Instantaneous portfolio theory
Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are onl...
Saved in:
Published in | Quantitative finance Vol. 18; no. 8; pp. 1345 - 1364 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Routledge
03.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1469-7688 1469-7696 |
DOI | 10.1080/14697688.2017.1420210 |
Cover
Abstract | Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are only bad and better ways of holding risk. For the purpose of analysing portfolios, the univariate variance gamma model is extended to higher dimensions with an arrival rate function with full high-dimensional support and independent levels of marginal skewness and excess kurtosis. Investment objectives are given by concave lower price functionals formulated as measure distorted variations. Specific measure distortions are calibrated to data on S&P 500 index options and the time series of the index. The time series estimation is conducted by digital moment matching applied to uncentred data and it is shown that data centring is a noisy activity to be generally avoided. The evaluation of the instantaneous investment objective requires the computation of measure distorted integrals. This is done using Monte Carlo applied to gamma distributed ellipitical radii with a low shape parameter. The resulting risk reward frontiers are between finite variation as the reward and measure distorted variations as risk. In the absence of an instantaneous risk-free return, portfolios on the efficient frontier are characterized by differences in asset variations being given by differences in asset covariations with the risk charge differential of the efficient portfolio. Portfolio variations seen as the equivalent of excess returns, may optimally be negative. Lower price maximizing portfolios are presented in two, six and twenty five dimensions. |
---|---|
AbstractList | Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are only bad and better ways of holding risk. For the purpose of analysing portfolios, the univariate variance gamma model is extended to higher dimensions with an arrival rate function with full high-dimensional support and independent levels of marginal skewness and excess kurtosis. Investment objectives are given by concave lower price functionals formulated as measure distorted variations. Specific measure distortions are calibrated to data on S&P 500 index options and the time series of the index. The time series estimation is conducted by digital moment matching applied to uncentred data and it is shown that data centring is a noisy activity to be generally avoided. The evaluation of the instantaneous investment objective requires the computation of measure distorted integrals. This is done using Monte Carlo applied to gamma distributed ellipitical radii with a low shape parameter. The resulting risk reward frontiers are between finite variation as the reward and measure distorted variations as risk. In the absence of an instantaneous risk-free return, portfolios on the efficient frontier are characterized by differences in asset variations being given by differences in asset covariations with the risk charge differential of the efficient portfolio. Portfolio variations seen as the equivalent of excess returns, may optimally be negative. Lower price maximizing portfolios are presented in two, six and twenty five dimensions. |
Author | Madan, Dilip B. |
Author_xml | – sequence: 1 givenname: Dilip B. orcidid: 0000-0002-0033-9077 surname: Madan fullname: Madan, Dilip B. email: dbm@rhsmith.umd.edu organization: Robert H. Smith School of Business, University of Maryland |
BookMark | eNqFj81KAzEUhYNUsK0-gtIXmDE3P5MMbpTiT6HgRtchk0kwMk1KEpF5e1taXbhQOHAPF74D3wxNQgwWoUvANWCJr4E1rWikrAkGUQMjmAA-QdP9vxJN20x-upRnaJbzO8bAMW6n6GoVctFhFxs_8mIbU3Fx8HFR3mxM4zk6dXrI9uJ45-j14f5l-VStnx9Xy7t1ZajgpRK2J1bQ3jSig9YxwnVHmOsEAwccjOCSUtbyXoheGm20Fpw5jnlnOwKS0Tm6OeyaFHNO1injiy4-hpK0HxRgtVdV36pqr6qOqjua_6K3yW90Gv_lbg-cDy6mjf6MaehV0eMQk0s6GJ8V_XviCzKZbBc |
CitedBy_id | crossref_primary_10_1016_j_spa_2019_02_012 crossref_primary_10_1080_14697688_2024_2398607 crossref_primary_10_1080_14697688_2022_2130086 crossref_primary_10_2139_ssrn_3715608 crossref_primary_10_1007_s10479_022_04970_3 crossref_primary_10_1017_jpr_2021_17 crossref_primary_10_2139_ssrn_4197305 crossref_primary_10_1108_MF_08_2023_0470 crossref_primary_10_3934_puqr_2022004 crossref_primary_10_1007_s10436_018_0328_1 crossref_primary_10_1007_s11009_018_9655_y crossref_primary_10_5325_transportationj_59_2_0099 crossref_primary_10_1111_mafi_12269 |
Cites_doi | 10.1086/296008 10.1080/0740817X.2013.857063 10.1007/s10436-014-0255-8 10.1002/0470870230 10.1111/1467-9965.00068 10.1142/7928 10.1007/978-1-4612-0949-2 10.1086/338705 10.1214/08-AOS640 10.1007/978-4-431-67891-5_4 10.1017/S0001867800010685 10.1017/CBO9780511569708.005 10.1214/09-AOS749 10.1007/978-3-662-06400-9 10.1086/296519 10.1017/CBO9780511755323 10.1007/s11579-014-0117-1 10.1111/1467-9965.00108 10.1023/A:1009703431535 10.1007/s00780-017-0339-1 10.1007/s11009-014-9409-4 10.1142/S0219024916500199 10.1111/0022-1082.00286 10.1214/074921708000000426 10.1111/j.1467-9965.2007.00293.x 10.1142/4955 10.1017/CBO9781316585108 10.1016/j.jeconom.2009.06.009 10.2139/ssrn.1540777 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 |
DBID | AAYXX CITATION |
DOI | 10.1080/14697688.2017.1420210 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1469-7696 |
EndPage | 1364 |
ExternalDocumentID | 10_1080_14697688_2017_1420210 1420210 |
Genre | Article |
GroupedDBID | .7I .QK 0BK 0R~ 123 29P 4.4 5VS 8V8 AABCJ AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACTIO ACTOA ADAHI ADCVX ADKVQ ADLRE ADXPE AECIN AEISY AEKEX AEMXT AENEX AEOZL AEPSL AEYOC AEZRU AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EBU EJD EOH E~B E~C G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O J9A K1G KYCEM M4Z NA5 O9- P2P PQQKQ RIG RNANH RO9 ROSJB RSYQP S-F STATR TBQAZ TDBHL TEK TFH TFL TFW TH9 TN5 TNTFI TRJHH TUROJ UT5 UT9 VAE ~01 ~S~ AAGDL AAHIA AAYXX ADYSH AEFOU AFRVT AIYEW AMPGV AMVHM CITATION |
ID | FETCH-LOGICAL-c375t-7ed2e73dc67b19f425ab24fb741f151c75833495d77d8cacaa754f505beb21843 |
ISSN | 1469-7688 |
IngestDate | Tue Jul 01 03:26:06 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Wed Dec 25 09:09:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-7ed2e73dc67b19f425ab24fb741f151c75833495d77d8cacaa754f505beb21843 |
ORCID | 0000-0002-0033-9077 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1080_14697688_2017_1420210 informaworld_taylorfrancis_310_1080_14697688_2017_1420210 crossref_primary_10_1080_14697688_2017_1420210 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-03 |
PublicationDateYYYYMMDD | 2018-08-03 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | Quantitative finance |
PublicationYear | 2018 |
Publisher | Routledge |
Publisher_xml | – name: Routledge |
References | Fouque J.P. (CIT0016) 2001 Merton R.C. (CIT0032) 1990 CIT0030 CIT0010 Lévy P. (CIT0023) 1937 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Jondeau E. (CIT0018) 2007 Cont R. (CIT0013) 2004 CIT0014 CIT0035 CIT0038 CIT0015 CIT0037 CIT0017 Jorion P. (CIT0019) 2007 CIT0020 CIT0001 CIT0022 Sato K. (CIT0036) 1999 Khintchine A.Ya. (CIT0021) 1938 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 Buchmann B. (CIT0009) 2016 CIT0008 |
References_xml | – volume-title: Derivatives in Financial Markets with Stochastic Volatility year: 2001 ident: CIT0016 – ident: CIT0035 doi: 10.1086/296008 – volume-title: Weak subordination of multivariate Lévy processes year: 2016 ident: CIT0009 – ident: CIT0012 doi: 10.1080/0740817X.2013.857063 – ident: CIT0026 doi: 10.1007/s10436-014-0255-8 – ident: CIT0037 doi: 10.1002/0470870230 – ident: CIT0005 doi: 10.1111/1467-9965.00068 – volume-title: Financial Modeling Under Non-Gaussian Distributions year: 2007 ident: CIT0018 – volume-title: Lévy Processes and Infinitely Divisible Distributions year: 1999 ident: CIT0036 – ident: CIT0007 doi: 10.1142/7928 – ident: CIT0020 doi: 10.1007/978-1-4612-0949-2 – ident: CIT0010 doi: 10.1086/338705 – ident: CIT0001 doi: 10.1214/08-AOS640 – ident: CIT0022 doi: 10.1007/978-4-431-67891-5_4 – volume-title: Théorie de l’Addition des Variables Aléatoires year: 1937 ident: CIT0023 – ident: CIT0006 doi: 10.1017/S0001867800010685 – ident: CIT0024 doi: 10.1017/CBO9780511569708.005 – volume-title: Financial Modeling with Jump Processes year: 2004 ident: CIT0013 – ident: CIT0002 doi: 10.1214/09-AOS749 – ident: CIT0034 doi: 10.1007/978-3-662-06400-9 – ident: CIT0031 doi: 10.1086/296519 – volume-title: Continuous Time Finance year: 1990 ident: CIT0032 – ident: CIT0004 doi: 10.1017/CBO9780511755323 – ident: CIT0015 doi: 10.1007/s11579-014-0117-1 – ident: CIT0017 doi: 10.1111/1467-9965.00108 – ident: CIT0028 doi: 10.1023/A:1009703431535 – ident: CIT0029 doi: 10.1007/s00780-017-0339-1 – ident: CIT0025 doi: 10.1007/s11009-014-9409-4 – ident: CIT0027 doi: 10.1142/S0219024916500199 – ident: CIT0003 doi: 10.1111/0022-1082.00286 – ident: CIT0033 doi: 10.1214/074921708000000426 – volume-title: Financial Risk Manager Handbook year: 2007 ident: CIT0019 – ident: CIT0011 doi: 10.1111/j.1467-9965.2007.00293.x – volume-title: Limit Laws of Sums of Independent Random Variables year: 1938 ident: CIT0021 – ident: CIT0008 doi: 10.1142/4955 – ident: CIT0030 doi: 10.1017/CBO9781316585108 – ident: CIT0038 doi: 10.1016/j.jeconom.2009.06.009 – ident: CIT0014 doi: 10.2139/ssrn.1540777 |
SSID | ssj0015009 |
Score | 2.212218 |
Snippet | Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1345 |
SubjectTerms | Gamma distributed ellipitical radius Lévy measure Measure distortion Weak subordination |
Title | Instantaneous portfolio theory |
URI | https://www.tandfonline.com/doi/abs/10.1080/14697688.2017.1420210 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66gfgiXnFeRh98k862aZf0cTplCgrChsOXkqQJCNKJdC_-ek-StmvZ8AqjjJS0W7725Jzk-85B6Awmxb5S8CKJfszckOHIpbHkLpeep_ScRmOtRr5_6I8m4d00mi5KqBp1Sc574mOlruQvqEIb4KpVsr9AtrooNMB3wBeOgDAcf4TxrfHt4CM1kVV70mr2-jKz6sTGfu3jnGVGTmayfJssGzXSa2pXQYd6beX8sldfCfCp4aHhCrsmhciaMwh-XQgorIWT9TZbR3bZBs5LDq01aD622R6LydHHNuf4kuG1TEV9bX07TZkjYIQDHVEuZpqK_1ecWUftgBC9u94ejIbPT9X2T-QZbk7180vpFfUuVt6i4VQ0Us7WnIXxNtoqvHxnYCHbQWsy20UbpchgD3UbyDkVco5Fbh9Nbq7HVyO3qFThCkyi3CUyDSTBqegT7scK7CDjQag4uGsKXCpBtLYNQtGUkJQKJhgjUajA-eSS6xgbH6BWNsvkIXLSQEUsCljgYxV6LI5DT4QUU5rGnAbC76Cw_KuJKNK462oir4lfZHstRyjRI5QUI9RBvarbm81j8l2HuD6OSW4WkJSt9pLgL_se_aPvMdpcPNsnqJW_z-Up-H057xZPyScRN04J |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKwELb0R5lAysKXnYsT0iRJWWtgNqpW6R7dgSomoQpAP8euw8qhYJGCpli74ol_hy3znf3QHcmqAYaW0cSUaMu4iH2KVMCVcoz9M2plFmq5GHoyieoP4UT1dqYays0ubQumwUUXyrrXPbzehaEndnvNtEUVoos4jx9cAmLtvQxMyEwwY0x8_9OF7-S8BeIfSwINei6jqe3y60FqHW-peuRJ7uAcj6nkvByWtnkYuO_PrRznEzow5hvyKmzn25ko5gS82PYafWxZ9Au1cQSXOobPHhWNqus9lL5hSlkJ-nMOk-jh9itxqu4MqQ4NwlKg0UCVMZEeEzbVyXiwBpYRiGNixAEluOZbKnlJCUSi45Jxhpw5eEycXtkJgzaMyzuToHJw005jjggR9q5HHGkCcRDSlNmaCB9FuA6geayKrzuB2AMUv8qkFpbXtibU8q21vQWcLeytYb_wHY6ttK8mLPQ5cDSpLwT-zFBtgb2I3Hw0Ey6I2eLmHPnKKFRDC8gkb-vlDXhrbkol2ty28fudxT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60heLFt1gfNQevqUl2k909ilrSqkWkBW9hd7MLYmmKTQ_6693NQ1pBPRRyC1_IJDuZb7LfzABcmqAYaW0cSUaMu5ij0KVMCVcoz9M2plFmq5Efh1E8xoOXsFYTzitZpc2hddkoovhWW-eepbpWxF0Z5zZBlBbCLGJcPbB5yyY0I1s12oDm6HkQx99bCaFX6DwsyLWouozntwutBKiV9qVLgae3A6K-5VJv8tZd5KIrP390c1zLpl3Yrmipc12uoz3YUNN9aNWq-APo9AsaaQ6VLeaOJe06m7xmTlEI-XEI497d6CZ2q9EKrkQkzF2i0kARlMqICJ9p47hcBFgLwy-04QCS2GIskzulhKRUcsk5CbE2bEmYTNyOiDmCxjSbqmNw0kCHPAx44CONPc4Y9iSmiNKUCRpIvw24fp6JrPqO2_EXk8Sv2pPWtifW9qSyvQ3db9isbLzxH4Atv6wkL_546HI8SYL-xJ6sgb2A1tNtL3noD-9PYcucoYU-EJ1BI39fqHPDWXLRqVblF3R22vc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+portfolio+theory&rft.jtitle=Quantitative+finance&rft.au=Madan%2C+Dilip+B.&rft.date=2018-08-03&rft.pub=Routledge&rft.issn=1469-7688&rft.eissn=1469-7696&rft.volume=18&rft.issue=8&rft.spage=1345&rft.epage=1364&rft_id=info:doi/10.1080%2F14697688.2017.1420210&rft.externalDocID=1420210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-7688&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-7688&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-7688&client=summon |