1238 ident: b0400 article-title: Microstructure and mechanical properties of lead-free Sn–Cu solder composites prepared by rapid directional solidification publication-title: J Mater Sci: Mater Electron – reference: Ashayer R, Mannan SH, Sajjadi S, Clode MP, Miodownik MM. Nanoparticle enhanced solders for high temperature environments. In: Electronics packaging technology conference, 2007. EPTC 2007. 9th; 2007, p. 109–13. – year: 1996 ident: b0165 article-title: Soldex 2.0—the thermodynamic databank for interconnection and packaging materials – volume: 49 start-page: 1 year: 2005 end-page: 60 ident: b0020 article-title: Interfacial reactions between lead-free solders and common base materials publication-title: Mater Sci Eng R – Rep – volume: 31 start-page: 574 year: 2008 end-page: 585 ident: b0530 article-title: Interfacial reaction between molten Sn–Bi based solders and electroless Ni–P coatings for liquid solder interconnects publication-title: IEEE Trans Compon Packag Technol – volume: 45 start-page: 951 year: 1997 end-page: 960 ident: b0590 article-title: Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn–Bi–In–Zn system publication-title: Acta Mater – volume: 54 start-page: 368 year: 2009 end-page: 384 ident: b0040 article-title: Thermomechanical behaviour of environmentally benign Pb-free solders publication-title: Int Mater Rev – volume: 35 start-page: 181 year: 2006 end-page: 188 ident: b0435 article-title: Morphology and growth kinetics of intermetallic compounds in solid-state interfacial reaction of electroless Ni–P with Sn-based lead-free solders publication-title: J Electron Mater – volume: 54 start-page: 2907 year: 2006 end-page: 2922 ident: b0525 article-title: Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects publication-title: Acta Mater – volume: 38 start-page: 2770 year: 2009 end-page: 2779 ident: b0105 article-title: Nucleation control and thermal aging resistance of near-eutectic Sn–Ag–Cu–X solder joints by alloy design publication-title: J Electron Mater – reference: Sweatman K, Nishimura T. IPC printed circuits expo®, APEX® and the designers summit; 2006. – volume: 93 start-page: 1335 year: 2003 end-page: 1353 ident: b0320 article-title: Physics and materials challenges for lead-free solders publication-title: J Appl Phys – volume: 53 start-page: 16027 year: 1996 end-page: 16034 ident: b0180 article-title: Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening publication-title: Phys Rev B – volume: 42 start-page: 827 year: 2000 end-page: 831 ident: b0730 article-title: Reflow characteristics of Sn–Ag matrix in situ composite solders publication-title: Scripta Mater – volume: 420 start-page: 39 year: 2006 end-page: 46 ident: b0510 article-title: Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing publication-title: Mater Sci Eng A – volume: 56 start-page: 45 year: 2004 end-page: 49 ident: b0275 article-title: Sn–Ag–Cu and Sn–Cu solders: interfacial reactions with platinum publication-title: JOM – volume: 360 start-page: 285 year: 2003 end-page: 292 ident: b0685 article-title: An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin–lead solder publication-title: Mater Sci Eng A – reference: Shen YD, Hu AM, Chen X, Li M, Mao DL. Interfacial reactions and reliability of Sn Zn–Bi–XCr solder joints with Cu pads. In: Electronic packaging technology & high density packaging, 2008. ICEPT-HDP 2008. International conference; 2008, p. 1–4. – reference: Kang SK, Moon-Gi C, Lauro P, Da-Yuan S. Critical factors affecting the undercooling of Pb-free, flip-chip solder bumps and in situ observation of solidification process. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, p. 1597–603. – volume: 38 start-page: 1530 year: 2007 end-page: 1538 ident: b0135 article-title: Solidification condition effects on microstructures and creep resistance of Sn–3.8Ag–0.7Cu lead-free publication-title: Metall Mater Trans A – volume: 66 start-page: 2337 year: 1995 end-page: 2339 ident: b0170 article-title: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu publication-title: Appl Phys Lett – volume: 21 start-page: 2986 year: 2006 end-page: 2990 ident: b0620 article-title: Effect of Cu addition on interfacial reaction between Sn–9Zn solder and Ag publication-title: J Mater Res – reference: Hae-Young C, Tae-Jin K, Young-Min K, Sun-Chul K, Jin-Young P, Kim Y-H. A new Ni–Zn under bump metallurgy for Pb-free solder bump flip chip application. In: Electronic components and technology conference (ECTC), 2010 proceedings 60th; 2010. p. 151–5. – volume: 41 start-page: 1907 year: 2012 end-page: 1914 ident: b0665 article-title: Disabling of nanoparticle effects at increased temperature in nanocomposite solders publication-title: J Electron Mater – reference: Mueller M, Wiese S, Roellig M, Wolter KJ. Effect of composition and cooling rate on the microstructure of SnAgCu-solder joints. In: Electronic components and technology conference, 2007. ECTC ‘07. Proceedings. 57th; 2007. p. 1579–88. – volume: 101 year: 2007 ident: b0355 article-title: Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element publication-title: J Appl Phys – volume: 23 start-page: 595 year: 1994 end-page: 601 ident: b0145 article-title: A viable tin-lead solder substitute Sn–Ag–Cu publication-title: J Electron Mater – volume: 54 start-page: 2393 year: 2006 end-page: 2400 ident: b0360 article-title: Phase equilibria of the Sn–Zn–Cu ternary system publication-title: Acta Mater – year: 1989 ident: b0490 article-title: Soldering in electronics – volume: 35 start-page: 1672 year: 2006 end-page: 1679 ident: b0695 article-title: Strengthening effects of ZrO publication-title: J Electron Mater – volume: 456 start-page: 109 year: 2007 end-page: 113 ident: b0290 article-title: The interfacial reaction between Sn–Ag alloys and Co substrate publication-title: Mater Sci Eng, A – volume: 27 start-page: 1167 year: 1998 end-page: 1176 ident: b0185 article-title: Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control publication-title: J Electron Mater – volume: 52 start-page: 189 year: 2011 end-page: 195 ident: b0125 article-title: Formation mechanism of eutectic Cu publication-title: Mater Trans – volume: 30 start-page: 1050 year: 2001 end-page: 1059 ident: b0100 article-title: Alloying effects in near-eutectic Sn–Ag–Cu solder alloys for improved microstructural stability publication-title: J Electron Mater – volume: 39 start-page: 1303 year: 2010 end-page: 1308 ident: b0285 article-title: Coupling effect of the interfacial reaction in Co/Sn/Cu diffusion couples publication-title: J Electron Mater – volume: 48 start-page: 1 year: 2008 end-page: 16 ident: b0725 article-title: A study of nanoparticles in Sn–Ag based lead free solders publication-title: Microelectron Reliab – volume: 478 start-page: L1 year: 2009 end-page: L4 ident: b0380 article-title: Minimum effective Ni addition to SnAgCu solders for retarding Cu publication-title: J Alloy Compd – volume: 34 start-page: 1591 year: 2005 end-page: 1597 ident: b0480 article-title: Formation of bulk Ag publication-title: J Electron Mater – volume: 48 start-page: 1047 year: 2003 end-page: 1051 ident: b0655 article-title: Microstructure and tensile properties of Sn–9Zn– publication-title: Scripta Mater – volume: 38 start-page: 2479 year: 2009 end-page: 2488 ident: b0415 article-title: Effect of amount of Cu on the intermetallic layer thickness between Sn–Cu solders and Cu substrates publication-title: J Electron Mater – volume: 37 start-page: 393 year: 1997 end-page: 398 ident: b0195 article-title: Reactions of solid copper with pure liquid tin and liquid tin saturated with copper publication-title: Scripta Mater – year: 2007 ident: b0015 publication-title: Solder joint technology: material, properties, and reliability – volume: 29 start-page: 1214 year: 2000 end-page: 1221 ident: b0495 article-title: Copper substrate dissolution in eutectic Sn–Ag solder and its effect on microstructure publication-title: J Electron Mater – volume: 146–147 start-page: 502 year: 2001 end-page: 507 ident: b0260 article-title: Thermal stability and mechanical properties of Ni–W–P electroless deposits publication-title: Surf Coat Technol – volume: 31 start-page: 5479 year: 1996 end-page: 5486 ident: b0445 article-title: Compound growth in platinum/tin–lead solder diffusion couples publication-title: J Mater Sci – volume: 27 start-page: 508 year: 2004 end-page: 514 ident: b0055 article-title: Materials and processes for implementing high-temperature liquid interconnects publication-title: IEEE Trans Adv Packag – volume: 35 start-page: 343 year: 2006 end-page: 352 ident: b0425 article-title: Phase distribution and phase analysis in Cu publication-title: J Electron Mater – volume: 91 start-page: 3312 year: 2002 end-page: 3317 ident: b0205 article-title: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow publication-title: J Appl Phys – volume: 32 start-page: 1203 year: 2003 end-page: 1208 ident: b0515 article-title: A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni publication-title: J Electron Mater – reference: Sweatman K, Nishimura T. Proceedings of the ECWS 10 conference, Anaheim, USA; 2005. p. 22–4. – volume: 68 start-page: 1 year: 2010 end-page: 38 ident: b0025 article-title: Impurity and alloying effects on interfacial reaction layers in Pb-free soldering publication-title: Mater Sci Eng R – Rep – volume: 23 start-page: 603 year: 1994 end-page: 610 ident: b0540 article-title: On the Sn–Bi–Ag ternary phase diagram publication-title: J Electron Mater – volume: 34 start-page: 1 year: 2001 end-page: 58 ident: b0160 article-title: Tin–lead (SnPb) solder reaction in flip chip technology publication-title: Mater Sci Eng R – Rep – volume: 11 start-page: 587 year: 2000 end-page: 593 ident: b0245 article-title: Metallurgical reaction and mechanical strength of electroless Ni–P solder joints for advanced packaging applications publication-title: J Mater Sci: Mater Electron – volume: 21 start-page: 1 year: 2010 end-page: 15 ident: b0610 article-title: Development of Sn–Zn lead-free solders bearing alloying elements publication-title: J Mater Sci: Mater Electron – volume: 34 start-page: 1399 year: 2005 end-page: 1407 ident: b0700 article-title: Development of nano-composite lead-free electronic solders publication-title: J Electron Mater – volume: 46 start-page: 20 year: 2000 ident: b0650 article-title: Electrochemical investigation on the effect of silver addition on wettability of Sn–Zn system lead-free solder publication-title: Weld Res Abroad – year: 1996 ident: b0220 article-title: Binary alloy phase diagrams – volume: 376 start-page: 170 year: 2004 end-page: 175 ident: b0550 article-title: Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements publication-title: J Alloy Compd – volume: 31 start-page: 431 year: 2008 end-page: 438 ident: b0235 article-title: Effect of 0.5 publication-title: IEEE Trans Compon Packag Technol – volume: 46 start-page: 2419 year: 2005 end-page: 2425 ident: b0465 article-title: Microstructure control in Sn–0.7mass%Cu alloys publication-title: Mater Trans – volume: 53 start-page: 699 year: 2005 end-page: 702 ident: b0075 article-title: Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition publication-title: Scripta Mater – volume: 23 start-page: 715 year: 1994 end-page: 720 ident: b0585 article-title: Improved mechanical properties in new, Pb-free solder alloys publication-title: J Electron Mater – volume: 49 start-page: 223 year: 2009 end-page: 234 ident: b0670 article-title: Research advances in nano-composite solders publication-title: Microelectron Reliab – start-page: 39 year: 2007 end-page: 54 ident: b0140 article-title: The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints publication-title: Lead-free electronic solders – volume: 22 start-page: 10 year: 2010 end-page: 16 ident: b0600 article-title: Investigation of Sn–Zn–Bi solders – Part I: surface tension, interfacial tension and density measurements of SnZn7Bi solders publication-title: Solder Surf Mount Technol – volume: 39 start-page: 2403 year: 2010 end-page: 2411 ident: b0295 article-title: Study of interfacial reactions between Sn(Cu) solders and Ni–Co alloy layers publication-title: J Electron Mater – volume: 33 start-page: 1485 year: 2004 end-page: 1496 ident: b0325 article-title: Elevated temperature aging of solder joints based on Sn–Ag–Cu: effects on joint microstructure and shear strength publication-title: J Electron Mater – volume: 7 start-page: 1049 year: 2005 end-page: 1054 ident: b0690 article-title: High strength lead-free composite solder materials using nano-Al publication-title: Adv Eng Mater – volume: 27 start-page: 1205 year: 1998 end-page: 1210 ident: b0595 article-title: Wetting interaction of Pb-free Sn–Zn–Al solders on metal plated substrate publication-title: J Electron Mater – volume: 511 start-page: 176 year: 2012 end-page: 188 ident: b0045 article-title: Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates publication-title: J Alloy Compd – volume: 33 start-page: 991 year: 2004 end-page: 1004 ident: b0330 article-title: Solid-state intermetallic compound layer growth between copper and 95.5Sn–3.9Ag–0.6Cu solder publication-title: J Electron Mater – volume: 35 start-page: 94 year: 2006 end-page: 106 ident: b0335 article-title: Suppression of void coalescence in thermal aging of tin–silver–copper–X solder joints publication-title: J Electron Mater – year: 2005 ident: b0395 article-title: Implementing lead-free electronics – volume: 39 start-page: 230 year: 2010 end-page: 237 ident: b0370 article-title: Interfacial reaction of Sn and Cu–xZn substrates after reflow and thermal aging publication-title: J Electron Mater – volume: 6 start-page: 350 year: 1985 end-page: 359 ident: b0215 article-title: The Ni–Sn (Nickel-Tin) system publication-title: J Phase Equilibr – volume: 413–414 start-page: 312 year: 2005 end-page: 316 ident: b0660 article-title: Solidification behavior of Sn–9Zn– publication-title: Mater Sci Eng A – volume: 21 start-page: 53 year: 2005 end-page: 60 ident: b0120 article-title: Some aspects of nucleation and growth in Pb free Sn–Ag–Cu solder publication-title: Mater Sci Technol – volume: 29 start-page: 1122 year: 2000 end-page: 1136 ident: b0110 article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys publication-title: J Electron Mater – volume: 249 start-page: 201 year: 1994 end-page: 206 ident: b0240 article-title: The interaction kinetics and compound formation between electroless NiP and solder publication-title: Thin Solid Films – volume: 39 start-page: 2522 year: 2010 end-page: 2527 ident: b0310 article-title: Interfacial reactions of Sn–3.0Ag–0.5Cu solder with Cu–Mn UBM during aging publication-title: J Electron Mater – volume: 109 year: 2011 ident: b0375 article-title: The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn–Zn solder on Cu substrate publication-title: J Appl Phys – volume: 31 start-page: 1155 year: 2000 end-page: 1162 ident: b0115 article-title: Tin–silver–copper eutectic temperature and composition publication-title: Metall Mater Trans A – volume: 24 start-page: 198 year: 2003 ident: b0280 article-title: Pt–Sn (platinum–tin) publication-title: J Phase Equilibr – volume: 15 start-page: 2534 year: 2000 end-page: 2539 ident: b0230 article-title: Correlation between Ni, Sn, intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni–P metallization in advanced packages publication-title: J Mater Res – volume: 36 start-page: 1501 year: 2007 end-page: 1509 ident: b0345 article-title: Effects of minor additions of Zn on interfacial reactions of Sn–Ag–Cu and Sn–Cu solders with various Cu substrates during thermal aging publication-title: J Electron Mater – volume: 376 start-page: 105 year: 2004 end-page: 110 ident: b0500 article-title: Growth kinetics of Ni publication-title: J Alloy Compd – reference: Nowottnick M, Pape U, Wittke K, Scheel W. Solder joints for high temperature electronics. In: 2003 SMTA international conference proceedings, Chicago (IL), 23–26 September; 2003. p. 693–9. – volume: 20 start-page: 2914 year: 2005 end-page: 2918 ident: b0060 article-title: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys publication-title: J Mater Res – volume: 329 start-page: 134 year: 2008 end-page: 141 ident: b0710 article-title: Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride) publication-title: Colloid Surf a – Physicochem Eng Aspect – reference: Chen X, Li M, Ren X, Mao D. Effects of alloying elements on the characteristics of Sn-Zn lead-free solder. In: Electronic packaging technology, 2005 6th international conference on; 2005. p. 211–7. – volume: 38 start-page: 25 year: 2009 end-page: 32 ident: b0450 article-title: Interfacial reaction and wetting behavior between Pt and molten solder publication-title: J Electron Mater – volume: 29 start-page: 778 year: 2006 end-page: 786 ident: b0095 article-title: Nucleation kinetics and solidification temperatures of SnAgCu interconnections during reflow process publication-title: IEEE Trans Compon Packag Technol – volume: 39 start-page: 2375 year: 2010 end-page: 2381 ident: b0350 article-title: Study of the effects of Zn content on the interfacial reactions between Sn–Zn solders and Ni substrates at 250 publication-title: J Electron Mater – volume: 30 start-page: 1068 year: 2001 end-page: 1072 ident: b0640 article-title: Sn–Zn–Al Pb-free solder—an inherent barrier solder for Cu contact publication-title: J Electron Mater – volume: 23 start-page: 687 year: 1994 end-page: 690 ident: b0570 article-title: New lead-free, Sn–Zn–In solder alloys publication-title: J Electron Mater – reference: Bradley E, Ieee I. Lead-free solder assembly: impact and opportunity. In: 53rd Electronic components & technology conference, proceedings; 2003. p. 41–6. – reference: Hua F, Mei Z, Lavagnino A. Eutectic Sn–Bi as an alternative Pb-free solder. In: Proceedings of an international summit on lead-free electronics assemblies, IPC Works’99; 1999. p. S/03/08/01/06. – volume: 460 start-page: 478 year: 2008 end-page: 484 ident: b0630 article-title: Study on the properties of Sn–9Zn– publication-title: J Alloy Compd – volume: 34 start-page: 539 year: 1970 end-page: 546 ident: b0200 article-title: On the growth of alloy layer between solid copper and liquid tin publication-title: J Jpn Inst Met – volume: 43 start-page: 453 year: 2003 end-page: 463 ident: b0565 article-title: The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate publication-title: Microelectron Reliab – volume: 32 start-page: 1414 year: 2003 end-page: 1420 ident: b0485 article-title: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5 publication-title: J Electron Mater – volume: 3 start-page: 1786 year: 2013 end-page: 1793 ident: b0365 article-title: Electronics assembly and high temperature reliability using Sn–3.8Ag–0.7Cu solder paste with Zn additives, components, packaging and manufacturing technology publication-title: IEEE Trans – volume: 31 start-page: 1304 year: 2002 end-page: 1308 ident: b0735 article-title: Microstructure of a lead-free composite solder produced by an in situ process publication-title: J Electron Mater – volume: 28 start-page: 1127 year: 1999 end-page: 1137 ident: b0475 article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part I—thermal properties and microstructural analysis publication-title: J Electron Mater – volume: 39 year: 2010 ident: b0315 article-title: Kinetics of intermetallic compound formation at the interface between Sn–3.0Ag–0.5Cu solder and Cu–Zn alloy substrates publication-title: J Electron Mater – reference: Hutter M, Schmidt R, Zerrer P, Rauschenbach S, Wittke K, Scheel W, et al. Effects of additional elements (Fe Co, Al) on SnAgCu solder joints. In: Electronic components and technology conference, 2009. ECTC 2009. 59th, 2009. p. 54–60. – volume: 385 start-page: 119 year: 2004 end-page: 125 ident: b0575 article-title: Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate publication-title: J Alloy Compd – volume: 57 start-page: 3193 year: 2003 end-page: 3198 ident: b0680 article-title: Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin–lead solder publication-title: Mater Lett – volume: 98 year: 2005 ident: b0190 article-title: Early stages of soldering reactions publication-title: J Appl Phys – volume: 27 start-page: 95 year: 2000 end-page: 141 ident: b0030 article-title: Lead-free solders in microelectronics publication-title: Mater Sci Eng R – Rep – year: 1958 ident: b0535 article-title: Constitution of binary alloys – volume: 20 start-page: 1239 year: 2009 end-page: 1246 ident: b0605 article-title: Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders publication-title: J Mater Sci: Mater Electron – volume: 86 start-page: 2086 year: 2009 end-page: 2093 ident: b0625 article-title: Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads publication-title: Microelectron Eng – volume: 504 start-page: 410 year: 2006 end-page: 415 ident: b0255 article-title: Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate publication-title: Thin Solid Films – volume: 23 start-page: 765 year: 1994 end-page: 772 ident: b0470 article-title: Microstructure evolution of eutectic Sn–Ag solder joints publication-title: J Electron Mater – volume: 50 start-page: 597 year: 1959 end-page: 605 ident: b0130 article-title: The constitution of the silver–copper–tin system publication-title: Z Metallkd – volume: 23 start-page: 741 year: 1994 end-page: 746 ident: b0005 article-title: Investigation of multicomponent lead-free solders publication-title: J Electron Mater – reference: Bader W. Dissolution and formation on intermetallics in the soldering process. In: Proceedings of the conference on physical metallurgy, metal joining, St. Louis, MO, October 16–17, TMS/AIME, Warredale, USA, 1980. – volume: 21 start-page: 1590 year: 2006 end-page: 1599 ident: b0615 article-title: Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn–Zn solder publication-title: J Mater Res – reference: Ashayer R, Cobley A, Mokhtari O, Mannan SH, Sajjadi S, Mason T. Nanoparticle synthesis and formation of composite solder for harsh environments. In: 2nd Electronics system-integration technology conference; 2008. – volume: 28 start-page: 1138 year: 1999 end-page: 1143 ident: b0505 article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part II—wettability and mechanical properties analyses publication-title: J Electron Mater – volume: 376 start-page: 105 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0500 article-title: Growth kinetics of Ni3Sn4 and Ni3P layer between Sn–3.5Ag solder and electroless Ni–P substrate publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2003.12.029 – volume: 23 start-page: 687 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0570 article-title: New lead-free, Sn–Zn–In solder alloys publication-title: J Electron Mater doi: 10.1007/BF02653357 – volume: 385 start-page: 119 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0575 article-title: Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2004.04.129 – volume: 59 start-page: 38 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0080 article-title: Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints publication-title: JOM doi: 10.1007/s11837-007-0087-3 – volume: 38 start-page: 25 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0450 article-title: Interfacial reaction and wetting behavior between Pt and molten solder publication-title: J Electron Mater doi: 10.1007/s11664-008-0541-1 – volume: 29 start-page: 1122 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0110 article-title: Experimental and thermodynamic assessment of Sn–Ag–Cu solder alloys publication-title: J Electron Mater doi: 10.1007/s11664-000-0003-x – volume: 31 start-page: 1304 year: 2002 ident: 10.1016/j.microrel.2014.02.025_b0735 article-title: Microstructure of a lead-free composite solder produced by an in situ process publication-title: J Electron Mater doi: 10.1007/s11664-002-0024-8 – volume: 27 start-page: 1205 year: 1998 ident: 10.1016/j.microrel.2014.02.025_b0595 article-title: Wetting interaction of Pb-free Sn–Zn–Al solders on metal plated substrate publication-title: J Electron Mater doi: 10.1007/s11664-998-0070-y – volume: 7 start-page: 1049 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0690 article-title: High strength lead-free composite solder materials using nano-Al2O3 as reinforcement publication-title: Adv Eng Mater doi: 10.1002/adem.200500109 – volume: 249 start-page: 201 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0240 article-title: The interaction kinetics and compound formation between electroless NiP and solder publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)90761-7 – volume: 88 start-page: 6887 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0175 article-title: Coarsening kinetics of Ni3Sn4 scallops during interfacial reaction between liquid eutectic solders and Cu/Ni/Pd metallization publication-title: J Appl Phys doi: 10.1063/1.1321791 – volume: 95 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0070 article-title: Enhancement of heterogeneous nucleation of β-Sn phases in Sn-rich solders by adding minor alloying elements with hexagonal closed packed structures publication-title: Appl Phys Lett doi: 10.1063/1.3177335 – volume: 166 start-page: 87 year: 2011 ident: 10.1016/j.microrel.2014.02.025_b0440 article-title: Prabhu, Reactive wetting, evolution of interfacial and bulk IMCs and their effect on mechanical properties of eutectic Sn–Cu solder alloy publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2011.05.005 – volume: 329 start-page: 134 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0710 article-title: Synthesis and characterization of gold nanoshells using poly (diallyldimethyl ammonium chloride) publication-title: Colloid Surf a – Physicochem Eng Aspect doi: 10.1016/j.colsurfa.2008.07.004 – ident: 10.1016/j.microrel.2014.02.025_b0065 doi: 10.1109/ECTC.2007.374008 – ident: 10.1016/j.microrel.2014.02.025_b0090 doi: 10.1109/ECTC.2003.1216254 – volume: 27 start-page: 508 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0055 article-title: Materials and processes for implementing high-temperature liquid interconnects publication-title: IEEE Trans Adv Packag doi: 10.1109/TADVP.2004.831843 – ident: 10.1016/j.microrel.2014.02.025_b0455 – volume: 20 start-page: 1239 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0605 article-title: Effects of Ga–Ag, Ga–Al and Al–Ag additions on the wetting characteristics of Sn–9Zn–X–Y lead-free solders publication-title: J Mater Sci: Mater Electron – volume: 21 start-page: 53 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0120 article-title: Some aspects of nucleation and growth in Pb free Sn–Ag–Cu solder publication-title: Mater Sci Technol doi: 10.1179/174328405X13994 – volume: 56 start-page: 45 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0275 article-title: Sn–Ag–Cu and Sn–Cu solders: interfacial reactions with platinum publication-title: JOM doi: 10.1007/s11837-004-0111-9 – volume: 22 start-page: 10 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0600 article-title: Investigation of Sn–Zn–Bi solders – Part I: surface tension, interfacial tension and density measurements of SnZn7Bi solders publication-title: Solder Surf Mount Technol doi: 10.1108/09540911011054145 – volume: 43 start-page: 3643 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0385 article-title: Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co publication-title: J Mater Sci doi: 10.1007/s10853-008-2580-7 – volume: 22 start-page: 1181 year: 2011 ident: 10.1016/j.microrel.2014.02.025_b0270 article-title: Interfacial reactions between liquid Sn3.5Ag0.5Cu solders and Ag substrates publication-title: J Mater Sci: Mater Electron – volume: 462–463 start-page: 376 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0250 article-title: Intermetallic compound formation between Sn–3.5Ag solder and Ni-based metallization during liquid state reaction publication-title: Thin Solid Films doi: 10.1016/j.tsf.2004.05.058 – volume: 66 start-page: 2337 year: 1995 ident: 10.1016/j.microrel.2014.02.025_b0170 article-title: Three-dimensional morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu publication-title: Appl Phys Lett doi: 10.1063/1.113975 – volume: 27 start-page: 1167 year: 1998 ident: 10.1016/j.microrel.2014.02.025_b0185 article-title: Theory for intermetallic phase growth between Cu and liquid Sn–Pb solder based on grain boundary diffusion control publication-title: J Electron Mater doi: 10.1007/s11664-998-0066-7 – ident: 10.1016/j.microrel.2014.02.025_b0720 doi: 10.1109/NANO.2012.6321891 – volume: 478 start-page: L1 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0380 article-title: Minimum effective Ni addition to SnAgCu solders for retarding Cu3Sn growth publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2008.11.027 – volume: 15 start-page: 2534 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0230 article-title: Correlation between Ni, Sn, intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni–P metallization in advanced packages publication-title: J Mater Res doi: 10.1557/JMR.2000.0363 – volume: 54 start-page: 368 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0040 article-title: Thermomechanical behaviour of environmentally benign Pb-free solders publication-title: Int Mater Rev doi: 10.1179/174328009X461069 – volume: 456 start-page: 109 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0290 article-title: The interfacial reaction between Sn–Ag alloys and Co substrate publication-title: Mater Sci Eng, A doi: 10.1016/j.msea.2006.11.117 – volume: 32 start-page: 1414 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0485 article-title: Effects of cooling rate on the microstructure and tensile behavior of a Sn–3.5wt.%Ag solder publication-title: J Electron Mater doi: 10.1007/s11664-003-0109-z – volume: 98 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0190 article-title: Early stages of soldering reactions publication-title: J Appl Phys doi: 10.1063/1.2058186 – volume: 86 start-page: 2086 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0625 article-title: Effect of Ag micro-particles content on the mechanical strength of the interface formed between Sn–Zn binary solder and Au/Ni/Cu bond pads publication-title: Microelectron Eng doi: 10.1016/j.mee.2009.01.087 – volume: 30 start-page: 1068 year: 2001 ident: 10.1016/j.microrel.2014.02.025_b0640 article-title: Sn–Zn–Al Pb-free solder—an inherent barrier solder for Cu contact publication-title: J Electron Mater doi: 10.1007/s11664-001-0131-y – year: 1996 ident: 10.1016/j.microrel.2014.02.025_b0165 – volume: 21 start-page: 1590 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0615 article-title: Interfacial reactions and shear strength on Cu and electrolytic Au/Ni metallization with Sn–Zn solder publication-title: J Mater Res doi: 10.1557/jmr.2006.0198 – volume: 35 start-page: 94 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0335 article-title: Suppression of void coalescence in thermal aging of tin–silver–copper–X solder joints publication-title: J Electron Mater doi: 10.1007/s11664-006-0190-1 – volume: 33 start-page: 1485 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0325 article-title: Elevated temperature aging of solder joints based on Sn–Ag–Cu: effects on joint microstructure and shear strength publication-title: J Electron Mater doi: 10.1007/s11664-004-0090-1 – volume: 39 start-page: 230 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0370 article-title: Interfacial reaction of Sn and Cu–xZn substrates after reflow and thermal aging publication-title: J Electron Mater doi: 10.1007/s11664-009-0992-z – volume: 53 start-page: 16027 year: 1996 ident: 10.1016/j.microrel.2014.02.025_b0180 article-title: Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening publication-title: Phys Rev B doi: 10.1103/PhysRevB.53.16027 – volume: 23 start-page: 741 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0005 article-title: Investigation of multicomponent lead-free solders publication-title: J Electron Mater doi: 10.1007/BF02651368 – volume: 39 start-page: 2403 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0295 article-title: Study of interfacial reactions between Sn(Cu) solders and Ni–Co alloy layers publication-title: J Electron Mater doi: 10.1007/s11664-010-1346-6 – volume: 400 start-page: 136 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0560 article-title: Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2005.03.053 – volume: 27 start-page: 95 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0030 article-title: Lead-free solders in microelectronics publication-title: Mater Sci Eng R – Rep doi: 10.1016/S0927-796X(00)00010-3 – ident: 10.1016/j.microrel.2014.02.025_b0225 – volume: 32 start-page: 1203 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0515 article-title: A study on the reaction between Cu and Sn3.5Ag solder doped with small amounts of Ni publication-title: J Electron Mater doi: 10.1007/s11664-003-0012-7 – volume: 54 start-page: 2907 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0525 article-title: Interfacial reactions between molten Sn–Bi–X solders and Cu substrates for liquid solder interconnects publication-title: Acta Mater doi: 10.1016/j.actamat.2006.02.030 – volume: 34 start-page: 1591 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0480 article-title: Formation of bulk Ag3Sn intermetallic compounds in Sn–Ag lead-free solders in solidification publication-title: J Electron Mater doi: 10.1007/s11664-005-0170-x – ident: 10.1016/j.microrel.2014.02.025_b0520 – volume: 21 start-page: 1 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0610 article-title: Development of Sn–Zn lead-free solders bearing alloying elements publication-title: J Mater Sci: Mater Electron – volume: 33 start-page: 1497 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0085 article-title: Accelerated thermal fatigue of lead-free solder joints as a function of reflow cooling rate publication-title: J Electron Mater doi: 10.1007/s11664-004-0091-0 – volume: 34 start-page: 1 year: 2001 ident: 10.1016/j.microrel.2014.02.025_b0160 article-title: Tin–lead (SnPb) solder reaction in flip chip technology publication-title: Mater Sci Eng R – Rep doi: 10.1016/S0927-796X(01)00029-8 – volume: 39 start-page: 2375 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0350 article-title: Study of the effects of Zn content on the interfacial reactions between Sn–Zn solders and Ni substrates at 250°C publication-title: J Electron Mater doi: 10.1007/s11664-010-1358-2 – volume: 109 year: 2011 ident: 10.1016/j.microrel.2014.02.025_b0375 article-title: The interfacial amorphous double layer and the homogeneous nucleation in reflow of a Sn–Zn solder on Cu substrate publication-title: J Appl Phys doi: 10.1063/1.3592182 – volume: 391 start-page: 82 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0430 article-title: Interfacial reaction and mechanical properties of eutectic Sn–0.7Cu/Ni BGA solder joints during isothermal long-term aging publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2004.09.001 – volume: 504 start-page: 410 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0255 article-title: Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.09.059 – volume: 36 start-page: 1501 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0345 article-title: Effects of minor additions of Zn on interfacial reactions of Sn–Ag–Cu and Sn–Cu solders with various Cu substrates during thermal aging publication-title: J Electron Mater doi: 10.1007/s11664-007-0254-x – volume: 407 start-page: 208 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0390 article-title: Effect of adding 1wt% Bi into the Sn–2.8Ag–0.5Cu solder alloy on the intermetallic formations with Cu-substrate during soldering and isothermal aging publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2005.06.050 – ident: 10.1016/j.microrel.2014.02.025_b0635 doi: 10.1109/ICEPT.2008.4607089 – volume: 50 start-page: 597 year: 1959 ident: 10.1016/j.microrel.2014.02.025_b0130 article-title: The constitution of the silver–copper–tin system publication-title: Z Metallkd – volume: 39 start-page: 2522 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0310 article-title: Interfacial reactions of Sn–3.0Ag–0.5Cu solder with Cu–Mn UBM during aging publication-title: J Electron Mater doi: 10.1007/s11664-010-1371-5 – volume: 52 start-page: 189 year: 2011 ident: 10.1016/j.microrel.2014.02.025_b0125 article-title: Formation mechanism of eutectic Cu6Sn5 and Ag3Sn after growth of primary β-Sn in Sn–Ag–Cu alloy publication-title: Mater Trans doi: 10.2320/matertrans.M2010325 – volume: 55 start-page: 61 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0155 article-title: Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu publication-title: Jom – J Miner Metals Mater Soc doi: 10.1007/s11837-003-0143-6 – volume: 38 start-page: 2479 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0415 article-title: Effect of amount of Cu on the intermetallic layer thickness between Sn–Cu solders and Cu substrates publication-title: J Electron Mater doi: 10.1007/s11664-009-0925-x – volume: 49 start-page: 223 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0670 article-title: Research advances in nano-composite solders publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2008.10.004 – volume: 68 start-page: 1 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0025 article-title: Impurity and alloying effects on interfacial reaction layers in Pb-free soldering publication-title: Mater Sci Eng R – Rep doi: 10.1016/j.mser.2009.12.001 – volume: 38 start-page: 2353 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0405 article-title: Tin whisker growth on the surface of Sn–0.7Cu lead-free solder with a rare earth (Nd) addition publication-title: J Electron Mater doi: 10.1007/s11664-009-0926-9 – volume: 46 start-page: 20 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0650 article-title: Electrochemical investigation on the effect of silver addition on wettability of Sn–Zn system lead-free solder publication-title: Weld Res Abroad – volume: 42 start-page: 827 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0730 article-title: Reflow characteristics of Sn–Ag matrix in situ composite solders publication-title: Scripta Mater doi: 10.1016/S1359-6462(99)00392-9 – volume: 360 start-page: 285 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0685 article-title: An investigation of nanoparticles addition on solidification kinetics and microstructure development of tin–lead solder publication-title: Mater Sci Eng A doi: 10.1016/S0921-5093(03)00466-0 – volume: 23 start-page: 595 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0145 article-title: A viable tin-lead solder substitute Sn–Ag–Cu publication-title: J Electron Mater doi: 10.1007/BF02653344 – year: 1993 ident: 10.1016/j.microrel.2014.02.025_b0010 – volume: 43 start-page: 453 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0565 article-title: The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate publication-title: Microelectron Reliab doi: 10.1016/S0026-2714(02)00259-7 – volume: 6 start-page: 350 year: 1985 ident: 10.1016/j.microrel.2014.02.025_b0215 article-title: The Ni–Sn (Nickel-Tin) system publication-title: J Phase Equilibr – volume: 30 start-page: 1050 year: 2001 ident: 10.1016/j.microrel.2014.02.025_b0100 article-title: Alloying effects in near-eutectic Sn–Ag–Cu solder alloys for improved microstructural stability publication-title: J Electron Mater doi: 10.1007/s11664-001-0129-5 – volume: 23 start-page: 715 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0585 article-title: Improved mechanical properties in new, Pb-free solder alloys publication-title: J Electron Mater doi: 10.1007/BF02651364 – volume: 31 start-page: 574 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0530 article-title: Interfacial reaction between molten Sn–Bi based solders and electroless Ni–P coatings for liquid solder interconnects publication-title: IEEE Trans Compon Packag Technol doi: 10.1109/TCAPT.2008.2001160 – volume: 49 start-page: 1 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0020 article-title: Interfacial reactions between lead-free solders and common base materials publication-title: Mater Sci Eng R – Rep doi: 10.1016/j.mser.2005.03.001 – volume: 31 start-page: 431 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0235 article-title: Effect of 0.5wt% Cu in Sn–3.5%Ag solder to retard interfacial reactions with the electroless Ni–P metallization for BGA solder joints application publication-title: IEEE Trans Compon Packag Technol doi: 10.1109/TCAPT.2008.921641 – volume: 11 start-page: 587 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0245 article-title: Metallurgical reaction and mechanical strength of electroless Ni–P solder joints for advanced packaging applications publication-title: J Mater Sci: Mater Electron – volume: 54 start-page: 2393 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0360 article-title: Phase equilibria of the Sn–Zn–Cu ternary system publication-title: Acta Mater doi: 10.1016/j.actamat.2006.01.014 – year: 1989 ident: 10.1016/j.microrel.2014.02.025_b0490 – ident: 10.1016/j.microrel.2014.02.025_b0460 – ident: 10.1016/j.microrel.2014.02.025_b0545 – ident: 10.1016/j.microrel.2014.02.025_b0265 doi: 10.1109/ECTC.2010.5490894 – volume: 41 start-page: 1907 year: 2012 ident: 10.1016/j.microrel.2014.02.025_b0665 article-title: Disabling of nanoparticle effects at increased temperature in nanocomposite solders publication-title: J Electron Mater doi: 10.1007/s11664-012-1976-y – volume: 57 start-page: 3193 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0680 article-title: Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin–lead solder publication-title: Mater Lett doi: 10.1016/S0167-577X(03)00023-5 – volume: 29 start-page: 1214 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0495 article-title: Copper substrate dissolution in eutectic Sn–Ag solder and its effect on microstructure publication-title: J Electron Mater doi: 10.1007/s11664-000-0015-6 – volume: 93 start-page: 1335 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0320 article-title: Physics and materials challenges for lead-free solders publication-title: J Appl Phys doi: 10.1063/1.1517165 – volume: 23 start-page: 603 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0540 article-title: On the Sn–Bi–Ag ternary phase diagram publication-title: J Electron Mater doi: 10.1007/BF02653345 – volume: 37 start-page: 393 year: 1997 ident: 10.1016/j.microrel.2014.02.025_b0195 article-title: Reactions of solid copper with pure liquid tin and liquid tin saturated with copper publication-title: Scripta Mater doi: 10.1016/S1359-6462(97)00129-2 – year: 1996 ident: 10.1016/j.microrel.2014.02.025_b0220 – volume: 511 start-page: 176 year: 2012 ident: 10.1016/j.microrel.2014.02.025_b0045 article-title: Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and Ni–P substrates publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2011.09.024 – ident: 10.1016/j.microrel.2014.02.025_b0715 doi: 10.1109/EPTC.2007.4469800 – year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0740 – volume: 28 start-page: 1127 year: 1999 ident: 10.1016/j.microrel.2014.02.025_b0475 article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part I—thermal properties and microstructural analysis publication-title: J Electron Mater doi: 10.1007/s11664-999-0250-4 – ident: 10.1016/j.microrel.2014.02.025_b0150 doi: 10.1109/ECTC.2007.374006 – volume: 38 start-page: 1530 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0135 article-title: Solidification condition effects on microstructures and creep resistance of Sn–3.8Ag–0.7Cu lead-free publication-title: Metall Mater Trans A doi: 10.1007/s11661-007-9222-6 – start-page: 119 year: 2012 ident: 10.1016/j.microrel.2014.02.025_b0340 article-title: Effects of minor alloying additions on the properties and reliability of Pb-free solders and joints – volume: 21 start-page: 2986 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0620 article-title: Effect of Cu addition on interfacial reaction between Sn–9Zn solder and Ag publication-title: J Mater Res doi: 10.1557/jmr.2006.0369 – volume: 46 start-page: 2419 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0465 article-title: Microstructure control in Sn–0.7mass%Cu alloys publication-title: Mater Trans doi: 10.2320/matertrans.46.2419 – volume: 31 start-page: 1155 year: 2000 ident: 10.1016/j.microrel.2014.02.025_b0115 article-title: Tin–silver–copper eutectic temperature and composition publication-title: Metall Mater Trans A doi: 10.1007/s11661-000-0111-5 – volume: 91 start-page: 3312 year: 2002 ident: 10.1016/j.microrel.2014.02.025_b0205 article-title: Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow publication-title: J Appl Phys doi: 10.1063/1.1445283 – volume: 53 start-page: 699 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0075 article-title: Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2005.05.013 – volume: 35 start-page: 343 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0425 article-title: Phase distribution and phase analysis in Cu6Sn5, Ni3Sn4, and the Sn-rich corner in the ternary Sn–Cu–Ni isotherm at 240°C publication-title: J Electron Mater doi: 10.1007/BF02692455 – volume: 25 start-page: 410 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0580 article-title: Wetting behavior and interfacial reactions in (Sn–9Zn)–2Cu/Ni joints during soldering and isothermal aging publication-title: J Mater Sci Technol – volume: 24 start-page: 198 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0280 article-title: Pt–Sn (platinum–tin) publication-title: J Phase Equilibr doi: 10.1361/105497103770330938 – start-page: 39 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0140 article-title: The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints – volume: 3 start-page: 1786 year: 2013 ident: 10.1016/j.microrel.2014.02.025_b0365 article-title: Electronics assembly and high temperature reliability using Sn–3.8Ag–0.7Cu solder paste with Zn additives, components, packaging and manufacturing technology publication-title: IEEE Trans – year: 1958 ident: 10.1016/j.microrel.2014.02.025_b0535 – volume: 34 start-page: 1399 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0700 article-title: Development of nano-composite lead-free electronic solders publication-title: J Electron Mater doi: 10.1007/s11664-005-0197-z – volume: 20 start-page: 2914 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0060 article-title: Effect of sample size on the solidification temperature and microstructure of SnAgCu near eutectic alloys publication-title: J Mater Res doi: 10.1557/JMR.2005.0361 – volume: 376 start-page: 170 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0550 article-title: Improvement on the microstructure stability, mechanical and wetting properties of Sn–Ag–Cu lead-free solder with the addition of rare earth elements publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2004.01.012 – year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0015 – volume: 39 start-page: 1303 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0285 article-title: Coupling effect of the interfacial reaction in Co/Sn/Cu diffusion couples publication-title: J Electron Mater doi: 10.1007/s11664-010-1180-x – volume: 38 start-page: 2770 year: 2009 ident: 10.1016/j.microrel.2014.02.025_b0105 article-title: Nucleation control and thermal aging resistance of near-eutectic Sn–Ag–Cu–X solder joints by alloy design publication-title: J Electron Mater doi: 10.1007/s11664-009-0936-7 – volume: 33 start-page: 991 year: 2004 ident: 10.1016/j.microrel.2014.02.025_b0330 article-title: Solid-state intermetallic compound layer growth between copper and 95.5Sn–3.9Ag–0.6Cu solder publication-title: J Electron Mater doi: 10.1007/s11664-004-0026-9 – volume: 55 start-page: 2805 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0210 article-title: Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing publication-title: Acta Mater doi: 10.1016/j.actamat.2006.12.019 – ident: 10.1016/j.microrel.2014.02.025_b0305 doi: 10.1109/ECTC.2009.5073996 – volume: 18 start-page: 1235 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0400 article-title: Microstructure and mechanical properties of lead-free Sn–Cu solder composites prepared by rapid directional solidification publication-title: J Mater Sci: Mater Electron – volume: 45 start-page: 951 year: 1997 ident: 10.1016/j.microrel.2014.02.025_b0590 article-title: Thermodynamics-aided alloy design and evaluation of Pb-free solder, Sn–Bi–In–Zn system publication-title: Acta Mater doi: 10.1016/S1359-6454(96)00253-4 – volume: 48 start-page: 1047 year: 2003 ident: 10.1016/j.microrel.2014.02.025_b0655 article-title: Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys publication-title: Scripta Mater doi: 10.1016/S1359-6462(02)00647-4 – volume: 48 start-page: 1 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0725 article-title: A study of nanoparticles in Sn–Ag based lead free solders publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2007.05.004 – volume: 5 start-page: 545 year: 1999 ident: 10.1016/j.microrel.2014.02.025_b0410 article-title: Development of lead (Pb)-free interconnection materials for microelectronics publication-title: Met Mater Int doi: 10.1007/BF03026302 – ident: 10.1016/j.microrel.2014.02.025_b0675 doi: 10.1109/ESTC.2008.4684476 – volume: 29 start-page: 778 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0095 article-title: Nucleation kinetics and solidification temperatures of SnAgCu interconnections during reflow process publication-title: IEEE Trans Compon Packag Technol doi: 10.1109/TCAPT.2006.885946 – volume: 460 start-page: 478 year: 2008 ident: 10.1016/j.microrel.2014.02.025_b0630 article-title: Study on the properties of Sn–9Zn–xCr lead-free solder publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2007.05.087 – volume: 111 year: 2012 ident: 10.1016/j.microrel.2014.02.025_b0050 article-title: Massive spalling of Cu–Zn and Cu–Al intermetallic compounds at the interface between solders and Cu substrate during liquid state reaction publication-title: J Appl Phys doi: 10.1063/1.3699359 – volume: 23 start-page: 765 year: 1994 ident: 10.1016/j.microrel.2014.02.025_b0470 article-title: Microstructure evolution of eutectic Sn–Ag solder joints publication-title: J Electron Mater doi: 10.1007/BF02651371 – year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0395 – volume: 504 start-page: 441 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0300 article-title: Interfacial microstructures and kinetics of Au/SnAgCu publication-title: Thin Solid Films doi: 10.1016/j.tsf.2005.09.112 – volume: 31 start-page: 5479 year: 1996 ident: 10.1016/j.microrel.2014.02.025_b0445 article-title: Compound growth in platinum/tin–lead solder diffusion couples publication-title: J Mater Sci doi: 10.1007/BF01159320 – volume: 146–147 start-page: 502 year: 2001 ident: 10.1016/j.microrel.2014.02.025_b0260 article-title: Thermal stability and mechanical properties of Ni–W–P electroless deposits publication-title: Surf Coat Technol doi: 10.1016/S0257-8972(01)01462-1 – volume: 413–414 start-page: 312 year: 2005 ident: 10.1016/j.microrel.2014.02.025_b0660 article-title: Solidification behavior of Sn–9Zn–xAg lead-free solder alloys publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2005.08.185 – volume: 35 start-page: 1672 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0695 article-title: Strengthening effects of ZrO2 nanoparticles on the microstructure and microhardness of Sn–3.5Ag lead-free solder publication-title: J Electron Mater doi: 10.1007/s11664-006-0216-8 – ident: 10.1016/j.microrel.2014.02.025_b0705 doi: 10.1109/ESTC.2008.4684476 – volume: 28 start-page: 1138 year: 1999 ident: 10.1016/j.microrel.2014.02.025_b0505 article-title: Properties of ternary Sn–Ag–Bi solder alloys: Part II—wettability and mechanical properties analyses publication-title: J Electron Mater doi: 10.1007/s11664-999-0251-3 – volume: 35 start-page: 181 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0435 article-title: Morphology and growth kinetics of intermetallic compounds in solid-state interfacial reaction of electroless Ni–P with Sn-based lead-free solders publication-title: J Electron Mater doi: 10.1007/s11664-006-0202-1 – volume: 34 start-page: 539 year: 1970 ident: 10.1016/j.microrel.2014.02.025_b0200 article-title: On the growth of alloy layer between solid copper and liquid tin publication-title: J Jpn Inst Met doi: 10.2320/jinstmet1952.34.5_539 – ident: 10.1016/j.microrel.2014.02.025_b0645 – volume: 39 start-page: 2720 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0035 article-title: Reactions of Sn–3.5Ag-based solders containing Zn and Al additions on Cu and Ni(P) substrates publication-title: J Electron Mater doi: 10.1007/s11664-010-1382-2 – volume: 420 start-page: 39 year: 2006 ident: 10.1016/j.microrel.2014.02.025_b0510 article-title: Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.01.032 – volume: 101 year: 2007 ident: 10.1016/j.microrel.2014.02.025_b0355 article-title: Massive spalling of intermetallic compounds in solder-substrate reactions due to limited supply of the active element publication-title: J Appl Phys doi: 10.1063/1.2717564 – volume: 40 start-page: 62 year: 2011 ident: 10.1016/j.microrel.2014.02.025_b0555 article-title: Effects of Co alloying and size on solidification and interfacial reactions in Sn–57wt.%Bi–(Co)/Cu couples publication-title: J Electron Mater doi: 10.1007/s11664-010-1386-y – volume: 39 year: 2010 ident: 10.1016/j.microrel.2014.02.025_b0315 article-title: Kinetics of intermetallic compound formation at the interface between Sn–3.0Ag–0.5Cu solder and Cu–Zn alloy substrates publication-title: J Electron Mater |
SSID | ssj0007011 |
Score | 2.55088 |
SecondaryResourceType | review_article |
Snippet | Pb-based solders have been the cornerstone technology of electronic interconnections for many decades. However, with legislation in the European Union and... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | Applied sciences Complex systems Cross-disciplinary physics: materials science; rheology Design. Technologies. Operation analysis. Testing Electronics Exact sciences and technology Integrated circuits Interconnections Interface reactions Interfacial reactions Intermetallic compounds Lead (metal) Lead-free solder Legislation Materials science Microelectronic fabrication (materials and surfaces technology) Nanocomposite solders Nanoscale materials and structures: fabrication and characterization Other topics in nanoscale materials and structures Physics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Soldering Solders Tin |
Title | A review: On the development of low melting temperature Pb-free solders |
URI | https://dx.doi.org/10.1016/j.microrel.2014.02.025 https://www.proquest.com/docview/1671606172 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvSgiPrE-ygpe0zav3Y23UqxVsXqw0FvYZHehpU1LH3jztzuTRx8o9CDkkrCTLDOTebDfzBByr6UQOP7EMoIrSFBMA-ygryytZGTz2BZxWsf91mWdnvfS9_sl0ipqYRBWmdv-zKan1jp_Us-5WZ8OBljj6zCH2x6kCOjI0gp2j6OW177XMA_esLOpeQ6zcPVGlfCwNkbQ20zjEYTtpb07cWT23w7qcCrnwDaTzbv4ZbpTf9Q-Jkd5IEmb2V5PSEknp-Rgo73gGXlq0qwy5YG-JxQiParWECE6MXQ0-aJjPULkM8UeVXmDZfoRWWamNQW9RJzzOem1Hz9bHSsfnGDFLvcXltBMRVLxmEWBB17QdmPI8xTzJFdGRV4MPx2IggXGkRAORIJHAs87wVPxAFJG94KUk0miLwkVsQ6M6wa-ADrdMNI32DNOMldp4dlOhfgFt8I47yqOwy1GYQEfG4YFl0Pkcthw4PIrpL6im2Z9NXZSBIUwwi0NCcH476Stbklv9UlHQEYFVqhC7gpxwgvmeGgiEz1ZzkObQUaZxnlX_9jANdnHuwxjdkPKi9lS30I0s4iqqbpWyV7z-bXT_QEncPTt |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLRVhfpC3fKokegx7NpJbKcSBwSlS3m0B5C4uU5sS6Alu9pdhLjwp_iDncmDh4rEoULKKdE41ow9D803MwBr3mpN40-ioJXDACX0UA-mLvLO5lwVXBdVHffBoewfJz9P0pMZuGlrYQhW2ej-WqdX2rp502242R2dnlKNr5BC8QRDBDJkvEFW7vmrS4zbJhu72yjkr0LsfD_a6kfNaIGoiFU6jbSXLrdOFTLPErQTPC4wEnIyscoFlycFHkvcrMyCsGgwc61yTRlB1OUqw6AqxnVfwFyC6oLGJqxf3-FKVI_XY_qEjGh798qSz9bPCWU39pTz4EnVLJRmdD9uEd-M7ATlFOoBG__YisoA7ryF-cZzZZs1c97BjC_fw-t7_Qw_wI9NVpfCfGO_SoauJXN3mCQ2DGwwvGTnfkBQa0ZNsZqOzux3HoWx9wwvAgGrP8Lxs7BzAWbLYek_AdOFz0IcZ6lGOt8LNg3UpM7K2HmdcNGBtOWWKZo25jRNY2BavNqZablsiMumJ_BJO9C9pRvVjTyepMhaYZgHR9KgtXmSduWB9G5_KTSGcKj2OrDaihMXmFCWxpZ-eDExXGIIWzmWn_9jA1_gZf_oYN_s7x7uLcIr-lID3JZgdjq-8MvoSk3zleroMvjz3HflL0QTMIw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review%3A+On+the+development+of+low+melting+temperature+Pb-free+solders&rft.jtitle=Microelectronics+and+reliability&rft.au=KOTADIA%2C+Hiren+R&rft.au=HOWES%2C+Philip+D&rft.au=MANNAN%2C+Samjid+H&rft.date=2014-06-01&rft.pub=Elsevier&rft.issn=0026-2714&rft.volume=54&rft.issue=6-7&rft.spage=1253&rft.epage=1273&rft_id=info:doi/10.1016%2Fj.microrel.2014.02.025&rft.externalDBID=n%2Fa&rft.externalDocID=28559319 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2714&client=summon |