Buried interface molecular hybrid for inverted perovskite solar cells
Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of t...
Saved in:
Published in | Nature (London) Vol. 632; no. 8025; pp. 536 - 542 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.08.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules
1
–
5
and passivation strategies
6
–
8
. However, poor wettability and agglomeration of self-assembled molecules
9
–
12
cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9
H
-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4′,4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm
2
). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.
High efficiency in perovskite solar cells is achieved by using a molecular hybrid of a self-assembled monolayer with nitrilotribenzoic acid. |
---|---|
AbstractList | Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules
1
–
5
and passivation strategies
6
–
8
. However, poor wettability and agglomeration of self-assembled molecules
9
–
12
cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9
H
-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4′,4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm
2
). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.
High efficiency in perovskite solar cells is achieved by using a molecular hybrid of a self-assembled monolayer with nitrilotribenzoic acid. Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air. Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules and passivation strategies . However, poor wettability and agglomeration of self-assembled molecules cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm ). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air. Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that со-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4"-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air. |
Author | Liu, Zonghao Xiao, Wenshan Wang, Jianan Kober-Czerny, Manuel Huang, Wenchao Ji, Yitong Li, Sibo Hu, Shuaifeng Xu, Baomin Zhou, Qisen Lei, Xia Ren, Fumeng Snaith, Henry J. Liu, Sanwan Gao, You Li, Jingbai Qiu, Longbin Park, Nam-Gyu Raza, Hasan Li, Huan Chen, Rui Sun, Zhenxing Chen, Wei Zhao, Yan Zhang, Yong |
Author_xml | – sequence: 1 givenname: Sanwan surname: Liu fullname: Liu, Sanwan organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory – sequence: 2 givenname: Jingbai orcidid: 0000-0003-4743-0318 surname: Li fullname: Li, Jingbai organization: Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University – sequence: 3 givenname: Wenshan surname: Xiao fullname: Xiao, Wenshan organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology – sequence: 4 givenname: Rui surname: Chen fullname: Chen, Rui organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 5 givenname: Zhenxing surname: Sun fullname: Sun, Zhenxing organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 6 givenname: Yong orcidid: 0009-0008-5570-5637 surname: Zhang fullname: Zhang, Yong organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 7 givenname: Xia orcidid: 0009-0001-6499-2745 surname: Lei fullname: Lei, Xia organization: Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 8 givenname: Shuaifeng orcidid: 0000-0003-1312-075X surname: Hu fullname: Hu, Shuaifeng organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 9 givenname: Manuel orcidid: 0000-0002-7807-3133 surname: Kober-Czerny fullname: Kober-Czerny, Manuel organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 10 givenname: Jianan surname: Wang fullname: Wang, Jianan organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 11 givenname: Fumeng surname: Ren fullname: Ren, Fumeng organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 12 givenname: Qisen surname: Zhou fullname: Zhou, Qisen organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 13 givenname: Hasan orcidid: 0009-0006-5653-9197 surname: Raza fullname: Raza, Hasan organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 14 givenname: You surname: Gao fullname: Gao, You organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) – sequence: 15 givenname: Yitong surname: Ji fullname: Ji, Yitong organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology – sequence: 16 givenname: Sibo surname: Li fullname: Li, Sibo organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology – sequence: 17 givenname: Huan surname: Li fullname: Li, Huan organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology – sequence: 18 givenname: Longbin orcidid: 0000-0002-7696-4901 surname: Qiu fullname: Qiu, Longbin organization: Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology – sequence: 19 givenname: Wenchao orcidid: 0000-0003-4992-1727 surname: Huang fullname: Huang, Wenchao organization: Key State Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone – sequence: 20 givenname: Yan orcidid: 0000-0002-1234-4455 surname: Zhao fullname: Zhao, Yan organization: College of Materials Science and Engineering, Sichuan University, The Institute of Technological Sciences, Wuhan University – sequence: 21 givenname: Baomin orcidid: 0000-0002-2868-0613 surname: Xu fullname: Xu, Baomin organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 22 givenname: Zonghao orcidid: 0000-0003-4743-6971 surname: Liu fullname: Liu, Zonghao email: liuzonghao@hust.edu.cn organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory – sequence: 23 givenname: Henry J. orcidid: 0000-0001-8511-790X surname: Snaith fullname: Snaith, Henry J. organization: Clarendon Laboratory, Department of Physics, University of Oxford – sequence: 24 givenname: Nam-Gyu orcidid: 0000-0003-2368-6300 surname: Park fullname: Park, Nam-Gyu email: npark@skku.edu organization: School of Chemical Engineering and Center for Antibonding Regulated Crystals, Sungkyunkwan University (SKKU), SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University – sequence: 25 givenname: Wei orcidid: 0000-0002-2418-9210 surname: Chen fullname: Chen, Wei email: wnlochenwei@hust.edu.cn organization: Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Optics Valley Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38925147$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1PwzAQhi0Eoh_wBxhQJBaWgO1LYmeEqnxIlVhgttzkAi5pXOykUv89Dm2F1KHL3XDPe3rv3hE5bWyDhFwxescoyHufsFRmMeVJTIXgEMMJGbJEZHGSSXFKhpRyGVMJ2YCMvF9QSlMmknMyAJnzNJBDMn3snMEyMk2LrtIFRktbY9HV2kVfm7kzZVRZF8ZrdG3gVujs2n-bFiNve6jAuvYX5KzStcfLXR-Tj6fp--Qlnr09v04eZnEBIm1jgRljaZlIEBIgRyGreRFKkZSCM5llmpW05IyKdC4oR6yQl-EWzUUFAAzG5Ha7d-XsT4e-VUvjewe6Qdt5BVRwkeeCQkBvDtCF7VwT3AUqh5wljPNAXe-obr7EUq2cWWq3UfsHBUBugcJZ7x1WqjCtbo1tWqdNrRhVfRZqm4UKWai_LFTvgB9I99uPimAr8gFuPtH92z6i-gVPgZnR |
CitedBy_id | crossref_primary_10_1002_adfm_202409939 crossref_primary_10_1002_adfm_202426037 crossref_primary_10_1002_smll_202500630 crossref_primary_10_1002_smll_202409284 crossref_primary_10_1021_acsami_4c22563 crossref_primary_10_1002_anie_202501375 crossref_primary_10_1021_acsaem_4c01722 crossref_primary_10_1038_s41560_024_01680_x crossref_primary_10_1002_smtd_202401758 crossref_primary_10_1002_anie_202419061 crossref_primary_10_1021_acsami_4c13977 crossref_primary_10_1002_aenm_202404726 crossref_primary_10_1021_acs_jpclett_4c03112 crossref_primary_10_1039_D5EE00156K crossref_primary_10_1039_D4CC04884A crossref_primary_10_1002_ange_202419375 crossref_primary_10_1039_D5EE00350D crossref_primary_10_3390_molecules30061299 crossref_primary_10_1002_smll_202500642 crossref_primary_10_1002_smtd_202402177 crossref_primary_10_1021_acsaem_5c00155 crossref_primary_10_1002_adfm_202417310 crossref_primary_10_1016_j_jpowsour_2024_236033 crossref_primary_10_1038_s41566_024_01570_4 crossref_primary_10_35848_1347_4065_ad8891 crossref_primary_10_1002_adfm_202415004 crossref_primary_10_1002_anie_202502221 crossref_primary_10_3390_molecules29215064 crossref_primary_10_3390_nano14131161 crossref_primary_10_1109_LED_2024_3454522 crossref_primary_10_1063_5_0254767 crossref_primary_10_1002_aenm_202404755 crossref_primary_10_1002_adfm_202418792 crossref_primary_10_1016_j_renene_2025_122365 crossref_primary_10_3390_coatings15010015 crossref_primary_10_1016_j_cej_2025_161737 crossref_primary_10_1002_smll_202410856 crossref_primary_10_1038_s44160_024_00678_3 crossref_primary_10_1002_adma_202412692 crossref_primary_10_1002_solr_202400824 crossref_primary_10_1039_D4EE05849F crossref_primary_10_1002_smll_202502367 crossref_primary_10_1039_D4CC05131A crossref_primary_10_1002_anie_202419608 crossref_primary_10_1038_s41467_024_53344_9 crossref_primary_10_1002_aenm_202403530 crossref_primary_10_1002_anie_202422571 crossref_primary_10_1002_adfm_202412552 crossref_primary_10_1002_adma_202419413 crossref_primary_10_1002_aenm_202404617 crossref_primary_10_1016_j_decarb_2025_100107 crossref_primary_10_1039_D4EE03001J crossref_primary_10_1038_s41467_024_55377_6 crossref_primary_10_1002_anie_202425605 crossref_primary_10_1021_acsenergylett_4c03282 crossref_primary_10_3390_nano14191550 crossref_primary_10_1038_s41467_024_52377_4 crossref_primary_10_1002_anie_202418883 crossref_primary_10_1021_jacs_4c14955 crossref_primary_10_1002_aenm_202404374 crossref_primary_10_1016_j_apmate_2025_100275 crossref_primary_10_1038_s41586_024_08546_y crossref_primary_10_1002_anie_202418606 crossref_primary_10_1038_s41467_025_57195_w crossref_primary_10_1002_ange_202425605 crossref_primary_10_1039_D4EE05319B crossref_primary_10_1002_ange_202419608 crossref_primary_10_1002_ange_202422571 crossref_primary_10_1016_j_solmat_2025_113548 crossref_primary_10_1002_solr_202500025 crossref_primary_10_1126_science_adw1552 crossref_primary_10_1021_acsenergylett_5c00074 crossref_primary_10_1021_acsenergylett_4c03370 crossref_primary_10_1002_ange_202418883 crossref_primary_10_1039_D4EE01960A crossref_primary_10_1002_ange_202501375 crossref_primary_10_1002_aenm_202405571 crossref_primary_10_1002_ange_202502221 crossref_primary_10_1007_s11814_024_00335_7 crossref_primary_10_1002_adfm_202413390 crossref_primary_10_1002_adfm_202419133 crossref_primary_10_1039_D4EY00091A crossref_primary_10_1002_aenm_202405212 crossref_primary_10_1038_s41467_024_55523_0 crossref_primary_10_1002_aenm_202403706 crossref_primary_10_1002_smll_202410865 crossref_primary_10_1016_j_cej_2025_161967 crossref_primary_10_1021_acsomega_4c04979 crossref_primary_10_1016_j_joule_2025_101826 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1002_adfm_202408829 crossref_primary_10_1002_aenm_202403186 crossref_primary_10_1002_solr_202500042 crossref_primary_10_1021_acsami_4c21253 crossref_primary_10_1016_j_solener_2024_113223 crossref_primary_10_1002_pssa_202400569 crossref_primary_10_1016_j_cej_2024_156985 crossref_primary_10_1002_smll_202411623 crossref_primary_10_1016_j_cej_2025_161813 crossref_primary_10_1021_acsphotonics_4c01330 crossref_primary_10_1021_acsami_4c12783 crossref_primary_10_1002_adfm_202504424 crossref_primary_10_1002_cssc_202401555 crossref_primary_10_3390_coatings15030301 crossref_primary_10_1002_adfm_202419393 crossref_primary_10_1002_adfm_202421576 crossref_primary_10_1016_j_nxmate_2025_100495 crossref_primary_10_1002_ange_202418606 crossref_primary_10_1007_s11708_025_0985_5 crossref_primary_10_1016_j_mtelec_2025_100138 crossref_primary_10_1016_j_ccr_2025_216500 crossref_primary_10_1088_0256_307X_41_9_098501 crossref_primary_10_1016_j_renene_2024_122253 crossref_primary_10_3390_ma18071400 crossref_primary_10_1039_D4EE05860G crossref_primary_10_1038_s41566_024_01541_9 crossref_primary_10_1002_solr_202400736 crossref_primary_10_1016_j_cej_2025_161146 crossref_primary_10_1016_j_cej_2025_161388 crossref_primary_10_1002_anie_202419375 crossref_primary_10_1007_s40243_024_00275_6 crossref_primary_10_1016_j_nanoen_2024_110476 crossref_primary_10_1021_acsami_4c20422 crossref_primary_10_1016_j_cej_2025_159390 crossref_primary_10_1002_aenm_202404335 crossref_primary_10_1002_adfm_202419582 crossref_primary_10_1002_smll_202409568 crossref_primary_10_1021_acsenergylett_4c03579 crossref_primary_10_1002_aenm_202403911 crossref_primary_10_1021_acsami_4c14300 crossref_primary_10_1002_adma_202415100 crossref_primary_10_1038_s41467_024_55653_5 crossref_primary_10_1002_smll_202410310 crossref_primary_10_1002_adfm_202412946 crossref_primary_10_1002_solr_202500052 crossref_primary_10_1039_D4EE05462H crossref_primary_10_1002_inf2_12628 crossref_primary_10_1002_adfm_202425119 crossref_primary_10_1016_j_synthmet_2025_117839 crossref_primary_10_1039_D4SC07759H crossref_primary_10_1002_smll_202407015 crossref_primary_10_1039_D4EE05135A crossref_primary_10_1039_D4EE05232C crossref_primary_10_1039_D4EE04209C crossref_primary_10_1021_acsnano_4c11866 crossref_primary_10_1021_acsphotonics_4c01426 crossref_primary_10_1002_adfm_202418915 crossref_primary_10_1016_j_apm_2025_116062 crossref_primary_10_3390_polym17050653 crossref_primary_10_1016_j_matt_2024_08_001 crossref_primary_10_1002_adma_202412059 crossref_primary_10_1002_cssc_202400939 crossref_primary_10_1021_acs_chemmater_4c02044 crossref_primary_10_1002_asia_202401344 crossref_primary_10_1126_science_adu5563 crossref_primary_10_1002_adma_202502770 crossref_primary_10_1021_acsenergylett_4c02220 crossref_primary_10_1021_jacs_4c13356 crossref_primary_10_1002_adma_202416530 crossref_primary_10_1002_adfm_202415797 crossref_primary_10_1039_D4EE03173C crossref_primary_10_1002_adma_202414354 crossref_primary_10_1016_j_cej_2025_161573 crossref_primary_10_1021_acsami_4c15050 crossref_primary_10_1002_anie_202423827 crossref_primary_10_1002_solr_202400540 crossref_primary_10_3390_nano15070483 crossref_primary_10_1002_solr_202400780 crossref_primary_10_1002_adma_202414125 crossref_primary_10_1039_D4TA08074B crossref_primary_10_1007_s00339_024_07779_y crossref_primary_10_1016_j_renene_2025_122632 crossref_primary_10_1002_aenm_202405675 crossref_primary_10_1002_advs_202412959 crossref_primary_10_1039_D4SU00470A crossref_primary_10_1186_s40580_024_00464_z crossref_primary_10_1021_acs_energyfuels_5c00153 crossref_primary_10_1016_j_enchem_2024_100135 crossref_primary_10_1002_smll_202411413 crossref_primary_10_1016_j_cej_2025_160931 crossref_primary_10_1002_ange_202419061 crossref_primary_10_1039_D4EE03801K crossref_primary_10_1002_adfm_202410419 crossref_primary_10_1002_anie_202416188 crossref_primary_10_1038_s43586_024_00373_9 crossref_primary_10_1002_smll_202501762 crossref_primary_10_1002_ange_202423827 crossref_primary_10_1002_solr_202400496 crossref_primary_10_1038_s41578_025_00781_7 crossref_primary_10_1002_adma_202414576 crossref_primary_10_1063_5_0226632 crossref_primary_10_3389_fchem_2024_1519166 crossref_primary_10_1039_D4EE02803A crossref_primary_10_1039_D4EE04136D crossref_primary_10_1016_j_jechem_2025_02_041 crossref_primary_10_3390_sym16101357 crossref_primary_10_1002_anie_202416390 crossref_primary_10_1016_j_joule_2024_101815 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1016_j_matt_2025_101990 crossref_primary_10_1039_D4EE03208J crossref_primary_10_1002_aenm_202406024 crossref_primary_10_1002_ange_202416188 crossref_primary_10_1021_acsami_4c22532 crossref_primary_10_1039_D4MH01603C crossref_primary_10_1039_D4EE05968A crossref_primary_10_1039_D4TA05776G crossref_primary_10_1016_j_mssp_2025_109314 crossref_primary_10_1021_acsami_4c15688 crossref_primary_10_1021_acsenergylett_4c03427 crossref_primary_10_1039_D4EE04878D crossref_primary_10_1016_j_ccr_2025_216563 crossref_primary_10_1039_D4EE04419C crossref_primary_10_1016_j_cej_2025_161323 crossref_primary_10_3390_ma17205095 crossref_primary_10_1002_aenm_202405088 crossref_primary_10_1039_D4TA05438E crossref_primary_10_1002_adma_202415405 crossref_primary_10_1002_solr_202400594 crossref_primary_10_1002_ange_202416390 crossref_primary_10_1016_j_cej_2024_157430 crossref_primary_10_1016_j_cej_2025_159453 crossref_primary_10_1021_acs_nanolett_4c05327 crossref_primary_10_1016_j_surfin_2025_106094 crossref_primary_10_1039_D5EE00380F crossref_primary_10_1002_adfm_202420084 crossref_primary_10_1002_adma_202408686 crossref_primary_10_1002_aenm_202406046 crossref_primary_10_1002_adma_202500708 crossref_primary_10_3390_nano15030227 crossref_primary_10_1039_D4CS01231C crossref_primary_10_1109_LED_2024_3505233 crossref_primary_10_1016_j_joule_2025_101880 crossref_primary_10_1016_j_dyepig_2025_112676 crossref_primary_10_1002_adfm_202412482 crossref_primary_10_1002_smll_202408168 crossref_primary_10_1039_D4TC03821E crossref_primary_10_1021_acsenergylett_4c02674 crossref_primary_10_1002_smll_202410369 crossref_primary_10_1002_aenm_202404538 crossref_primary_10_1021_acs_jctc_4c01635 crossref_primary_10_1038_s41586_024_08103_7 crossref_primary_10_1088_1361_6463_ad82f7 crossref_primary_10_1021_jacs_5c00629 crossref_primary_10_1002_adma_202417150 crossref_primary_10_1038_s41467_024_55492_4 |
Cites_doi | 10.1038/s41560-023-01220-z 10.1021/acsenergylett.3c01385 10.1038/s41560-023-01288-7 10.1002/adma.202109879 10.1038/s41560-022-01045-2 10.1021/j100389a010 10.1002/adma.201904408 10.1126/science.ade9637 10.1038/s41586-022-05268-x 10.1021/acsenergylett.2c02629 10.1126/science.adj8858 10.1002/adfm.202205009 10.1021/acs.jcim.1c01506 10.1038/s41427-023-00474-z 10.1038/s41467-019-09167-0 10.1038/s41566-023-01180-6 10.1063/1.4899051 10.1039/D3EE02344C 10.1039/C9EE02020A 10.1002/anie.202309292 10.1002/jcc.21224 10.1039/D3EE00293D 10.1038/s41566-023-01247-4 10.1016/j.cpc.2021.108171 10.1016/j.solener.2016.02.015 10.1063/1.447334 10.1038/s41586-023-06784-0 10.1038/s41560-023-01421-6 10.1126/science.adf5872 10.1126/science.abd4016 10.1002/adfm.202306571 10.1021/ja00051a040 10.1021/acs.jctc.3c00750 10.1126/science.abi6323 10.1021/j100142a004 10.1038/s41586-023-06745-7 10.1016/j.chempr.2020.04.013 10.1103/PhysRev.159.98 10.1126/science.adg3755 10.1002/wcms.1606 10.1103/PhysRevB.54.11169 10.1126/science.adm9474 10.1038/s41586-023-06207-0 10.1021/jacs.0c09560 10.1103/PhysRevA.31.1695 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Aug 15, 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Aug 15, 2024 |
DBID | AAYXX CITATION NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-024-07723-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 542 |
ExternalDocumentID | 38925147 10_1038_s41586_024_07723_3 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NAPCQ NFIDA NPM 1VR 2XV 3V. 41X 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 7XC 88A 88E 88I 8AF 8AO 8C1 8CJ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 8R4 8R5 97L ABJCF ABUWG AEUYN AFKRA AFKWF AZQEC BBNVY BCU BEC BGLVJ BKEYQ BKSAR BPHCQ BVXVI C1K CCPQU D1I D1J D1K DWQXO EMH EX3 FR3 FYUFA GNUQQ GUQSH H94 HMCUK INR ISR K6- K9. KB. KL. L6V LK5 LK8 M1P M2M M2P M7N M7R M7S MBDVC P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PROAC PSQYO PSYQQ PTHSS PYCSY Q2X Q9U R05 RC3 S0X SJFOW SOI TUS UKHRP WOW ~7V 7X8 |
ID | FETCH-LOGICAL-c375t-7e6115d48378339e78fbc78fc4d721866a1d0d21075b702eefe2d468a27f33313 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Fri Jul 11 01:57:07 EDT 2025 Sat Aug 23 13:00:23 EDT 2025 Thu Apr 03 06:57:37 EDT 2025 Tue Jul 01 02:58:57 EDT 2025 Thu Apr 24 23:00:41 EDT 2025 Fri Feb 21 02:37:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8025 |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-7e6115d48378339e78fbc78fc4d721866a1d0d21075b702eefe2d468a27f33313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1312-075X 0000-0003-4743-0318 0009-0008-5570-5637 0000-0001-8511-790X 0000-0003-4992-1727 0009-0001-6499-2745 0000-0002-1234-4455 0000-0002-7807-3133 0000-0002-2418-9210 0009-0006-5653-9197 0000-0003-2368-6300 0000-0002-2868-0613 0000-0002-7696-4901 0000-0003-4743-6971 |
PMID | 38925147 |
PQID | 3093914122 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_3072799703 proquest_journals_3093914122 pubmed_primary_38925147 crossref_citationtrail_10_1038_s41586_024_07723_3 crossref_primary_10_1038_s41586_024_07723_3 springer_journals_10_1038_s41586_024_07723_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-15 |
PublicationDateYYYYMMDD | 2024-08-15 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Thompson (CR34) 2022; 271 Chen (CR33) 2023; 8 Kresse, Furthmuller (CR45) 1996; 54 Gao (CR19) 2023; 16 Martínez, Andrade, Birgin, Martínez (CR38) 2009; 30 Mayo, Olafson, Goddard (CR40) 1990; 94 Li (CR20) 2022; 7 CR37 Suo (CR23) 2024; 9 Wang (CR25) 2014; 105 Stolterfoht (CR21) 2019; 12 Zhao (CR24) 2020; 142 Liu (CR17) 2022; 32 Zheng (CR18) 2022; 34 Chu (CR30) 2023; 8 Tan (CR3) 2023; 620 Chang (CR15) 2023; 62 Wu (CR32) 2019; 10 Neese (CR42) 2022; 12 Luo (CR14) 2023; 17 Yang (CR22) 2024; 17 Ma, Park (CR28) 2020; 6 Pitaro (CR10) 2023; 2023 Mariotti (CR27) 2023; 381 Chen (CR31) 2021; 373 Hossain (CR9) 2023; 8 Seijas-Bellido (CR39) 2022; 62 Chen (CR8) 2024; 384 Al-Ashouri (CR4) 2020; 370 Yu (CR13) 2023; 382 Wang (CR16) 2019; 31 Rappe, Casewit, Colwell, Goddard, Skiff (CR43) 1992; 114 Bayly, Cieplak, Cornell, Kollman (CR41) 1993; 97 Zhang (CR1) 2023; 380 Liu, Biju, Qi, Chen, Liu (CR5) 2023; 15 Jiang (CR6) 2022; 611 Park (CR12) 2023; 624 Al-Ashouri (CR11) 2023; 8 Nosé (CR36) 1984; 81 Rühle (CR29) 2016; 130 Verlet (CR35) 1967; 159 Li (CR2) 2023; 382 Kanhaiya (CR44) 2023; 19 Liang (CR7) 2023; 624 Li (CR26) 2023; 17 H Wang (7723_CR16) 2019; 31 K Kanhaiya (7723_CR44) 2023; 19 S Wu (7723_CR32) 2019; 10 A Al-Ashouri (7723_CR4) 2020; 370 Z Zheng (7723_CR18) 2022; 34 S Nosé (7723_CR36) 1984; 81 CI Bayly (7723_CR41) 1993; 97 Y Zhao (7723_CR24) 2020; 142 S Chen (7723_CR31) 2021; 373 Y Gao (7723_CR19) 2023; 16 S Mariotti (7723_CR27) 2023; 381 S Rühle (7723_CR29) 2016; 130 A Al-Ashouri (7723_CR11) 2023; 8 H Chen (7723_CR8) 2024; 384 SM Park (7723_CR12) 2023; 624 Q Tan (7723_CR3) 2023; 620 F Li (7723_CR26) 2023; 17 S Zhang (7723_CR1) 2023; 380 SL Mayo (7723_CR40) 1990; 94 J Suo (7723_CR23) 2024; 9 7723_CR37 B Yang (7723_CR22) 2024; 17 G Kresse (7723_CR45) 1996; 54 S Yu (7723_CR13) 2023; 382 C Ma (7723_CR28) 2020; 6 S Liu (7723_CR17) 2022; 32 Q Jiang (7723_CR6) 2022; 611 AP Thompson (7723_CR34) 2022; 271 JA Seijas-Bellido (7723_CR39) 2022; 62 L Li (7723_CR20) 2022; 7 X Chu (7723_CR30) 2023; 8 M Stolterfoht (7723_CR21) 2019; 12 R Chen (7723_CR33) 2023; 8 Z Li (7723_CR2) 2023; 382 L Verlet (7723_CR35) 1967; 159 M Pitaro (7723_CR10) 2023; 2023 X Chang (7723_CR15) 2023; 62 L Martínez (7723_CR38) 2009; 30 C Luo (7723_CR14) 2023; 17 Z Liang (7723_CR7) 2023; 624 Q Wang (7723_CR25) 2014; 105 F Neese (7723_CR42) 2022; 12 AK Rappe (7723_CR43) 1992; 114 K Hossain (7723_CR9) 2023; 8 S Liu (7723_CR5) 2023; 15 |
References_xml | – volume: 8 start-page: 372 year: 2023 end-page: 380 ident: CR30 article-title: Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency publication-title: Nat. Energy doi: 10.1038/s41560-023-01220-z – volume: 8 start-page: 3860 year: 2023 end-page: 3867 ident: CR9 article-title: Resolving the hydrophobicity of the Me-4PACz hole transport layer for inverted perovskite solar cells with efficiency >20% publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c01385 – volume: 8 start-page: 839 year: 2023 end-page: 849 ident: CR33 article-title: Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells publication-title: Nat. Energy doi: 10.1038/s41560-023-01288-7 – volume: 34 start-page: 2109879 year: 2022 ident: CR18 article-title: Pre-buried additive for cross-layer modification in flexible perovskite solar cells with efficiency exceeding 22% publication-title: Adv. Mater. doi: 10.1002/adma.202109879 – volume: 7 start-page: 708 year: 2022 end-page: 717 ident: CR20 article-title: Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact publication-title: Nat. Energy doi: 10.1038/s41560-022-01045-2 – volume: 94 start-page: 8897 year: 1990 end-page: 8909 ident: CR40 article-title: DREIDING: a generic force field for molecular simulations publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 – volume: 31 start-page: 1904408 year: 2019 ident: CR16 article-title: Interfacial residual stress relaxation in perovskite solar cells with improved stability publication-title: Adv. Mater. doi: 10.1002/adma.201904408 – volume: 382 start-page: 284 year: 2023 end-page: 289 ident: CR2 article-title: Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells publication-title: Science doi: 10.1126/science.ade9637 – volume: 611 start-page: 278 year: 2022 end-page: 283 ident: CR6 article-title: Surface reaction for efficient and stable inverted perovskite solar cells publication-title: Nature doi: 10.1038/s41586-022-05268-x – volume: 8 start-page: 898 year: 2023 end-page: 900 ident: CR11 article-title: Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02629 – ident: CR37 – volume: 382 start-page: 1399 year: 2023 end-page: 1404 ident: CR13 article-title: Homogenized NiO nanoparticles for improved hole transport in inverted perovskite solar cells publication-title: Science doi: 10.1126/science.adj8858 – volume: 32 start-page: 2205009 year: 2022 ident: CR17 article-title: Effective passivation with size-matched alkyldiammonium iodide for high-performance inverted perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202205009 – volume: 62 start-page: 6423 year: 2022 end-page: 6435 ident: CR39 article-title: Transferable classical force field for pure and mixed metal halide perovskites parameterized from first-principles publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01506 – volume: 15 year: 2023 ident: CR5 article-title: Recent progress in the development of high-efficiency inverted perovskite solar cells publication-title: NPG Asia Mater. doi: 10.1038/s41427-023-00474-z – volume: 10 year: 2019 ident: CR32 article-title: A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-09167-0 – volume: 17 start-page: 478 year: 2023 end-page: 484 ident: CR26 article-title: Hydrogen-bond-bridged intermediate for perovskite solar cells with enhanced efficiency and stability publication-title: Nat. Photon. doi: 10.1038/s41566-023-01180-6 – volume: 105 start-page: 163508 year: 2014 end-page: 163513 ident: CR25 article-title: Qualifying composition dependent and self-doping in CH NH PbI publication-title: Appl. Phys. Lett. doi: 10.1063/1.4899051 – volume: 17 start-page: 1549 year: 2024 end-page: 1558 ident: CR22 article-title: A universal ligand for lead coordination and tailored crystal growth in perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02344C – volume: 12 start-page: 2778 year: 2019 end-page: 2788 ident: CR21 article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02020A – volume: 62 start-page: e202309292 year: 2023 ident: CR15 article-title: Two-second-annealed 2D/3D perovskite films with graded energy funnels and toughened heterointerfaces for efficient and durable solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202309292 – volume: 30 start-page: 2157 year: 2009 end-page: 2164 ident: CR38 article-title: PACKMOL: a package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 16 start-page: 2295 year: 2023 end-page: 2303 ident: CR19 article-title: Elimination of unstable residual lead iodide near the buried interface for the stability improvement of perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00293D – volume: 17 start-page: 856 year: 2023 end-page: 864 ident: CR14 article-title: Engineering the buried interface in perovskite solar cells via lattice-matched electron transport layer publication-title: Nat. Photon. doi: 10.1038/s41566-023-01247-4 – volume: 271 start-page: 108171 year: 2022 ident: CR34 article-title: LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 130 start-page: 139 year: 2016 end-page: 147 ident: CR29 article-title: Tabulated values of the Shockley–Queisser limit for single junction solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.015 – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: CR36 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 624 start-page: 557 year: 2023 end-page: 563 ident: CR7 article-title: Homogenizing out-of-plane cation composition in perovskite solar cells publication-title: Nature doi: 10.1038/s41586-023-06784-0 – volume: 9 start-page: 143 year: 2024 end-page: 153 ident: CR23 article-title: Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests publication-title: Nat. Energy doi: 10.1038/s41560-023-01421-6 – volume: 381 start-page: 63 year: 2023 end-page: 69 ident: CR27 article-title: Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells publication-title: Science doi: 10.1126/science.adf5872 – volume: 370 start-page: 1300 year: 2020 end-page: 1309 ident: CR4 article-title: Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction publication-title: Science doi: 10.1126/science.abd4016 – volume: 2023 start-page: 2306571 year: 2023 ident: CR10 article-title: Tuning the surface energy of hole transport layers based on carbazole self-assembled monolayers for highly efficient Sn/Pb perovskite solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306571 – volume: 114 start-page: 10024 year: 1992 end-page: 10035 ident: CR43 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 19 start-page: 8293 year: 2023 end-page: 8322 ident: CR44 article-title: Accurate force fields for atomistic simulations of oxides, hydroxides, and organic hybrid materials up to the micrometer scale publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00750 – volume: 373 start-page: 902 year: 2021 end-page: 907 ident: CR31 article-title: Stabilizing perovskite-substrate interfaces for high-performance perovskite modules publication-title: Science doi: 10.1126/science.abi6323 – volume: 97 start-page: 10269 year: 1993 end-page: 10280 ident: CR41 article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – volume: 624 start-page: 289 year: 2023 end-page: 294 ident: CR12 article-title: Low-loss contacts on textured substrates for inverted perovskite solar cells publication-title: Nature doi: 10.1038/s41586-023-06745-7 – volume: 6 start-page: 1254 year: 2020 end-page: 1264 ident: CR28 article-title: A realistic methodology for 30% efficient perovskite solar cells publication-title: Chem doi: 10.1016/j.chempr.2020.04.013 – volume: 159 start-page: 98 year: 1967 end-page: 103 ident: CR35 article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 380 start-page: 404 year: 2023 end-page: 409 ident: CR1 article-title: Minimizing buried interfacial defects for efficient inverted perovskite solar cells publication-title: Science doi: 10.1126/science.adg3755 – volume: 12 start-page: e1606 year: 2022 ident: CR42 article-title: Software update: the ORCA program system—version 5.0 publication-title: Wires. Comput. Mol. Sci. doi: 10.1002/wcms.1606 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR45 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 384 start-page: 189 year: 2024 end-page: 193 ident: CR8 article-title: Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands publication-title: Science doi: 10.1126/science.adm9474 – volume: 620 start-page: 545 year: 2023 end-page: 551 ident: CR3 article-title: Inverted perovskite solar cells using dimethylacridine-based dopants publication-title: Nature doi: 10.1038/s41586-023-06207-0 – volume: 142 start-page: 20071 year: 2020 end-page: 20079 ident: CR24 article-title: Molecular interaction regulates the performance and longevity of defect passivation for metal halide perovskite solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09560 – volume: 81 start-page: 511 year: 1984 ident: 7723_CR36 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 8 start-page: 898 year: 2023 ident: 7723_CR11 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c02629 – volume: 6 start-page: 1254 year: 2020 ident: 7723_CR28 publication-title: Chem doi: 10.1016/j.chempr.2020.04.013 – ident: 7723_CR37 doi: 10.1103/PhysRevA.31.1695 – volume: 384 start-page: 189 year: 2024 ident: 7723_CR8 publication-title: Science doi: 10.1126/science.adm9474 – volume: 130 start-page: 139 year: 2016 ident: 7723_CR29 publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.015 – volume: 17 start-page: 856 year: 2023 ident: 7723_CR14 publication-title: Nat. Photon. doi: 10.1038/s41566-023-01247-4 – volume: 97 start-page: 10269 year: 1993 ident: 7723_CR41 publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – volume: 32 start-page: 2205009 year: 2022 ident: 7723_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202205009 – volume: 382 start-page: 1399 year: 2023 ident: 7723_CR13 publication-title: Science doi: 10.1126/science.adj8858 – volume: 17 start-page: 478 year: 2023 ident: 7723_CR26 publication-title: Nat. Photon. doi: 10.1038/s41566-023-01180-6 – volume: 10 year: 2019 ident: 7723_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09167-0 – volume: 380 start-page: 404 year: 2023 ident: 7723_CR1 publication-title: Science doi: 10.1126/science.adg3755 – volume: 62 start-page: e202309292 year: 2023 ident: 7723_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202309292 – volume: 9 start-page: 143 year: 2024 ident: 7723_CR23 publication-title: Nat. Energy doi: 10.1038/s41560-023-01421-6 – volume: 381 start-page: 63 year: 2023 ident: 7723_CR27 publication-title: Science doi: 10.1126/science.adf5872 – volume: 271 start-page: 108171 year: 2022 ident: 7723_CR34 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108171 – volume: 624 start-page: 289 year: 2023 ident: 7723_CR12 publication-title: Nature doi: 10.1038/s41586-023-06745-7 – volume: 624 start-page: 557 year: 2023 ident: 7723_CR7 publication-title: Nature doi: 10.1038/s41586-023-06784-0 – volume: 8 start-page: 3860 year: 2023 ident: 7723_CR9 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c01385 – volume: 382 start-page: 284 year: 2023 ident: 7723_CR2 publication-title: Science doi: 10.1126/science.ade9637 – volume: 620 start-page: 545 year: 2023 ident: 7723_CR3 publication-title: Nature doi: 10.1038/s41586-023-06207-0 – volume: 611 start-page: 278 year: 2022 ident: 7723_CR6 publication-title: Nature doi: 10.1038/s41586-022-05268-x – volume: 12 start-page: 2778 year: 2019 ident: 7723_CR21 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02020A – volume: 94 start-page: 8897 year: 1990 ident: 7723_CR40 publication-title: J. Phys. Chem. doi: 10.1021/j100389a010 – volume: 370 start-page: 1300 year: 2020 ident: 7723_CR4 publication-title: Science doi: 10.1126/science.abd4016 – volume: 8 start-page: 839 year: 2023 ident: 7723_CR33 publication-title: Nat. Energy doi: 10.1038/s41560-023-01288-7 – volume: 19 start-page: 8293 year: 2023 ident: 7723_CR44 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.3c00750 – volume: 105 start-page: 163508 year: 2014 ident: 7723_CR25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4899051 – volume: 7 start-page: 708 year: 2022 ident: 7723_CR20 publication-title: Nat. Energy doi: 10.1038/s41560-022-01045-2 – volume: 15 year: 2023 ident: 7723_CR5 publication-title: NPG Asia Mater. doi: 10.1038/s41427-023-00474-z – volume: 142 start-page: 20071 year: 2020 ident: 7723_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09560 – volume: 34 start-page: 2109879 year: 2022 ident: 7723_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202109879 – volume: 54 start-page: 11169 year: 1996 ident: 7723_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 17 start-page: 1549 year: 2024 ident: 7723_CR22 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02344C – volume: 159 start-page: 98 year: 1967 ident: 7723_CR35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.159.98 – volume: 16 start-page: 2295 year: 2023 ident: 7723_CR19 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00293D – volume: 12 start-page: e1606 year: 2022 ident: 7723_CR42 publication-title: Wires. Comput. Mol. Sci. doi: 10.1002/wcms.1606 – volume: 2023 start-page: 2306571 year: 2023 ident: 7723_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306571 – volume: 62 start-page: 6423 year: 2022 ident: 7723_CR39 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c01506 – volume: 114 start-page: 10024 year: 1992 ident: 7723_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 373 start-page: 902 year: 2021 ident: 7723_CR31 publication-title: Science doi: 10.1126/science.abi6323 – volume: 31 start-page: 1904408 year: 2019 ident: 7723_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201904408 – volume: 30 start-page: 2157 year: 2009 ident: 7723_CR38 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 8 start-page: 372 year: 2023 ident: 7723_CR30 publication-title: Nat. Energy doi: 10.1038/s41560-023-01220-z |
SSID | ssj0005174 |
Score | 2.7538056 |
Snippet | Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 536 |
SubjectTerms | 119/118 639/301 639/301/299 639/301/299/946 Acids Antibiotics Buried structures Carboxylic acids Efficiency Energy conversion efficiency Heterojunctions Humanities and Social Sciences Interface stability Interfaces Molecular structure Morphology multidisciplinary Perovskites Phosphonic acids Photovoltaic cells Photovoltaics Scanning electron microscopy Science Science (multidisciplinary) Self-assembly Solar cells Wettability |
Title | Buried interface molecular hybrid for inverted perovskite solar cells |
URI | https://link.springer.com/article/10.1038/s41586-024-07723-3 https://www.ncbi.nlm.nih.gov/pubmed/38925147 https://www.proquest.com/docview/3093914122 https://www.proquest.com/docview/3072799703 |
Volume | 632 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oS8EX6U0deyGCD0oburnMJPtU2rJrESxFLOzbkEky-KC7tbMV_Peek83sUot9yUuSmXBy-84l3wF4L32jXCxbbr1vuY5Vw51vUGv1wlZlG2STGPi-XFWXN_rzpJxkg1uXwyr7MzEd1GHmyUZ-Qh67odBCytPbX5yyRpF3NafQeA7rRF1GIV1mYlYhHv-wMOdHMwNlTzq8uCyF32o-QICpuHp4MT1Cm488pekCGm_Cy4wc2dliqrfgWZxuw0aK4PTdNmzlXdqxD5lK-uMOjM4pI11gRApx1zof2c8-HS77_oceazEErVhNWZmxHbGG_-7IoMs60nkZ2fW7XbgZj75dXPKcOIF7Zco5N7FCoBcSWbxSw2hs23gsvA6GclBVToRBQGXPlI0ZyBjbKIOurJOmVUoJ9QrWprNpfAMMOwtigAlORe3KqnHWGKVVhfs4eikKEL3Uap9ZxSm5xY86ebeVrReSrlHSdZJ0rQo4Wva5XXBqPNl6v5-MOu-vrl6thgLeLatxZ5BY3DTO7qkNYrPhEI-0Al4vJnH5O4RpCOy0KeC4n9XVx_8_lrdPj2UPXsi0olAxL_dhbX53Hw8Qs8ybw7QwsbQXgsrxp0NYPx9dXX_9C84751g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXRMsrUMBIIIHAavxI7D0gxKPVlj5OrbS31LEdcYDd0mxB_VP8RmacZFdQ0VsvufgRazwef_aMvwF4IX2tXCwabr1vuI5lzZ2v8dTqhS2LJsg6MfDtH5TjI_1lUkxW4PfwFobCKgebmAx1mHm6I98kj91IaCHl-5MfnLJGkXd1SKHRqcVuPP-FR7b23c5nnN-XUm5vHX4a8z6rAPfKFHNuYokoKCQmdaVG0dim9vjxOhhK0FQ6EfKAJyFT1CaXMTZRBl1aJ02jlBIK-70G13HjzWlFmYlZhpT8w_rcP9LJld1scaO0FO6reY6AVnH190Z4Ad1e8MymDW_7DtzukSr70KnWGqzE6TrcSBGjvl2Htd4qtOxVT139-i5sfaQMeIERCcVp43xk34f0u-zrOT0OYwiSsZiyQGM9Yin_2dIFMmvpjM3Ij9Deg6MrEel9WJ3OpvEhMGwsiHEmOBW1K8raWWOUViXajeilyEAMUqt8z2JOyTS-VcmbrmzVSbpCSVdJ0pXK4M2izUnH4XFp7Y1hMqp-PbfVUvsyeL4oxpVIYnHTODujOogFRyM0oRk86CZx8TuEhQgktcng7TCry87_P5ZHl4_lGdwcH-7vVXs7B7uP4ZZM2mW5KDZgdX56Fp8gXprXT5OSMji-6lXxB1srH1k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAX1JZXSgEjgQQCa9ePxN5DhYB21VKoOFBpbyaxHXGA3bbZgvrX-HXMOMmuoKK3XnKxk1jjmfFnz_gbgGfSV6qMec2t9zXXsah46SvctXphi7wOskoMfJ8Oi70j_WGST1bgd38XhtIqe5-YHHWYeTojH1DEbiS0kHJQd2kRn3fGb45POFWQokhrX06jVZGDeP4Lt2_N9v4OzvVzKce7X97v8a7CAPfK5HNuYoGIKCRWdaVG0di68vjwOhgq1lSUIgwD7opMXpmhjLGOMujCltLUSimh8LvX4LpRuSAbMxOzTC_5hwG6u7AzVHbQ4KJpKfVX8yGCW8XV34viBaR7IUqbFr_xGtzuUCt726rZOqzE6QbcSNmjvtmA9c5DNOxFR2P98g7svqNqeIERIcVpXfrIfvSleNm3c7ooxhAwYzNVhMZ-xFj-s6HDZNbQfptRTKG5C0dXItJ7sDqdTeMDYPiyIPaZUKqoy7yoSmuM0qpAHxK9FBmIXmrOd4zmVFjju0uRdWVdK2mHknZJ0k5l8GrxznHL53Fp761-Mlxn241bamIGTxfNaJUklnIaZ2fUB3HhaITuNIP77SQufocQEUGlNhm87md1-fH_j2Xz8rE8gZtoD-7j_uHBQ7glk3JZLvItWJ2fnsVHCJ3m1eOkowy-XrVR_AEPQyOP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buried+interface+molecular+hybrid+for+inverted+perovskite+solar+cells&rft.jtitle=Nature+%28London%29&rft.au=Liu%2C+Sanwan&rft.au=Li%2C+Jingbai&rft.au=Xiao%2C+Wenshan&rft.au=Chen%2C+Rui&rft.date=2024-08-15&rft.issn=1476-4687&rft.eissn=1476-4687&rft.volume=632&rft.issue=8025&rft.spage=536&rft_id=info:doi/10.1038%2Fs41586-024-07723-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |