Heat transfer mechanism in idealized healthy and diseased aortas using fluid-structure interaction method
The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three re...
Saved in:
Published in | Biomechanics and modeling in mechanobiology Vol. 22; no. 6; pp. 1953 - 1964 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall. |
---|---|
AbstractList | The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall. The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall. The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall. |
Author | Luo, Kun Qiao, Yonghui Fan, Jianren |
Author_xml | – sequence: 1 givenname: Yonghui surname: Qiao fullname: Qiao, Yonghui organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University – sequence: 2 givenname: Kun surname: Luo fullname: Luo, Kun email: zjulk@zju.edu.cn organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Shanghai Institute for Advanced Study of Zhejiang University – sequence: 3 givenname: Jianren surname: Fan fullname: Fan, Jianren organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Shanghai Institute for Advanced Study of Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37481471$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFTEQhS0URB7wByiQJRqaBT_X3hJFQCJFooHa8tqzuY52vcHjLS6_Pg43CVKKNOOR9Z3RzDmn5CivGQh5z9lnzpj5gpwJabpWOsaN0t3-FTnhPTedGRQ7eur1cExOEW8YE0xa-YYcS6MsV4afkHQBvtJafMYJCl0g7HxOuNCUaYrg5_QXIt21pu721OdIY0Lw2D79WqpHumHK13SatxQ7rGULdSvQ5BWKDzWtuQ2tuzW-Ja8nPyO8e3jPyO_v336dX3RXP39cnn-96oI0unZWSCYst71QU899z0bt2dhzHWDUwtoImvW98GocjO5ZGCcV2TBMIKTimgV5Rj4d5t6W9c8GWN2SMMA8-wzrhk5Y1XwbmgEN_fgMvVm3ktt2jbKSGy0G2agPD9Q2LhDdbUmLL3v3aGID7AEIZUUsMLmQqr8_vfmaZseZu8_LHfJyrbh_ebl9k4pn0sfpL4rkQYQNztdQ_q_9guoO3wCoDA |
CitedBy_id | crossref_primary_10_1007_s10237_024_01887_7 crossref_primary_10_1007_s10973_024_13961_4 crossref_primary_10_1038_s41598_025_86983_z crossref_primary_10_1063_5_0233940 crossref_primary_10_1186_s12938_023_01179_8 crossref_primary_10_1016_j_pmatsci_2024_101363 |
Cites_doi | 10.1038/s44161-021-00006-4 10.1016/s1885-5857(07)60150-9 10.1080/001075199181693 10.1115/1.4037857 10.1016/j.jbiomech.2019.109478 10.1161/01.cir.85.1.205 10.1080/14017430600565999 10.1016/j.jtherbio.2020.102622 10.1016/j.cmpb.2020.105384 10.1016/j.compbiomed.2021.104882 10.1007/s10237-021-01534-5 10.1080/10255842.2019.1577398 10.1088/0031-9155/37/6/009 10.1186/s12938-015-0032-6 10.1115/1.2978992 10.1002/fld.1443 10.1016/j.cmpb.2020.105375 10.1186/s12938-019-0632-7 10.1016/j.matcom.2021.04.011 10.1152/ajpheart.00726.2002 10.1007/s10237-021-01542-5 10.1007/s10237-021-01530-9 10.1016/j.jbiomech.2011.11.041 10.1007/s11517-007-0236-4 10.1111/ans.12446 10.1080/10255842.2021.1876036 10.1063/5.0104649 10.1155/2012/861837 10.1007/s10973-021-10942-9 10.1038/s41598-021-92104-3 10.1016/S1350-4533(01)00093-5 10.1016/j.ijheatmasstransfer.2017.11.055 10.1007/BF01522036 10.1161/hc2901.091399 10.1111/j.1525-1594.2005.00152.x 10.1016/j.euromechflu.2018.03.010 10.1115/1.4006681 10.1098/rsif.2016.0073 10.1007/s13239-018-00385-z 10.1016/j.compstruc.2008.09.007 10.1115/1.4043881 10.1152/ajpheart.00796.2006 10.1115/1.3138205 10.1142/s1758825111001226 10.1016/j.cmpb.2022.106826 10.1016/j.icheatmasstransfer.2021.105877 10.1016/j.csite.2021.101738 10.3390/app12031601 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U S0W 7X8 |
DOI | 10.1007/s10237-023-01745-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1617-7940 |
EndPage | 1964 |
ExternalDocumentID | 37481471 10_1007_s10237_023_01745_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Postdoctoral Science Foundation (CN) grantid: 2022M722719 – fundername: Postdoctoral Science Foundation Special Funding (CN) grantid: 2022TQ0269 – fundername: Natural Science Foundation of Zhejiang Province (CN) grantid: LY23E060003 – fundername: Postdoctoral Science Foundation of Zhejiang Province (CN) grantid: ZJ2022015 |
GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK ABRTQ FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-82302818624f61a60b5a0b615ceb5288de50662a4b97560cbf4d099fe234150c3 |
IEDL.DBID | 7X7 |
ISSN | 1617-7959 1617-7940 |
IngestDate | Tue Aug 05 11:29:58 EDT 2025 Fri Jul 25 19:00:14 EDT 2025 Thu Apr 03 06:56:58 EDT 2025 Tue Jul 01 00:54:41 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Fri Feb 21 02:42:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Computational hemodynamics Temperature distribution Fluid-structure interaction Wall heat flux Heat transfer |
Language | English |
License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-82302818624f61a60b5a0b615ceb5288de50662a4b97560cbf4d099fe234150c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 37481471 |
PQID | 2883175293 |
PQPubID | 54766 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2841029481 proquest_journals_2883175293 pubmed_primary_37481471 crossref_citationtrail_10_1007_s10237_023_01745_y crossref_primary_10_1007_s10237_023_01745_y springer_journals_10_1007_s10237_023_01745_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
PublicationTitle | Biomechanics and modeling in mechanobiology |
PublicationTitleAbbrev | Biomech Model Mechanobiol |
PublicationTitleAlternate | Biomech Model Mechanobiol |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Feintuch (CR12) 2007; 292 Qiao, Mao, Zhu, Fan, Luo (CR30) 2020; 99 Vasava, Jalali, Dabagh, Kolari (CR43) 2012; 2012 Qiao (CR28) 2022; 21 Marcinkowska-Gapinska, Gapinski, Elikowski, Jaroszyk, Kubisz (CR23) 2007; 45 Kuhlencordt (CR19) 2001; 104 Qiao, Wang, Chen, Luo, Fan (CR31) 2022; 21 Shit, Majee (CR37) 2018; 71 Zhang, Xie (CR49) 2018; 118 Foong, Shirani, Toghraie, Zarringhalam, Afrand (CR13) 2020; 190 CR47 Stefanovska (CR38) 1999; 40 Yan, Sedeh, Toghraie, Afrand, Foong (CR45) 2020; 190 Brightwell, Choong, Barnett, Walker (CR4) 2014; 84 Rafieianzab, Abazari, Soltani, Alimohammadi (CR34) 2021; 11 Qiao, Luan, Mao, Fan, Zhu, Luo (CR25) 2022; 34 Alastruey, Xiao, Fok, Schaeffter, Figueroa (CR1) 2016; 13 Qiao, Luo, Fan (CR26) 2022; 221 Reed, Reed, Stemmermann, Hayashi (CR35) 1992; 85 Brown (CR5) 2012; 45 CR18 CR17 Chong, Gu, Armour, Dokos, Ong, Xu, Lim (CR9) 2022; 21 Hannuksela, Lundqvist, Carlberg (CR14) 2006; 40 Qiao, Fan, Ding, Zhu, Luo (CR24) 2019; 141 Sedeh, Toghraie (CR36) 2021; 147 Li, Sedeh, Toghraie, Alizadeh (CR21) 2021; 188 Qiao, Mao, Zhu, Fan, Luo (CR29) 2019; 99 Qiao, Zeng, Ding, Fan, Luo, Zhu (CR32) 2019; 22 Campbell, Ries, Dhawan, Quyyumi, Taylor, Oshinski (CR6) 2012; 134 Wei (CR44) 2019; 18 Crezee, Lagendijk (CR10) 1992; 37 Youssefi, Gomez, Arthurs, Sharma, Jahangiri, Alberto Figueroa (CR46) 2018; 140 Tan, Borghi, Mohiaddin, Wood, Thom, Xu (CR40) 2009; 87 Tan, Soloperto, Bashford, Wood, Thom, Hughes, Xu (CR39) 2008; 130 Li, Liang, Xu, Zhu, Mei, Xiong, Chen (CR22) 2021; 24 Atienza (CR3) 2007; 60 Campobasso, Condemi, Viallon, Croisille, Campisi, Avril (CR7) 2018; 9 Harris, Blackstone, Ju, Venema, Venema (CR15) 2003; 285 Alimohammadi, Sherwood, Karimpour, Agu, Balabani, Diaz-Zuccarini (CR2) 2015; 14 Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (CR41) 2007; 54 Qiao, Mao, Ding, Zhu, Luo, Fan (CR27) 2021; 138 Chato (CR8) 1980; 102 Quemada (CR33) 1978; 17 Hernandez (CR16) 2022; 1 Di Martino, Guadagni, Fumero, Ballerini, Spirito, Biglioli, Redaelli (CR11) 2001; 23 Lantz, Renner, Karlsson (CR20) 2012; 03 Tsatsaris (CR42) 2005; 29 Zhang, Zheng, Wang, Shu (CR48) 2020; 91 D Rafieianzab (1745_CR34) 2021; 11 Y Qiao (1745_CR29) 2019; 99 A Marcinkowska-Gapinska (1745_CR23) 2007; 45 MB Harris (1745_CR15) 2003; 285 LK Foong (1745_CR13) 2020; 190 A Stefanovska (1745_CR38) 1999; 40 GE Hernandez (1745_CR16) 2022; 1 TE Tezduyar (1745_CR41) 2007; 54 Y Qiao (1745_CR28) 2022; 21 RE Brightwell (1745_CR4) 2014; 84 P Vasava (1745_CR43) 2012; 2012 A Tsatsaris (1745_CR42) 2005; 29 M Alimohammadi (1745_CR2) 2015; 14 MY Chong (1745_CR9) 2022; 21 JM Atienza (1745_CR3) 2007; 60 J Crezee (1745_CR10) 1992; 37 R Campobasso (1745_CR7) 2018; 9 E Di Martino (1745_CR11) 2001; 23 J Lantz (1745_CR20) 2012; 03 D Quemada (1745_CR33) 1978; 17 W Wei (1745_CR44) 2019; 18 1745_CR47 FP Tan (1745_CR39) 2008; 130 PJ Kuhlencordt (1745_CR19) 2001; 104 Y Zhang (1745_CR49) 2018; 118 D Reed (1745_CR35) 1992; 85 J Alastruey (1745_CR1) 2016; 13 Y Qiao (1745_CR31) 2022; 21 P Youssefi (1745_CR46) 2018; 140 FPP Tan (1745_CR40) 2009; 87 SR Yan (1745_CR45) 2020; 190 Y Qiao (1745_CR32) 2019; 22 Y Qiao (1745_CR26) 2022; 221 A Feintuch (1745_CR12) 2007; 292 M Hannuksela (1745_CR14) 2006; 40 Y Qiao (1745_CR24) 2019; 141 Z Li (1745_CR22) 2021; 24 1745_CR17 Y-M Li (1745_CR21) 2021; 188 1745_CR18 IC Campbell (1745_CR6) 2012; 134 J Chato (1745_CR8) 1980; 102 Y Qiao (1745_CR25) 2022; 34 AG Brown (1745_CR5) 2012; 45 X Zhang (1745_CR48) 2020; 91 GC Shit (1745_CR37) 2018; 71 SN Sedeh (1745_CR36) 2021; 147 Y Qiao (1745_CR30) 2020; 99 Y Qiao (1745_CR27) 2021; 138 |
References_xml | – volume: 1 start-page: 67 year: 2022 end-page: 84 ident: CR16 article-title: Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state publication-title: Nat Cardiovasc Res doi: 10.1038/s44161-021-00006-4 – volume: 60 start-page: 259 year: 2007 end-page: 267 ident: CR3 article-title: The influence of pressure and temperature on the Behavior of the human aorta and carotid arteries publication-title: Revista Española de Cardiología (English Edition) doi: 10.1016/s1885-5857(07)60150-9 – volume: 40 start-page: 31 year: 1999 end-page: 55 ident: CR38 article-title: Physics of the human cardiovascular system publication-title: Contemp Phys doi: 10.1080/001075199181693 – volume: 140 start-page: 011002 year: 2018 ident: CR46 article-title: Impact of patient-specific Inflow Velocity Profile on Hemodynamics of the thoracic aorta publication-title: J Biomech Eng doi: 10.1115/1.4037857 – volume: 99 start-page: 109478 year: 2020 ident: CR30 article-title: Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair publication-title: J Biomech doi: 10.1016/j.jbiomech.2019.109478 – volume: 85 start-page: 205 year: 1992 end-page: 211 ident: CR35 article-title: Are aortic aneurysms caused by atherosclerosis? publication-title: Circulation doi: 10.1161/01.cir.85.1.205 – volume: 40 start-page: 175 year: 2006 end-page: 178 ident: CR14 article-title: Thoracic aorta–dilated or not? publication-title: Scand Cardiovasc J doi: 10.1080/14017430600565999 – volume: 91 start-page: 102622 year: 2020 ident: CR48 article-title: Numerical investigations of temperature and hemodynamics in carotid arteries with and without atherosclerotic plaque during open surgery publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2020.102622 – volume: 190 start-page: 105384 year: 2020 ident: CR45 article-title: Analysis and manegement of laminar blood flow inside a cerebral blood vessel using a finite volume software program for biomedical engineering publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105384 – volume: 99 start-page: 109478 year: 2019 ident: CR29 article-title: Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair publication-title: J Biomech doi: 10.1016/j.jbiomech.2019.109478 – volume: 138 start-page: 104882 year: 2021 ident: CR27 article-title: Fluid-structure interaction: insights into biomechanical implications of endograft after thoracic endovascular aortic repair publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104882 – volume: 21 start-page: 261 year: 2022 end-page: 275 ident: CR9 article-title: An integrated fluid-structure interaction and thrombosis model for type B aortic dissection publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01534-5 – volume: 22 start-page: 620 year: 2019 end-page: 630 ident: CR32 article-title: Numerical simulation of two-phase non-newtonian blood flow with fluid-structure interaction in aortic dissection publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2019.1577398 – volume: 37 start-page: 1321 year: 1992 ident: CR10 article-title: Temperature uniformity during hyperthermia: the impact of large vessels publication-title: Phys Med Biol doi: 10.1088/0031-9155/37/6/009 – volume: 14 start-page: 1 year: 2015 end-page: 16 ident: CR2 article-title: Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0032-6 – volume: 130 start-page: 061008 year: 2008 ident: CR39 article-title: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models publication-title: J Biomech Eng doi: 10.1115/1.2978992 – volume: 54 start-page: 901 year: 2007 end-page: 922 ident: CR41 article-title: Modelling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1443 – volume: 190 start-page: 105375 year: 2020 ident: CR13 article-title: Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-newtonian approaches for biomedical engineering publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105375 – volume: 18 start-page: 19 year: 2019 ident: CR44 article-title: Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root publication-title: Biomed Eng Online doi: 10.1186/s12938-019-0632-7 – volume: 188 start-page: 330 year: 2021 end-page: 341 ident: CR21 article-title: Computational hemodynamics and thermal analysis of laminar blood flow for different types of hypertension publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.04.011 – volume: 285 start-page: H333 year: 2003 end-page: H340 ident: CR15 article-title: Heat-induced increases in endothelial NO synthase expression and activity and endothelial NO release publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00726.2002 – volume: 21 start-page: 419 year: 2022 end-page: 431 ident: CR28 article-title: Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01542-5 – volume: 21 start-page: 221 year: 2022 end-page: 230 ident: CR31 article-title: Mathematical modeling of shear-activated targeted nanoparticle drug delivery for the treatment of aortic diseases publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01530-9 – volume: 45 start-page: 516 year: 2012 end-page: 523 ident: CR5 article-title: Accuracy vs. computational time: translating aortic simulations to the clinic publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.041 – volume: 45 start-page: 837 year: 2007 end-page: 844 ident: CR23 article-title: Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients publication-title: Med Biol Eng Comput doi: 10.1007/s11517-007-0236-4 – volume: 84 start-page: 871 year: 2014 end-page: 876 ident: CR4 article-title: Changes in temperature affect the risk of abdominal aortic aneurysm rupture publication-title: ANZ J Surg doi: 10.1111/ans.12446 – ident: CR18 – ident: CR47 – volume: 24 start-page: 1251 year: 2021 end-page: 1262 ident: CR22 article-title: Flow analysis of aortic dissection: comparison of inflow boundary conditions for computational models based on 4D PCMRI and doppler ultrasound publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2021.1876036 – volume: 34 start-page: 101902 year: 2022 ident: CR25 article-title: Biomechanical mechanism of distal stent-graft-induced new entry deterioration after thoracic endovascular aortic repair publication-title: Phys Fluids doi: 10.1063/5.0104649 – volume: 2012 start-page: 861837 year: 2012 ident: CR43 article-title: Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension publication-title: Comput Math Methods Med doi: 10.1155/2012/861837 – volume: 147 start-page: 5761 year: 2021 end-page: 5769 ident: CR36 article-title: Computational hemodynamics investigation of the heat transfer of blood flow in different geometries of the patient’s body on different scales publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10942-9 – volume: 11 start-page: 12757 year: 2021 ident: CR34 article-title: The effect of coarctation degrees on wall shear stress indices publication-title: Sci Rep doi: 10.1038/s41598-021-92104-3 – volume: 23 start-page: 647 year: 2001 end-page: 655 ident: CR11 article-title: Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm publication-title: Med Eng Phys doi: 10.1016/S1350-4533(01)00093-5 – volume: 118 start-page: 663 year: 2018 end-page: 670 ident: CR49 article-title: The effect of a bifurcation structure on the heat transfer and temperature distribution of pulsatile blood flow publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.11.055 – volume: 17 start-page: 632 year: 1978 end-page: 642 ident: CR33 article-title: Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows publication-title: Rheol Acta doi: 10.1007/BF01522036 – volume: 104 start-page: 448 year: 2001 end-page: 454 ident: CR19 article-title: Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice publication-title: Circulation doi: 10.1161/hc2901.091399 – volume: 29 start-page: 887 year: 2005 end-page: 891 ident: CR42 article-title: Effect of temperature increase on the distensibility of porcine thoracic aorta publication-title: Artif Organs doi: 10.1111/j.1525-1594.2005.00152.x – volume: 71 start-page: 1 year: 2018 end-page: 14 ident: CR37 article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having abdominal aortic aneurysm publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2018.03.010 – volume: 134 start-page: 051001 year: 2012 ident: CR6 article-title: Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation publication-title: J Biomech Eng doi: 10.1115/1.4006681 – ident: CR17 – volume: 13 start-page: 20160073 year: 2016 ident: CR1 article-title: On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics publication-title: J R Soc Interface doi: 10.1098/rsif.2016.0073 – volume: 9 start-page: 707 year: 2018 end-page: 722 ident: CR7 article-title: Evaluation of peak wall stress in an ascending thoracic aortic aneurysm using FSI Simulations: Effects of aortic stiffness and Peripheral Resistance publication-title: Cardiovasc Eng Technol doi: 10.1007/s13239-018-00385-z – volume: 87 start-page: 680 year: 2009 end-page: 690 ident: CR40 article-title: Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.09.007 – volume: 141 start-page: 111002 year: 2019 ident: CR24 article-title: A primary computational fluid dynamics study of pre-and post-TEVAR with intentional left subclavian artery coverage in a type B aortic dissection publication-title: J Biomech Eng doi: 10.1115/1.4043881 – volume: 292 start-page: H884 year: 2007 end-page: H892 ident: CR12 article-title: Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00796.2006 – volume: 102 start-page: 110 year: 1980 end-page: 118 ident: CR8 article-title: Heat transfer to blood vessels publication-title: J Biomech Eng doi: 10.1115/1.3138205 – volume: 03 start-page: 759 year: 2012 end-page: 778 ident: CR20 article-title: Wall Shear stress in a subject specific human aorta — influence of fluid-structure Interaction publication-title: Int J Appl Mech doi: 10.1142/s1758825111001226 – volume: 221 start-page: 106826 year: 2022 ident: CR26 article-title: Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106826 – volume: 40 start-page: 175 year: 2006 ident: 1745_CR14 publication-title: Scand Cardiovasc J doi: 10.1080/14017430600565999 – volume: 99 start-page: 109478 year: 2020 ident: 1745_CR30 publication-title: J Biomech doi: 10.1016/j.jbiomech.2019.109478 – volume: 134 start-page: 051001 year: 2012 ident: 1745_CR6 publication-title: J Biomech Eng doi: 10.1115/1.4006681 – volume: 34 start-page: 101902 year: 2022 ident: 1745_CR25 publication-title: Phys Fluids doi: 10.1063/5.0104649 – volume: 1 start-page: 67 year: 2022 ident: 1745_CR16 publication-title: Nat Cardiovasc Res doi: 10.1038/s44161-021-00006-4 – volume: 118 start-page: 663 year: 2018 ident: 1745_CR49 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.11.055 – volume: 40 start-page: 31 year: 1999 ident: 1745_CR38 publication-title: Contemp Phys doi: 10.1080/001075199181693 – volume: 104 start-page: 448 year: 2001 ident: 1745_CR19 publication-title: Circulation doi: 10.1161/hc2901.091399 – volume: 2012 start-page: 861837 year: 2012 ident: 1745_CR43 publication-title: Comput Math Methods Med doi: 10.1155/2012/861837 – volume: 190 start-page: 105384 year: 2020 ident: 1745_CR45 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105384 – volume: 21 start-page: 221 year: 2022 ident: 1745_CR31 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01530-9 – volume: 60 start-page: 259 year: 2007 ident: 1745_CR3 publication-title: Revista Española de Cardiología (English Edition) doi: 10.1016/s1885-5857(07)60150-9 – volume: 190 start-page: 105375 year: 2020 ident: 1745_CR13 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105375 – volume: 102 start-page: 110 year: 1980 ident: 1745_CR8 publication-title: J Biomech Eng doi: 10.1115/1.3138205 – ident: 1745_CR47 doi: 10.1016/j.icheatmasstransfer.2021.105877 – volume: 13 start-page: 20160073 year: 2016 ident: 1745_CR1 publication-title: J R Soc Interface doi: 10.1098/rsif.2016.0073 – volume: 23 start-page: 647 year: 2001 ident: 1745_CR11 publication-title: Med Eng Phys doi: 10.1016/S1350-4533(01)00093-5 – ident: 1745_CR18 doi: 10.1016/j.csite.2021.101738 – volume: 21 start-page: 419 year: 2022 ident: 1745_CR28 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01542-5 – volume: 147 start-page: 5761 year: 2021 ident: 1745_CR36 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-021-10942-9 – volume: 21 start-page: 261 year: 2022 ident: 1745_CR9 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01534-5 – volume: 71 start-page: 1 year: 2018 ident: 1745_CR37 publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2018.03.010 – ident: 1745_CR17 doi: 10.3390/app12031601 – volume: 285 start-page: H333 year: 2003 ident: 1745_CR15 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00726.2002 – volume: 03 start-page: 759 year: 2012 ident: 1745_CR20 publication-title: Int J Appl Mech doi: 10.1142/s1758825111001226 – volume: 17 start-page: 632 year: 1978 ident: 1745_CR33 publication-title: Rheol Acta doi: 10.1007/BF01522036 – volume: 37 start-page: 1321 year: 1992 ident: 1745_CR10 publication-title: Phys Med Biol doi: 10.1088/0031-9155/37/6/009 – volume: 24 start-page: 1251 year: 2021 ident: 1745_CR22 publication-title: Comput Methods Biomech Biomed Engin doi: 10.1080/10255842.2021.1876036 – volume: 188 start-page: 330 year: 2021 ident: 1745_CR21 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2021.04.011 – volume: 99 start-page: 109478 year: 2019 ident: 1745_CR29 publication-title: J Biomech doi: 10.1016/j.jbiomech.2019.109478 – volume: 85 start-page: 205 year: 1992 ident: 1745_CR35 publication-title: Circulation doi: 10.1161/01.cir.85.1.205 – volume: 130 start-page: 061008 year: 2008 ident: 1745_CR39 publication-title: J Biomech Eng doi: 10.1115/1.2978992 – volume: 14 start-page: 1 year: 2015 ident: 1745_CR2 publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0032-6 – volume: 11 start-page: 12757 year: 2021 ident: 1745_CR34 publication-title: Sci Rep doi: 10.1038/s41598-021-92104-3 – volume: 292 start-page: H884 year: 2007 ident: 1745_CR12 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00796.2006 – volume: 87 start-page: 680 year: 2009 ident: 1745_CR40 publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.09.007 – volume: 22 start-page: 620 year: 2019 ident: 1745_CR32 publication-title: Comput Methods Biomech Biomed Eng doi: 10.1080/10255842.2019.1577398 – volume: 221 start-page: 106826 year: 2022 ident: 1745_CR26 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106826 – volume: 91 start-page: 102622 year: 2020 ident: 1745_CR48 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2020.102622 – volume: 45 start-page: 837 year: 2007 ident: 1745_CR23 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-007-0236-4 – volume: 138 start-page: 104882 year: 2021 ident: 1745_CR27 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104882 – volume: 84 start-page: 871 year: 2014 ident: 1745_CR4 publication-title: ANZ J Surg doi: 10.1111/ans.12446 – volume: 18 start-page: 19 year: 2019 ident: 1745_CR44 publication-title: Biomed Eng Online doi: 10.1186/s12938-019-0632-7 – volume: 141 start-page: 111002 year: 2019 ident: 1745_CR24 publication-title: J Biomech Eng doi: 10.1115/1.4043881 – volume: 54 start-page: 901 year: 2007 ident: 1745_CR41 publication-title: Int J Numer Methods Fluids doi: 10.1002/fld.1443 – volume: 29 start-page: 887 year: 2005 ident: 1745_CR42 publication-title: Artif Organs doi: 10.1111/j.1525-1594.2005.00152.x – volume: 140 start-page: 011002 year: 2018 ident: 1745_CR46 publication-title: J Biomech Eng doi: 10.1115/1.4037857 – volume: 45 start-page: 516 year: 2012 ident: 1745_CR5 publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.11.041 – volume: 9 start-page: 707 year: 2018 ident: 1745_CR7 publication-title: Cardiovasc Eng Technol doi: 10.1007/s13239-018-00385-z |
SSID | ssj0020383 |
Score | 2.4084907 |
Snippet | The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1953 |
SubjectTerms | Aneurysms Aorta Aortic aneurysms Aortic arch Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Blood vessels Coronary vessels Dissection Engineering Fluid-structure interaction Heat flux Heat transfer High temperature Original Paper Physiology Rigid walls Temperature Temperature distribution Theoretical and Applied Mechanics |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IOhBdH3VFxG8aaCvtNujiMsi6MkFbyWvSkGr7OOw_npnmnZ3ZVXwkkvTtPRLMl86M98AXCZSKOQNhvtdk_HYpppnaAd4koRWRlEQqvo_5MNj0h_E98_iuUkKG7XR7q1Lst6pF5Ldwijl2ODxN40Fn67CuqCzO87iQXgzO2b5TnyTiDunStpNqszPY3w3R0scc8k_Wpud3g5sN3yR3TiAd2HFVh3YcBUkpx3YWtAT3IOyjzsrG9dc1A7Zm6W03nL0xsqKlQYpYflpDXOpj1MmK8Ma_4xhkmj4iFEY_AsrXiel4U5adjK0jDQlhi4DgrmS0_sw6N093fZ5U0uB6ygVY07-NBJ-SsK4SAKZ-EpIXyGd0VaJsNs1VpAWvIxVliIJ0hS_h-SxsCGaOeHr6ADWqvfKHgFDhqDDSGtcvEXctYEqFHLMLJPKZkb61oOg_aS5boTGqd7Faz6XSCYYcmzyGoZ86sHV7J4PJ7PxZ-_TFqm8WXKjnMomIxdC-uLBxewyLhbygMjKvk-oT4yDkUCNB4cO4dnjSIcnQFPtwXUL-Xzw39_l-H_dT2CTCta7gJhTWEMk7RnSmrE6r2fxF1zp7S8 priority: 102 providerName: Springer Nature |
Title | Heat transfer mechanism in idealized healthy and diseased aortas using fluid-structure interaction method |
URI | https://link.springer.com/article/10.1007/s10237-023-01745-y https://www.ncbi.nlm.nih.gov/pubmed/37481471 https://www.proquest.com/docview/2883175293 https://www.proquest.com/docview/2841029481 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7xEBIXVCgFt4AWqTe6qt-OTyhAQkQLQm0jhZO1LyNL4NA8DuHXM-PdJEIILuuDn9rx7ny7M_N9AN9TkUjEDZr7LZ3z2GSK5-gHeJqGRkRREMpmH_L6Ju3146tBMnAbbmOXVjmfE5uJWg8V7ZH_JFVcdHXonU6f_nNSjaLoqpPQWIV1oi6jlK5ssFxw-ZaGkyA8J01tVzTjSufCKOPY4GI6ixM-e-2Y3qDNN5HSxgF1P8GWQ46sbU29DSum3oENqyU5-wxVD2dVNmlwqBmxR0MlvdX4kVU1qzTCwerZaGbLHmdM1Jq52IxmgiD4mFEK_D0rH6aV5pZWdjoyjPgkRrb6gVm56V3odzv_znvc6ShwFWXJhFMsjUif0jAu00CkvkyELxHKKCMT7FdtEuKBF7HMMwRAinL3EDiWJkQXl_gq-gJr9bA2-8AQHagwUgoHbhm3TCBLifgyz4U0uRa-8SCYd2KhHMk4aV08FEt6ZOr4Apui6fhi5sHJ4p4nS7Hx4dUHc9sUbriNi-XP4cHx4jQOFIp-iNoMp3RNjA8jchoP9qxNF68jDp4A3bQHP-ZGXj78_W_5-vG3fINNEqe3yS8HsIaWM4cIYSbyqPlPsW11L49gvX1x_fsvHS_vfnXweNa5uf2DZ_th-wWPsPHe |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVN6BAkaCE1gkzmtzqCoELFv6OLVSb8GPCYrUZss-hMKP4jd2Jk52hSp668WXJHbkGc989ni-AXib6dQQbnAyHLlCJphbWZAfkFmmUMdxpEx3Dnl4lE1Oku-n6ekG_B1yYfha5WATO0PtppbPyD9yVVxydeSddi9-Sa4axdHVoYSGV4t9bH_Tlm2-s_eF5PtOqfHX488T2VcVkDbO04XkyBJTIGUqqbJIZ6FJdWjIsVs0KY3iMGVWdJ2YIic4YPkmG8GoChUZ_DS0MfV7C24ncVzwihqNv602eKGn_eQtg-Qa3n2STp-qp-JcUkOb9zxJZfuvI7yCbq9EZjuHN96C-z1SFZ-8aj2ADWwewh1fu7J9BPWErLhYdLgXZ-IcOYW4np-LuhG1I_hZ_0EnfJplK3TjRB8LckIz5J8LvnL_U1Rny9pJT2O7nKFg_oqZz7YQvrz1Yzi5kRl-ApvNtMFnIAiNWBVbS4aiSkYYmcoQni0KbbBwOsQAomESS9uTmnNtjbNyTcfME19SU3YTX7YBvF99c-EpPa59e3uQTdkv73m5VsYA3qwe08LkaItucLrkdxLqjMlwAnjqZboajjl_IoIFAXwYhLzu_P__8vz6f3kNdyfHhwflwd7R_gu4p1jZuos327BJUsSXBJ8W5lWnswJ-3PQiuQTlRCYO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCAQHxE5YjcQNrGZPc0RAVVZxoBK3yFtQJAioy6F8PTNxWopYJC6-xHEij-15ycx7A3AUi0gibtDcbeqUhyZRPEU_wOPYNyIIPF9W_yFv7-J2J7x6jB4nWPxVtvsoJGk5DaTSVPYbbzpvTBDf_CDh2OCncBJGfDgNs3gce7SuO_7p-JPLtUKcBOI5VdWuaTM_j_HVNX3Dm99ipZULai3DUo0d2ak19gpMmXIV5mw1yeEqLE5oC65B0cZTlvUrXGq67MUQxbfovbCiZIVGeFi8G80sDXLIRKlZHavRTBAk7zFKiX9i-fOg0NzKzA66hpG-RNeyIZgtP70OndbFw1mb13UVuAqSqM8ptkYiULEf5rEnYldGwpUIbZSRkd9sahORLrwIZZogIFKUy4dAMjc-urzIVcEGzJSvpdkChmhB-YFSOPN52DSezCXizTQV0qRauMYBbzSlmapFx6n2xXP2KZdMZsiwySozZEMHjsf3vFnJjT97744sldXbr5dRCWXERQhlHDgcX8aNQ9EQUZrXAfUJcTASq3Fg01p4_DjS5PHQbTtwMjL55-C_v8v2_7ofwPz9eSu7uby73oEFqmNv82R2YQaNavYQ7fTlfrWgPwCSA_Re |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+mechanism+in+idealized+healthy+and+diseased+aortas+using+fluid-structure+interaction+method&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Qiao%2C+Yonghui&rft.au=Luo%2C+Kun&rft.au=Fan%2C+Jianren&rft.date=2023-12-01&rft.eissn=1617-7940&rft_id=info:doi/10.1007%2Fs10237-023-01745-y&rft_id=info%3Apmid%2F37481471&rft.externalDocID=37481471 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |