A cepstrum analysis-based classification method for hand movement surface EMG signals

It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals....

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 57; no. 10; pp. 2179 - 2201
Main Authors Yavuz, Erdem, Eyupoglu, Can
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract
AbstractList It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract
It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract.
It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase.
It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract.It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract.
Author Yavuz, Erdem
Eyupoglu, Can
Author_xml – sequence: 1
  givenname: Erdem
  orcidid: 0000-0002-3159-2497
  surname: Yavuz
  fullname: Yavuz, Erdem
  email: erdemyavuz29@gmail.com, erdem.yavuz@btu.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University
– sequence: 2
  givenname: Can
  surname: Eyupoglu
  fullname: Eyupoglu, Can
  organization: Department of Computer Engineering, Turkish Air Force Academy, National Defense University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31388900$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LHEEQxZtgiKvJF8hBGnLJZZL-t9s1RxGjAcVLPDe9PdXaMjO9ds0E9tvb62oCHoSCOtTvVT3qHbGDMY_I2Fcpfkgh7E-SciltI2TbCCWUaeADW0hrZCOMMQdsIaQRdSzhkB0RPQih5FKZT-xQSw3QCrFgt6c84IamMg_cj77fUqJm7Qk7HnpPlGIKfkp55ANO97njMRd-78eOD_kvDjhOnOYSfUB-fn3BKd3VJfSZfYy14ZeXfsxuf53_Obtsrm4ufp-dXjVB2-XU2A4AxArQwlJAjBADhIggNHTGYoy1rIpWrhVWLGhV575icgUmrEAfs-_7vZuSH2ekyQ2JAva9HzHP5JRatbq1SrUV_fYGfchz2ZndUQDaSqkqdfJCzesBO7cpafBl614fVgG1B0LJRAXjP0QKt0vF7VNxNRX3nIrb2YQ3opCm569Oxaf-faneS6neGe-w_Lf9juoJNlSgKw
CitedBy_id crossref_primary_10_1007_s11517_020_02187_9
crossref_primary_10_1109_ACCESS_2021_3056353
crossref_primary_10_3390_s20164359
crossref_primary_10_1080_15440478_2022_2076273
crossref_primary_10_1016_j_bbe_2023_04_002
crossref_primary_10_1007_s40846_023_00837_5
crossref_primary_10_35193_bseufbd_742456
crossref_primary_10_1007_s42600_021_00145_4
crossref_primary_10_31590_ejosat_743652
crossref_primary_10_3390_s23218789
crossref_primary_10_1016_j_sciaf_2021_e00904
crossref_primary_10_1109_TAI_2023_3244177
crossref_primary_10_1371_journal_pone_0314611
crossref_primary_10_1016_j_artmed_2020_102005
crossref_primary_10_1109_TIM_2024_3497179
crossref_primary_10_1145_3511890
crossref_primary_10_1016_j_rineng_2023_101660
crossref_primary_10_1109_ACCESS_2024_3413576
crossref_primary_10_1016_j_bbe_2021_03_004
crossref_primary_10_1109_ACCESS_2024_3365639
crossref_primary_10_1080_00405000_2020_1819000
crossref_primary_10_1155_2022_8125186
crossref_primary_10_3390_e22080852
crossref_primary_10_3390_s22052007
Cites_doi 10.1080/00029238.1970.11080764
10.1016/j.bspc.2017.06.019
10.32604/csse.2018.33.429
10.1016/j.ymssp.2016.12.026
10.1016/j.eswa.2014.08.030
10.1016/S1672-6529(16)60377-3
10.1109/IEMBS.2008.4650275
10.1109/ICCKE.2014.6993343
10.1016/j.ergon.2012.11.012
10.1109/IROS.2005.1545505
10.1109/JBHI.2013.2261311
10.1109/MED.2013.6608802
10.1162/089976698300017197
10.1016/j.ipm.2009.03.002
10.1561/2000000001
10.1016/j.dsp.2016.12.004
10.1109/TMECH.2013.2240312
10.1109/R10-HTC.2017.8289085
10.1016/j.bbe.2018.01.002
10.1109/UBMK.2017.8093456
10.1016/j.future.2018.10.005
10.1109/EMBC.2013.6610858
10.3390/e20050373
10.1109/ICITEED.2015.7408910
10.1109/TNSRE.2012.2218832
10.1016/j.jelekin.2019.03.009
10.1007/978-3-642-24843-6
10.1109/ICRA.2012.6225027
10.1016/j.jelekin.2006.08.006
10.1016/B978-0-08-051584-7.50010-3
10.1155/2008/293056
10.1016/j.comnet.2018.11.010
10.1007/0-387-21575-1_6
10.1016/j.future.2018.12.060
10.4172/2155-6210.1000e112
10.1007/BF02350994
10.1007/s11760-018-1374-x
10.1109/MSP.2004.1328092
10.1109/TFUZZ.2004.832525
10.1109/ICASET.2018.8376887
10.4066/AMJ.2013.1640
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2019
Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2019
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-019-02024-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2201
ExternalDocumentID 31388900
10_1007_s11517_019_02024_8
Genre Journal Article
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-7d888068e78508ff8fc8cfe8038d47effeff72f71b2e068c32c8caf8f1684c683
IEDL.DBID U2A
ISSN 0140-0118
1741-0444
IngestDate Thu Jul 10 19:32:53 EDT 2025
Fri Jul 25 19:25:29 EDT 2025
Wed Feb 19 02:31:26 EST 2025
Tue Jul 01 02:58:30 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Fri Feb 21 02:31:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Radial basis function
Surface electromyogram
Generalized regression neural network
Cepstrum analysis
Prosthetic hand
Cepstral coefficients
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7d888068e78508ff8fc8cfe8038d47effeff72f71b2e068c32c8caf8f1684c683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3159-2497
PMID 31388900
PQID 2268837112
PQPubID 54161
PageCount 23
ParticipantIDs proquest_miscellaneous_2269397229
proquest_journals_2268837112
pubmed_primary_31388900
crossref_primary_10_1007_s11517_019_02024_8
crossref_citationtrail_10_1007_s11517_019_02024_8
springer_journals_10_1007_s11517_019_02024_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Bauer MM (1995) General regression neural network for technical use, Master’s thesis. University of Wisconsin-Madison
SharmaRPachoriRBClassification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functionsExpert Syst Appl20154231106111710.1016/j.eswa.2014.08.030
MathWorks Statistics and Machine Learning Toolbox (2018) The MathWorks Inc
DemuthHBealeMHaganMNeural network toolbox user’s guide2006NatickThe MathWorks Inc
DAVISSTEVEN B.MERMELSTEINPAULComparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken SentencesReadings in Speech Recognition1990657410.1016/B978-0-08-051584-7.50010-3
FausettLVFundamentals of neural networks: architectures, algorithms, and applications1994Englewood CliffsPrentice-Hall
Nazemi A, Maleki A (2014) Artificial neural network classifier in comparison with LDA and LS-SVM classifiers to recognize 52 hand postures and movements. In: 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE), pp 18–22
MogranNBourlardHHermanskyHAutomatic speech recognition: an auditory perspectiveSpeech processing in the auditory system2004New YorkSpringer30933810.1007/0-387-21575-1_6
WangWZhangGYangLBalajiVSElamaranVArunkumarNRevisiting signal processing with spectrogram analysis on EEG, ECG and speech signalsFuture Gener Comp Syst2019982272321:CAS:528:DC%2BC1cXitlGgtLjI10.1016/j.future.2018.12.060
ØstensvikTBelboHVeierstedKBAn automatic pre-processing method to detect and reject signal artifacts from full-shift field-work sEMG recordings of bilateral trapezius activityJ Electromyogr Kinesiol201946495410.1016/j.jelekin.2019.03.009
BhatiDSharmaMPachoriRBGadreVMTime–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classificationDigit Signal Process20176225927310.1016/j.dsp.2016.12.004
Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp 538–543
KaniusasEFundamentals of biosignalsBiomedical signals and sensors I2012BerlinSpringer12610.1007/978-3-642-24843-6
RandallRBA history of cepstrum analysis and its application to mechanical problemsMech Syst Signal Process20179731910.1016/j.ymssp.2016.12.026
HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub
PolatKGüneşSClassification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transformAppl Math Comput2007187210171026
ZainuddinZHuongLKPaulineOReliable epileptic seizure detection using an improved wavelet neural networkAustralas Med J20136530831410.4066/AMJ.2013.1640
Perrott MH (2007) Lecture notes of basic communication course. MIT, Cambridge http://web.mit.edu/6.02/www/s2007/lec10.pdf. Accessed November 2, 2018
PonsJLRoconERuizAFMorenoJCUpper-limb robotic rehabilitation exoskeleton: tremor suppressionRehabilitation robotics2007LondonInTech
EyupogluCAydinMAZaimAHSertbasAAn efficient big data anonymization algorithm based on chaos and perturbation techniquesEntropy201820537310.3390/e20050373
SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010
Ruangpaisarn Y, Jaiyen S (2015) sEMG signal classification using SMO algorithm and singular value decomposition. In: 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)
AkbenSBLow-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG)Biomed Res2017282577582India
SchalkoffRJArtificial neural networks1997New YorkMcGraw-Hill
RabinerLRSchaferRWIntroduction to digital speech processingFound Trends Signal Process20071119410.1561/2000000001
JuZLiuHHuman hand motion analysis with multisensory informationIEEE-ASME Trans Mech201419245646610.1109/TMECH.2013.2240312
TabatabaeiSMChalechaleALocal binary patterns for noise-tolerant sEMG classificationSIViP201913349149810.1007/s11760-018-1374-x
YamanoiYMorishitaSKatoRYokoiHDevelopment of myoelectric hand that determines hand posture and estimates grip force simultaneouslyBiomed Signal Process Control20173831232110.1016/j.bspc.2017.06.019
BogertBPHealyMJRTukeyJWRosenblattMThe quefrency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe crackingProc. of the Symp. On time series analysis1963HobokenWiley209243
HolmesJHolmesWSpeech synthesis and recognition2001LondonTaylor & Francis
Sapsanis C, Georgoulas G, Tzes A (2013) EMG based classification of basic hand movements based on time-frequency features. In: 2013 21st Mediterranean Conference on Control & Automation (MED)
Powell MJ (1987) Radial basis functions for multivariable interpolation: a review. Algorithms for approximation, pp 143–167
NishadAUpadhyayAPachoriRBAcharyaURAutomated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signalsFuture Gener Comp Syst201993961010.1016/j.future.2018.10.005
CatonRThe electric currents of the brainAm J EEG Technol1875101121410.1080/00029238.1970.11080764
HanJKamberMPeiJData mining concepts and techniques20123Elsevier, Morgan Kaufmann PublishersSan Francisco
Kurita Y, Tada M, Matsumoto Y, Ogasawara T (2002) Simultaneous measurement of the grip/load force and the finger EMG: effects of the grasping condition. In: 11th IEEE International Workshop on Robot and Human Interactive Communication
DietterichTGApproximate statistical tests for comparing supervised classification learning algorithmsNeural Comput1998107189519231:STN:280:DC%2BC2sjotVartA%3D%3D10.1162/089976698300017197
Khezri M, Jahed M (2008) Surface electromyogram signal estimation based on wavelet thresholding technique. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4752–4755
MewettDTReynoldsKJNazeranHReducing power line interference in digitised electromyogram recordings by spectrum interpolationMed Biol Eng Comput20044245245311:STN:280:DC%2BD2cvhsFagtA%3D%3D10.1007/BF02350994
YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002
Subasi A, Alharbi L, Madani R, Qaisar SM (2018) Surface EMG based classification of basic hand movements using rotation forest. In 2018 advances in science and engineering technology international conferences (ASET), pp 1–5
Iqbal O, Fattah SA, Zahin S (2017) Hand movement recognition based on singular value decomposition of surface EMG signal. In Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10, pp 837–842
Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit HAL working as operator's muscle using biological and dynamical information. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3063–3068
CochockiAUnbehauenRNeural networks for optimization and signal processing1993HobokenWiley
WangNLaoKZhangXDesign and myoelectric control of an anthropomorphic prosthetic handJ Bionic Eng2017141475910.1016/S1672-6529(16)60377-3
CarrollDSubbiahARecent advances in biosensors and biosensing protocolsJ Biosens Bioelectron20123310.4172/2155-6210.1000e112
HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl2010713713
PachoriRBDiscrimination between ictal and seizure-free EEG signals using empirical mode decompositionRes Lett Signal Process2008141610.1155/2008/293056
FinneranAO'SullivanLEffects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracyInt J Ind Ergon2013431919910.1016/j.ergon.2012.11.012
OppenheimAVSchaferRWFrom frequency to quefrency: a history of the cepstrumIEEE Signal Process Mag20042159510610.1109/MSP.2004.1328092
Kiguchi K, Hayashi YA (2012) A study of EMG and EEG during perception-assist with an upper-limb power-assist robot. In: 2012 IEEE International Conference on Robotics and Automation
Sapsanis C, Georgoulas G, Tzes A, Lymberopoulos D (2013) Improving EMG based classification of basic hand movements using EMD. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
YavuzETopuzVA phoneme-based approach for eliminating out-of-vocabulary problem of Turkish speech recognition using Hidden Markov ModelComput Syst Sci Eng2018336429445
SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002
MerlettiRDi TorinoPStandards for reporting EMG dataJ Electromyogr Kinesiol19999134
OuyangGZhuXJuZLiuHDynamical characteristics of surface EMG signals of hand grasps via recurrence plotIEEE J Biomed Health201418125726510.1109/JBHI.2013.2261311
Kakoty NM, Hazarika SM (2011) Recognition of grasp types through principal components of dwt based emg features. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp 1–6
ParkerPEnglehartKHudginsBMyoelectric signal processing for control of powered limb prosthesesJ Electromyogr Kinesiol20061665415481:STN:280:DC%2BD28nltFantQ%3D%3D10.1016/j.jelekin.2006.08.006
LiuJZhouPA novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injuryIEEE Trans Neural Syst Rehabil Eng20132119610310.1109/TNSRE.2012.2218832
Sapsanis C, Georgoulas G, Tzes A (2013) sEMG for basic hand movements data set, UCI machine LearningRepository. https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements . Accessed October 9, 2018
KiguchiKTanakaTFukudaTNeuro-fuzzy control of a robotic exoskeleton with EMG signalsIEEE Trans Fuzzy Syst200412448149010.1109/TFUZZ.2004.832525
Z Ju (2024_CR24) 2014; 19
K Kiguchi (2024_CR15) 2004; 12
STEVEN B. DAVIS (2024_CR36) 1990
AV Oppenheim (2024_CR32) 2004; 21
N Mogran (2024_CR38) 2004
E Kaniusas (2024_CR10) 2012
BP Bogert (2024_CR33) 1963
J Holmes (2024_CR37) 2001
JL Pons (2024_CR13) 2007
DT Mewett (2024_CR17) 2004; 42
2024_CR12
2024_CR56
A Nishad (2024_CR6) 2019; 93
2024_CR57
2024_CR14
SM Tabatabaei (2024_CR27) 2019; 13
SA Hannan (2024_CR48) 2010; 7
R Merletti (2024_CR29) 1999; 9
J Han (2024_CR53) 2012
2024_CR44
D Carroll (2024_CR11) 2012; 3
E Yavuz (2024_CR42) 2018; 38
T Østensvik (2024_CR31) 2019; 46
Z Zainuddin (2024_CR52) 2013; 6
LV Fausett (2024_CR41) 1994
K Polat (2024_CR51) 2007; 187
2024_CR46
M Sokolova (2024_CR55) 2009; 45
2024_CR49
R Sharma (2024_CR59) 2015; 42
RJ Schalkoff (2024_CR45) 1997
P Parker (2024_CR19) 2006; 16
RB Randall (2024_CR34) 2017; 97
E Yavuz (2024_CR39) 2018; 33
H Demuth (2024_CR50) 2006
MT Hagan (2024_CR43) 1996
F Salo (2024_CR40) 2019; 148
2024_CR30
Y Yamanoi (2024_CR20) 2017; 38
A Finneran (2024_CR8) 2013; 43
J Liu (2024_CR9) 2013; 21
2024_CR1
2024_CR2
2024_CR5
RB Pachori (2024_CR58) 2008; 14
2024_CR4
G Ouyang (2024_CR25) 2014; 18
2024_CR7
2024_CR21
2024_CR22
LR Rabiner (2024_CR35) 2007; 1
C Eyupoglu (2024_CR54) 2018; 20
2024_CR23
TG Dietterich (2024_CR61) 1998; 10
W Wang (2024_CR16) 2019; 98
R Caton (2024_CR3) 1875; 10
2024_CR28
A Cochocki (2024_CR47) 1993
N Wang (2024_CR18) 2017; 14
SB Akben (2024_CR26) 2017; 28
D Bhati (2024_CR60) 2017; 62
References_xml – reference: MogranNBourlardHHermanskyHAutomatic speech recognition: an auditory perspectiveSpeech processing in the auditory system2004New YorkSpringer30933810.1007/0-387-21575-1_6
– reference: SharmaRPachoriRBClassification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functionsExpert Syst Appl20154231106111710.1016/j.eswa.2014.08.030
– reference: BogertBPHealyMJRTukeyJWRosenblattMThe quefrency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe crackingProc. of the Symp. On time series analysis1963HobokenWiley209243
– reference: Subasi A, Alharbi L, Madani R, Qaisar SM (2018) Surface EMG based classification of basic hand movements using rotation forest. In 2018 advances in science and engineering technology international conferences (ASET), pp 1–5
– reference: OppenheimAVSchaferRWFrom frequency to quefrency: a history of the cepstrumIEEE Signal Process Mag20042159510610.1109/MSP.2004.1328092
– reference: Powell MJ (1987) Radial basis functions for multivariable interpolation: a review. Algorithms for approximation, pp 143–167
– reference: YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002
– reference: FinneranAO'SullivanLEffects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracyInt J Ind Ergon2013431919910.1016/j.ergon.2012.11.012
– reference: ZainuddinZHuongLKPaulineOReliable epileptic seizure detection using an improved wavelet neural networkAustralas Med J20136530831410.4066/AMJ.2013.1640
– reference: PonsJLRoconERuizAFMorenoJCUpper-limb robotic rehabilitation exoskeleton: tremor suppressionRehabilitation robotics2007LondonInTech
– reference: Bauer MM (1995) General regression neural network for technical use, Master’s thesis. University of Wisconsin-Madison
– reference: HolmesJHolmesWSpeech synthesis and recognition2001LondonTaylor & Francis
– reference: RabinerLRSchaferRWIntroduction to digital speech processingFound Trends Signal Process20071119410.1561/2000000001
– reference: NishadAUpadhyayAPachoriRBAcharyaURAutomated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signalsFuture Gener Comp Syst201993961010.1016/j.future.2018.10.005
– reference: BhatiDSharmaMPachoriRBGadreVMTime–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classificationDigit Signal Process20176225927310.1016/j.dsp.2016.12.004
– reference: OuyangGZhuXJuZLiuHDynamical characteristics of surface EMG signals of hand grasps via recurrence plotIEEE J Biomed Health201418125726510.1109/JBHI.2013.2261311
– reference: DemuthHBealeMHaganMNeural network toolbox user’s guide2006NatickThe MathWorks Inc
– reference: HanJKamberMPeiJData mining concepts and techniques20123Elsevier, Morgan Kaufmann PublishersSan Francisco
– reference: Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp 538–543
– reference: SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002
– reference: PachoriRBDiscrimination between ictal and seizure-free EEG signals using empirical mode decompositionRes Lett Signal Process2008141610.1155/2008/293056
– reference: AkbenSBLow-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG)Biomed Res2017282577582India
– reference: FausettLVFundamentals of neural networks: architectures, algorithms, and applications1994Englewood CliffsPrentice-Hall
– reference: Iqbal O, Fattah SA, Zahin S (2017) Hand movement recognition based on singular value decomposition of surface EMG signal. In Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10, pp 837–842
– reference: MathWorks Statistics and Machine Learning Toolbox (2018) The MathWorks Inc
– reference: KiguchiKTanakaTFukudaTNeuro-fuzzy control of a robotic exoskeleton with EMG signalsIEEE Trans Fuzzy Syst200412448149010.1109/TFUZZ.2004.832525
– reference: HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl2010713713
– reference: PolatKGüneşSClassification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transformAppl Math Comput2007187210171026
– reference: Kurita Y, Tada M, Matsumoto Y, Ogasawara T (2002) Simultaneous measurement of the grip/load force and the finger EMG: effects of the grasping condition. In: 11th IEEE International Workshop on Robot and Human Interactive Communication
– reference: YamanoiYMorishitaSKatoRYokoiHDevelopment of myoelectric hand that determines hand posture and estimates grip force simultaneouslyBiomed Signal Process Control20173831232110.1016/j.bspc.2017.06.019
– reference: JuZLiuHHuman hand motion analysis with multisensory informationIEEE-ASME Trans Mech201419245646610.1109/TMECH.2013.2240312
– reference: CochockiAUnbehauenRNeural networks for optimization and signal processing1993HobokenWiley
– reference: ParkerPEnglehartKHudginsBMyoelectric signal processing for control of powered limb prosthesesJ Electromyogr Kinesiol20061665415481:STN:280:DC%2BD28nltFantQ%3D%3D10.1016/j.jelekin.2006.08.006
– reference: Kiguchi K, Hayashi YA (2012) A study of EMG and EEG during perception-assist with an upper-limb power-assist robot. In: 2012 IEEE International Conference on Robotics and Automation
– reference: Sapsanis C, Georgoulas G, Tzes A, Lymberopoulos D (2013) Improving EMG based classification of basic hand movements using EMD. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– reference: CarrollDSubbiahARecent advances in biosensors and biosensing protocolsJ Biosens Bioelectron20123310.4172/2155-6210.1000e112
– reference: RandallRBA history of cepstrum analysis and its application to mechanical problemsMech Syst Signal Process20179731910.1016/j.ymssp.2016.12.026
– reference: DAVISSTEVEN B.MERMELSTEINPAULComparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken SentencesReadings in Speech Recognition1990657410.1016/B978-0-08-051584-7.50010-3
– reference: WangWZhangGYangLBalajiVSElamaranVArunkumarNRevisiting signal processing with spectrogram analysis on EEG, ECG and speech signalsFuture Gener Comp Syst2019982272321:CAS:528:DC%2BC1cXitlGgtLjI10.1016/j.future.2018.12.060
– reference: DietterichTGApproximate statistical tests for comparing supervised classification learning algorithmsNeural Comput1998107189519231:STN:280:DC%2BC2sjotVartA%3D%3D10.1162/089976698300017197
– reference: KaniusasEFundamentals of biosignalsBiomedical signals and sensors I2012BerlinSpringer12610.1007/978-3-642-24843-6
– reference: Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit HAL working as operator's muscle using biological and dynamical information. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3063–3068
– reference: CatonRThe electric currents of the brainAm J EEG Technol1875101121410.1080/00029238.1970.11080764
– reference: TabatabaeiSMChalechaleALocal binary patterns for noise-tolerant sEMG classificationSIViP201913349149810.1007/s11760-018-1374-x
– reference: Sapsanis C, Georgoulas G, Tzes A (2013) sEMG for basic hand movements data set, UCI machine LearningRepository. https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements . Accessed October 9, 2018
– reference: MerlettiRDi TorinoPStandards for reporting EMG dataJ Electromyogr Kinesiol19999134
– reference: EyupogluCAydinMAZaimAHSertbasAAn efficient big data anonymization algorithm based on chaos and perturbation techniquesEntropy201820537310.3390/e20050373
– reference: ØstensvikTBelboHVeierstedKBAn automatic pre-processing method to detect and reject signal artifacts from full-shift field-work sEMG recordings of bilateral trapezius activityJ Electromyogr Kinesiol201946495410.1016/j.jelekin.2019.03.009
– reference: LiuJZhouPA novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injuryIEEE Trans Neural Syst Rehabil Eng20132119610310.1109/TNSRE.2012.2218832
– reference: Sapsanis C, Georgoulas G, Tzes A (2013) EMG based classification of basic hand movements based on time-frequency features. In: 2013 21st Mediterranean Conference on Control & Automation (MED)
– reference: WangNLaoKZhangXDesign and myoelectric control of an anthropomorphic prosthetic handJ Bionic Eng2017141475910.1016/S1672-6529(16)60377-3
– reference: Ruangpaisarn Y, Jaiyen S (2015) sEMG signal classification using SMO algorithm and singular value decomposition. In: 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE)
– reference: Nazemi A, Maleki A (2014) Artificial neural network classifier in comparison with LDA and LS-SVM classifiers to recognize 52 hand postures and movements. In: 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE), pp 18–22
– reference: MewettDTReynoldsKJNazeranHReducing power line interference in digitised electromyogram recordings by spectrum interpolationMed Biol Eng Comput20044245245311:STN:280:DC%2BD2cvhsFagtA%3D%3D10.1007/BF02350994
– reference: Khezri M, Jahed M (2008) Surface electromyogram signal estimation based on wavelet thresholding technique. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4752–4755
– reference: Perrott MH (2007) Lecture notes of basic communication course. MIT, Cambridge http://web.mit.edu/6.02/www/s2007/lec10.pdf. Accessed November 2, 2018
– reference: SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010
– reference: YavuzETopuzVA phoneme-based approach for eliminating out-of-vocabulary problem of Turkish speech recognition using Hidden Markov ModelComput Syst Sci Eng2018336429445
– reference: SchalkoffRJArtificial neural networks1997New YorkMcGraw-Hill
– reference: Kakoty NM, Hazarika SM (2011) Recognition of grasp types through principal components of dwt based emg features. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp 1–6
– reference: HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub
– volume: 10
  start-page: 12
  issue: 1
  year: 1875
  ident: 2024_CR3
  publication-title: Am J EEG Technol
  doi: 10.1080/00029238.1970.11080764
– volume-title: Artificial neural networks
  year: 1997
  ident: 2024_CR45
– ident: 2024_CR22
– volume: 38
  start-page: 312
  year: 2017
  ident: 2024_CR20
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.06.019
– volume: 33
  start-page: 429
  issue: 6
  year: 2018
  ident: 2024_CR39
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2018.33.429
– ident: 2024_CR49
– volume: 97
  start-page: 3
  year: 2017
  ident: 2024_CR34
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.12.026
– ident: 2024_CR7
– volume: 42
  start-page: 1106
  issue: 3
  year: 2015
  ident: 2024_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.030
– volume-title: Data mining concepts and techniques
  year: 2012
  ident: 2024_CR53
– volume: 14
  start-page: 47
  issue: 1
  year: 2017
  ident: 2024_CR18
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(16)60377-3
– ident: 2024_CR21
  doi: 10.1109/IEMBS.2008.4650275
– volume: 28
  start-page: 577
  issue: 2
  year: 2017
  ident: 2024_CR26
  publication-title: Biomed Res
– ident: 2024_CR23
  doi: 10.1109/ICCKE.2014.6993343
– volume: 43
  start-page: 91
  issue: 1
  year: 2013
  ident: 2024_CR8
  publication-title: Int J Ind Ergon
  doi: 10.1016/j.ergon.2012.11.012
– ident: 2024_CR14
  doi: 10.1109/IROS.2005.1545505
– volume: 18
  start-page: 257
  issue: 1
  year: 2014
  ident: 2024_CR25
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2013.2261311
– ident: 2024_CR5
  doi: 10.1109/MED.2013.6608802
– volume: 10
  start-page: 1895
  issue: 7
  year: 1998
  ident: 2024_CR61
  publication-title: Neural Comput
  doi: 10.1162/089976698300017197
– volume: 7
  start-page: 7
  issue: 13
  year: 2010
  ident: 2024_CR48
  publication-title: Int J Comput Appl
– volume: 9
  start-page: 3
  issue: 1
  year: 1999
  ident: 2024_CR29
  publication-title: J Electromyogr Kinesiol
– volume-title: Rehabilitation robotics
  year: 2007
  ident: 2024_CR13
– ident: 2024_CR44
– volume-title: Speech synthesis and recognition
  year: 2001
  ident: 2024_CR37
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 2024_CR55
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2009.03.002
– volume-title: Neural network toolbox user’s guide
  year: 2006
  ident: 2024_CR50
– volume: 1
  start-page: 1
  year: 2007
  ident: 2024_CR35
  publication-title: Found Trends Signal Process
  doi: 10.1561/2000000001
– volume: 62
  start-page: 259
  year: 2017
  ident: 2024_CR60
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2016.12.004
– volume: 19
  start-page: 456
  issue: 2
  year: 2014
  ident: 2024_CR24
  publication-title: IEEE-ASME Trans Mech
  doi: 10.1109/TMECH.2013.2240312
– ident: 2024_CR12
  doi: 10.1109/R10-HTC.2017.8289085
– volume: 38
  start-page: 201
  issue: 2
  year: 2018
  ident: 2024_CR42
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2018.01.002
– ident: 2024_CR46
  doi: 10.1109/UBMK.2017.8093456
– volume: 93
  start-page: 96
  year: 2019
  ident: 2024_CR6
  publication-title: Future Gener Comp Syst
  doi: 10.1016/j.future.2018.10.005
– volume: 187
  start-page: 1017
  issue: 2
  year: 2007
  ident: 2024_CR51
  publication-title: Appl Math Comput
– ident: 2024_CR2
  doi: 10.1109/EMBC.2013.6610858
– volume: 20
  start-page: 373
  issue: 5
  year: 2018
  ident: 2024_CR54
  publication-title: Entropy
  doi: 10.3390/e20050373
– ident: 2024_CR1
  doi: 10.1109/ICITEED.2015.7408910
– ident: 2024_CR28
– ident: 2024_CR30
– volume-title: Neural network design
  year: 1996
  ident: 2024_CR43
– volume: 21
  start-page: 96
  issue: 1
  year: 2013
  ident: 2024_CR9
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2012.2218832
– volume: 46
  start-page: 49
  year: 2019
  ident: 2024_CR31
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2019.03.009
– volume-title: Fundamentals of neural networks: architectures, algorithms, and applications
  year: 1994
  ident: 2024_CR41
– start-page: 1
  volume-title: Biomedical signals and sensors I
  year: 2012
  ident: 2024_CR10
  doi: 10.1007/978-3-642-24843-6
– ident: 2024_CR4
  doi: 10.1109/ICRA.2012.6225027
– volume: 16
  start-page: 541
  issue: 6
  year: 2006
  ident: 2024_CR19
  publication-title: J Electromyogr Kinesiol
  doi: 10.1016/j.jelekin.2006.08.006
– start-page: 65
  volume-title: Readings in Speech Recognition
  year: 1990
  ident: 2024_CR36
  doi: 10.1016/B978-0-08-051584-7.50010-3
– volume: 14
  start-page: 1
  year: 2008
  ident: 2024_CR58
  publication-title: Res Lett Signal Process
  doi: 10.1155/2008/293056
– volume: 148
  start-page: 164
  year: 2019
  ident: 2024_CR40
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2018.11.010
– start-page: 309
  volume-title: Speech processing in the auditory system
  year: 2004
  ident: 2024_CR38
  doi: 10.1007/0-387-21575-1_6
– volume: 98
  start-page: 227
  year: 2019
  ident: 2024_CR16
  publication-title: Future Gener Comp Syst
  doi: 10.1016/j.future.2018.12.060
– volume: 3
  start-page: 3
  year: 2012
  ident: 2024_CR11
  publication-title: J Biosens Bioelectron
  doi: 10.4172/2155-6210.1000e112
– volume: 42
  start-page: 524
  issue: 4
  year: 2004
  ident: 2024_CR17
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02350994
– volume: 13
  start-page: 491
  issue: 3
  year: 2019
  ident: 2024_CR27
  publication-title: SIViP
  doi: 10.1007/s11760-018-1374-x
– volume: 21
  start-page: 95
  issue: 5
  year: 2004
  ident: 2024_CR32
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2004.1328092
– volume: 12
  start-page: 481
  issue: 4
  year: 2004
  ident: 2024_CR15
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2004.832525
– volume-title: Neural networks for optimization and signal processing
  year: 1993
  ident: 2024_CR47
– ident: 2024_CR57
  doi: 10.1109/ICASET.2018.8376887
– ident: 2024_CR56
– start-page: 209
  volume-title: Proc. of the Symp. On time series analysis
  year: 1963
  ident: 2024_CR33
– volume: 6
  start-page: 308
  issue: 5
  year: 2013
  ident: 2024_CR52
  publication-title: Australas Med J
  doi: 10.4066/AMJ.2013.1640
SSID ssj0021524
Score 2.3946178
Snippet It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2179
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Cepstral analysis
Classification
Computer Applications
Electromyography
Exoskeleton
Exoskeletons
Feature extraction
Female
Hand
Hand - physiology
Human Physiology
Humans
Imaging
Iterative methods
Male
Movement - physiology
Neural networks
Neural Networks, Computer
Original Article
Principal Component Analysis
Prostheses
Radiology
Regression analysis
Seismology
Signal classification
Signal processing
Signal Processing, Computer-Assisted
Statistical analysis
Statistical tests
Training
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgSIgL4k1hoCBxg4i2Sdv0hCa0MSGNE5N2q7o0ObEHbPv_2Gm6CU1wqxS3jWwn_hw7NsB9KESiUyV4qoXkaK81H1cqxKeSqpUnKtd0NDB4T_tD-TZKRv7AbeHTKps90W3U1UzTGfkTwgSFzhTCg-f5F6euURRd9S00dmGPSpdRSlc22jhcaJvkOoURkbS_NFNfnUNTR0mXOUfAFEuufhumLbS5FSl1Bqh3BIceObJOLepj2DHTE9gf-Nj4KQw7TJs51YOdsNKXGuFkpCqmCSJTTpATA6u7RjOEq4zOzdlk5oqGL9li9W1LbVh38MoosQNV8wyGve7HS5_7pglciyxZ8qxCnzZMlckUYi9rldVKW6NCoSqZUZKItVlss2gcGyTTIsbxEsmiVEmS2jm0prOpuQRmU4R3RuqqtFYmhKVwdQurKoR4Ev2UAKKGY4X2FcWpscVnsamFTFwukMuF43KhAnhYvzOv62n8S91uBFH4tbUoNpoQwN16GFcFhTrKqZmtHE2OSCuO8wAuagGufycioVQehgE8NhLdfPzvuVz9P5drOIhJm1yeXxtaKG1zg3hlOb51SvkDT8Tifw
  priority: 102
  providerName: ProQuest
Title A cepstrum analysis-based classification method for hand movement surface EMG signals
URI https://link.springer.com/article/10.1007/s11517-019-02024-8
https://www.ncbi.nlm.nih.gov/pubmed/31388900
https://www.proquest.com/docview/2268837112
https://www.proquest.com/docview/2269397229
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8APFF_LZ-jAi-aaBr0vb6uOk2USYiDuZT6dLkyW3i5v_vXdd2iB_gS1PItQ13l97vcpcLwIWvVGgiVDIySkuy10aOcvTpLuNq5SEmhpcG-g_R7UDfDcNhuSlsVmW7VyHJ4k-93OxGxonTJBNJECfQEldhPWTfnbR4ELRqN4sskq4TFwk_l1tlfn7HV3P0DWN-i48WZqe7DVslXhSthYB3YMVOdmGjX0bE92DQEsa-cRXYscjKAiOSTVMuDANjzgQqmC8WZ0ULAqmCV8vFeFqUCp-L2ce7y4wVnX5PcDoHKeQ-DLqd5-tbWR6VII2Kw7mMc_Jk_QhtjIS4nENn0DiLvsJcx5wa4lwcuLg5CiyRGRVQf0ZkzQg1y-oA1ibTiT0C4SICdVabPHNOh4ygaE4rhzkBO03eiQfNimOpKeuI83EWr-myAjJzOSUupwWXU_Tgsn7mbVFF40_q00oQaTmjZinBRKShEDz04LzuprnAAY5sYqcfBU1C-CoIEg8OFwKsP6eaCjHxfQ-uKokuX_77WI7_R34CmwFrV5HtdwprJH17RqhlPmrAajyM6YrdXgPWW-2bdpfb3st9h9p25-HxqVEo8idz2OXP
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tqdRyQW0pENi2RqKn1iJrO8nkUFWoZVkey4mVuIWsY5_YB91FVf9UfyMzea0qVG7cItlxnHl4vrHHMwAHodaRjVHL2GojyV5bOS4wpKecs5VHmFreGhhexoORObuOrjvwt7kLw2GVzZpYLtTFzPIe-SHBBCRniuDB9_md5KpRfLralNCoxOLc_flNLtvi2-lP4u9npfrHVz8Gsq4qIK1OoqVMCnL6whhdggROvEdv0XqHocbCJBxF4X2ifNIbK0fdrFbUnlO3XoyGf4vGfQEvjdYpaxT2T1oHj2yhaUMmCbnXl3Sqq3pkWjnIM5UE0JSR-K8hfIRuH53Mlgav_wY2aqQqjirRegsdN30Hr4b1WfwmjI6EdXPOPzsReZ3aRLJRLIRlSM4xSCXbRVWlWhA8FrxPLyazMkn5Uizuf_ncOnE8PBEcSEKq8B5Gz0LOLVibzqZuB4SPCU46Y4vcexMxdqPVRHssCFIa8osC6DUUy2ydwZwLadxmq9zLTOWMqJyVVM4wgC_tO_Mqf8eTvbsNI7JalxfZSvIC2G-bSQv5aCWfutl92SclZKdUGsB2xcD2c7qnEdMwDOBrw9HV4P-fy-7Tc_kErwdXw4vs4vTyfA_WFUtWGWPYhTXivPtAWGk5_lgKqICb59aIB2klIH4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB7xQELvgtgehNVIcOJZJLaTOAeEEFDWIg5U6i2kjn2iC7QI8df4dcxkaYUQ3LhFsuM4s3i-scczALu-lKGJtOSRkYqjvTa8k2sfnzLKVh7qxNDWQPM2umipq3bYnoL3-i4MhVXWa2KxUOd9Q3vkBwgTNDpTCA8OXBUWcXfaOBo8caogRSetdTmNUkSu7dsrum_Dw8tT5PWeEI2z-5MLXlUY4EbG4YjHOTqAfqRtrBGoOKed0cZZ7Uudq5giKpyLhYuDjrDYzUiB7Rl2CyKt6Bdx3D8wE8swIB2L2xNnD-2iGodPIoqvLuyU1_bQzFLAZ8IRrAnF9Wej-AXpfjmlLYxfYx7mKtTKjksxW4Ap21uE2WZ1Lr8ErWNm7IBy0XZZVqU54WQgc2YInlM8UiECrKxYzRAqM9qzZ91-kbB8xIYvzy4zlp01zxkFlaBaLEPrV8j5D6Z7_Z5dBeYihJZWmTxzToWE43BlkU7nCC8V-kgeBDXFUlNlM6eiGo_pJA8zUTlFKqcFlVPtwf74nUGZy-PH3hs1I9JKr4fpRAo92Bk3o0bSMUvWs_2Xok-CKE-IxIOVkoHjz8lAap34vgf_a45OBv9-Lms_z2UbZlEX0pvL2-t1-CtIsIpwww2YRsbbTYRNo85WIZ8MHn5bIT4A12Ukqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cepstrum+analysis-based+classification+method+for+hand+movement+surface+EMG+signals&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Yavuz%2C+Erdem&rft.au=Eyupoglu%2C+Can&rft.date=2019-10-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=10&rft.spage=2179&rft.epage=2201&rft_id=info:doi/10.1007%2Fs11517-019-02024-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_019_02024_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon