A method to manipulate non-steady-state columnar-to-equiaxed transition in powder bed fusion additive manufacturing using an electron beam
Site-specific control of solidification grain structure is one of the largest attractiveness of manufacturing metallic parts with powder bed fusion additive manufacturing. In this study, we manufacture non-weldable superalloy Alloy713ELC with powder bed fusion additive manufacturing using an electro...
Saved in:
Published in | Acta materialia Vol. 227; p. 117717 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Site-specific control of solidification grain structure is one of the largest attractiveness of manufacturing metallic parts with powder bed fusion additive manufacturing. In this study, we manufacture non-weldable superalloy Alloy713ELC with powder bed fusion additive manufacturing using an electron beam (PBF-EB) and achieve various bulk solidification grain structures, i.e. near fully equiaxed structure, interlocked zigzag structure, and columnar structures with various grain widths, through controlling process parameters under a line order scan strategy. An analytical transient model, which is capable of simulating heat transfer in PBF-EB single-layer melting under the experimental conditions, is established and validated by compared to numerical models of computational fluid dynamics and finite element method in PBF-EB single-track melting. The evolutions of solidification grain structure are rationalized using microstructural characterization and simulations based on various models. It is found that the mechanisms of columnar grain refinement and columnar-to-equiaxed transition (CET) are related to the Walton and Chalmers selection effect, which is governed by the spatial and temporal variations of solidification direction, and to the effect of convection within mushy zone. Based on the grain structure evolution mechanisms, we propose a method to manipulate CET or to achieve a novel interlocked zigzag grain structure in PBF-EB.
[Display omitted] . |
---|---|
AbstractList | Site-specific control of solidification grain structure is one of the largest attractiveness of manufacturing metallic parts with powder bed fusion additive manufacturing. In this study, we manufacture non-weldable superalloy Alloy713ELC with powder bed fusion additive manufacturing using an electron beam (PBF-EB) and achieve various bulk solidification grain structures, i.e. near fully equiaxed structure, interlocked zigzag structure, and columnar structures with various grain widths, through controlling process parameters under a line order scan strategy. An analytical transient model, which is capable of simulating heat transfer in PBF-EB single-layer melting under the experimental conditions, is established and validated by compared to numerical models of computational fluid dynamics and finite element method in PBF-EB single-track melting. The evolutions of solidification grain structure are rationalized using microstructural characterization and simulations based on various models. It is found that the mechanisms of columnar grain refinement and columnar-to-equiaxed transition (CET) are related to the Walton and Chalmers selection effect, which is governed by the spatial and temporal variations of solidification direction, and to the effect of convection within mushy zone. Based on the grain structure evolution mechanisms, we propose a method to manipulate CET or to achieve a novel interlocked zigzag grain structure in PBF-EB.
[Display omitted] . |
ArticleNumber | 117717 |
Author | Aoyagi, Kenta Chiba, Akihiko Lei, Yuchao |
Author_xml | – sequence: 1 givenname: Yuchao surname: Lei fullname: Lei, Yuchao organization: Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan – sequence: 2 givenname: Kenta surname: Aoyagi fullname: Aoyagi, Kenta email: kenta.aoyagi.e7@tohoku.ac.jp organization: Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan – sequence: 3 givenname: Akihiko surname: Chiba fullname: Chiba, Akihiko organization: Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan |
BookMark | eNqFkE1uFDEQhS0UJJLAEZB8gR781-0esUBRBAEpEhtYWzV2NXjUbQ-2O5ArcGqqNVmxycIuq57fs-u7YhcpJ2TsrRQ7KeTw7rgD32CBtlNCqZ2U1kr7gl3K0epOmV5f0Fn3-24wvXnFrmo9CiGVNeKS_b3hC7afOfCW-QIpntYZGnJ6oqsNITxS2Ro-z-uSoHQtd_hrjfAHyVMg1dhiTjwmfsq_AxZ-IGFa69aEEEh9wC15neiXa4npByeRdkgcZ_St0MUDwvKavZxgrvjmqV6z758-frv93N1_vftye3PfeW371o17MGo_KBis0BPIKcABsZcjBguCFKMNLREUjBNosxejGIzS1PO2nw76mvXnXF9yrQUndypxgfLopHAbUHd0T0DdBtSdgZLv_X8-HwkNzUkY4vys-8PZjTTaQ8Tiqo-YPIZYCIILOT6T8A-kwZou |
CitedBy_id | crossref_primary_10_1016_j_addma_2023_103946 crossref_primary_10_1016_j_matchar_2024_114589 crossref_primary_10_1016_j_jalmes_2024_100120 crossref_primary_10_1016_j_jmapro_2023_06_013 crossref_primary_10_1016_j_addma_2023_103428 crossref_primary_10_1016_j_addma_2023_103823 crossref_primary_10_1016_j_powtec_2023_118438 crossref_primary_10_3390_modelling4030019 crossref_primary_10_1016_j_pmatsci_2024_101361 crossref_primary_10_1016_j_apm_2024_115900 crossref_primary_10_1016_j_jmrt_2024_09_156 crossref_primary_10_1016_j_jmrt_2023_04_255 crossref_primary_10_1016_j_jmatprotec_2023_118104 crossref_primary_10_1016_j_jallcom_2024_176279 crossref_primary_10_1007_s40964_024_00807_6 crossref_primary_10_1016_j_jmatprotec_2023_117927 crossref_primary_10_1016_j_pmatsci_2023_101108 crossref_primary_10_1016_j_msea_2024_147023 crossref_primary_10_2497_jjspm_24_00012 |
Cites_doi | 10.1007/s11661-018-4793-y 10.1016/0956-7151(93)90065-Z 10.1016/j.msea.2020.139485 10.1080/13640461.1998.11819254 10.1016/j.actamat.2017.08.038 10.1016/j.apm.2019.07.008 10.1016/j.actamat.2016.03.063 10.1016/j.actamat.2019.07.041 10.1016/S1468-6996(01)00047-X 10.1016/j.actamat.2021.117133 10.1007/BF02672593 10.1038/srep43554 10.1016/0001-6160(81)90082-1 10.1007/s11663-000-0022-2 10.1016/j.scriptamat.2018.03.041 10.1007/BF02650147 10.1179/1743284714Y.0000000734 10.1016/S1359-6454(00)00367-0 10.1016/0001-6160(86)90056-8 10.1016/j.commatsci.2018.08.064 10.1007/s11665-014-0958-z 10.1016/0025-5416(84)90201-5 10.1016/j.apm.2018.09.018 10.1016/j.jclepro.2015.04.109 10.1007/s11661-018-4762-5 10.1179/1743284714Y.0000000697 |
ContentType | Journal Article |
Copyright | 2022 Acta Materialia Inc. |
Copyright_xml | – notice: 2022 Acta Materialia Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2022.117717 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | 10_1016_j_actamat_2022_117717 S1359645422001033 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 |
ID | FETCH-LOGICAL-c375t-89a42962a6703fa1fdabee518ed7a02964346430d2a8fa3490806423643c75fb3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Tue Jul 01 01:30:14 EDT 2025 Thu Apr 24 22:51:14 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Powder bed fusion additive manufacturing Superalloy Columnar-to-equiaxed transition Crystallographic texture Solidification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-89a42962a6703fa1fdabee518ed7a02964346430d2a8fa3490806423643c75fb3 |
ParticipantIDs | crossref_primary_10_1016_j_actamat_2022_117717 crossref_citationtrail_10_1016_j_actamat_2022_117717 elsevier_sciencedirect_doi_10_1016_j_actamat_2022_117717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Stump, Plotkowski (bib0023) 2019; 75 Körner, Helmer, Bauereiß, Singer (bib0007) 2014 Dehoff, Kirka, Sames, Bilheux, Tremsin, Lowe, Babu (bib0010) 2015 Hutt, StJohn (bib0034) 1998 Helmer, Bauereiß, Singer, Körner (bib0008) 2016 Zhao, Koizumi, Aoyagi, Wei, Yamanaka, Chiba (bib0015) 2019 Dehoff, Kirka, List, Unocic, Sames (bib0009) 2015 Lei, Aoyagi, Cui, Kang, Kuwabara, Aota, Chiba (bib0016) 2020; 787 Rappaz, Gandin (bib0033) 1993 Komanduri, Hou (bib0024) 2000 Kurz, Fisher (bib0038) 1981 Chauvet, Tassin, Blandin, Dendievel, Martin (bib0005) 2018; 152 Plotkowski, Kirka, Babu (bib0019) 2017; 18 Kurz, Bezençon, Gäumann (bib0028) 2001; 2 Rappaz, David, Vitek, Boatner (bib0035) 1989 Forslund, Snis, Larsson (bib0020) 2019 Körner, Ramsperger, Meid, Bürger, Wollgramm, Bartsch, Eggeler (bib0004) 2018; 49 Fernandez-Zelaia, Kirka, Rossy, Lee, Dryepondt (bib0006) 2021 Schwalbach, Donegan, Chapman, Chaput, Groeber (bib0021) 2019 Gäumann, Bezençon, Canalis, Kurz (bib0026) 2001 Rappaz, David, Vitek, Boatner (bib0036) 1990 Hunt (bib0027) 1984; 65 Frazier (bib0001) 2014; 23 Plotkowski, Ferguson, Stump, Halsey, Paquit, Joslin, Babu, Marquez Rossy, Kirka, Dehoff (bib0011) 2021; 46 Aoyagi, Wang, Sudo, Chiba (bib0018) 2019; 27 Kontis, Chauvet, Peng, He, da Silva, Raabe, Tassin, Blandin, Abed, Dendievel, Gault, Martin (bib0013) 2019; 177 Frederick, Plotkowski, Kirka, Haines, Staub, Schwalbach, Cullen, Babu (bib0031) 2018 Walton, Chalmers (bib0032) 1959; 215 Steuben, Birnbaum, Michopoulos, Iliopoulos (bib0022) 2019 Zhao, Koizumi, Aoyagi, Wei, Yamanaka, Chiba (bib0025) 2019; 26 . Lei, Aoyagi, Aota, Kuwabara, Chiba (bib0017) 2021 Huang, Riddle, Graziano, Warren, Das, Nimbalkar, Cresko, Masanet (bib0002) 2016; 135 Ramsperger, Körner (bib0003) 2016 Haines, Plotkowski, Frederick, Schwalbach, Babu (bib0030) 2018 Raghavan, Simunovic, Dehoff, Plotkowski, Turner, Kirka, Babu (bib0014) 2017 J. Raplee, A. Plotkowski, M.M. Kirka, R. Dinwiddie, A. Okello, R.R. Dehoff, S.S. Babu, Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing, Sci. Rep. (2017). doi Raghavan, Dehoff, Pannala, Simunovic, Kirka, Turner, Carlson, Babu (bib0012) 2016 Kurz, Giovanola, Trivedi (bib0029) 1986 Chauvet (10.1016/j.actamat.2022.117717_bib0005) 2018; 152 Huang (10.1016/j.actamat.2022.117717_bib0002) 2016; 135 Helmer (10.1016/j.actamat.2022.117717_bib0008) 2016 Fernandez-Zelaia (10.1016/j.actamat.2022.117717_bib0006) 2021 Körner (10.1016/j.actamat.2022.117717_bib0004) 2018; 49 Frederick (10.1016/j.actamat.2022.117717_bib0031) 2018 Frazier (10.1016/j.actamat.2022.117717_bib0001) 2014; 23 Dehoff (10.1016/j.actamat.2022.117717_bib0009) 2015 Dehoff (10.1016/j.actamat.2022.117717_bib0010) 2015 Hutt (10.1016/j.actamat.2022.117717_bib0034) 1998 Rappaz (10.1016/j.actamat.2022.117717_bib0035) 1989 Rappaz (10.1016/j.actamat.2022.117717_bib0033) 1993 Plotkowski (10.1016/j.actamat.2022.117717_bib0011) 2021; 46 Raghavan (10.1016/j.actamat.2022.117717_bib0012) 2016 Raghavan (10.1016/j.actamat.2022.117717_bib0014) 2017 Komanduri (10.1016/j.actamat.2022.117717_bib0024) 2000 Körner (10.1016/j.actamat.2022.117717_bib0007) 2014 Zhao (10.1016/j.actamat.2022.117717_bib0015) 2019 Kontis (10.1016/j.actamat.2022.117717_bib0013) 2019; 177 Forslund (10.1016/j.actamat.2022.117717_bib0020) 2019 Rappaz (10.1016/j.actamat.2022.117717_bib0036) 1990 Kurz (10.1016/j.actamat.2022.117717_bib0038) 1981 Schwalbach (10.1016/j.actamat.2022.117717_bib0021) 2019 Haines (10.1016/j.actamat.2022.117717_bib0030) 2018 Walton (10.1016/j.actamat.2022.117717_bib0032) 1959; 215 Ramsperger (10.1016/j.actamat.2022.117717_bib0003) 2016 Hunt (10.1016/j.actamat.2022.117717_bib0027) 1984; 65 10.1016/j.actamat.2022.117717_bib0037 Aoyagi (10.1016/j.actamat.2022.117717_bib0018) 2019; 27 Lei (10.1016/j.actamat.2022.117717_bib0016) 2020; 787 Steuben (10.1016/j.actamat.2022.117717_bib0022) 2019 Plotkowski (10.1016/j.actamat.2022.117717_bib0019) 2017; 18 Gäumann (10.1016/j.actamat.2022.117717_bib0026) 2001 Kurz (10.1016/j.actamat.2022.117717_bib0028) 2001; 2 Lei (10.1016/j.actamat.2022.117717_bib0017) 2021 Stump (10.1016/j.actamat.2022.117717_bib0023) 2019; 75 Zhao (10.1016/j.actamat.2022.117717_bib0025) 2019; 26 Kurz (10.1016/j.actamat.2022.117717_bib0029) 1986 |
References_xml | – start-page: 341 year: 2016 end-page: 349 ident: bib0003 article-title: Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4®: from columnar grains to a single crystal publication-title: Proc. Int. Symp. Superalloys – year: 2021 ident: bib0017 article-title: Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting publication-title: Acta Mater – year: 1989 ident: bib0035 article-title: Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds publication-title: Metall. Trans. A. – volume: 26 start-page: 202 year: 2019 end-page: 214 ident: bib0025 article-title: Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy publication-title: Addit. Manuf. – volume: 49 start-page: 3781 year: 2018 end-page: 3792 ident: bib0004 article-title: Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing publication-title: Metall. Mater. Trans. A. – year: 2001 ident: bib0026 article-title: Single-crystal laser deposition of superalloys: processing-microstructure maps publication-title: Acta Mater – year: 2018 ident: bib0031 article-title: Geometry-Induced Spatial Variation of Microstructure Evolution During Selective Electron Beam Melting of Rene-N5 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. – year: 2021 ident: bib0006 article-title: Nickel-based superalloy single crystals fabricated via electron beam melting publication-title: Acta Mater – volume: 75 start-page: 787 year: 2019 end-page: 805 ident: bib0023 article-title: An adaptive integration scheme for heat conduction in additive manufacturing publication-title: Appl. Math. Model. – volume: 65 start-page: 75 year: 1984 end-page: 83 ident: bib0027 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. – year: 1998 ident: bib0034 article-title: The origins of the equiaxed zone -Review of theoretical and experimental work publication-title: Int. J. Cast Met. Res. – volume: 152 start-page: 15 year: 2018 end-page: 19 ident: bib0005 article-title: Producing Ni-base superalloys single crystal by selective electron beam melting publication-title: Scr. Mater. – year: 2017 ident: bib0014 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater – year: 2019 ident: bib0015 article-title: Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy publication-title: Materialia – year: 2019 ident: bib0022 article-title: Enriched analytical solutions for additive manufacturing modeling and simulation publication-title: Addit. Manuf. – year: 2015 ident: bib0010 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. (United Kingdom) – volume: 46 year: 2021 ident: bib0011 article-title: A stochastic scan strategy for grain structure control in complex geometries using electron beam powder bed fusion publication-title: Addit. Manuf. – year: 1981 ident: bib0038 article-title: Dendrite growth at the limit of stability: tip radius and spacing publication-title: Acta Metall – year: 2019 ident: bib0021 article-title: A discrete source model of powder bed fusion additive manufacturing thermal history publication-title: Addit. Manuf. – year: 2016 ident: bib0012 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater – volume: 23 start-page: 1917 year: 2014 end-page: 1928 ident: bib0001 article-title: Metal additive manufacturing: a review publication-title: J. Mater. Eng. Perform. – year: 2014 ident: bib0007 article-title: Tailoring the grain structure of IN718 during selective electron beam melting publication-title: MATEC Web Conf. – year: 1990 ident: bib0036 article-title: Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds publication-title: Metall. Trans. A. – year: 1993 ident: bib0033 article-title: Probabilistic modelling of microstructure formation in solidification processes publication-title: Acta Metall. Mater. – year: 2015 ident: bib0009 article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718 publication-title: Mater. Sci. Technol. (United Kingdom) – year: 2000 ident: bib0024 article-title: Thermal analysis of the arc welding process: part I. General solutions publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. – volume: 177 start-page: 209 year: 2019 end-page: 221 ident: bib0013 article-title: Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys publication-title: Acta Mater – reference: . – year: 2018 ident: bib0030 article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing publication-title: Comput. Mater. Sci. – volume: 2 start-page: 185 year: 2001 end-page: 191 ident: bib0028 article-title: Columnar to equiaxed transition in solidification processing publication-title: Sci. Technol. Adv. Mater. – reference: J. Raplee, A. Plotkowski, M.M. Kirka, R. Dinwiddie, A. Okello, R.R. Dehoff, S.S. Babu, Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing, Sci. Rep. (2017). doi: – year: 2016 ident: bib0008 article-title: Grain structure evolution in Inconel 718 during selective electron beam melting publication-title: Mater. Sci. Eng. A. – year: 2019 ident: bib0020 article-title: Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters publication-title: Appl. Math. Model. – year: 1986 ident: bib0029 article-title: Theory of microstructural development during rapid solidification publication-title: Acta Metall – volume: 787 year: 2020 ident: bib0016 article-title: Process optimization and mechanical property investigation of non-weldable superalloy Alloy713ELC manufactured with selective electron beam melting publication-title: Mater. Sci. Eng. A. – volume: 27 start-page: 353 year: 2019 end-page: 362 ident: bib0018 article-title: Simple method to construct process maps for additive manufacturing using a support vector machine publication-title: Addit. Manuf. – volume: 135 start-page: 1559 year: 2016 end-page: 1570 ident: bib0002 article-title: Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components publication-title: J. Clean. Prod. – volume: 18 start-page: 256 year: 2017 end-page: 268 ident: bib0019 article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing publication-title: Addit. Manuf. – volume: 215 start-page: 447 year: 1959 end-page: 457 ident: bib0032 article-title: The origin of the preferred orientation in the columnar zone of ingots publication-title: Trans. Am. Inst. Min. Metall. Eng. – year: 2021 ident: 10.1016/j.actamat.2022.117717_bib0017 article-title: Critical factor triggering grain boundary cracking in non-weldable superalloy Alloy713ELC fabricated with selective electron beam melting publication-title: Acta Mater – year: 2018 ident: 10.1016/j.actamat.2022.117717_bib0031 article-title: Geometry-Induced Spatial Variation of Microstructure Evolution During Selective Electron Beam Melting of Rene-N5 publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-018-4793-y – year: 2014 ident: 10.1016/j.actamat.2022.117717_bib0007 article-title: Tailoring the grain structure of IN718 during selective electron beam melting – volume: 27 start-page: 353 year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0018 article-title: Simple method to construct process maps for additive manufacturing using a support vector machine publication-title: Addit. Manuf. – year: 1993 ident: 10.1016/j.actamat.2022.117717_bib0033 article-title: Probabilistic modelling of microstructure formation in solidification processes publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(93)90065-Z – year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0015 article-title: Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy publication-title: Materialia – volume: 787 year: 2020 ident: 10.1016/j.actamat.2022.117717_bib0016 article-title: Process optimization and mechanical property investigation of non-weldable superalloy Alloy713ELC manufactured with selective electron beam melting publication-title: Mater. Sci. Eng. A. doi: 10.1016/j.msea.2020.139485 – year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0022 article-title: Enriched analytical solutions for additive manufacturing modeling and simulation publication-title: Addit. Manuf. – year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0021 article-title: A discrete source model of powder bed fusion additive manufacturing thermal history publication-title: Addit. Manuf. – year: 1998 ident: 10.1016/j.actamat.2022.117717_bib0034 article-title: The origins of the equiaxed zone -Review of theoretical and experimental work publication-title: Int. J. Cast Met. Res. doi: 10.1080/13640461.1998.11819254 – year: 2017 ident: 10.1016/j.actamat.2022.117717_bib0014 article-title: Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing publication-title: Acta Mater doi: 10.1016/j.actamat.2017.08.038 – volume: 215 start-page: 447 year: 1959 ident: 10.1016/j.actamat.2022.117717_bib0032 article-title: The origin of the preferred orientation in the columnar zone of ingots publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 75 start-page: 787 year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0023 article-title: An adaptive integration scheme for heat conduction in additive manufacturing publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.07.008 – volume: 26 start-page: 202 year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0025 article-title: Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy publication-title: Addit. Manuf. – year: 2016 ident: 10.1016/j.actamat.2022.117717_bib0012 article-title: Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing publication-title: Acta Mater doi: 10.1016/j.actamat.2016.03.063 – volume: 177 start-page: 209 year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0013 article-title: Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys publication-title: Acta Mater doi: 10.1016/j.actamat.2019.07.041 – volume: 2 start-page: 185 year: 2001 ident: 10.1016/j.actamat.2022.117717_bib0028 article-title: Columnar to equiaxed transition in solidification processing publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/S1468-6996(01)00047-X – year: 2021 ident: 10.1016/j.actamat.2022.117717_bib0006 article-title: Nickel-based superalloy single crystals fabricated via electron beam melting publication-title: Acta Mater doi: 10.1016/j.actamat.2021.117133 – start-page: 341 year: 2016 ident: 10.1016/j.actamat.2022.117717_bib0003 article-title: Selective electron beam melting of the single crystalline nickel-base superalloy CMSX-4®: from columnar grains to a single crystal – year: 1990 ident: 10.1016/j.actamat.2022.117717_bib0036 article-title: Analysis of solidification microstructures in Fe-Ni-Cr single-crystal welds publication-title: Metall. Trans. A. doi: 10.1007/BF02672593 – ident: 10.1016/j.actamat.2022.117717_bib0037 doi: 10.1038/srep43554 – year: 1981 ident: 10.1016/j.actamat.2022.117717_bib0038 article-title: Dendrite growth at the limit of stability: tip radius and spacing publication-title: Acta Metall doi: 10.1016/0001-6160(81)90082-1 – year: 2000 ident: 10.1016/j.actamat.2022.117717_bib0024 article-title: Thermal analysis of the arc welding process: part I. General solutions publication-title: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. doi: 10.1007/s11663-000-0022-2 – year: 2016 ident: 10.1016/j.actamat.2022.117717_bib0008 article-title: Grain structure evolution in Inconel 718 during selective electron beam melting publication-title: Mater. Sci. Eng. A. – volume: 152 start-page: 15 year: 2018 ident: 10.1016/j.actamat.2022.117717_bib0005 article-title: Producing Ni-base superalloys single crystal by selective electron beam melting publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.03.041 – year: 1989 ident: 10.1016/j.actamat.2022.117717_bib0035 article-title: Development of microstructures in Fe-15Ni-15Cr single crystal electron beam welds publication-title: Metall. Trans. A. doi: 10.1007/BF02650147 – year: 2015 ident: 10.1016/j.actamat.2022.117717_bib0010 article-title: Site specific control of crystallographic grain orientation through electron beam additive manufacturing publication-title: Mater. Sci. Technol. (United Kingdom) doi: 10.1179/1743284714Y.0000000734 – year: 2001 ident: 10.1016/j.actamat.2022.117717_bib0026 article-title: Single-crystal laser deposition of superalloys: processing-microstructure maps publication-title: Acta Mater doi: 10.1016/S1359-6454(00)00367-0 – year: 1986 ident: 10.1016/j.actamat.2022.117717_bib0029 article-title: Theory of microstructural development during rapid solidification publication-title: Acta Metall doi: 10.1016/0001-6160(86)90056-8 – year: 2018 ident: 10.1016/j.actamat.2022.117717_bib0030 article-title: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.08.064 – volume: 23 start-page: 1917 year: 2014 ident: 10.1016/j.actamat.2022.117717_bib0001 article-title: Metal additive manufacturing: a review publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-014-0958-z – volume: 65 start-page: 75 year: 1984 ident: 10.1016/j.actamat.2022.117717_bib0027 article-title: Steady state columnar and equiaxed growth of dendrites and eutectic publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(84)90201-5 – year: 2019 ident: 10.1016/j.actamat.2022.117717_bib0020 article-title: Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.09.018 – volume: 46 year: 2021 ident: 10.1016/j.actamat.2022.117717_bib0011 article-title: A stochastic scan strategy for grain structure control in complex geometries using electron beam powder bed fusion publication-title: Addit. Manuf. – volume: 135 start-page: 1559 year: 2016 ident: 10.1016/j.actamat.2022.117717_bib0002 article-title: Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.04.109 – volume: 49 start-page: 3781 year: 2018 ident: 10.1016/j.actamat.2022.117717_bib0004 article-title: Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing publication-title: Metall. Mater. Trans. A. doi: 10.1007/s11661-018-4762-5 – volume: 18 start-page: 256 year: 2017 ident: 10.1016/j.actamat.2022.117717_bib0019 article-title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing publication-title: Addit. Manuf. – year: 2015 ident: 10.1016/j.actamat.2022.117717_bib0009 article-title: Crystallographic texture engineering through novel melt strategies via electron beam melting: inconel 718 publication-title: Mater. Sci. Technol. (United Kingdom) doi: 10.1179/1743284714Y.0000000697 |
SSID | ssj0012740 |
Score | 2.485402 |
Snippet | Site-specific control of solidification grain structure is one of the largest attractiveness of manufacturing metallic parts with powder bed fusion additive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117717 |
SubjectTerms | Columnar-to-equiaxed transition Crystallographic texture Powder bed fusion additive manufacturing Solidification Superalloy |
Title | A method to manipulate non-steady-state columnar-to-equiaxed transition in powder bed fusion additive manufacturing using an electron beam |
URI | https://dx.doi.org/10.1016/j.actamat.2022.117717 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD143bbZbJrkWIqlKvSihd7CZrMrKZrWkqBe_AH-amc2Sa0gCh4CeU3Y7GxmdrIz30fIpYl9rXgoWMilZsLtw54ygiEIKngPox1j0T4n_fFU3My8WYMM61oYTKusbH9p0621rs50q97sLtO0e-e4Xoh4VJxbsgJE_BTCx1HeeV-neTgQdZWVwl7I8O6vKp7uHJqcS5gYQpjIuV2-tLxlP_inDZ8z2iO71WSRDsr27JOGzg7IzgaE4CH5GNCSBJrmC4pYFpaPS1OI6plV4BuzNUNUoRnK5IrlC6afi1S-apBBT2WTtmia0eXiJdErGsMFU-BfNIrZRmgP8ckF1kDYokaKyfIPVGa0JtEBGfl0RKajq_vhmFX8Cky5vpezIJTgjfpc9uGzN9IxiYy19pxAJ77s4XqsK2DrJVwGRrq4RIjhCujTVb5nYveYNOFt9AmhsZ9I5cSJgTuFI5UUyvTiMOBaBUpwp0VE3auRqsDHkQPjMaqzzOZRpYwIlRGVymiRzlpsWaJv_CUQ1CqLvg2jCDzE76Kn_xc9I9t4VCb0nJNmvir0BcxV8rhtB2ObbA2ub8eTT1-U7F0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTuMwEB6xcGA5IGBBsPz5sHs0bRynSQ4cEFCVn-0FkLhlHcdGRZB2u6lYLjwAr8MLMuMkpUiIlZA4RIriTBTPTGbG8cx8AD9sGhotYsljoQyXfgvPtJWcmqCi97DGs67bZ7fVuZDHl8HlFDzVtTCUVlnZ_tKmO2tdXWlU3GwMer3GmecHMfWjEsKBFdQI1ifm_g7XbX93jw5QyD-FaB-e73d4BS3AtR8GBY9ihYa4JVQLNd4qz2YqNSbwIpOFqklbkb7Eo5kJFVnl0-4YReo4FV-HgU19fO4XmJFoLgg2YedhnFfi4TKvLE0OYk6v91I21LhGHhUKI1Fclwrh9ksdUNobDnHCybUXYL6KTtleyYBFmDL5EsxN9Cz8Bo97rESdZkWfUfMMBwBmWN7PudOYe-6KlJgmu5erIS_63PwZ9dQ_gzTkGl2WGOvlbNC_y8yQpThgR_TbjlF6ExlgevKIii5cFSWj7PwrpnJWo_YgjbpdhotP4foKTONszCqwNMyU9tLM4p3SU1pJbZtpHAmjIy2Ftway5mqiq27nBLpxk9RpbddJJYyEhJGUwliDnTHZoGz38T-CqBZZ8kpvE3RJ75N-_zjpNsx2zn-dJqdH3ZN1-EojZTbRBkwXw5HZxECpSLecYjL4_dlfwjO2UiZS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+to+manipulate+non-steady-state+columnar-to-equiaxed+transition+in+powder+bed+fusion+additive+manufacturing+using+an+electron+beam&rft.jtitle=Acta+materialia&rft.au=Lei%2C+Yuchao&rft.au=Aoyagi%2C+Kenta&rft.au=Chiba%2C+Akihiko&rft.date=2022-04-01&rft.issn=1359-6454&rft.volume=227&rft.spage=117717&rft_id=info:doi/10.1016%2Fj.actamat.2022.117717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2022_117717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |