Heat transfer mechanism in idealized healthy and diseased aortas using fluid-structure interaction method

The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three re...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 22; no. 6; pp. 1953 - 1964
Main Authors Qiao, Yonghui, Luo, Kun, Fan, Jianren
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.
AbstractList The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.
The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.
The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this study was to acquire the temperature distribution in the three-dimensional idealized aorta. An idealized healthy aortic geometry and three representative diseased aortas: aortic aneurysm, coarctation of the aorta, and aortic dissection were constructed. Advanced fluid-structure interaction (FSI) computational framework was applied to predict the aortic temperature distribution. The movement of the aortic root due to the heartbeat was also considered. The displacement distribution of the aortic vessel wall was consistent with clinical observation. The lesser curvature of the aortic arch, aneurysm body, coarctation region, and false lumen were all exposed to relatively high temperatures (over 310.006 K). We found that the rigid wall assumption slightly underestimated the magnitude of the whole aortic wall-averaged temperature while the changing trend and local temperature were like the results of the FSI method. Besides, the wall-averaged temperature would increase and the temperature inflection point would advance when the aortic vessel wall was loaded with a high heat flux. This pilot study revealed the aortic heat transfer mechanism and temperature distribution, and the findings may help to understand the physiological characteristics of the aortic vessel wall.
Author Luo, Kun
Qiao, Yonghui
Fan, Jianren
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Qiao
  fullname: Qiao, Yonghui
  organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University
– sequence: 2
  givenname: Kun
  surname: Luo
  fullname: Luo, Kun
  email: zjulk@zju.edu.cn
  organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Shanghai Institute for Advanced Study of Zhejiang University
– sequence: 3
  givenname: Jianren
  surname: Fan
  fullname: Fan, Jianren
  organization: State Key Laboratory of Clean Energy Utilization, Zhejiang University, Shanghai Institute for Advanced Study of Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37481471$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFTEQhS0URB7wByiQJRqaBT_X3hJFQCJFooHa8tqzuY52vcHjLS6_Pg43CVKKNOOR9Z3RzDmn5CivGQh5z9lnzpj5gpwJabpWOsaN0t3-FTnhPTedGRQ7eur1cExOEW8YE0xa-YYcS6MsV4afkHQBvtJafMYJCl0g7HxOuNCUaYrg5_QXIt21pu721OdIY0Lw2D79WqpHumHK13SatxQ7rGULdSvQ5BWKDzWtuQ2tuzW-Ja8nPyO8e3jPyO_v336dX3RXP39cnn-96oI0unZWSCYst71QU899z0bt2dhzHWDUwtoImvW98GocjO5ZGCcV2TBMIKTimgV5Rj4d5t6W9c8GWN2SMMA8-wzrhk5Y1XwbmgEN_fgMvVm3ktt2jbKSGy0G2agPD9Q2LhDdbUmLL3v3aGID7AEIZUUsMLmQqr8_vfmaZseZu8_LHfJyrbh_ebl9k4pn0sfpL4rkQYQNztdQ_q_9guoO3wCoDA
CitedBy_id crossref_primary_10_1007_s10237_024_01887_7
crossref_primary_10_1007_s10973_024_13961_4
crossref_primary_10_1038_s41598_025_86983_z
crossref_primary_10_1063_5_0233940
crossref_primary_10_1186_s12938_023_01179_8
crossref_primary_10_1016_j_pmatsci_2024_101363
Cites_doi 10.1038/s44161-021-00006-4
10.1016/s1885-5857(07)60150-9
10.1080/001075199181693
10.1115/1.4037857
10.1016/j.jbiomech.2019.109478
10.1161/01.cir.85.1.205
10.1080/14017430600565999
10.1016/j.jtherbio.2020.102622
10.1016/j.cmpb.2020.105384
10.1016/j.compbiomed.2021.104882
10.1007/s10237-021-01534-5
10.1080/10255842.2019.1577398
10.1088/0031-9155/37/6/009
10.1186/s12938-015-0032-6
10.1115/1.2978992
10.1002/fld.1443
10.1016/j.cmpb.2020.105375
10.1186/s12938-019-0632-7
10.1016/j.matcom.2021.04.011
10.1152/ajpheart.00726.2002
10.1007/s10237-021-01542-5
10.1007/s10237-021-01530-9
10.1016/j.jbiomech.2011.11.041
10.1007/s11517-007-0236-4
10.1111/ans.12446
10.1080/10255842.2021.1876036
10.1063/5.0104649
10.1155/2012/861837
10.1007/s10973-021-10942-9
10.1038/s41598-021-92104-3
10.1016/S1350-4533(01)00093-5
10.1016/j.ijheatmasstransfer.2017.11.055
10.1007/BF01522036
10.1161/hc2901.091399
10.1111/j.1525-1594.2005.00152.x
10.1016/j.euromechflu.2018.03.010
10.1115/1.4006681
10.1098/rsif.2016.0073
10.1007/s13239-018-00385-z
10.1016/j.compstruc.2008.09.007
10.1115/1.4043881
10.1152/ajpheart.00796.2006
10.1115/1.3138205
10.1142/s1758825111001226
10.1016/j.cmpb.2022.106826
10.1016/j.icheatmasstransfer.2021.105877
10.1016/j.csite.2021.101738
10.3390/app12031601
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7TB
7TK
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
S0W
7X8
DOI 10.1007/s10237-023-01745-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Central Student
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 1964
ExternalDocumentID 37481471
10_1007_s10237_023_01745_y
Genre Journal Article
GrantInformation_xml – fundername: Postdoctoral Science Foundation (CN)
  grantid: 2022M722719
– fundername: Postdoctoral Science Foundation Special Funding (CN)
  grantid: 2022TQ0269
– fundername: Natural Science Foundation of Zhejiang Province (CN)
  grantid: LY23E060003
– fundername: Postdoctoral Science Foundation of Zhejiang Province (CN)
  grantid: ZJ2022015
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7Y
Z83
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
7QP
7TB
7TK
7XB
8FD
8FK
ABRTQ
FR3
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c375t-82302818624f61a60b5a0b615ceb5288de50662a4b97560cbf4d099fe234150c3
IEDL.DBID 7X7
ISSN 1617-7959
1617-7940
IngestDate Tue Aug 05 11:29:58 EDT 2025
Fri Jul 25 19:00:14 EDT 2025
Thu Apr 03 06:56:58 EDT 2025
Tue Jul 01 00:54:41 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Fri Feb 21 02:42:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computational hemodynamics
Temperature distribution
Fluid-structure interaction
Wall heat flux
Heat transfer
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-82302818624f61a60b5a0b615ceb5288de50662a4b97560cbf4d099fe234150c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 37481471
PQID 2883175293
PQPubID 54766
PageCount 12
ParticipantIDs proquest_miscellaneous_2841029481
proquest_journals_2883175293
pubmed_primary_37481471
crossref_citationtrail_10_1007_s10237_023_01745_y
crossref_primary_10_1007_s10237_023_01745_y
springer_journals_10_1007_s10237_023_01745_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Dordrecht
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Feintuch (CR12) 2007; 292
Qiao, Mao, Zhu, Fan, Luo (CR30) 2020; 99
Vasava, Jalali, Dabagh, Kolari (CR43) 2012; 2012
Qiao (CR28) 2022; 21
Marcinkowska-Gapinska, Gapinski, Elikowski, Jaroszyk, Kubisz (CR23) 2007; 45
Kuhlencordt (CR19) 2001; 104
Qiao, Wang, Chen, Luo, Fan (CR31) 2022; 21
Shit, Majee (CR37) 2018; 71
Zhang, Xie (CR49) 2018; 118
Foong, Shirani, Toghraie, Zarringhalam, Afrand (CR13) 2020; 190
CR47
Stefanovska (CR38) 1999; 40
Yan, Sedeh, Toghraie, Afrand, Foong (CR45) 2020; 190
Brightwell, Choong, Barnett, Walker (CR4) 2014; 84
Rafieianzab, Abazari, Soltani, Alimohammadi (CR34) 2021; 11
Qiao, Luan, Mao, Fan, Zhu, Luo (CR25) 2022; 34
Alastruey, Xiao, Fok, Schaeffter, Figueroa (CR1) 2016; 13
Qiao, Luo, Fan (CR26) 2022; 221
Reed, Reed, Stemmermann, Hayashi (CR35) 1992; 85
Brown (CR5) 2012; 45
CR18
CR17
Chong, Gu, Armour, Dokos, Ong, Xu, Lim (CR9) 2022; 21
Hannuksela, Lundqvist, Carlberg (CR14) 2006; 40
Qiao, Fan, Ding, Zhu, Luo (CR24) 2019; 141
Sedeh, Toghraie (CR36) 2021; 147
Li, Sedeh, Toghraie, Alizadeh (CR21) 2021; 188
Qiao, Mao, Zhu, Fan, Luo (CR29) 2019; 99
Qiao, Zeng, Ding, Fan, Luo, Zhu (CR32) 2019; 22
Campbell, Ries, Dhawan, Quyyumi, Taylor, Oshinski (CR6) 2012; 134
Wei (CR44) 2019; 18
Crezee, Lagendijk (CR10) 1992; 37
Youssefi, Gomez, Arthurs, Sharma, Jahangiri, Alberto Figueroa (CR46) 2018; 140
Tan, Borghi, Mohiaddin, Wood, Thom, Xu (CR40) 2009; 87
Tan, Soloperto, Bashford, Wood, Thom, Hughes, Xu (CR39) 2008; 130
Li, Liang, Xu, Zhu, Mei, Xiong, Chen (CR22) 2021; 24
Atienza (CR3) 2007; 60
Campobasso, Condemi, Viallon, Croisille, Campisi, Avril (CR7) 2018; 9
Harris, Blackstone, Ju, Venema, Venema (CR15) 2003; 285
Alimohammadi, Sherwood, Karimpour, Agu, Balabani, Diaz-Zuccarini (CR2) 2015; 14
Tezduyar, Sathe, Cragin, Nanna, Conklin, Pausewang, Schwaab (CR41) 2007; 54
Qiao, Mao, Ding, Zhu, Luo, Fan (CR27) 2021; 138
Chato (CR8) 1980; 102
Quemada (CR33) 1978; 17
Hernandez (CR16) 2022; 1
Di Martino, Guadagni, Fumero, Ballerini, Spirito, Biglioli, Redaelli (CR11) 2001; 23
Lantz, Renner, Karlsson (CR20) 2012; 03
Tsatsaris (CR42) 2005; 29
Zhang, Zheng, Wang, Shu (CR48) 2020; 91
D Rafieianzab (1745_CR34) 2021; 11
Y Qiao (1745_CR29) 2019; 99
A Marcinkowska-Gapinska (1745_CR23) 2007; 45
MB Harris (1745_CR15) 2003; 285
LK Foong (1745_CR13) 2020; 190
A Stefanovska (1745_CR38) 1999; 40
GE Hernandez (1745_CR16) 2022; 1
TE Tezduyar (1745_CR41) 2007; 54
Y Qiao (1745_CR28) 2022; 21
RE Brightwell (1745_CR4) 2014; 84
P Vasava (1745_CR43) 2012; 2012
A Tsatsaris (1745_CR42) 2005; 29
M Alimohammadi (1745_CR2) 2015; 14
MY Chong (1745_CR9) 2022; 21
JM Atienza (1745_CR3) 2007; 60
J Crezee (1745_CR10) 1992; 37
R Campobasso (1745_CR7) 2018; 9
E Di Martino (1745_CR11) 2001; 23
J Lantz (1745_CR20) 2012; 03
D Quemada (1745_CR33) 1978; 17
W Wei (1745_CR44) 2019; 18
1745_CR47
FP Tan (1745_CR39) 2008; 130
PJ Kuhlencordt (1745_CR19) 2001; 104
Y Zhang (1745_CR49) 2018; 118
D Reed (1745_CR35) 1992; 85
J Alastruey (1745_CR1) 2016; 13
Y Qiao (1745_CR31) 2022; 21
P Youssefi (1745_CR46) 2018; 140
FPP Tan (1745_CR40) 2009; 87
SR Yan (1745_CR45) 2020; 190
Y Qiao (1745_CR32) 2019; 22
Y Qiao (1745_CR26) 2022; 221
A Feintuch (1745_CR12) 2007; 292
M Hannuksela (1745_CR14) 2006; 40
Y Qiao (1745_CR24) 2019; 141
Z Li (1745_CR22) 2021; 24
1745_CR17
Y-M Li (1745_CR21) 2021; 188
1745_CR18
IC Campbell (1745_CR6) 2012; 134
J Chato (1745_CR8) 1980; 102
Y Qiao (1745_CR25) 2022; 34
AG Brown (1745_CR5) 2012; 45
X Zhang (1745_CR48) 2020; 91
GC Shit (1745_CR37) 2018; 71
SN Sedeh (1745_CR36) 2021; 147
Y Qiao (1745_CR30) 2020; 99
Y Qiao (1745_CR27) 2021; 138
References_xml – volume: 1
  start-page: 67
  year: 2022
  end-page: 84
  ident: CR16
  article-title: Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state
  publication-title: Nat Cardiovasc Res
  doi: 10.1038/s44161-021-00006-4
– volume: 60
  start-page: 259
  year: 2007
  end-page: 267
  ident: CR3
  article-title: The influence of pressure and temperature on the Behavior of the human aorta and carotid arteries
  publication-title: Revista Española de Cardiología (English Edition)
  doi: 10.1016/s1885-5857(07)60150-9
– volume: 40
  start-page: 31
  year: 1999
  end-page: 55
  ident: CR38
  article-title: Physics of the human cardiovascular system
  publication-title: Contemp Phys
  doi: 10.1080/001075199181693
– volume: 140
  start-page: 011002
  year: 2018
  ident: CR46
  article-title: Impact of patient-specific Inflow Velocity Profile on Hemodynamics of the thoracic aorta
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037857
– volume: 99
  start-page: 109478
  year: 2020
  ident: CR30
  article-title: Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2019.109478
– volume: 85
  start-page: 205
  year: 1992
  end-page: 211
  ident: CR35
  article-title: Are aortic aneurysms caused by atherosclerosis?
  publication-title: Circulation
  doi: 10.1161/01.cir.85.1.205
– volume: 40
  start-page: 175
  year: 2006
  end-page: 178
  ident: CR14
  article-title: Thoracic aorta–dilated or not?
  publication-title: Scand Cardiovasc J
  doi: 10.1080/14017430600565999
– volume: 91
  start-page: 102622
  year: 2020
  ident: CR48
  article-title: Numerical investigations of temperature and hemodynamics in carotid arteries with and without atherosclerotic plaque during open surgery
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2020.102622
– volume: 190
  start-page: 105384
  year: 2020
  ident: CR45
  article-title: Analysis and manegement of laminar blood flow inside a cerebral blood vessel using a finite volume software program for biomedical engineering
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105384
– volume: 99
  start-page: 109478
  year: 2019
  ident: CR29
  article-title: Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2019.109478
– volume: 138
  start-page: 104882
  year: 2021
  ident: CR27
  article-title: Fluid-structure interaction: insights into biomechanical implications of endograft after thoracic endovascular aortic repair
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104882
– volume: 21
  start-page: 261
  year: 2022
  end-page: 275
  ident: CR9
  article-title: An integrated fluid-structure interaction and thrombosis model for type B aortic dissection
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01534-5
– volume: 22
  start-page: 620
  year: 2019
  end-page: 630
  ident: CR32
  article-title: Numerical simulation of two-phase non-newtonian blood flow with fluid-structure interaction in aortic dissection
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2019.1577398
– volume: 37
  start-page: 1321
  year: 1992
  ident: CR10
  article-title: Temperature uniformity during hyperthermia: the impact of large vessels
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/37/6/009
– volume: 14
  start-page: 1
  year: 2015
  end-page: 16
  ident: CR2
  article-title: Aortic dissection simulation models for clinical support: fluid-structure interaction vs. rigid wall models
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-015-0032-6
– volume: 130
  start-page: 061008
  year: 2008
  ident: CR39
  article-title: Analysis of flow disturbance in a stenosed carotid artery bifurcation using two-equation transitional and turbulence models
  publication-title: J Biomech Eng
  doi: 10.1115/1.2978992
– volume: 54
  start-page: 901
  year: 2007
  end-page: 922
  ident: CR41
  article-title: Modelling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1443
– volume: 190
  start-page: 105375
  year: 2020
  ident: CR13
  article-title: Numerical simulation of blood flow inside an artery under applying constant heat flux using Newtonian and non-newtonian approaches for biomedical engineering
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105375
– volume: 18
  start-page: 19
  year: 2019
  ident: CR44
  article-title: Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-019-0632-7
– volume: 188
  start-page: 330
  year: 2021
  end-page: 341
  ident: CR21
  article-title: Computational hemodynamics and thermal analysis of laminar blood flow for different types of hypertension
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.04.011
– volume: 285
  start-page: H333
  year: 2003
  end-page: H340
  ident: CR15
  article-title: Heat-induced increases in endothelial NO synthase expression and activity and endothelial NO release
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00726.2002
– volume: 21
  start-page: 419
  year: 2022
  end-page: 431
  ident: CR28
  article-title: Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01542-5
– volume: 21
  start-page: 221
  year: 2022
  end-page: 230
  ident: CR31
  article-title: Mathematical modeling of shear-activated targeted nanoparticle drug delivery for the treatment of aortic diseases
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01530-9
– volume: 45
  start-page: 516
  year: 2012
  end-page: 523
  ident: CR5
  article-title: Accuracy vs. computational time: translating aortic simulations to the clinic
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.041
– volume: 45
  start-page: 837
  year: 2007
  end-page: 844
  ident: CR23
  article-title: Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0236-4
– volume: 84
  start-page: 871
  year: 2014
  end-page: 876
  ident: CR4
  article-title: Changes in temperature affect the risk of abdominal aortic aneurysm rupture
  publication-title: ANZ J Surg
  doi: 10.1111/ans.12446
– ident: CR18
– ident: CR47
– volume: 24
  start-page: 1251
  year: 2021
  end-page: 1262
  ident: CR22
  article-title: Flow analysis of aortic dissection: comparison of inflow boundary conditions for computational models based on 4D PCMRI and doppler ultrasound
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2021.1876036
– volume: 34
  start-page: 101902
  year: 2022
  ident: CR25
  article-title: Biomechanical mechanism of distal stent-graft-induced new entry deterioration after thoracic endovascular aortic repair
  publication-title: Phys Fluids
  doi: 10.1063/5.0104649
– volume: 2012
  start-page: 861837
  year: 2012
  ident: CR43
  article-title: Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension
  publication-title: Comput Math Methods Med
  doi: 10.1155/2012/861837
– volume: 147
  start-page: 5761
  year: 2021
  end-page: 5769
  ident: CR36
  article-title: Computational hemodynamics investigation of the heat transfer of blood flow in different geometries of the patient’s body on different scales
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10942-9
– volume: 11
  start-page: 12757
  year: 2021
  ident: CR34
  article-title: The effect of coarctation degrees on wall shear stress indices
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-92104-3
– volume: 23
  start-page: 647
  year: 2001
  end-page: 655
  ident: CR11
  article-title: Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(01)00093-5
– volume: 118
  start-page: 663
  year: 2018
  end-page: 670
  ident: CR49
  article-title: The effect of a bifurcation structure on the heat transfer and temperature distribution of pulsatile blood flow
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.11.055
– volume: 17
  start-page: 632
  year: 1978
  end-page: 642
  ident: CR33
  article-title: Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows
  publication-title: Rheol Acta
  doi: 10.1007/BF01522036
– volume: 104
  start-page: 448
  year: 2001
  end-page: 454
  ident: CR19
  article-title: Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice
  publication-title: Circulation
  doi: 10.1161/hc2901.091399
– volume: 29
  start-page: 887
  year: 2005
  end-page: 891
  ident: CR42
  article-title: Effect of temperature increase on the distensibility of porcine thoracic aorta
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2005.00152.x
– volume: 71
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR37
  article-title: Magnetic field interaction with blood flow and heat transfer through diseased artery having abdominal aortic aneurysm
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2018.03.010
– volume: 134
  start-page: 051001
  year: 2012
  ident: CR6
  article-title: Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation
  publication-title: J Biomech Eng
  doi: 10.1115/1.4006681
– ident: CR17
– volume: 13
  start-page: 20160073
  year: 2016
  ident: CR1
  article-title: On the impact of modelling assumptions in multi-scale, subject-specific models of aortic haemodynamics
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2016.0073
– volume: 9
  start-page: 707
  year: 2018
  end-page: 722
  ident: CR7
  article-title: Evaluation of peak wall stress in an ascending thoracic aortic aneurysm using FSI Simulations: Effects of aortic stiffness and Peripheral Resistance
  publication-title: Cardiovasc Eng Technol
  doi: 10.1007/s13239-018-00385-z
– volume: 87
  start-page: 680
  year: 2009
  end-page: 690
  ident: CR40
  article-title: Analysis of flow patterns in a patient-specific thoracic aortic aneurysm model
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2008.09.007
– volume: 141
  start-page: 111002
  year: 2019
  ident: CR24
  article-title: A primary computational fluid dynamics study of pre-and post-TEVAR with intentional left subclavian artery coverage in a type B aortic dissection
  publication-title: J Biomech Eng
  doi: 10.1115/1.4043881
– volume: 292
  start-page: H884
  year: 2007
  end-page: H892
  ident: CR12
  article-title: Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00796.2006
– volume: 102
  start-page: 110
  year: 1980
  end-page: 118
  ident: CR8
  article-title: Heat transfer to blood vessels
  publication-title: J Biomech Eng
  doi: 10.1115/1.3138205
– volume: 03
  start-page: 759
  year: 2012
  end-page: 778
  ident: CR20
  article-title: Wall Shear stress in a subject specific human aorta — influence of fluid-structure Interaction
  publication-title: Int J Appl Mech
  doi: 10.1142/s1758825111001226
– volume: 221
  start-page: 106826
  year: 2022
  ident: CR26
  article-title: Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106826
– volume: 40
  start-page: 175
  year: 2006
  ident: 1745_CR14
  publication-title: Scand Cardiovasc J
  doi: 10.1080/14017430600565999
– volume: 99
  start-page: 109478
  year: 2020
  ident: 1745_CR30
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2019.109478
– volume: 134
  start-page: 051001
  year: 2012
  ident: 1745_CR6
  publication-title: J Biomech Eng
  doi: 10.1115/1.4006681
– volume: 34
  start-page: 101902
  year: 2022
  ident: 1745_CR25
  publication-title: Phys Fluids
  doi: 10.1063/5.0104649
– volume: 1
  start-page: 67
  year: 2022
  ident: 1745_CR16
  publication-title: Nat Cardiovasc Res
  doi: 10.1038/s44161-021-00006-4
– volume: 118
  start-page: 663
  year: 2018
  ident: 1745_CR49
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.11.055
– volume: 40
  start-page: 31
  year: 1999
  ident: 1745_CR38
  publication-title: Contemp Phys
  doi: 10.1080/001075199181693
– volume: 104
  start-page: 448
  year: 2001
  ident: 1745_CR19
  publication-title: Circulation
  doi: 10.1161/hc2901.091399
– volume: 2012
  start-page: 861837
  year: 2012
  ident: 1745_CR43
  publication-title: Comput Math Methods Med
  doi: 10.1155/2012/861837
– volume: 190
  start-page: 105384
  year: 2020
  ident: 1745_CR45
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105384
– volume: 21
  start-page: 221
  year: 2022
  ident: 1745_CR31
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01530-9
– volume: 60
  start-page: 259
  year: 2007
  ident: 1745_CR3
  publication-title: Revista Española de Cardiología (English Edition)
  doi: 10.1016/s1885-5857(07)60150-9
– volume: 190
  start-page: 105375
  year: 2020
  ident: 1745_CR13
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105375
– volume: 102
  start-page: 110
  year: 1980
  ident: 1745_CR8
  publication-title: J Biomech Eng
  doi: 10.1115/1.3138205
– ident: 1745_CR47
  doi: 10.1016/j.icheatmasstransfer.2021.105877
– volume: 13
  start-page: 20160073
  year: 2016
  ident: 1745_CR1
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2016.0073
– volume: 23
  start-page: 647
  year: 2001
  ident: 1745_CR11
  publication-title: Med Eng Phys
  doi: 10.1016/S1350-4533(01)00093-5
– ident: 1745_CR18
  doi: 10.1016/j.csite.2021.101738
– volume: 21
  start-page: 419
  year: 2022
  ident: 1745_CR28
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01542-5
– volume: 147
  start-page: 5761
  year: 2021
  ident: 1745_CR36
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-021-10942-9
– volume: 21
  start-page: 261
  year: 2022
  ident: 1745_CR9
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01534-5
– volume: 71
  start-page: 1
  year: 2018
  ident: 1745_CR37
  publication-title: Eur J Mech B Fluids
  doi: 10.1016/j.euromechflu.2018.03.010
– ident: 1745_CR17
  doi: 10.3390/app12031601
– volume: 285
  start-page: H333
  year: 2003
  ident: 1745_CR15
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00726.2002
– volume: 03
  start-page: 759
  year: 2012
  ident: 1745_CR20
  publication-title: Int J Appl Mech
  doi: 10.1142/s1758825111001226
– volume: 17
  start-page: 632
  year: 1978
  ident: 1745_CR33
  publication-title: Rheol Acta
  doi: 10.1007/BF01522036
– volume: 37
  start-page: 1321
  year: 1992
  ident: 1745_CR10
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/37/6/009
– volume: 24
  start-page: 1251
  year: 2021
  ident: 1745_CR22
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2021.1876036
– volume: 188
  start-page: 330
  year: 2021
  ident: 1745_CR21
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.04.011
– volume: 99
  start-page: 109478
  year: 2019
  ident: 1745_CR29
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2019.109478
– volume: 85
  start-page: 205
  year: 1992
  ident: 1745_CR35
  publication-title: Circulation
  doi: 10.1161/01.cir.85.1.205
– volume: 130
  start-page: 061008
  year: 2008
  ident: 1745_CR39
  publication-title: J Biomech Eng
  doi: 10.1115/1.2978992
– volume: 14
  start-page: 1
  year: 2015
  ident: 1745_CR2
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-015-0032-6
– volume: 11
  start-page: 12757
  year: 2021
  ident: 1745_CR34
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-92104-3
– volume: 292
  start-page: H884
  year: 2007
  ident: 1745_CR12
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00796.2006
– volume: 87
  start-page: 680
  year: 2009
  ident: 1745_CR40
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2008.09.007
– volume: 22
  start-page: 620
  year: 2019
  ident: 1745_CR32
  publication-title: Comput Methods Biomech Biomed Eng
  doi: 10.1080/10255842.2019.1577398
– volume: 221
  start-page: 106826
  year: 2022
  ident: 1745_CR26
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106826
– volume: 91
  start-page: 102622
  year: 2020
  ident: 1745_CR48
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2020.102622
– volume: 45
  start-page: 837
  year: 2007
  ident: 1745_CR23
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0236-4
– volume: 138
  start-page: 104882
  year: 2021
  ident: 1745_CR27
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104882
– volume: 84
  start-page: 871
  year: 2014
  ident: 1745_CR4
  publication-title: ANZ J Surg
  doi: 10.1111/ans.12446
– volume: 18
  start-page: 19
  year: 2019
  ident: 1745_CR44
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-019-0632-7
– volume: 141
  start-page: 111002
  year: 2019
  ident: 1745_CR24
  publication-title: J Biomech Eng
  doi: 10.1115/1.4043881
– volume: 54
  start-page: 901
  year: 2007
  ident: 1745_CR41
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/fld.1443
– volume: 29
  start-page: 887
  year: 2005
  ident: 1745_CR42
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2005.00152.x
– volume: 140
  start-page: 011002
  year: 2018
  ident: 1745_CR46
  publication-title: J Biomech Eng
  doi: 10.1115/1.4037857
– volume: 45
  start-page: 516
  year: 2012
  ident: 1745_CR5
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2011.11.041
– volume: 9
  start-page: 707
  year: 2018
  ident: 1745_CR7
  publication-title: Cardiovasc Eng Technol
  doi: 10.1007/s13239-018-00385-z
SSID ssj0020383
Score 2.4084907
Snippet The heat transfer mechanism inside the human aorta may be related to the physiological function and lesion formation of the aortic wall. The objective of this...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1953
SubjectTerms Aneurysms
Aorta
Aortic aneurysms
Aortic arch
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Blood vessels
Coronary vessels
Dissection
Engineering
Fluid-structure interaction
Heat flux
Heat transfer
High temperature
Original Paper
Physiology
Rigid walls
Temperature
Temperature distribution
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IOhBdH3VFxG8aaCvtNujiMsi6MkFbyWvSkGr7OOw_npnmnZ3ZVXwkkvTtPRLMl86M98AXCZSKOQNhvtdk_HYpppnaAd4koRWRlEQqvo_5MNj0h_E98_iuUkKG7XR7q1Lst6pF5Ldwijl2ODxN40Fn67CuqCzO87iQXgzO2b5TnyTiDunStpNqszPY3w3R0scc8k_Wpud3g5sN3yR3TiAd2HFVh3YcBUkpx3YWtAT3IOyjzsrG9dc1A7Zm6W03nL0xsqKlQYpYflpDXOpj1MmK8Ma_4xhkmj4iFEY_AsrXiel4U5adjK0jDQlhi4DgrmS0_sw6N093fZ5U0uB6ygVY07-NBJ-SsK4SAKZ-EpIXyGd0VaJsNs1VpAWvIxVliIJ0hS_h-SxsCGaOeHr6ADWqvfKHgFDhqDDSGtcvEXctYEqFHLMLJPKZkb61oOg_aS5boTGqd7Faz6XSCYYcmzyGoZ86sHV7J4PJ7PxZ-_TFqm8WXKjnMomIxdC-uLBxewyLhbygMjKvk-oT4yDkUCNB4cO4dnjSIcnQFPtwXUL-Xzw39_l-H_dT2CTCta7gJhTWEMk7RnSmrE6r2fxF1zp7S8
  priority: 102
  providerName: Springer Nature
Title Heat transfer mechanism in idealized healthy and diseased aortas using fluid-structure interaction method
URI https://link.springer.com/article/10.1007/s10237-023-01745-y
https://www.ncbi.nlm.nih.gov/pubmed/37481471
https://www.proquest.com/docview/2883175293
https://www.proquest.com/docview/2841029481
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7xEBIXVCgFt4AWqTe6qt-OTyhAQkQLQm0jhZO1LyNL4NA8DuHXM-PdJEIILuuDn9rx7ny7M_N9AN9TkUjEDZr7LZ3z2GSK5-gHeJqGRkRREMpmH_L6Ju3146tBMnAbbmOXVjmfE5uJWg8V7ZH_JFVcdHXonU6f_nNSjaLoqpPQWIV1oi6jlK5ssFxw-ZaGkyA8J01tVzTjSufCKOPY4GI6ixM-e-2Y3qDNN5HSxgF1P8GWQ46sbU29DSum3oENqyU5-wxVD2dVNmlwqBmxR0MlvdX4kVU1qzTCwerZaGbLHmdM1Jq52IxmgiD4mFEK_D0rH6aV5pZWdjoyjPgkRrb6gVm56V3odzv_znvc6ShwFWXJhFMsjUif0jAu00CkvkyELxHKKCMT7FdtEuKBF7HMMwRAinL3EDiWJkQXl_gq-gJr9bA2-8AQHagwUgoHbhm3TCBLifgyz4U0uRa-8SCYd2KhHMk4aV08FEt6ZOr4Apui6fhi5sHJ4p4nS7Hx4dUHc9sUbriNi-XP4cHx4jQOFIp-iNoMp3RNjA8jchoP9qxNF68jDp4A3bQHP-ZGXj78_W_5-vG3fINNEqe3yS8HsIaWM4cIYSbyqPlPsW11L49gvX1x_fsvHS_vfnXweNa5uf2DZ_th-wWPsPHe
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVN6BAkaCE1gkzmtzqCoELFv6OLVSb8GPCYrUZss-hMKP4jd2Jk52hSp668WXJHbkGc989ni-AXib6dQQbnAyHLlCJphbWZAfkFmmUMdxpEx3Dnl4lE1Oku-n6ekG_B1yYfha5WATO0PtppbPyD9yVVxydeSddi9-Sa4axdHVoYSGV4t9bH_Tlm2-s_eF5PtOqfHX488T2VcVkDbO04XkyBJTIGUqqbJIZ6FJdWjIsVs0KY3iMGVWdJ2YIic4YPkmG8GoChUZ_DS0MfV7C24ncVzwihqNv602eKGn_eQtg-Qa3n2STp-qp-JcUkOb9zxJZfuvI7yCbq9EZjuHN96C-z1SFZ-8aj2ADWwewh1fu7J9BPWErLhYdLgXZ-IcOYW4np-LuhG1I_hZ_0EnfJplK3TjRB8LckIz5J8LvnL_U1Rny9pJT2O7nKFg_oqZz7YQvrz1Yzi5kRl-ApvNtMFnIAiNWBVbS4aiSkYYmcoQni0KbbBwOsQAomESS9uTmnNtjbNyTcfME19SU3YTX7YBvF99c-EpPa59e3uQTdkv73m5VsYA3qwe08LkaItucLrkdxLqjMlwAnjqZboajjl_IoIFAXwYhLzu_P__8vz6f3kNdyfHhwflwd7R_gu4p1jZuos327BJUsSXBJ8W5lWnswJ-3PQiuQTlRCYO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCAQHxE5YjcQNrGZPc0RAVVZxoBK3yFtQJAioy6F8PTNxWopYJC6-xHEij-15ycx7A3AUi0gibtDcbeqUhyZRPEU_wOPYNyIIPF9W_yFv7-J2J7x6jB4nWPxVtvsoJGk5DaTSVPYbbzpvTBDf_CDh2OCncBJGfDgNs3gce7SuO_7p-JPLtUKcBOI5VdWuaTM_j_HVNX3Dm99ipZULai3DUo0d2ak19gpMmXIV5mw1yeEqLE5oC65B0cZTlvUrXGq67MUQxbfovbCiZIVGeFi8G80sDXLIRKlZHavRTBAk7zFKiX9i-fOg0NzKzA66hpG-RNeyIZgtP70OndbFw1mb13UVuAqSqM8ptkYiULEf5rEnYldGwpUIbZSRkd9sahORLrwIZZogIFKUy4dAMjc-urzIVcEGzJSvpdkChmhB-YFSOPN52DSezCXizTQV0qRauMYBbzSlmapFx6n2xXP2KZdMZsiwySozZEMHjsf3vFnJjT97744sldXbr5dRCWXERQhlHDgcX8aNQ9EQUZrXAfUJcTASq3Fg01p4_DjS5PHQbTtwMjL55-C_v8v2_7ofwPz9eSu7uby73oEFqmNv82R2YQaNavYQ7fTlfrWgPwCSA_Re
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+transfer+mechanism+in+idealized+healthy+and+diseased+aortas+using+fluid-structure+interaction+method&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Qiao%2C+Yonghui&rft.au=Luo%2C+Kun&rft.au=Fan%2C+Jianren&rft.date=2023-12-01&rft.eissn=1617-7940&rft_id=info:doi/10.1007%2Fs10237-023-01745-y&rft_id=info%3Apmid%2F37481471&rft.externalDocID=37481471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon