Buried interface molecular hybrid for inverted perovskite solar cells

Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of t...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 632; no. 8025; pp. 536 - 542
Main Authors Liu, Sanwan, Li, Jingbai, Xiao, Wenshan, Chen, Rui, Sun, Zhenxing, Zhang, Yong, Lei, Xia, Hu, Shuaifeng, Kober-Czerny, Manuel, Wang, Jianan, Ren, Fumeng, Zhou, Qisen, Raza, Hasan, Gao, You, Ji, Yitong, Li, Sibo, Li, Huan, Qiu, Longbin, Huang, Wenchao, Zhao, Yan, Xu, Baomin, Liu, Zonghao, Snaith, Henry J., Park, Nam-Gyu, Chen, Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.08.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules 1 – 5 and passivation strategies 6 – 8 . However, poor wettability and agglomeration of self-assembled molecules 9 – 12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9 H -carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4′,4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm 2 ). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air. High efficiency in perovskite solar cells is achieved by using a molecular hybrid of a self-assembled monolayer with nitrilotribenzoic acid.
AbstractList Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules 1 – 5 and passivation strategies 6 – 8 . However, poor wettability and agglomeration of self-assembled molecules 9 – 12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9 H -carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4′,4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm 2 ). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air. High efficiency in perovskite solar cells is achieved by using a molecular hybrid of a self-assembled monolayer with nitrilotribenzoic acid.
Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.
Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules and passivation strategies . However, poor wettability and agglomeration of self-assembled molecules cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm ). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.
Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that со-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4"-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.
Author Liu, Zonghao
Xiao, Wenshan
Wang, Jianan
Kober-Czerny, Manuel
Huang, Wenchao
Ji, Yitong
Li, Sibo
Hu, Shuaifeng
Xu, Baomin
Zhou, Qisen
Lei, Xia
Ren, Fumeng
Snaith, Henry J.
Liu, Sanwan
Gao, You
Li, Jingbai
Qiu, Longbin
Park, Nam-Gyu
Raza, Hasan
Li, Huan
Chen, Rui
Sun, Zhenxing
Chen, Wei
Zhao, Yan
Zhang, Yong
Author_xml – sequence: 1
  givenname: Sanwan
  surname: Liu
  fullname: Liu, Sanwan
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory
– sequence: 2
  givenname: Jingbai
  orcidid: 0000-0003-4743-0318
  surname: Li
  fullname: Li, Jingbai
  organization: Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University
– sequence: 3
  givenname: Wenshan
  surname: Xiao
  fullname: Xiao, Wenshan
  organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology
– sequence: 4
  givenname: Rui
  surname: Chen
  fullname: Chen, Rui
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 5
  givenname: Zhenxing
  surname: Sun
  fullname: Sun, Zhenxing
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 6
  givenname: Yong
  orcidid: 0009-0008-5570-5637
  surname: Zhang
  fullname: Zhang, Yong
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 7
  givenname: Xia
  orcidid: 0009-0001-6499-2745
  surname: Lei
  fullname: Lei, Xia
  organization: Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 8
  givenname: Shuaifeng
  orcidid: 0000-0003-1312-075X
  surname: Hu
  fullname: Hu, Shuaifeng
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 9
  givenname: Manuel
  orcidid: 0000-0002-7807-3133
  surname: Kober-Czerny
  fullname: Kober-Czerny, Manuel
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 10
  givenname: Jianan
  surname: Wang
  fullname: Wang, Jianan
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 11
  givenname: Fumeng
  surname: Ren
  fullname: Ren, Fumeng
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 12
  givenname: Qisen
  surname: Zhou
  fullname: Zhou, Qisen
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 13
  givenname: Hasan
  orcidid: 0009-0006-5653-9197
  surname: Raza
  fullname: Raza, Hasan
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 14
  givenname: You
  surname: Gao
  fullname: Gao, You
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST)
– sequence: 15
  givenname: Yitong
  surname: Ji
  fullname: Ji, Yitong
  organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology
– sequence: 16
  givenname: Sibo
  surname: Li
  fullname: Li, Sibo
  organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology
– sequence: 17
  givenname: Huan
  surname: Li
  fullname: Li, Huan
  organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology
– sequence: 18
  givenname: Longbin
  orcidid: 0000-0002-7696-4901
  surname: Qiu
  fullname: Qiu, Longbin
  organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology
– sequence: 19
  givenname: Wenchao
  orcidid: 0000-0003-4992-1727
  surname: Huang
  fullname: Huang, Wenchao
  organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone
– sequence: 20
  givenname: Yan
  orcidid: 0000-0002-1234-4455
  surname: Zhao
  fullname: Zhao, Yan
  organization: College of Materials Science and Engineering, Sichuan University, The Institute of Technological Sciences, Wuhan University
– sequence: 21
  givenname: Baomin
  orcidid: 0000-0002-2868-0613
  surname: Xu
  fullname: Xu, Baomin
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 22
  givenname: Zonghao
  orcidid: 0000-0003-4743-6971
  surname: Liu
  fullname: Liu, Zonghao
  email: liuzonghao@hust.edu.cn
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory
– sequence: 23
  givenname: Henry J.
  orcidid: 0000-0001-8511-790X
  surname: Snaith
  fullname: Snaith, Henry J.
  organization: Clarendon Laboratory, Department of Physics, University of Oxford
– sequence: 24
  givenname: Nam-Gyu
  orcidid: 0000-0003-2368-6300
  surname: Park
  fullname: Park, Nam-Gyu
  email: npark@skku.edu
  organization: School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University (SKKU), SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University
– sequence: 25
  givenname: Wei
  orcidid: 0000-0002-2418-9210
  surname: Chen
  fullname: Chen, Wei
  email: wnlochenwei@hust.edu.cn
  organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38925147$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1PwzAQhi0Eoh_wBxhQJBaWgO1LYmeEqnxIlVhgttzkAi5pXOykUv89Dm2F1KHL3XDPe3rv3hE5bWyDhFwxescoyHufsFRmMeVJTIXgEMMJGbJEZHGSSXFKhpRyGVMJ2YCMvF9QSlMmknMyAJnzNJBDMn3snMEyMk2LrtIFRktbY9HV2kVfm7kzZVRZF8ZrdG3gVujs2n-bFiNve6jAuvYX5KzStcfLXR-Tj6fp--Qlnr09v04eZnEBIm1jgRljaZlIEBIgRyGreRFKkZSCM5llmpW05IyKdC4oR6yQl-EWzUUFAAzG5Ha7d-XsT4e-VUvjewe6Qdt5BVRwkeeCQkBvDtCF7VwT3AUqh5wljPNAXe-obr7EUq2cWWq3UfsHBUBugcJZ7x1WqjCtbo1tWqdNrRhVfRZqm4UKWai_LFTvgB9I99uPimAr8gFuPtH92z6i-gVPgZnR
CitedBy_id crossref_primary_10_1002_adfm_202409939
crossref_primary_10_1002_adfm_202426037
crossref_primary_10_1002_smll_202500630
crossref_primary_10_1002_smll_202409284
crossref_primary_10_1021_acsami_4c22563
crossref_primary_10_1002_anie_202501375
crossref_primary_10_1021_acsaem_4c01722
crossref_primary_10_1038_s41560_024_01680_x
crossref_primary_10_1002_smtd_202401758
crossref_primary_10_1002_anie_202419061
crossref_primary_10_1021_acsami_4c13977
crossref_primary_10_1002_aenm_202404726
crossref_primary_10_1021_acs_jpclett_4c03112
crossref_primary_10_1039_D5EE00156K
crossref_primary_10_1039_D4CC04884A
crossref_primary_10_1002_ange_202419375
crossref_primary_10_1039_D5EE00350D
crossref_primary_10_3390_molecules30061299
crossref_primary_10_1002_smll_202500642
crossref_primary_10_1002_smtd_202402177
crossref_primary_10_1021_acsaem_5c00155
crossref_primary_10_1002_adfm_202417310
crossref_primary_10_1016_j_jpowsour_2024_236033
crossref_primary_10_1038_s41566_024_01570_4
crossref_primary_10_35848_1347_4065_ad8891
crossref_primary_10_1002_adfm_202415004
crossref_primary_10_1002_anie_202502221
crossref_primary_10_3390_molecules29215064
crossref_primary_10_3390_nano14131161
crossref_primary_10_1109_LED_2024_3454522
crossref_primary_10_1063_5_0254767
crossref_primary_10_1002_aenm_202404755
crossref_primary_10_1002_adfm_202418792
crossref_primary_10_1016_j_renene_2025_122365
crossref_primary_10_3390_coatings15010015
crossref_primary_10_1016_j_cej_2025_161737
crossref_primary_10_1002_smll_202410856
crossref_primary_10_1038_s44160_024_00678_3
crossref_primary_10_1002_adma_202412692
crossref_primary_10_1002_solr_202400824
crossref_primary_10_1039_D4EE05849F
crossref_primary_10_1002_smll_202502367
crossref_primary_10_1039_D4CC05131A
crossref_primary_10_1002_anie_202419608
crossref_primary_10_1038_s41467_024_53344_9
crossref_primary_10_1002_aenm_202403530
crossref_primary_10_1002_anie_202422571
crossref_primary_10_1002_adfm_202412552
crossref_primary_10_1002_adma_202419413
crossref_primary_10_1002_aenm_202404617
crossref_primary_10_1016_j_decarb_2025_100107
crossref_primary_10_1039_D4EE03001J
crossref_primary_10_1038_s41467_024_55377_6
crossref_primary_10_1002_anie_202425605
crossref_primary_10_1021_acsenergylett_4c03282
crossref_primary_10_3390_nano14191550
crossref_primary_10_1038_s41467_024_52377_4
crossref_primary_10_1002_anie_202418883
crossref_primary_10_1021_jacs_4c14955
crossref_primary_10_1002_aenm_202404374
crossref_primary_10_1016_j_apmate_2025_100275
crossref_primary_10_1038_s41586_024_08546_y
crossref_primary_10_1002_anie_202418606
crossref_primary_10_1038_s41467_025_57195_w
crossref_primary_10_1002_ange_202425605
crossref_primary_10_1039_D4EE05319B
crossref_primary_10_1002_ange_202419608
crossref_primary_10_1002_ange_202422571
crossref_primary_10_1016_j_solmat_2025_113548
crossref_primary_10_1002_solr_202500025
crossref_primary_10_1126_science_adw1552
crossref_primary_10_1021_acsenergylett_5c00074
crossref_primary_10_1021_acsenergylett_4c03370
crossref_primary_10_1002_ange_202418883
crossref_primary_10_1039_D4EE01960A
crossref_primary_10_1002_ange_202501375
crossref_primary_10_1002_aenm_202405571
crossref_primary_10_1002_ange_202502221
crossref_primary_10_1007_s11814_024_00335_7
crossref_primary_10_1002_adfm_202413390
crossref_primary_10_1002_adfm_202419133
crossref_primary_10_1039_D4EY00091A
crossref_primary_10_1002_aenm_202405212
crossref_primary_10_1038_s41467_024_55523_0
crossref_primary_10_1002_aenm_202403706
crossref_primary_10_1002_smll_202410865
crossref_primary_10_1016_j_cej_2025_161967
crossref_primary_10_1021_acsomega_4c04979
crossref_primary_10_1016_j_joule_2025_101826
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1002_adfm_202408829
crossref_primary_10_1002_aenm_202403186
crossref_primary_10_1002_solr_202500042
crossref_primary_10_1021_acsami_4c21253
crossref_primary_10_1016_j_solener_2024_113223
crossref_primary_10_1002_pssa_202400569
crossref_primary_10_1016_j_cej_2024_156985
crossref_primary_10_1002_smll_202411623
crossref_primary_10_1016_j_cej_2025_161813
crossref_primary_10_1021_acsphotonics_4c01330
crossref_primary_10_1021_acsami_4c12783
crossref_primary_10_1002_adfm_202504424
crossref_primary_10_1002_cssc_202401555
crossref_primary_10_3390_coatings15030301
crossref_primary_10_1002_adfm_202419393
crossref_primary_10_1002_adfm_202421576
crossref_primary_10_1016_j_nxmate_2025_100495
crossref_primary_10_1002_ange_202418606
crossref_primary_10_1007_s11708_025_0985_5
crossref_primary_10_1016_j_mtelec_2025_100138
crossref_primary_10_1016_j_ccr_2025_216500
crossref_primary_10_1088_0256_307X_41_9_098501
crossref_primary_10_1016_j_renene_2024_122253
crossref_primary_10_3390_ma18071400
crossref_primary_10_1039_D4EE05860G
crossref_primary_10_1038_s41566_024_01541_9
crossref_primary_10_1002_solr_202400736
crossref_primary_10_1016_j_cej_2025_161146
crossref_primary_10_1016_j_cej_2025_161388
crossref_primary_10_1002_anie_202419375
crossref_primary_10_1007_s40243_024_00275_6
crossref_primary_10_1016_j_nanoen_2024_110476
crossref_primary_10_1021_acsami_4c20422
crossref_primary_10_1016_j_cej_2025_159390
crossref_primary_10_1002_aenm_202404335
crossref_primary_10_1002_adfm_202419582
crossref_primary_10_1002_smll_202409568
crossref_primary_10_1021_acsenergylett_4c03579
crossref_primary_10_1002_aenm_202403911
crossref_primary_10_1021_acsami_4c14300
crossref_primary_10_1002_adma_202415100
crossref_primary_10_1038_s41467_024_55653_5
crossref_primary_10_1002_smll_202410310
crossref_primary_10_1002_adfm_202412946
crossref_primary_10_1002_solr_202500052
crossref_primary_10_1039_D4EE05462H
crossref_primary_10_1002_inf2_12628
crossref_primary_10_1002_adfm_202425119
crossref_primary_10_1016_j_synthmet_2025_117839
crossref_primary_10_1039_D4SC07759H
crossref_primary_10_1002_smll_202407015
crossref_primary_10_1039_D4EE05135A
crossref_primary_10_1039_D4EE05232C
crossref_primary_10_1039_D4EE04209C
crossref_primary_10_1021_acsnano_4c11866
crossref_primary_10_1021_acsphotonics_4c01426
crossref_primary_10_1002_adfm_202418915
crossref_primary_10_1016_j_apm_2025_116062
crossref_primary_10_3390_polym17050653
crossref_primary_10_1016_j_matt_2024_08_001
crossref_primary_10_1002_adma_202412059
crossref_primary_10_1002_cssc_202400939
crossref_primary_10_1021_acs_chemmater_4c02044
crossref_primary_10_1002_asia_202401344
crossref_primary_10_1126_science_adu5563
crossref_primary_10_1002_adma_202502770
crossref_primary_10_1021_acsenergylett_4c02220
crossref_primary_10_1021_jacs_4c13356
crossref_primary_10_1002_adma_202416530
crossref_primary_10_1002_adfm_202415797
crossref_primary_10_1039_D4EE03173C
crossref_primary_10_1002_adma_202414354
crossref_primary_10_1016_j_cej_2025_161573
crossref_primary_10_1021_acsami_4c15050
crossref_primary_10_1002_anie_202423827
crossref_primary_10_1002_solr_202400540
crossref_primary_10_3390_nano15070483
crossref_primary_10_1002_solr_202400780
crossref_primary_10_1002_adma_202414125
crossref_primary_10_1039_D4TA08074B
crossref_primary_10_1007_s00339_024_07779_y
crossref_primary_10_1016_j_renene_2025_122632
crossref_primary_10_1002_aenm_202405675
crossref_primary_10_1002_advs_202412959
crossref_primary_10_1039_D4SU00470A
crossref_primary_10_1186_s40580_024_00464_z
crossref_primary_10_1021_acs_energyfuels_5c00153
crossref_primary_10_1016_j_enchem_2024_100135
crossref_primary_10_1002_smll_202411413
crossref_primary_10_1016_j_cej_2025_160931
crossref_primary_10_1002_ange_202419061
crossref_primary_10_1039_D4EE03801K
crossref_primary_10_1002_adfm_202410419
crossref_primary_10_1002_anie_202416188
crossref_primary_10_1038_s43586_024_00373_9
crossref_primary_10_1002_smll_202501762
crossref_primary_10_1002_ange_202423827
crossref_primary_10_1002_solr_202400496
crossref_primary_10_1038_s41578_025_00781_7
crossref_primary_10_1002_adma_202414576
crossref_primary_10_1063_5_0226632
crossref_primary_10_3389_fchem_2024_1519166
crossref_primary_10_1039_D4EE02803A
crossref_primary_10_1039_D4EE04136D
crossref_primary_10_1016_j_jechem_2025_02_041
crossref_primary_10_3390_sym16101357
crossref_primary_10_1002_anie_202416390
crossref_primary_10_1016_j_joule_2024_101815
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1016_j_matt_2025_101990
crossref_primary_10_1039_D4EE03208J
crossref_primary_10_1002_aenm_202406024
crossref_primary_10_1002_ange_202416188
crossref_primary_10_1021_acsami_4c22532
crossref_primary_10_1039_D4MH01603C
crossref_primary_10_1039_D4EE05968A
crossref_primary_10_1039_D4TA05776G
crossref_primary_10_1016_j_mssp_2025_109314
crossref_primary_10_1021_acsami_4c15688
crossref_primary_10_1021_acsenergylett_4c03427
crossref_primary_10_1039_D4EE04878D
crossref_primary_10_1016_j_ccr_2025_216563
crossref_primary_10_1039_D4EE04419C
crossref_primary_10_1016_j_cej_2025_161323
crossref_primary_10_3390_ma17205095
crossref_primary_10_1002_aenm_202405088
crossref_primary_10_1039_D4TA05438E
crossref_primary_10_1002_adma_202415405
crossref_primary_10_1002_solr_202400594
crossref_primary_10_1002_ange_202416390
crossref_primary_10_1016_j_cej_2024_157430
crossref_primary_10_1016_j_cej_2025_159453
crossref_primary_10_1021_acs_nanolett_4c05327
crossref_primary_10_1016_j_surfin_2025_106094
crossref_primary_10_1039_D5EE00380F
crossref_primary_10_1002_adfm_202420084
crossref_primary_10_1002_adma_202408686
crossref_primary_10_1002_aenm_202406046
crossref_primary_10_1002_adma_202500708
crossref_primary_10_3390_nano15030227
crossref_primary_10_1039_D4CS01231C
crossref_primary_10_1109_LED_2024_3505233
crossref_primary_10_1016_j_joule_2025_101880
crossref_primary_10_1016_j_dyepig_2025_112676
crossref_primary_10_1002_adfm_202412482
crossref_primary_10_1002_smll_202408168
crossref_primary_10_1039_D4TC03821E
crossref_primary_10_1021_acsenergylett_4c02674
crossref_primary_10_1002_smll_202410369
crossref_primary_10_1002_aenm_202404538
crossref_primary_10_1021_acs_jctc_4c01635
crossref_primary_10_1038_s41586_024_08103_7
crossref_primary_10_1088_1361_6463_ad82f7
crossref_primary_10_1021_jacs_5c00629
crossref_primary_10_1002_adma_202417150
crossref_primary_10_1038_s41467_024_55492_4
Cites_doi 10.1038/s41560-023-01220-z
10.1021/acsenergylett.3c01385
10.1038/s41560-023-01288-7
10.1002/adma.202109879
10.1038/s41560-022-01045-2
10.1021/j100389a010
10.1002/adma.201904408
10.1126/science.ade9637
10.1038/s41586-022-05268-x
10.1021/acsenergylett.2c02629
10.1126/science.adj8858
10.1002/adfm.202205009
10.1021/acs.jcim.1c01506
10.1038/s41427-023-00474-z
10.1038/s41467-019-09167-0
10.1038/s41566-023-01180-6
10.1063/1.4899051
10.1039/D3EE02344C
10.1039/C9EE02020A
10.1002/anie.202309292
10.1002/jcc.21224
10.1039/D3EE00293D
10.1038/s41566-023-01247-4
10.1016/j.cpc.2021.108171
10.1016/j.solener.2016.02.015
10.1063/1.447334
10.1038/s41586-023-06784-0
10.1038/s41560-023-01421-6
10.1126/science.adf5872
10.1126/science.abd4016
10.1002/adfm.202306571
10.1021/ja00051a040
10.1021/acs.jctc.3c00750
10.1126/science.abi6323
10.1021/j100142a004
10.1038/s41586-023-06745-7
10.1016/j.chempr.2020.04.013
10.1103/PhysRev.159.98
10.1126/science.adg3755
10.1002/wcms.1606
10.1103/PhysRevB.54.11169
10.1126/science.adm9474
10.1038/s41586-023-06207-0
10.1021/jacs.0c09560
10.1103/PhysRevA.31.1695
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright Nature Publishing Group Aug 15, 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: Copyright Nature Publishing Group Aug 15, 2024
DBID AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-024-07723-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Agricultural Science Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 542
ExternalDocumentID 38925147
10_1038_s41586_024_07723_3
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NAPCQ
NFIDA
NPM
1VR
2XV
3V.
41X
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
7XC
88A
88E
88I
8AF
8AO
8C1
8CJ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
8R4
8R5
97L
ABJCF
ABUWG
AEUYN
AFKRA
AFKWF
AZQEC
BBNVY
BCU
BEC
BGLVJ
BKEYQ
BKSAR
BPHCQ
BVXVI
C1K
CCPQU
D1I
D1J
D1K
DWQXO
EMH
EX3
FR3
FYUFA
GNUQQ
GUQSH
H94
HMCUK
INR
ISR
K6-
K9.
KB.
KL.
L6V
LK5
LK8
M1P
M2M
M2P
M7N
M7R
M7S
MBDVC
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
Q9U
R05
RC3
S0X
SJFOW
SOI
TUS
UKHRP
WOW
~7V
7X8
ID FETCH-LOGICAL-c375t-7e6115d48378339e78fbc78fc4d721866a1d0d21075b702eefe2d468a27f33313
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Fri Jul 11 01:57:07 EDT 2025
Sat Aug 23 13:00:23 EDT 2025
Thu Apr 03 06:57:37 EDT 2025
Tue Jul 01 02:58:57 EDT 2025
Thu Apr 24 23:00:41 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8025
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7e6115d48378339e78fbc78fc4d721866a1d0d21075b702eefe2d468a27f33313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1312-075X
0000-0003-4743-0318
0009-0008-5570-5637
0000-0001-8511-790X
0000-0003-4992-1727
0009-0001-6499-2745
0000-0002-1234-4455
0000-0002-7807-3133
0000-0002-2418-9210
0009-0006-5653-9197
0000-0003-2368-6300
0000-0002-2868-0613
0000-0002-7696-4901
0000-0003-4743-6971
PMID 38925147
PQID 3093914122
PQPubID 40569
PageCount 7
ParticipantIDs proquest_miscellaneous_3072799703
proquest_journals_3093914122
pubmed_primary_38925147
crossref_citationtrail_10_1038_s41586_024_07723_3
crossref_primary_10_1038_s41586_024_07723_3
springer_journals_10_1038_s41586_024_07723_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Thompson (CR34) 2022; 271
Chen (CR33) 2023; 8
Kresse, Furthmuller (CR45) 1996; 54
Gao (CR19) 2023; 16
Martínez, Andrade, Birgin, Martínez (CR38) 2009; 30
Mayo, Olafson, Goddard (CR40) 1990; 94
Li (CR20) 2022; 7
CR37
Suo (CR23) 2024; 9
Wang (CR25) 2014; 105
Stolterfoht (CR21) 2019; 12
Zhao (CR24) 2020; 142
Liu (CR17) 2022; 32
Zheng (CR18) 2022; 34
Chu (CR30) 2023; 8
Tan (CR3) 2023; 620
Chang (CR15) 2023; 62
Wu (CR32) 2019; 10
Neese (CR42) 2022; 12
Luo (CR14) 2023; 17
Yang (CR22) 2024; 17
Ma, Park (CR28) 2020; 6
Pitaro (CR10) 2023; 2023
Mariotti (CR27) 2023; 381
Chen (CR31) 2021; 373
Hossain (CR9) 2023; 8
Seijas-Bellido (CR39) 2022; 62
Chen (CR8) 2024; 384
Al-Ashouri (CR4) 2020; 370
Yu (CR13) 2023; 382
Wang (CR16) 2019; 31
Rappe, Casewit, Colwell, Goddard, Skiff (CR43) 1992; 114
Bayly, Cieplak, Cornell, Kollman (CR41) 1993; 97
Zhang (CR1) 2023; 380
Liu, Biju, Qi, Chen, Liu (CR5) 2023; 15
Jiang (CR6) 2022; 611
Park (CR12) 2023; 624
Al-Ashouri (CR11) 2023; 8
Nosé (CR36) 1984; 81
Rühle (CR29) 2016; 130
Verlet (CR35) 1967; 159
Li (CR2) 2023; 382
Kanhaiya (CR44) 2023; 19
Liang (CR7) 2023; 624
Li (CR26) 2023; 17
H Wang (7723_CR16) 2019; 31
K Kanhaiya (7723_CR44) 2023; 19
S Wu (7723_CR32) 2019; 10
A Al-Ashouri (7723_CR4) 2020; 370
Z Zheng (7723_CR18) 2022; 34
S Nosé (7723_CR36) 1984; 81
CI Bayly (7723_CR41) 1993; 97
Y Zhao (7723_CR24) 2020; 142
S Chen (7723_CR31) 2021; 373
Y Gao (7723_CR19) 2023; 16
S Mariotti (7723_CR27) 2023; 381
S Rühle (7723_CR29) 2016; 130
A Al-Ashouri (7723_CR11) 2023; 8
H Chen (7723_CR8) 2024; 384
SM Park (7723_CR12) 2023; 624
Q Tan (7723_CR3) 2023; 620
F Li (7723_CR26) 2023; 17
S Zhang (7723_CR1) 2023; 380
SL Mayo (7723_CR40) 1990; 94
J Suo (7723_CR23) 2024; 9
7723_CR37
B Yang (7723_CR22) 2024; 17
G Kresse (7723_CR45) 1996; 54
S Yu (7723_CR13) 2023; 382
C Ma (7723_CR28) 2020; 6
S Liu (7723_CR17) 2022; 32
Q Jiang (7723_CR6) 2022; 611
AP Thompson (7723_CR34) 2022; 271
JA Seijas-Bellido (7723_CR39) 2022; 62
L Li (7723_CR20) 2022; 7
X Chu (7723_CR30) 2023; 8
M Stolterfoht (7723_CR21) 2019; 12
R Chen (7723_CR33) 2023; 8
Z Li (7723_CR2) 2023; 382
L Verlet (7723_CR35) 1967; 159
M Pitaro (7723_CR10) 2023; 2023
X Chang (7723_CR15) 2023; 62
L Martínez (7723_CR38) 2009; 30
C Luo (7723_CR14) 2023; 17
Z Liang (7723_CR7) 2023; 624
Q Wang (7723_CR25) 2014; 105
F Neese (7723_CR42) 2022; 12
AK Rappe (7723_CR43) 1992; 114
K Hossain (7723_CR9) 2023; 8
S Liu (7723_CR5) 2023; 15
References_xml – volume: 8
  start-page: 372
  year: 2023
  end-page: 380
  ident: CR30
  article-title: Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01220-z
– volume: 8
  start-page: 3860
  year: 2023
  end-page: 3867
  ident: CR9
  article-title: Resolving the hydrophobicity of the Me-4PACz hole transport layer for inverted perovskite solar cells with efficiency >20%
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c01385
– volume: 8
  start-page: 839
  year: 2023
  end-page: 849
  ident: CR33
  article-title: Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01288-7
– volume: 34
  start-page: 2109879
  year: 2022
  ident: CR18
  article-title: Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109879
– volume: 7
  start-page: 708
  year: 2022
  end-page: 717
  ident: CR20
  article-title: Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01045-2
– volume: 94
  start-page: 8897
  year: 1990
  end-page: 8909
  ident: CR40
  article-title: DREIDING: a generic force field for molecular simulations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100389a010
– volume: 31
  start-page: 1904408
  year: 2019
  ident: CR16
  article-title: Interfacial residual stress relaxation in perovskite solar cells with improved stability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904408
– volume: 382
  start-page: 284
  year: 2023
  end-page: 289
  ident: CR2
  article-title: Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.ade9637
– volume: 611
  start-page: 278
  year: 2022
  end-page: 283
  ident: CR6
  article-title: Surface reaction for efficient and stable inverted perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
– volume: 8
  start-page: 898
  year: 2023
  end-page: 900
  ident: CR11
  article-title: Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02629
– ident: CR37
– volume: 382
  start-page: 1399
  year: 2023
  end-page: 1404
  ident: CR13
  article-title: Homogenized NiO nanoparticles for improved hole transport in inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.adj8858
– volume: 32
  start-page: 2205009
  year: 2022
  ident: CR17
  article-title: Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202205009
– volume: 62
  start-page: 6423
  year: 2022
  end-page: 6435
  ident: CR39
  article-title: Transferable classical force field for pure and mixed metal halide perovskites parameterized from first-principles
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c01506
– volume: 15
  year: 2023
  ident: CR5
  article-title: Recent progress in the development of high-efficiency inverted perovskite solar cells
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-023-00474-z
– volume: 10
  year: 2019
  ident: CR32
  article-title: A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09167-0
– volume: 17
  start-page: 478
  year: 2023
  end-page: 484
  ident: CR26
  article-title: Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01180-6
– volume: 105
  start-page: 163508
  year: 2014
  end-page: 163513
  ident: CR25
  article-title: Qualifying composition dependent and self-doping in CH NH PbI
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4899051
– volume: 17
  start-page: 1549
  year: 2024
  end-page: 1558
  ident: CR22
  article-title: A universal ligand for lead coordination and tailored crystal growth in perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02344C
– volume: 12
  start-page: 2778
  year: 2019
  end-page: 2788
  ident: CR21
  article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02020A
– volume: 62
  start-page: e202309292
  year: 2023
  ident: CR15
  article-title: Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202309292
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  ident: CR38
  article-title: PACKMOL: a package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 16
  start-page: 2295
  year: 2023
  end-page: 2303
  ident: CR19
  article-title: Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00293D
– volume: 17
  start-page: 856
  year: 2023
  end-page: 864
  ident: CR14
  article-title: Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01247-4
– volume: 271
  start-page: 108171
  year: 2022
  ident: CR34
  article-title: LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  ident: CR29
  article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.015
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: CR36
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 624
  start-page: 557
  year: 2023
  end-page: 563
  ident: CR7
  article-title: Homogenizing out-of-plane cation composition in perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-023-06784-0
– volume: 9
  start-page: 143
  year: 2024
  end-page: 153
  ident: CR23
  article-title: Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01421-6
– volume: 381
  start-page: 63
  year: 2023
  end-page: 69
  ident: CR27
  article-title: Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells
  publication-title: Science
  doi: 10.1126/science.adf5872
– volume: 370
  start-page: 1300
  year: 2020
  end-page: 1309
  ident: CR4
  article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
  publication-title: Science
  doi: 10.1126/science.abd4016
– volume: 2023
  start-page: 2306571
  year: 2023
  ident: CR10
  article-title: Tuning the surface energy of hole transport layers based on carbazole self-assembled monolayers for highly efficient Sn/Pb perovskite solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306571
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  ident: CR43
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 19
  start-page: 8293
  year: 2023
  end-page: 8322
  ident: CR44
  article-title: Accurate force fields for atomistic simulations of oxides, hydroxides, and organic hybrid materials up to the micrometer scale
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00750
– volume: 373
  start-page: 902
  year: 2021
  end-page: 907
  ident: CR31
  article-title: Stabilizing perovskite-substrate interfaces for high-performance perovskite modules
  publication-title: Science
  doi: 10.1126/science.abi6323
– volume: 97
  start-page: 10269
  year: 1993
  end-page: 10280
  ident: CR41
  article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a004
– volume: 624
  start-page: 289
  year: 2023
  end-page: 294
  ident: CR12
  article-title: Low-loss contacts on textured substrates for inverted perovskite solar cells
  publication-title: Nature
  doi: 10.1038/s41586-023-06745-7
– volume: 6
  start-page: 1254
  year: 2020
  end-page: 1264
  ident: CR28
  article-title: A realistic methodology for 30% efficient perovskite solar cells
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.013
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  ident: CR35
  article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 380
  start-page: 404
  year: 2023
  end-page: 409
  ident: CR1
  article-title: Minimizing buried interfacial defects for efficient inverted perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.adg3755
– volume: 12
  start-page: e1606
  year: 2022
  ident: CR42
  article-title: Software update: the ORCA program system—version 5.0
  publication-title: Wires. Comput. Mol. Sci.
  doi: 10.1002/wcms.1606
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR45
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 384
  start-page: 189
  year: 2024
  end-page: 193
  ident: CR8
  article-title: Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands
  publication-title: Science
  doi: 10.1126/science.adm9474
– volume: 620
  start-page: 545
  year: 2023
  end-page: 551
  ident: CR3
  article-title: Inverted perovskite solar cells using dimethylacridine-based dopants
  publication-title: Nature
  doi: 10.1038/s41586-023-06207-0
– volume: 142
  start-page: 20071
  year: 2020
  end-page: 20079
  ident: CR24
  article-title: Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09560
– volume: 81
  start-page: 511
  year: 1984
  ident: 7723_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 8
  start-page: 898
  year: 2023
  ident: 7723_CR11
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c02629
– volume: 6
  start-page: 1254
  year: 2020
  ident: 7723_CR28
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.04.013
– ident: 7723_CR37
  doi: 10.1103/PhysRevA.31.1695
– volume: 384
  start-page: 189
  year: 2024
  ident: 7723_CR8
  publication-title: Science
  doi: 10.1126/science.adm9474
– volume: 130
  start-page: 139
  year: 2016
  ident: 7723_CR29
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.015
– volume: 17
  start-page: 856
  year: 2023
  ident: 7723_CR14
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01247-4
– volume: 97
  start-page: 10269
  year: 1993
  ident: 7723_CR41
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a004
– volume: 32
  start-page: 2205009
  year: 2022
  ident: 7723_CR17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202205009
– volume: 382
  start-page: 1399
  year: 2023
  ident: 7723_CR13
  publication-title: Science
  doi: 10.1126/science.adj8858
– volume: 17
  start-page: 478
  year: 2023
  ident: 7723_CR26
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01180-6
– volume: 10
  year: 2019
  ident: 7723_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09167-0
– volume: 380
  start-page: 404
  year: 2023
  ident: 7723_CR1
  publication-title: Science
  doi: 10.1126/science.adg3755
– volume: 62
  start-page: e202309292
  year: 2023
  ident: 7723_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202309292
– volume: 9
  start-page: 143
  year: 2024
  ident: 7723_CR23
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01421-6
– volume: 381
  start-page: 63
  year: 2023
  ident: 7723_CR27
  publication-title: Science
  doi: 10.1126/science.adf5872
– volume: 271
  start-page: 108171
  year: 2022
  ident: 7723_CR34
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108171
– volume: 624
  start-page: 289
  year: 2023
  ident: 7723_CR12
  publication-title: Nature
  doi: 10.1038/s41586-023-06745-7
– volume: 624
  start-page: 557
  year: 2023
  ident: 7723_CR7
  publication-title: Nature
  doi: 10.1038/s41586-023-06784-0
– volume: 8
  start-page: 3860
  year: 2023
  ident: 7723_CR9
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c01385
– volume: 382
  start-page: 284
  year: 2023
  ident: 7723_CR2
  publication-title: Science
  doi: 10.1126/science.ade9637
– volume: 620
  start-page: 545
  year: 2023
  ident: 7723_CR3
  publication-title: Nature
  doi: 10.1038/s41586-023-06207-0
– volume: 611
  start-page: 278
  year: 2022
  ident: 7723_CR6
  publication-title: Nature
  doi: 10.1038/s41586-022-05268-x
– volume: 12
  start-page: 2778
  year: 2019
  ident: 7723_CR21
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02020A
– volume: 94
  start-page: 8897
  year: 1990
  ident: 7723_CR40
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100389a010
– volume: 370
  start-page: 1300
  year: 2020
  ident: 7723_CR4
  publication-title: Science
  doi: 10.1126/science.abd4016
– volume: 8
  start-page: 839
  year: 2023
  ident: 7723_CR33
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01288-7
– volume: 19
  start-page: 8293
  year: 2023
  ident: 7723_CR44
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00750
– volume: 105
  start-page: 163508
  year: 2014
  ident: 7723_CR25
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4899051
– volume: 7
  start-page: 708
  year: 2022
  ident: 7723_CR20
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01045-2
– volume: 15
  year: 2023
  ident: 7723_CR5
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-023-00474-z
– volume: 142
  start-page: 20071
  year: 2020
  ident: 7723_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09560
– volume: 34
  start-page: 2109879
  year: 2022
  ident: 7723_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109879
– volume: 54
  start-page: 11169
  year: 1996
  ident: 7723_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 17
  start-page: 1549
  year: 2024
  ident: 7723_CR22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02344C
– volume: 159
  start-page: 98
  year: 1967
  ident: 7723_CR35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.159.98
– volume: 16
  start-page: 2295
  year: 2023
  ident: 7723_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE00293D
– volume: 12
  start-page: e1606
  year: 2022
  ident: 7723_CR42
  publication-title: Wires. Comput. Mol. Sci.
  doi: 10.1002/wcms.1606
– volume: 2023
  start-page: 2306571
  year: 2023
  ident: 7723_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306571
– volume: 62
  start-page: 6423
  year: 2022
  ident: 7723_CR39
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c01506
– volume: 114
  start-page: 10024
  year: 1992
  ident: 7723_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 373
  start-page: 902
  year: 2021
  ident: 7723_CR31
  publication-title: Science
  doi: 10.1126/science.abi6323
– volume: 31
  start-page: 1904408
  year: 2019
  ident: 7723_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904408
– volume: 30
  start-page: 2157
  year: 2009
  ident: 7723_CR38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 8
  start-page: 372
  year: 2023
  ident: 7723_CR30
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01220-z
SSID ssj0005174
Score 2.7538056
Snippet Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 536
SubjectTerms 119/118
639/301
639/301/299
639/301/299/946
Acids
Antibiotics
Buried structures
Carboxylic acids
Efficiency
Energy conversion efficiency
Heterojunctions
Humanities and Social Sciences
Interface stability
Interfaces
Molecular structure
Morphology
multidisciplinary
Perovskites
Phosphonic acids
Photovoltaic cells
Photovoltaics
Scanning electron microscopy
Science
Science (multidisciplinary)
Self-assembly
Solar cells
Wettability
Title Buried interface molecular hybrid for inverted perovskite solar cells
URI https://link.springer.com/article/10.1038/s41586-024-07723-3
https://www.ncbi.nlm.nih.gov/pubmed/38925147
https://www.proquest.com/docview/3093914122
https://www.proquest.com/docview/3072799703
Volume 632
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oS8EX6U0deyGCD0oburnMJPtU2rJrESxFLOzbkEky-KC7tbMV_Peek83sUot9yUuSmXBy-84l3wF4L32jXCxbbr1vuY5Vw51vUGv1wlZlG2STGPi-XFWXN_rzpJxkg1uXwyr7MzEd1GHmyUZ-Qh67odBCytPbX5yyRpF3NafQeA7rRF1GIV1mYlYhHv-wMOdHMwNlTzq8uCyF32o-QICpuHp4MT1Cm488pekCGm_Cy4wc2dliqrfgWZxuw0aK4PTdNmzlXdqxD5lK-uMOjM4pI11gRApx1zof2c8-HS77_oceazEErVhNWZmxHbGG_-7IoMs60nkZ2fW7XbgZj75dXPKcOIF7Zco5N7FCoBcSWbxSw2hs23gsvA6GclBVToRBQGXPlI0ZyBjbKIOurJOmVUoJ9QrWprNpfAMMOwtigAlORe3KqnHWGKVVhfs4eikKEL3Uap9ZxSm5xY86ebeVrReSrlHSdZJ0rQo4Wva5XXBqPNl6v5-MOu-vrl6thgLeLatxZ5BY3DTO7qkNYrPhEI-0Al4vJnH5O4RpCOy0KeC4n9XVx_8_lrdPj2UPXsi0olAxL_dhbX53Hw8Qs8ybw7QwsbQXgsrxp0NYPx9dXX_9C84751g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXRMsrUMBIIIHAavxI7D0gxKPVlj5OrbS31LEdcYDd0mxB_VP8RmacZFdQ0VsvufgRazwef_aMvwF4IX2tXCwabr1vuI5lzZ2v8dTqhS2LJsg6MfDtH5TjI_1lUkxW4PfwFobCKgebmAx1mHm6I98kj91IaCHl-5MfnLJGkXd1SKHRqcVuPP-FR7b23c5nnN-XUm5vHX4a8z6rAPfKFHNuYokoKCQmdaVG0dim9vjxOhhK0FQ6EfKAJyFT1CaXMTZRBl1aJ02jlBIK-70G13HjzWlFmYlZhpT8w_rcP9LJld1scaO0FO6reY6AVnH190Z4Ad1e8MymDW_7DtzukSr70KnWGqzE6TrcSBGjvl2Htd4qtOxVT139-i5sfaQMeIERCcVp43xk34f0u-zrOT0OYwiSsZiyQGM9Yin_2dIFMmvpjM3Ij9Deg6MrEel9WJ3OpvEhMGwsiHEmOBW1K8raWWOUViXajeilyEAMUqt8z2JOyTS-VcmbrmzVSbpCSVdJ0pXK4M2izUnH4XFp7Y1hMqp-PbfVUvsyeL4oxpVIYnHTODujOogFRyM0oRk86CZx8TuEhQgktcng7TCry87_P5ZHl4_lGdwcH-7vVXs7B7uP4ZZM2mW5KDZgdX56Fp8gXprXT5OSMji-6lXxB1srH1k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAX1JZXSgEjgQQCa9ePxN5DhYB21VKoOFBpbyaxHXGA3bbZgvrX-HXMOMmuoKK3XnKxk1jjmfFnz_gbgGfSV6qMec2t9zXXsah46SvctXphi7wOskoMfJ8Oi70j_WGST1bgd38XhtIqe5-YHHWYeTojH1DEbiS0kHJQd2kRn3fGb45POFWQokhrX06jVZGDeP4Lt2_N9v4OzvVzKce7X97v8a7CAPfK5HNuYoGIKCRWdaVG0di68vjwOhgq1lSUIgwD7opMXpmhjLGOMujCltLUSimh8LvX4LpRuSAbMxOzTC_5hwG6u7AzVHbQ4KJpKfVX8yGCW8XV34viBaR7IUqbFr_xGtzuUCt726rZOqzE6QbcSNmjvtmA9c5DNOxFR2P98g7svqNqeIERIcVpXfrIfvSleNm3c7ooxhAwYzNVhMZ-xFj-s6HDZNbQfptRTKG5C0dXItJ7sDqdTeMDYPiyIPaZUKqoy7yoSmuM0qpAHxK9FBmIXmrOd4zmVFjju0uRdWVdK2mHknZJ0k5l8GrxznHL53Fp761-Mlxn241bamIGTxfNaJUklnIaZ2fUB3HhaITuNIP77SQufocQEUGlNhm87md1-fH_j2Xz8rE8gZtoD-7j_uHBQ7glk3JZLvItWJ2fnsVHCJ3m1eOkowy-XrVR_AEPQyOP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buried+interface+molecular+hybrid+for+inverted+perovskite+solar+cells&rft.jtitle=Nature+%28London%29&rft.au=Liu%2C+Sanwan&rft.au=Li%2C+Jingbai&rft.au=Xiao%2C+Wenshan&rft.au=Chen%2C+Rui&rft.date=2024-08-15&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=632&rft.issue=8025&rft.spage=536&rft_id=info:doi/10.1038%2Fs41586-024-07723-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon