Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses
This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the qu...
Saved in:
Published in | Journal of molecular modeling Vol. 26; no. 6; p. 161 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1610-2940 0948-5023 0948-5023 |
DOI | 10.1007/s00894-020-04423-3 |
Cover
Loading…
Abstract | This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H
2
O)
1–5
complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H
2
O)
5
complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (
μ
), the polarizability (
α
0
), and the first hyperpolarizability (
β
tot
), and thermodynamic functions, such as entropy (
S
), specific heat capacity (
C
v
), and thermal energy (
E
), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex. |
---|---|
AbstractList | This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H
2
O)
1–5
complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H
2
O)
5
complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (
μ
), the polarizability (
α
0
), and the first hyperpolarizability (
β
tot
), and thermodynamic functions, such as entropy (
S
), specific heat capacity (
C
v
), and thermal energy (
E
), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex. This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H O) complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H O) complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α ), and the first hyperpolarizability (β ), and thermodynamic functions, such as entropy (S), specific heat capacity (C ), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex. This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H2O)1–5 complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H2O)5 complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α0), and the first hyperpolarizability (βtot), and thermodynamic functions, such as entropy (S), specific heat capacity (Cv), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex. This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H2O)1-5 complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H2O)5 complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α0), and the first hyperpolarizability (βtot), and thermodynamic functions, such as entropy (S), specific heat capacity (Cv), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex.This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H2O)1-5 complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H2O)5 complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α0), and the first hyperpolarizability (βtot), and thermodynamic functions, such as entropy (S), specific heat capacity (Cv), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex. |
ArticleNumber | 161 |
Author | Akman, Feride Issaoui, Noureddine Kazachenko, Aleksandr S. |
Author_xml | – sequence: 1 givenname: Feride orcidid: 0000-0001-5663-2021 surname: Akman fullname: Akman, Feride email: chemakman@gmail.com organization: Vocational School of Technical Sciences, University of Bingöl – sequence: 2 givenname: Noureddine surname: Issaoui fullname: Issaoui, Noureddine organization: Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir – sequence: 3 givenname: Aleksandr S. surname: Kazachenko fullname: Kazachenko, Aleksandr S. organization: Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk State Agrarian University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32472203$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9uEzEQxi1UREPpC3BAlrgk0pr679qLxKG0tI1UiISCxG3l3cy2W23sYO-K5tZrz7wDD9YnwWkKSD30MBpZ3-_zjOZ7iXacd4DQa0bfMUr1QaTUFJJQTgmVkgsinqERLaQhinKxg0YsZ5TwQtJdtB_jFaWUcZUrzl-gXcGl5pyKEfo1dT2Epe-gHjob8OV6EfwFOFx5t8DtRrR133oX0wP3l5Cq9UMAe_DTJhHXfrnq4BoiHs-TQsZnfDZxEzx2dze3H1KxDN_d_M6wmrzH30mw6wwfn8wz_OXjLMOH088ZtmnS1-PT1G23jhBfoeeN7SLsP_Q99O3k0_zojJzPTqdHh-ekFlr1xDAlDJO11rqpTMGhKoyVed1UoDlreK6VSQUNb6TKC2BUVflC0KawwCsLYg-Nt_-ugv8xQOzLZRtr6DrrwA-x5JIaVnCmeELfPkKv0hHSvveU1rlmJk_UmwdqqJawKFehXdqwLv-eOwF8C9TBxxig-YcwWm5iLbexlinW8j7WcmMyj0x129tNJn2wbfe0VWytMc1xFxD-r_2E6w8dRbQX |
CitedBy_id | crossref_primary_10_1016_j_molstruc_2021_132254 crossref_primary_10_1016_j_molstruc_2022_134715 crossref_primary_10_1016_j_molstruc_2021_130999 crossref_primary_10_1080_10406638_2023_2224490 crossref_primary_10_1007_s00894_023_05811_1 crossref_primary_10_1016_j_jics_2022_100660 crossref_primary_10_1016_j_molliq_2024_124053 crossref_primary_10_1016_j_comptc_2023_114260 crossref_primary_10_1016_j_inoche_2023_111486 crossref_primary_10_1016_j_matpr_2022_06_433 crossref_primary_10_1016_j_chphi_2023_100283 crossref_primary_10_1016_j_molliq_2022_119248 crossref_primary_10_1515_zpch_2023_0345 crossref_primary_10_1016_j_molliq_2022_118670 crossref_primary_10_1016_j_heliyon_2023_e16066 crossref_primary_10_1016_j_comptc_2021_113218 crossref_primary_10_1002_slct_202404732 crossref_primary_10_1016_j_molliq_2024_124055 crossref_primary_10_1007_s00894_022_05406_2 crossref_primary_10_1016_j_chphi_2023_100436 crossref_primary_10_1080_10406638_2024_2407964 crossref_primary_10_1007_s00894_024_06147_0 crossref_primary_10_3390_molecules28020470 crossref_primary_10_1016_j_molliq_2021_117475 crossref_primary_10_1016_j_jksus_2021_101616 crossref_primary_10_3390_molecules27227864 crossref_primary_10_1038_s41598_024_61364_0 crossref_primary_10_3390_cryst13060875 crossref_primary_10_1016_j_molstruc_2023_135546 crossref_primary_10_3390_cryst13101472 crossref_primary_10_1016_j_inoche_2023_111424 crossref_primary_10_1007_s00214_023_02970_5 crossref_primary_10_1016_j_molliq_2023_123261 crossref_primary_10_1016_j_molstruc_2024_139226 crossref_primary_10_1016_j_molliq_2021_117608 crossref_primary_10_1016_j_comptc_2024_114724 crossref_primary_10_1007_s10904_024_03351_6 crossref_primary_10_1007_s12596_024_01664_w crossref_primary_10_3390_gels8050293 crossref_primary_10_1016_j_jksus_2021_101807 crossref_primary_10_1016_j_physb_2022_413857 crossref_primary_10_1007_s13399_021_02250_x crossref_primary_10_1016_j_molstruc_2021_131890 crossref_primary_10_1515_zpch_2020_1754 crossref_primary_10_1002_vjch_202100116 crossref_primary_10_1002_poc_4245 crossref_primary_10_1007_s00214_022_02893_7 crossref_primary_10_1080_10406638_2022_2135547 crossref_primary_10_1111_1541_4337_12823 crossref_primary_10_1016_j_jksus_2022_102350 crossref_primary_10_1016_j_fluid_2023_113942 crossref_primary_10_3390_sym15030619 crossref_primary_10_1039_D3NJ05361J crossref_primary_10_1016_j_enzmictec_2024_110456 crossref_primary_10_3390_molecules28041931 crossref_primary_10_1007_s11696_022_02123_1 crossref_primary_10_1016_j_molliq_2021_117271 crossref_primary_10_3390_ijms23031602 crossref_primary_10_1016_j_molstruc_2023_135208 crossref_primary_10_1016_j_molstruc_2022_134515 crossref_primary_10_1016_j_cplett_2023_140424 crossref_primary_10_1080_10406638_2023_2255357 crossref_primary_10_1016_j_jics_2023_100902 crossref_primary_10_1016_j_molliq_2024_125064 crossref_primary_10_1007_s13369_022_06936_w crossref_primary_10_3390_foods10112571 crossref_primary_10_3390_gels8110703 crossref_primary_10_1016_j_jics_2022_100580 crossref_primary_10_1016_j_molstruc_2024_140908 crossref_primary_10_1016_j_molliq_2023_121524 crossref_primary_10_1016_j_molliq_2022_119161 crossref_primary_10_1016_j_enzmictec_2022_110082 crossref_primary_10_1515_zpch_2023_0381 crossref_primary_10_1016_j_saa_2022_121593 crossref_primary_10_1016_j_jhazmat_2022_128508 crossref_primary_10_1016_j_molliq_2024_124895 crossref_primary_10_1016_j_rechem_2024_101379 crossref_primary_10_1007_s00214_022_02865_x crossref_primary_10_1016_j_bcab_2023_102920 crossref_primary_10_1016_j_comtox_2022_100231 crossref_primary_10_1039_D3CP02335D crossref_primary_10_1007_s11082_024_07371_x crossref_primary_10_1016_j_ijbiomac_2025_142011 crossref_primary_10_1016_j_jphotochem_2024_116067 crossref_primary_10_1016_j_molstruc_2022_134242 crossref_primary_10_1016_j_molliq_2022_119557 crossref_primary_10_1016_j_molstruc_2022_133394 crossref_primary_10_1002_vjch_202200013 crossref_primary_10_1016_j_molliq_2023_121437 crossref_primary_10_1016_j_molliq_2023_121552 crossref_primary_10_1016_j_molliq_2023_123212 crossref_primary_10_1016_j_inoche_2023_111587 crossref_primary_10_1007_s13399_022_02587_x crossref_primary_10_1016_j_molstruc_2022_132791 crossref_primary_10_3390_cryst13010024 crossref_primary_10_3390_molecules28062669 crossref_primary_10_1016_j_seppur_2021_119342 crossref_primary_10_1021_acs_jpca_4c02966 crossref_primary_10_1016_j_matpr_2023_02_454 crossref_primary_10_1016_j_molstruc_2024_138109 crossref_primary_10_1016_j_molstruc_2021_132028 crossref_primary_10_1016_j_molliq_2024_125882 crossref_primary_10_1016_j_molliq_2023_123288 crossref_primary_10_1063_1674_0068_cjcp2111251 crossref_primary_10_1016_j_saa_2024_125130 crossref_primary_10_1002_poc_4294 crossref_primary_10_1016_j_molliq_2022_119859 crossref_primary_10_1016_j_mtcomm_2022_104322 crossref_primary_10_1088_1674_1056_ac21c2 crossref_primary_10_1016_j_molstruc_2022_133374 |
Cites_doi | 10.1016/0263-7855(96)00018-5 10.1021/jp0310450 10.1103/PhysRevB.37.785 10.1103/PhysRevLett.52.997 10.1021/ja100936w 10.1023/A:1008149010678 10.1016/j.bmcl.2008.03.033 10.1021/ja970221d 10.1002/jhet.3540 10.1016/j.theochem.2005.06.012 10.1016/j.comptc.2015.07.018 10.1016/j.molstruc.2019.127254 10.1063/1.464913 10.1002/prep.200290001 10.1063/1.4897249 10.1002/mrc.1270130603 10.1016/j.bmc.2005.05.014 10.1002/crat.200410526 10.1134/S0022476614080186 10.1016/0301-0104(94)85013-5 10.1021/ja0017864 10.1021/jm100217a 10.1007/s12039-013-0445-3 10.1021/op1000989 10.1002/jhet.406 10.1021/jp034531w 10.1016/j.saa.2013.10.104 10.1021/je301203z 10.1007/s00894-019-4274-2 10.1080/17415993.2010.550294 10.1002/jcc.22885 10.1007/s12039-014-0725-6 10.2471/BLT.14.142570 10.1016/B978-0-12-804162-8.00002-1 10.1093/oso/9780198551683.001.0001 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s00894-020-04423-3 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 0948-5023 |
ExternalDocumentID | 32472203 10_1007_s00894_020_04423_3 |
Genre | Journal Article |
GroupedDBID | --- -4Y -58 -5G -BR -EM -Y2 -~C .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S27 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z83 Z86 Z87 Z8M Z8O Z8P Z8Q Z8S Z8W Z91 ZMTXR ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABQSL ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM ABRTQ 7X8 |
ID | FETCH-LOGICAL-c375t-8153814c777fb892eb98a46cfbe721f26758675ef2f4569e105b6d30f9ae2bae3 |
IEDL.DBID | U2A |
ISSN | 1610-2940 0948-5023 |
IngestDate | Fri Jul 11 11:09:20 EDT 2025 Fri Jul 25 09:01:56 EDT 2025 Wed Feb 19 02:30:15 EST 2025 Tue Jul 01 02:45:52 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Fri Feb 21 02:30:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Thiourea NBO DFT X-ray RDG AIM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-8153814c777fb892eb98a46cfbe721f26758675ef2f4569e105b6d30f9ae2bae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5663-2021 |
PMID | 32472203 |
PQID | 2407767186 |
PQPubID | 2043656 |
ParticipantIDs | proquest_miscellaneous_2408192152 proquest_journals_2407767186 pubmed_primary_32472203 crossref_primary_10_1007_s00894_020_04423_3 crossref_citationtrail_10_1007_s00894_020_04423_3 springer_journals_10_1007_s00894_020_04423_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Computational Chemistry - Life Science - Advanced Materials - New Methods |
PublicationTitle | Journal of molecular modeling |
PublicationTitleAbbrev | J Mol Model |
PublicationTitleAlternate | J Mol Model |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Rozas, Alkorta, Elguero (CR41) 2000; 122 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Mennucci, Petersson, Nakatsuji, Caricato, Li, Hratchian, Izmaylov, Bloino, Zheng, Sonnenberg, Hada, Ehara, Toyota, Fukuda, Hasegawa, Ishida, Nakajima, Honda, Kitao, Nakai, Vreven, Montgomery, Peralta, Ogliaro, Bearpark, Heyd, Brothers, Kudin, Staroverov, Kobayashi, Normand, Raghavachari, Rendell, Burant, Iyengar, Tomasi, Cossi, Rega, Millam, Klene, Knox, Cross, Bakken, Adamo, Jaramillo, Gomperts, Stratmann, Yazyev, Austin, Cammi, Pomelli, Ochterski, Martin, Morokuma, Zakrzewski, Voth, Salvador, Dannenberg, Dapprich, Daniels, Farkas, Foresman, Ortiz, Cioslowski, Fox (CR27) 2009 Johnson, Keinan, Mori-Sánchez, Contreras-García, Cohen, Yang (CR42) 2010; 132 Sahu, Rani Sahoo, Patel, Mishra (CR5) 2011; 32 Lu, Chen (CR31) 2012; 33 Ravi, Jegatheesan, Neelakandaprasad, Sadeeshkumar, Rajarajan (CR35) 2014; 7 Jara, Merchan, Yutronic, Gonzalez (CR16) 2000; 36 Niu, Huang, Ma, Shen, Guo (CR44) 2013; 125 Živec, Anzic, Gobec (CR13) 2010; 14 Hata, Moribe, Ando, Tozuka, Yamamoto (CR2) 2014; 55 Pawlowski, Okimoto, Tao (CR19) 2003; 107 CR37 CR36 Dawood (CR8) 2019; 56 Shakeel, Altaf, Qureshi, Badshah (CR17) 2016; 2 Weiqun, Wen, Lihua (CR18) 2005; 730 Runge, Gross (CR32) 1984; 52 Becke (CR29) 1993; 98 Kaur, Khanna (CR25) 2014; 126 Lee, Yang, Parr (CR30) 1988; 37 Olah, Burrichter, Rasul, Christe, Prakash (CR1) 1997; 119 Willard, Chandler (CR22) 2014; 141 Glendening, Reed, Carpenter, Weinhold (CR39) 1998 CR6 Falzon, Hill, Pal, Suwankesawong, Jaramillo (CR11) 2014; 92 Sharma, Steinbergs, Wu, Crowley, Hanson, Casero, Woster (CR15) 2010; 53 Ghosh, Debnath, Jana (CR23) 2020; 26 CR28 Martin, Filleux-Blanchard, Martin, Webb (CR3) 1980; 13 Humphrey, Dalke, Schulten (CR33) 1996; 14 Jayalakshmi, Kumar (CR34) 2006; 41 Hammami, Ghalla, Nasr (CR24) 2015; 1070 Xia, Xiao, Ju, Gong (CR21) 2004; 108 Hassan, El-Sheref (CR14) 2010; 47 Ju, Xiao (CR20) 2002; 27 Ivanov, Abrosimov (CR26) 2013; 58 Bader (CR40) 1990 Agarwal, Bee, Gupta, Tandon, Rastogi, Mishra, Rawat (CR43) 2014; 121 Knox, Smith, Stout (CR7) 1974; 81 Narimani, Kohzadi (CR12) 2014; 2 Ajayi, Shapi (CR38) 2020; 1202 Ha, Puebla (CR4) 1994; 181 Liav, Angala, Brennan, Jackson (CR9) 2008; 18 Tsogoeva, Hateley, Yalalov, Meindl, Weckbecker, Huthmacher (CR10) 2005; 13 SK Sharma (4423_CR15) 2010; 53 C Lee (4423_CR30) 1988; 37 S Sahu (4423_CR5) 2011; 32 A Shakeel (4423_CR17) 2016; 2 Z Weiqun (4423_CR18) 2005; 730 H Narimani (4423_CR12) 2014; 2 MJ Frisch (4423_CR27) 2009 D Kaur (4423_CR25) 2014; 126 P Jara (4423_CR16) 2000; 36 4423_CR28 A Liav (4423_CR9) 2008; 18 QY Xia (4423_CR21) 2004; 108 F Hammami (4423_CR24) 2015; 1070 E Runge (4423_CR32) 1984; 52 GA Olah (4423_CR1) 1997; 119 M Hata (4423_CR2) 2014; 55 ML Martin (4423_CR3) 1980; 13 T Lu (4423_CR31) 2012; 33 ED Glendening (4423_CR39) 1998 XH Ju (4423_CR20) 2002; 27 W Humphrey (4423_CR33) 1996; 14 P Agarwal (4423_CR43) 2014; 121 SB Tsogoeva (4423_CR10) 2005; 13 B Ravi (4423_CR35) 2014; 7 I Rozas (4423_CR41) 2000; 122 4423_CR6 AD Becke (4423_CR29) 1993; 98 SR Ghosh (4423_CR23) 2020; 26 JA Knox (4423_CR7) 1974; 81 PM Pawlowski (4423_CR19) 2003; 107 4423_CR36 4423_CR37 ER Johnson (4423_CR42) 2010; 132 D Falzon (4423_CR11) 2014; 92 KM Dawood (4423_CR8) 2019; 56 D Jayalakshmi (4423_CR34) 2006; 41 X Niu (4423_CR44) 2013; 125 EV Ivanov (4423_CR26) 2013; 58 AP Willard (4423_CR22) 2014; 141 M Živec (4423_CR13) 2010; 14 AA Hassan (4423_CR14) 2010; 47 RFW Bader (4423_CR40) 1990 TK Ha (4423_CR4) 1994; 181 TJ Ajayi (4423_CR38) 2020; 1202 |
References_xml | – volume: 14 start-page: 33 issue: 1 year: 1996 end-page: 38 ident: CR33 article-title: VMD: visual molecular dynamics publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – volume: 108 start-page: 2780 issue: 14 year: 2004 end-page: 2786 ident: CR21 article-title: Density functional theory study of the structures and properties of (H2AlN3)n (n = 1–4) clusters publication-title: J Phys Chem A doi: 10.1021/jp0310450 – volume: 37 start-page: 785 issue: 2 year: 1988 ident: CR30 article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density publication-title: Phys Rev B doi: 10.1103/PhysRevB.37.785 – volume: 52 start-page: 997 issue: 12 year: 1984 ident: CR32 article-title: Density-functional theory for time-dependent systems publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.52.997 – volume: 132 start-page: 6498 issue: 18 year: 2010 end-page: 6506 ident: CR42 article-title: Revealing noncovalent interactions publication-title: J Am Chem Soc doi: 10.1021/ja100936w – volume: 36 start-page: 99 issue: 1 year: 2000 end-page: 100 ident: CR16 article-title: Macroscopic evidence of inclusion phenomena in urea and thiourea matrices publication-title: J Incl Phenom Macrocycl Chem doi: 10.1023/A:1008149010678 – volume: 18 start-page: 2649 issue: 8 year: 2008 end-page: 2651 ident: CR9 article-title: ND-aldopentofuranosyl-N′-[p-(isoamyloxy) phenyl]-thiourea derivatives: potential anti-TB therapeutic agents publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2008.03.033 – volume: 119 start-page: 4345 issue: 19 year: 1997 end-page: 4352 ident: CR1 article-title: Preparation, NMR, Raman, and DFT/IGLO/GIAO-MP2 study of mono-and diprotonated thiourea and theoretical investigation of triprotonated thiourea1 publication-title: J Am Chem Soc doi: 10.1021/ja970221d – ident: CR37 – volume: 56 start-page: 1701 issue: 6 year: 2019 end-page: 1721 ident: CR8 article-title: Bis-thiourea derivatives and their utility in synthesis of mono-heterocyclic, bis-heterocyclic, and fused heterocyclic systems publication-title: J Heterocyclic Chem doi: 10.1002/jhet.3540 – year: 1998 ident: CR39 publication-title: NBO Version 3.1, TCl – volume: 730 start-page: 133 issue: 1–3 year: 2005 end-page: 141 ident: CR18 article-title: Structure and stability of thiourea with water, DFT and MP2 calculations publication-title: J Mol Struct THEOCHEM doi: 10.1016/j.theochem.2005.06.012 – volume: 1070 start-page: 40 year: 2015 end-page: 47 ident: CR24 article-title: Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2015.07.018 – volume: 1202 start-page: 127254 year: 2020 ident: CR38 article-title: Solvent-free mechanochemical synthesis, hirshfeld surface analysis, crystal structure, spectroscopic characterization and NBO analysis of Bis (ammonium) Bis ((4-methoxyphenyl) phosphonodithioato)-nickel (II) dihydrate with DFT studies publication-title: J Mol Struct doi: 10.1016/j.molstruc.2019.127254 – year: 2009 ident: CR27 publication-title: Gaussian 09, Revision C.01 – volume: 98 start-page: 5648 year: 1993 end-page: 5652 ident: CR29 article-title: Becke’s three parameter hybrid method using the LYP correlation functional publication-title: J Chem Phys doi: 10.1063/1.464913 – ident: CR6 – year: 1990 ident: CR40 publication-title: Atoms in molecules – a quantum theory – volume: 27 start-page: 320 issue: 6 year: 2002 end-page: 326 ident: CR20 article-title: Ab initio study on interactions in difluoroamine clusters from one to four molecules publication-title: Propellants Explos Pyrotech doi: 10.1002/prep.200290001 – volume: 141 start-page: 18C519 issue: 18 year: 2014 ident: CR22 article-title: The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like publication-title: J Chem Phys doi: 10.1063/1.4897249 – volume: 13 start-page: 396 issue: 6 year: 1980 end-page: 402 ident: CR3 article-title: Application of 15N spectroscopy and dynamic NMR to the study of ureas, thioureas and their Lewis acid adducts publication-title: Org Magn Reson doi: 10.1002/mrc.1270130603 – volume: 13 start-page: 5680 issue: 19 year: 2005 end-page: 5685 ident: CR10 article-title: Thiourea-based non-nucleoside inhibitors of HIV reverse transcriptase as bifunctional organocatalysts in the asymmetric Strecker synthesis publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2005.05.014 – volume: 41 start-page: 37 issue: 1 year: 2006 end-page: 40 ident: CR34 article-title: Growth and characterization of bis thiourea zinc acetate (BTZA) publication-title: J Cryst Res Technol doi: 10.1002/crat.200410526 – volume: 55 start-page: 1506 issue: 8 year: 2014 end-page: 1513 ident: CR2 article-title: Density functional theory study of equimolar complexation of urea or thiourea with 2-alcoxybenzamide publication-title: J Struct Chem doi: 10.1134/S0022476614080186 – volume: 181 start-page: 47 issue: 1–2 year: 1994 end-page: 55 ident: CR4 article-title: A theoretical study of conformations and vibrational frequencies in (NH2) 2C = X compounds (X = O, S, and Se) publication-title: Chem Phys doi: 10.1016/0301-0104(94)85013-5 – volume: 122 start-page: 11154 issue: 45 year: 2000 end-page: 11161 ident: CR41 article-title: Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors publication-title: J Am Chem Soc doi: 10.1021/ja0017864 – volume: 2 start-page: 48 year: 2014 end-page: 55 ident: CR12 article-title: A practical and convenient method for the synthesis of anesthetic drug thiopental: using thiourea and sodium ethoxide publication-title: Iran Chem Commun – volume: 53 start-page: 5197 issue: 14 year: 2010 end-page: 5212 ident: CR15 article-title: (Bis)urea and (Bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators publication-title: J Med Chem doi: 10.1021/jm100217a – volume: 125 start-page: 949 issue: 4 year: 2013 end-page: 958 ident: CR44 article-title: Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes publication-title: J Chem Sci doi: 10.1007/s12039-013-0445-3 – volume: 2 start-page: 10 issue: 1 year: 2016 ident: CR17 article-title: Thiourea derivatives in drug design and medicinal chemistry: a short review publication-title: J Drug Des Med Chem – volume: 14 start-page: 1125 issue: 5 year: 2010 end-page: 1129 ident: CR13 article-title: A novel scalable synthesis of pramipexole publication-title: Org Process Res Dev doi: 10.1021/op1000989 – volume: 47 start-page: 764 issue: 4 year: 2010 end-page: 784 ident: CR14 article-title: Chemistry and heterocyclization of dithiobiurea and thioureidoalkylthiourea publication-title: J Heterocyclic Chem doi: 10.1002/jhet.406 – volume: 107 start-page: 5327 issue: 27 year: 2003 end-page: 5333 ident: CR19 article-title: Structure and stability of sulfur trioxide–ammonia clusters with water: implications on atmospheric nucleation and condensation publication-title: J Phys Chem A doi: 10.1021/jp034531w – volume: 121 start-page: 464 year: 2014 end-page: 482 ident: CR43 article-title: Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2013.10.104 – ident: CR36 – volume: 58 start-page: 1103 issue: 5 year: 2013 end-page: 1111 ident: CR26 article-title: Apparent molar volumes and expansibilities of thiourea, 1,3-dimethylurea, and 1,3-dimethylthiourea in water at temperatures from T=(278.15 to 318.15) K and atmospheric pressure publication-title: J Chem Eng Data doi: 10.1021/je301203z – volume: 26 start-page: 1 issue: 1 year: 2020 end-page: 9 ident: CR23 article-title: Water dimer isomers: interaction energies and electronic structure publication-title: J Mol Model doi: 10.1007/s00894-019-4274-2 – volume: 7 start-page: 287 year: 2014 end-page: 294 ident: CR35 article-title: Optical and conductivity analysis of thiourea single crystals publication-title: Rasayan J Chem – volume: 32 start-page: 171 issue: 2 year: 2011 end-page: 197 ident: CR5 article-title: Oxidation of thiourea and substituted thioureas: a review publication-title: J Sulfur Chem doi: 10.1080/17415993.2010.550294 – ident: CR28 – volume: 81 start-page: 53183 year: 1974 ident: CR7 article-title: US Patent №3,730,901 publication-title: Chem Abstr – volume: 33 start-page: 580 issue: 5 year: 2012 end-page: 592 ident: CR31 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J Comput Chem doi: 10.1002/jcc.22885 – volume: 126 start-page: 1815 issue: 6 year: 2014 end-page: 1829 ident: CR25 article-title: Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers publication-title: J Chem Sci doi: 10.1007/s12039-014-0725-6 – volume: 92 start-page: 918 year: 2014 end-page: 919 ident: CR11 article-title: Pharmacovigilance and tuberculosis: applying the lessons of thioacetazone publication-title: Bull World Health Organ doi: 10.2471/BLT.14.142570 – ident: 4423_CR28 – volume: 27 start-page: 320 issue: 6 year: 2002 ident: 4423_CR20 publication-title: Propellants Explos Pyrotech doi: 10.1002/prep.200290001 – volume: 41 start-page: 37 issue: 1 year: 2006 ident: 4423_CR34 publication-title: J Cryst Res Technol doi: 10.1002/crat.200410526 – volume: 1070 start-page: 40 year: 2015 ident: 4423_CR24 publication-title: Comput Theor Chem doi: 10.1016/j.comptc.2015.07.018 – volume: 121 start-page: 464 year: 2014 ident: 4423_CR43 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2013.10.104 – volume: 126 start-page: 1815 issue: 6 year: 2014 ident: 4423_CR25 publication-title: J Chem Sci doi: 10.1007/s12039-014-0725-6 – ident: 4423_CR37 doi: 10.1016/B978-0-12-804162-8.00002-1 – ident: 4423_CR36 – volume: 37 start-page: 785 issue: 2 year: 1988 ident: 4423_CR30 publication-title: Phys Rev B doi: 10.1103/PhysRevB.37.785 – volume: 108 start-page: 2780 issue: 14 year: 2004 ident: 4423_CR21 publication-title: J Phys Chem A doi: 10.1021/jp0310450 – volume: 141 start-page: 18C519 issue: 18 year: 2014 ident: 4423_CR22 publication-title: J Chem Phys doi: 10.1063/1.4897249 – volume: 14 start-page: 1125 issue: 5 year: 2010 ident: 4423_CR13 publication-title: Org Process Res Dev doi: 10.1021/op1000989 – volume: 36 start-page: 99 issue: 1 year: 2000 ident: 4423_CR16 publication-title: J Incl Phenom Macrocycl Chem doi: 10.1023/A:1008149010678 – volume: 7 start-page: 287 year: 2014 ident: 4423_CR35 publication-title: Rasayan J Chem – volume: 122 start-page: 11154 issue: 45 year: 2000 ident: 4423_CR41 publication-title: J Am Chem Soc doi: 10.1021/ja0017864 – volume: 56 start-page: 1701 issue: 6 year: 2019 ident: 4423_CR8 publication-title: J Heterocyclic Chem doi: 10.1002/jhet.3540 – volume: 98 start-page: 5648 year: 1993 ident: 4423_CR29 publication-title: J Chem Phys doi: 10.1063/1.464913 – volume-title: Atoms in molecules – a quantum theory year: 1990 ident: 4423_CR40 doi: 10.1093/oso/9780198551683.001.0001 – ident: 4423_CR6 – volume: 107 start-page: 5327 issue: 27 year: 2003 ident: 4423_CR19 publication-title: J Phys Chem A doi: 10.1021/jp034531w – volume: 32 start-page: 171 issue: 2 year: 2011 ident: 4423_CR5 publication-title: J Sulfur Chem doi: 10.1080/17415993.2010.550294 – volume: 33 start-page: 580 issue: 5 year: 2012 ident: 4423_CR31 publication-title: J Comput Chem doi: 10.1002/jcc.22885 – volume: 181 start-page: 47 issue: 1–2 year: 1994 ident: 4423_CR4 publication-title: Chem Phys doi: 10.1016/0301-0104(94)85013-5 – volume-title: Gaussian 09, Revision C.01 year: 2009 ident: 4423_CR27 – volume: 119 start-page: 4345 issue: 19 year: 1997 ident: 4423_CR1 publication-title: J Am Chem Soc doi: 10.1021/ja970221d – volume: 13 start-page: 396 issue: 6 year: 1980 ident: 4423_CR3 publication-title: Org Magn Reson doi: 10.1002/mrc.1270130603 – volume: 13 start-page: 5680 issue: 19 year: 2005 ident: 4423_CR10 publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2005.05.014 – volume: 55 start-page: 1506 issue: 8 year: 2014 ident: 4423_CR2 publication-title: J Struct Chem doi: 10.1134/S0022476614080186 – volume: 2 start-page: 48 year: 2014 ident: 4423_CR12 publication-title: Iran Chem Commun – volume: 730 start-page: 133 issue: 1–3 year: 2005 ident: 4423_CR18 publication-title: J Mol Struct THEOCHEM doi: 10.1016/j.theochem.2005.06.012 – volume: 14 start-page: 33 issue: 1 year: 1996 ident: 4423_CR33 publication-title: J Mol Graph doi: 10.1016/0263-7855(96)00018-5 – volume: 81 start-page: 53183 year: 1974 ident: 4423_CR7 publication-title: Chem Abstr – volume: 125 start-page: 949 issue: 4 year: 2013 ident: 4423_CR44 publication-title: J Chem Sci doi: 10.1007/s12039-013-0445-3 – volume: 47 start-page: 764 issue: 4 year: 2010 ident: 4423_CR14 publication-title: J Heterocyclic Chem doi: 10.1002/jhet.406 – volume: 53 start-page: 5197 issue: 14 year: 2010 ident: 4423_CR15 publication-title: J Med Chem doi: 10.1021/jm100217a – volume: 58 start-page: 1103 issue: 5 year: 2013 ident: 4423_CR26 publication-title: J Chem Eng Data doi: 10.1021/je301203z – volume: 1202 start-page: 127254 year: 2020 ident: 4423_CR38 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2019.127254 – volume: 132 start-page: 6498 issue: 18 year: 2010 ident: 4423_CR42 publication-title: J Am Chem Soc doi: 10.1021/ja100936w – volume: 92 start-page: 918 year: 2014 ident: 4423_CR11 publication-title: Bull World Health Organ doi: 10.2471/BLT.14.142570 – volume: 52 start-page: 997 issue: 12 year: 1984 ident: 4423_CR32 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.52.997 – volume: 18 start-page: 2649 issue: 8 year: 2008 ident: 4423_CR9 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2008.03.033 – volume: 26 start-page: 1 issue: 1 year: 2020 ident: 4423_CR23 publication-title: J Mol Model doi: 10.1007/s00894-019-4274-2 – volume-title: NBO Version 3.1, TCl year: 1998 ident: 4423_CR39 – volume: 2 start-page: 10 issue: 1 year: 2016 ident: 4423_CR17 publication-title: J Drug Des Med Chem |
SSID | ssj0001256522 |
Score | 2.5605755 |
Snippet | This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 161 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Density functional theory Dipole moments Hydrogen bonding Hydrogen bonds Infrared radiation Mathematical analysis Molecular interactions Molecular Medicine Optical properties Original Paper Quantum chemistry Single crystals Theoretical and Computational Chemistry Thermal energy Thioureas Vapor phases Water chemistry |
Title | Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses |
URI | https://link.springer.com/article/10.1007/s00894-020-04423-3 https://www.ncbi.nlm.nih.gov/pubmed/32472203 https://www.proquest.com/docview/2407767186 https://www.proquest.com/docview/2408192152 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61cKCXqlBatvzIlXrYFbGaOL9G6mEXWLatWCS0K21PkZPYAqlNULKocOPKmXfog_EkjL1J2oq2Ug9WFNkZR_km9mePZwbgHeNOqlxbURZk2szoBDRypKSeHyH7TrkfZdp3-HgcjKbep5k_q53Cqua0e2OSNCN16-yGs5UOY8v0cUQkAdR9Csu-XrujFk9Z_5edFSQpxnyAbMamjHt27S3zZzG_z0iPaOYjE6mZeYYv4HlNGUl_gfEqPJH5GqzsN5naXsKd2db71iS6JWfXWVmgYpCkyDOiA0KUC_eFCm8IMj4s54U-jv7-O1LNkphz5fJKVqQ7wRraHbGTXt4j3fz-5vYDFsci9zc_LOL39siMluLaIgfDiUXGgxOL9D8eW0RgT6cHR3jVQU5ktQ7T4eFkf0TrZAs0dUN_jgjh0IfohGGokogzmfBIeEGqEomLRMX0wgKLVEwh5-ISeVkSZIgyF5IlQrqvYCkvcrkBJJUpwpI6vlLcE9wVInJtjsMuR1k8yTrgNB88TutI5Dohxte4jaFsQIoRpNiAFLsd2G2fuVjE4fhn660Gx7j-J6tYr13DAOfioANv22qESptIRC6LS9PGRIjzWQdeL_Bvu0PqGTJmo3CrUYifwv_-Lm_-r_kmPGNGOfVGzxYszctLuY28Z57swHJ_OBiM9fXoy-fDHaP2D55t-Ao |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9MwGH4F5TAuaMA-OgYYiUOrxVrifBqJQ9lWOlg7CbVSb5GT2GLSlqCk09htV878B37Yfgmv3SQwbUziYEWRnddRHsfvY78fBnjLuJMq11aUBZk2MzoBjRwpqedHyL5T7keZjh0eT4LRzPs09-d1UFjVeLs3JkkzU7fBbqitdBpbpt0RkQRQ9yE8wmukHblmbPDXzgqSFGM-QDZjU8Y9u46WuVvMTY10i2beMpEazTNchSc1ZSSDJcZP4YHMn8HKXnNS23P4abb1zpqDbsnXy6wscGCQpMgzohNClMvwhQpvCDI-LCeFdkffvUCqWRLjVy6_y4r0plhDeyN23M_7pJdfX_14j8WxyPXVL4v4_XdkTktxaZH94dQikw_HFhkcji0isKcv-x_xqpOcyGoNZsOD6d6I1oct0NQN_QUihFMfohOGoUoizmTCI-EFqUokLhIV0wsLLFIxhZyLS-RlSZAhylxIlgjprkMnL3K5CSSVKbNZ6vhKcU9wV4jItTlOuxxl8STrgtN88DitM5HrAzFO4zaHsgEpRpBiA1LsdmGnfebbMg_Hva23Gxzj-p-sYr12DQPUxUEX3rTVCJU2kYhcFuemjckQ57MubCzxb7tD6hkyZqNwqxkQf4T_-122_q_5a1gZTcdH8dHh5PMLeMzMQNWbPtvQWZTn8iVyoEXyygz53-0R9-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CIQEvE5dtdBtgJB5aEauJczUSD2WldMC6CbVS3yInsbVJWzKlncbe9soz_4Eftl_CsXNhaDCJByuK7NhRvhP7s88N4DXjTqpcW1EWZFrN6AQ0cqSknh8h-065H2Xad3hvEoxn3qe5P7_mxW-s3RuVZOXToKM05cv-aab6reMbrlw6pC3TpolICKh7F-7hdOxouZ6xwbVTFiQsRpWAzMamjHt27Tnz927-XJ1uUM4b6lKzCo0ewWpNH8mgwvsx3JH5E3iw02Rtewo_zBHfSZP0lhxeZGWBQkKSIs-IDg5RVq4MC7whyP6wHBXaNL1_jrSzJMbGXH6TC9KdYg3tjtl-L--Rbn51-f0dFsciV5c_LeL33pI5LcWFRYajqUUm7_ctMtjds4jAkb4OP-JVBzyRizWYjT5Md8a0TrxAUzf0l4gWToOIVBiGKok4kwmPhBekKpG4YVRMbzKwSMUU8i8ukaMlQYaIcyFZIqS7Dit5kctnQFKZMpuljq8U9wR3hYhcm-MUzLEvnmQdcJoPHqd1VHKdHOM4buMpG5BiBCk2IMVuB960z5xWMTlubb3d4BjX_-ci1vvYMMB1OejAq7YaodLqEpHL4sy0MdHifNaBjQr_djikoSFjNnZuNQLxu_N_v8vm_zV_CfcPhqP4y-7k8xY8ZEZO9fnPNqwsyzP5HOnQMnlhJP4XV8P8KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intermolecular+hydrogen+bond+interactions+in+the+thiourea%2Fwater+complexes+%28Thio-%28H+2+O%29+n+%29+%28n%E2%80%89%3D%E2%80%891%2C+%E2%80%A6%2C+5%29%3A+X-ray%2C+DFT%2C+NBO%2C+AIM%2C+and+RDG+analyses&rft.jtitle=Journal+of+molecular+modeling&rft.au=Akman%2C+Feride&rft.au=Issaoui%2C+Noureddine&rft.au=Kazachenko%2C+Aleksandr+S&rft.date=2020-06-01&rft.eissn=0948-5023&rft.volume=26&rft.issue=6&rft.spage=161&rft_id=info:doi/10.1007%2Fs00894-020-04423-3&rft_id=info%3Apmid%2F32472203&rft.externalDocID=32472203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1610-2940&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1610-2940&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1610-2940&client=summon |