Instantaneous portfolio theory

Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are onl...

Full description

Saved in:
Bibliographic Details
Published inQuantitative finance Vol. 18; no. 8; pp. 1345 - 1364
Main Author Madan, Dilip B.
Format Journal Article
LanguageEnglish
Published Routledge 03.08.2018
Subjects
Online AccessGet full text
ISSN1469-7688
1469-7696
DOI10.1080/14697688.2017.1420210

Cover

Abstract Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are only bad and better ways of holding risk. For the purpose of analysing portfolios, the univariate variance gamma model is extended to higher dimensions with an arrival rate function with full high-dimensional support and independent levels of marginal skewness and excess kurtosis. Investment objectives are given by concave lower price functionals formulated as measure distorted variations. Specific measure distortions are calibrated to data on S&P 500 index options and the time series of the index. The time series estimation is conducted by digital moment matching applied to uncentred data and it is shown that data centring is a noisy activity to be generally avoided. The evaluation of the instantaneous investment objective requires the computation of measure distorted integrals. This is done using Monte Carlo applied to gamma distributed ellipitical radii with a low shape parameter. The resulting risk reward frontiers are between finite variation as the reward and measure distorted variations as risk. In the absence of an instantaneous risk-free return, portfolios on the efficient frontier are characterized by differences in asset variations being given by differences in asset covariations with the risk charge differential of the efficient portfolio. Portfolio variations seen as the equivalent of excess returns, may optimally be negative. Lower price maximizing portfolios are presented in two, six and twenty five dimensions.
AbstractList Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating risk exposures, as zero is the only instantaneous risk-free return. From this perspective, all portfolios are subject to risk and there are only bad and better ways of holding risk. For the purpose of analysing portfolios, the univariate variance gamma model is extended to higher dimensions with an arrival rate function with full high-dimensional support and independent levels of marginal skewness and excess kurtosis. Investment objectives are given by concave lower price functionals formulated as measure distorted variations. Specific measure distortions are calibrated to data on S&P 500 index options and the time series of the index. The time series estimation is conducted by digital moment matching applied to uncentred data and it is shown that data centring is a noisy activity to be generally avoided. The evaluation of the instantaneous investment objective requires the computation of measure distorted integrals. This is done using Monte Carlo applied to gamma distributed ellipitical radii with a low shape parameter. The resulting risk reward frontiers are between finite variation as the reward and measure distorted variations as risk. In the absence of an instantaneous risk-free return, portfolios on the efficient frontier are characterized by differences in asset variations being given by differences in asset covariations with the risk charge differential of the efficient portfolio. Portfolio variations seen as the equivalent of excess returns, may optimally be negative. Lower price maximizing portfolios are presented in two, six and twenty five dimensions.
Author Madan, Dilip B.
Author_xml – sequence: 1
  givenname: Dilip B.
  orcidid: 0000-0002-0033-9077
  surname: Madan
  fullname: Madan, Dilip B.
  email: dbm@rhsmith.umd.edu
  organization: Robert H. Smith School of Business, University of Maryland
BookMark eNqFj81KAzEUhYNUsK0-gtIXmDE3P5MMbpTiT6HgRtchk0kwMk1KEpF5e1taXbhQOHAPF74D3wxNQgwWoUvANWCJr4E1rWikrAkGUQMjmAA-QdP9vxJN20x-upRnaJbzO8bAMW6n6GoVctFhFxs_8mIbU3Fx8HFR3mxM4zk6dXrI9uJ45-j14f5l-VStnx9Xy7t1ZajgpRK2J1bQ3jSig9YxwnVHmOsEAwccjOCSUtbyXoheGm20Fpw5jnlnOwKS0Tm6OeyaFHNO1injiy4-hpK0HxRgtVdV36pqr6qOqjua_6K3yW90Gv_lbg-cDy6mjf6MaehV0eMQk0s6GJ8V_XviCzKZbBc
CitedBy_id crossref_primary_10_1016_j_spa_2019_02_012
crossref_primary_10_1080_14697688_2024_2398607
crossref_primary_10_1080_14697688_2022_2130086
crossref_primary_10_2139_ssrn_3715608
crossref_primary_10_1007_s10479_022_04970_3
crossref_primary_10_1017_jpr_2021_17
crossref_primary_10_2139_ssrn_4197305
crossref_primary_10_1108_MF_08_2023_0470
crossref_primary_10_3934_puqr_2022004
crossref_primary_10_1007_s10436_018_0328_1
crossref_primary_10_1007_s11009_018_9655_y
crossref_primary_10_5325_transportationj_59_2_0099
crossref_primary_10_1111_mafi_12269
Cites_doi 10.1086/296008
10.1080/0740817X.2013.857063
10.1007/s10436-014-0255-8
10.1002/0470870230
10.1111/1467-9965.00068
10.1142/7928
10.1007/978-1-4612-0949-2
10.1086/338705
10.1214/08-AOS640
10.1007/978-4-431-67891-5_4
10.1017/S0001867800010685
10.1017/CBO9780511569708.005
10.1214/09-AOS749
10.1007/978-3-662-06400-9
10.1086/296519
10.1017/CBO9780511755323
10.1007/s11579-014-0117-1
10.1111/1467-9965.00108
10.1023/A:1009703431535
10.1007/s00780-017-0339-1
10.1007/s11009-014-9409-4
10.1142/S0219024916500199
10.1111/0022-1082.00286
10.1214/074921708000000426
10.1111/j.1467-9965.2007.00293.x
10.1142/4955
10.1017/CBO9781316585108
10.1016/j.jeconom.2009.06.009
10.2139/ssrn.1540777
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
DBID AAYXX
CITATION
DOI 10.1080/14697688.2017.1420210
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1469-7696
EndPage 1364
ExternalDocumentID 10_1080_14697688_2017_1420210
1420210
Genre Article
GroupedDBID .7I
.QK
0BK
0R~
123
29P
4.4
5VS
8V8
AABCJ
AAGZJ
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABJNI
ABLIJ
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADXPE
AECIN
AEISY
AEKEX
AEMXT
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EBU
EJD
EOH
E~B
E~C
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
J9A
K1G
KYCEM
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
RO9
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TEK
TFH
TFL
TFW
TH9
TN5
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
~01
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AEFOU
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
ID FETCH-LOGICAL-c375t-7ed2e73dc67b19f425ab24fb741f151c75833495d77d8cacaa754f505beb21843
ISSN 1469-7688
IngestDate Tue Jul 01 03:26:06 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Wed Dec 25 09:09:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-7ed2e73dc67b19f425ab24fb741f151c75833495d77d8cacaa754f505beb21843
ORCID 0000-0002-0033-9077
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_14697688_2017_1420210
informaworld_taylorfrancis_310_1080_14697688_2017_1420210
crossref_primary_10_1080_14697688_2017_1420210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-03
PublicationDateYYYYMMDD 2018-08-03
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-03
  day: 03
PublicationDecade 2010
PublicationTitle Quantitative finance
PublicationYear 2018
Publisher Routledge
Publisher_xml – name: Routledge
References Fouque J.P. (CIT0016) 2001
Merton R.C. (CIT0032) 1990
CIT0030
CIT0010
Lévy P. (CIT0023) 1937
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Jondeau E. (CIT0018) 2007
Cont R. (CIT0013) 2004
CIT0014
CIT0035
CIT0038
CIT0015
CIT0037
CIT0017
Jorion P. (CIT0019) 2007
CIT0020
CIT0001
CIT0022
Sato K. (CIT0036) 1999
Khintchine A.Ya. (CIT0021) 1938
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
Buchmann B. (CIT0009) 2016
CIT0008
References_xml – volume-title: Derivatives in Financial Markets with Stochastic Volatility
  year: 2001
  ident: CIT0016
– ident: CIT0035
  doi: 10.1086/296008
– volume-title: Weak subordination of multivariate Lévy processes
  year: 2016
  ident: CIT0009
– ident: CIT0012
  doi: 10.1080/0740817X.2013.857063
– ident: CIT0026
  doi: 10.1007/s10436-014-0255-8
– ident: CIT0037
  doi: 10.1002/0470870230
– ident: CIT0005
  doi: 10.1111/1467-9965.00068
– volume-title: Financial Modeling Under Non-Gaussian Distributions
  year: 2007
  ident: CIT0018
– volume-title: Lévy Processes and Infinitely Divisible Distributions
  year: 1999
  ident: CIT0036
– ident: CIT0007
  doi: 10.1142/7928
– ident: CIT0020
  doi: 10.1007/978-1-4612-0949-2
– ident: CIT0010
  doi: 10.1086/338705
– ident: CIT0001
  doi: 10.1214/08-AOS640
– ident: CIT0022
  doi: 10.1007/978-4-431-67891-5_4
– volume-title: Théorie de l’Addition des Variables Aléatoires
  year: 1937
  ident: CIT0023
– ident: CIT0006
  doi: 10.1017/S0001867800010685
– ident: CIT0024
  doi: 10.1017/CBO9780511569708.005
– volume-title: Financial Modeling with Jump Processes
  year: 2004
  ident: CIT0013
– ident: CIT0002
  doi: 10.1214/09-AOS749
– ident: CIT0034
  doi: 10.1007/978-3-662-06400-9
– ident: CIT0031
  doi: 10.1086/296519
– volume-title: Continuous Time Finance
  year: 1990
  ident: CIT0032
– ident: CIT0004
  doi: 10.1017/CBO9780511755323
– ident: CIT0015
  doi: 10.1007/s11579-014-0117-1
– ident: CIT0017
  doi: 10.1111/1467-9965.00108
– ident: CIT0028
  doi: 10.1023/A:1009703431535
– ident: CIT0029
  doi: 10.1007/s00780-017-0339-1
– ident: CIT0025
  doi: 10.1007/s11009-014-9409-4
– ident: CIT0027
  doi: 10.1142/S0219024916500199
– ident: CIT0003
  doi: 10.1111/0022-1082.00286
– ident: CIT0033
  doi: 10.1214/074921708000000426
– volume-title: Financial Risk Manager Handbook
  year: 2007
  ident: CIT0019
– ident: CIT0011
  doi: 10.1111/j.1467-9965.2007.00293.x
– volume-title: Limit Laws of Sums of Independent Random Variables
  year: 1938
  ident: CIT0021
– ident: CIT0008
  doi: 10.1142/4955
– ident: CIT0030
  doi: 10.1017/CBO9781316585108
– ident: CIT0038
  doi: 10.1016/j.jeconom.2009.06.009
– ident: CIT0014
  doi: 10.2139/ssrn.1540777
SSID ssj0015009
Score 2.212218
Snippet Instantaneous risk is described by the arrival rate of jumps in log price relatives. As a consequence there is then no concept of a mean return compensating...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1345
SubjectTerms Gamma distributed ellipitical radius
Lévy measure
Measure distortion
Weak subordination
Title Instantaneous portfolio theory
URI https://www.tandfonline.com/doi/abs/10.1080/14697688.2017.1420210
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66gfgiXnFeRh98k862aZf0cTplCgrChsOXkqQJCNKJdC_-ek-StmvZ8AqjjJS0W7725Jzk-85B6Awmxb5S8CKJfszckOHIpbHkLpeep_ScRmOtRr5_6I8m4d00mi5KqBp1Sc574mOlruQvqEIb4KpVsr9AtrooNMB3wBeOgDAcf4TxrfHt4CM1kVV70mr2-jKz6sTGfu3jnGVGTmayfJssGzXSa2pXQYd6beX8sldfCfCp4aHhCrsmhciaMwh-XQgorIWT9TZbR3bZBs5LDq01aD622R6LydHHNuf4kuG1TEV9bX07TZkjYIQDHVEuZpqK_1ecWUftgBC9u94ejIbPT9X2T-QZbk7180vpFfUuVt6i4VQ0Us7WnIXxNtoqvHxnYCHbQWsy20UbpchgD3UbyDkVco5Fbh9Nbq7HVyO3qFThCkyi3CUyDSTBqegT7scK7CDjQag4uGsKXCpBtLYNQtGUkJQKJhgjUajA-eSS6xgbH6BWNsvkIXLSQEUsCljgYxV6LI5DT4QUU5rGnAbC76Cw_KuJKNK462oir4lfZHstRyjRI5QUI9RBvarbm81j8l2HuD6OSW4WkJSt9pLgL_se_aPvMdpcPNsnqJW_z-Up-H057xZPyScRN04J
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BKwELb0R5lAysKXnYsT0iRJWWtgNqpW6R7dgSomoQpAP8euw8qhYJGCpli74ol_hy3znf3QHcmqAYaW0cSUaMu4iH2KVMCVcoz9M2plFmq5GHoyieoP4UT1dqYays0ubQumwUUXyrrXPbzehaEndnvNtEUVoos4jx9cAmLtvQxMyEwwY0x8_9OF7-S8BeIfSwINei6jqe3y60FqHW-peuRJ7uAcj6nkvByWtnkYuO_PrRznEzow5hvyKmzn25ko5gS82PYafWxZ9Au1cQSXOobPHhWNqus9lL5hSlkJ-nMOk-jh9itxqu4MqQ4NwlKg0UCVMZEeEzbVyXiwBpYRiGNixAEluOZbKnlJCUSi45Jxhpw5eEycXtkJgzaMyzuToHJw005jjggR9q5HHGkCcRDSlNmaCB9FuA6geayKrzuB2AMUv8qkFpbXtibU8q21vQWcLeytYb_wHY6ttK8mLPQ5cDSpLwT-zFBtgb2I3Hw0Ey6I2eLmHPnKKFRDC8gkb-vlDXhrbkol2ty28fudxT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60heLFt1gfNQevqUl2k909ilrSqkWkBW9hd7MLYmmKTQ_6693NQ1pBPRRyC1_IJDuZb7LfzABcmqAYaW0cSUaMu5ij0KVMCVcoz9M2plFmq5Efh1E8xoOXsFYTzitZpc2hddkoovhWW-eepbpWxF0Z5zZBlBbCLGJcPbB5yyY0I1s12oDm6HkQx99bCaFX6DwsyLWouozntwutBKiV9qVLgae3A6K-5VJv8tZd5KIrP390c1zLpl3Yrmipc12uoz3YUNN9aNWq-APo9AsaaQ6VLeaOJe06m7xmTlEI-XEI497d6CZ2q9EKrkQkzF2i0kARlMqICJ9p47hcBFgLwy-04QCS2GIskzulhKRUcsk5CbE2bEmYTNyOiDmCxjSbqmNw0kCHPAx44CONPc4Y9iSmiNKUCRpIvw24fp6JrPqO2_EXk8Sv2pPWtifW9qSyvQ3db9isbLzxH4Atv6wkL_546HI8SYL-xJ6sgb2A1tNtL3noD-9PYcucoYU-EJ1BI39fqHPDWXLRqVblF3R22vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Instantaneous+portfolio+theory&rft.jtitle=Quantitative+finance&rft.au=Madan%2C+Dilip+B.&rft.date=2018-08-03&rft.pub=Routledge&rft.issn=1469-7688&rft.eissn=1469-7696&rft.volume=18&rft.issue=8&rft.spage=1345&rft.epage=1364&rft_id=info:doi/10.1080%2F14697688.2017.1420210&rft.externalDocID=1420210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1469-7688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1469-7688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1469-7688&client=summon