A cepstrum analysis-based classification method for hand movement surface EMG signals
It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals....
Saved in:
Published in | Medical & biological engineering & computing Vol. 57; no. 10; pp. 2179 - 2201 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase.
Graphical abstract |
---|---|
AbstractList | It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase.
Graphical abstract It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract. It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract.It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand needed by hand amputees. In this paper, we have proposed a cepstrum analysis-based method for classification of basic hand movement sEMG signals. Cepstral analysis technique primarily used for analyzing acoustic and seismological signals is effectively exploited to extract features of time-domain sEMG signals by computing mel-frequency cepstral coefficients (MFCCs). The extracted feature vector consisting of MFCCs is then forwarded to feed a generalized regression neural network (GRNN) so as to classify basic hand movements. The proposed method has been tested on sEMG for Basic Hand movements Data Set and achieved an average accuracy rate of 99.34% for the five individual subjects and an overall mean accuracy rate of 99.23% for the collective (mixed) dataset. The experimental results demonstrate that the proposed method surpasses most of the previous studies in point of classification accuracy. Discrimination ability of the cepstral features exploited in this study is quantified using Kruskal-Wallis statistical test. Evidenced by the experimental results, this study explores and establishes applicability and efficacy of cepstrum-based features in classifying sEMG signals of hand movements. Owing to the non-iterative training nature of the artificial neural network type adopted in the study, the proposed method does not demand much time to build up the model in the training phase. Graphical abstract. |
Author | Yavuz, Erdem Eyupoglu, Can |
Author_xml | – sequence: 1 givenname: Erdem orcidid: 0000-0002-3159-2497 surname: Yavuz fullname: Yavuz, Erdem email: erdemyavuz29@gmail.com, erdem.yavuz@btu.edu.tr organization: Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University – sequence: 2 givenname: Can surname: Eyupoglu fullname: Eyupoglu, Can organization: Department of Computer Engineering, Turkish Air Force Academy, National Defense University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31388900$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9LHEEQxZtgiKvJF8hBGnLJZZL-t9s1RxGjAcVLPDe9PdXaMjO9ds0E9tvb62oCHoSCOtTvVT3qHbGDMY_I2Fcpfkgh7E-SciltI2TbCCWUaeADW0hrZCOMMQdsIaQRdSzhkB0RPQih5FKZT-xQSw3QCrFgt6c84IamMg_cj77fUqJm7Qk7HnpPlGIKfkp55ANO97njMRd-78eOD_kvDjhOnOYSfUB-fn3BKd3VJfSZfYy14ZeXfsxuf53_Obtsrm4ufp-dXjVB2-XU2A4AxArQwlJAjBADhIggNHTGYoy1rIpWrhVWLGhV575icgUmrEAfs-_7vZuSH2ekyQ2JAva9HzHP5JRatbq1SrUV_fYGfchz2ZndUQDaSqkqdfJCzesBO7cpafBl614fVgG1B0LJRAXjP0QKt0vF7VNxNRX3nIrb2YQ3opCm569Oxaf-faneS6neGe-w_Lf9juoJNlSgKw |
CitedBy_id | crossref_primary_10_1007_s11517_020_02187_9 crossref_primary_10_1109_ACCESS_2021_3056353 crossref_primary_10_3390_s20164359 crossref_primary_10_1080_15440478_2022_2076273 crossref_primary_10_1016_j_bbe_2023_04_002 crossref_primary_10_1007_s40846_023_00837_5 crossref_primary_10_35193_bseufbd_742456 crossref_primary_10_1007_s42600_021_00145_4 crossref_primary_10_31590_ejosat_743652 crossref_primary_10_3390_s23218789 crossref_primary_10_1016_j_sciaf_2021_e00904 crossref_primary_10_1109_TAI_2023_3244177 crossref_primary_10_1371_journal_pone_0314611 crossref_primary_10_1016_j_artmed_2020_102005 crossref_primary_10_1109_TIM_2024_3497179 crossref_primary_10_1145_3511890 crossref_primary_10_1016_j_rineng_2023_101660 crossref_primary_10_1109_ACCESS_2024_3413576 crossref_primary_10_1016_j_bbe_2021_03_004 crossref_primary_10_1109_ACCESS_2024_3365639 crossref_primary_10_1080_00405000_2020_1819000 crossref_primary_10_1155_2022_8125186 crossref_primary_10_3390_e22080852 crossref_primary_10_3390_s22052007 |
Cites_doi | 10.1080/00029238.1970.11080764 10.1016/j.bspc.2017.06.019 10.32604/csse.2018.33.429 10.1016/j.ymssp.2016.12.026 10.1016/j.eswa.2014.08.030 10.1016/S1672-6529(16)60377-3 10.1109/IEMBS.2008.4650275 10.1109/ICCKE.2014.6993343 10.1016/j.ergon.2012.11.012 10.1109/IROS.2005.1545505 10.1109/JBHI.2013.2261311 10.1109/MED.2013.6608802 10.1162/089976698300017197 10.1016/j.ipm.2009.03.002 10.1561/2000000001 10.1016/j.dsp.2016.12.004 10.1109/TMECH.2013.2240312 10.1109/R10-HTC.2017.8289085 10.1016/j.bbe.2018.01.002 10.1109/UBMK.2017.8093456 10.1016/j.future.2018.10.005 10.1109/EMBC.2013.6610858 10.3390/e20050373 10.1109/ICITEED.2015.7408910 10.1109/TNSRE.2012.2218832 10.1016/j.jelekin.2019.03.009 10.1007/978-3-642-24843-6 10.1109/ICRA.2012.6225027 10.1016/j.jelekin.2006.08.006 10.1016/B978-0-08-051584-7.50010-3 10.1155/2008/293056 10.1016/j.comnet.2018.11.010 10.1007/0-387-21575-1_6 10.1016/j.future.2018.12.060 10.4172/2155-6210.1000e112 10.1007/BF02350994 10.1007/s11760-018-1374-x 10.1109/MSP.2004.1328092 10.1109/TFUZZ.2004.832525 10.1109/ICASET.2018.8376887 10.4066/AMJ.2013.1640 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2019 Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2019 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-019-02024-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 2201 |
ExternalDocumentID | 31388900 10_1007_s11517_019_02024_8 |
Genre | Journal Article |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-7d888068e78508ff8fc8cfe8038d47effeff72f71b2e068c32c8caf8f1684c683 |
IEDL.DBID | U2A |
ISSN | 0140-0118 1741-0444 |
IngestDate | Thu Jul 10 19:32:53 EDT 2025 Fri Jul 25 19:25:29 EDT 2025 Wed Feb 19 02:31:26 EST 2025 Tue Jul 01 02:58:30 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Fri Feb 21 02:31:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Radial basis function Surface electromyogram Generalized regression neural network Cepstrum analysis Prosthetic hand Cepstral coefficients |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-7d888068e78508ff8fc8cfe8038d47effeff72f71b2e068c32c8caf8f1684c683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3159-2497 |
PMID | 31388900 |
PQID | 2268837112 |
PQPubID | 54161 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_2269397229 proquest_journals_2268837112 pubmed_primary_31388900 crossref_primary_10_1007_s11517_019_02024_8 crossref_citationtrail_10_1007_s11517_019_02024_8 springer_journals_10_1007_s11517_019_02024_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 2019-Oct 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Bauer MM (1995) General regression neural network for technical use, Master’s thesis. University of Wisconsin-Madison SharmaRPachoriRBClassification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functionsExpert Syst Appl20154231106111710.1016/j.eswa.2014.08.030 MathWorks Statistics and Machine Learning Toolbox (2018) The MathWorks Inc DemuthHBealeMHaganMNeural network toolbox user’s guide2006NatickThe MathWorks Inc DAVISSTEVEN B.MERMELSTEINPAULComparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken SentencesReadings in Speech Recognition1990657410.1016/B978-0-08-051584-7.50010-3 FausettLVFundamentals of neural networks: architectures, algorithms, and applications1994Englewood CliffsPrentice-Hall Nazemi A, Maleki A (2014) Artificial neural network classifier in comparison with LDA and LS-SVM classifiers to recognize 52 hand postures and movements. In: 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE), pp 18–22 MogranNBourlardHHermanskyHAutomatic speech recognition: an auditory perspectiveSpeech processing in the auditory system2004New YorkSpringer30933810.1007/0-387-21575-1_6 WangWZhangGYangLBalajiVSElamaranVArunkumarNRevisiting signal processing with spectrogram analysis on EEG, ECG and speech signalsFuture Gener Comp Syst2019982272321:CAS:528:DC%2BC1cXitlGgtLjI10.1016/j.future.2018.12.060 ØstensvikTBelboHVeierstedKBAn automatic pre-processing method to detect and reject signal artifacts from full-shift field-work sEMG recordings of bilateral trapezius activityJ Electromyogr Kinesiol201946495410.1016/j.jelekin.2019.03.009 BhatiDSharmaMPachoriRBGadreVMTime–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classificationDigit Signal Process20176225927310.1016/j.dsp.2016.12.004 Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp 538–543 KaniusasEFundamentals of biosignalsBiomedical signals and sensors I2012BerlinSpringer12610.1007/978-3-642-24843-6 RandallRBA history of cepstrum analysis and its application to mechanical problemsMech Syst Signal Process20179731910.1016/j.ymssp.2016.12.026 HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub PolatKGüneşSClassification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transformAppl Math Comput2007187210171026 ZainuddinZHuongLKPaulineOReliable epileptic seizure detection using an improved wavelet neural networkAustralas Med J20136530831410.4066/AMJ.2013.1640 Perrott MH (2007) Lecture notes of basic communication course. MIT, Cambridge http://web.mit.edu/6.02/www/s2007/lec10.pdf. Accessed November 2, 2018 PonsJLRoconERuizAFMorenoJCUpper-limb robotic rehabilitation exoskeleton: tremor suppressionRehabilitation robotics2007LondonInTech EyupogluCAydinMAZaimAHSertbasAAn efficient big data anonymization algorithm based on chaos and perturbation techniquesEntropy201820537310.3390/e20050373 SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010 Ruangpaisarn Y, Jaiyen S (2015) sEMG signal classification using SMO algorithm and singular value decomposition. In: 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) AkbenSBLow-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG)Biomed Res2017282577582India SchalkoffRJArtificial neural networks1997New YorkMcGraw-Hill RabinerLRSchaferRWIntroduction to digital speech processingFound Trends Signal Process20071119410.1561/2000000001 JuZLiuHHuman hand motion analysis with multisensory informationIEEE-ASME Trans Mech201419245646610.1109/TMECH.2013.2240312 TabatabaeiSMChalechaleALocal binary patterns for noise-tolerant sEMG classificationSIViP201913349149810.1007/s11760-018-1374-x YamanoiYMorishitaSKatoRYokoiHDevelopment of myoelectric hand that determines hand posture and estimates grip force simultaneouslyBiomed Signal Process Control20173831232110.1016/j.bspc.2017.06.019 BogertBPHealyMJRTukeyJWRosenblattMThe quefrency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe crackingProc. of the Symp. On time series analysis1963HobokenWiley209243 HolmesJHolmesWSpeech synthesis and recognition2001LondonTaylor & Francis Sapsanis C, Georgoulas G, Tzes A (2013) EMG based classification of basic hand movements based on time-frequency features. In: 2013 21st Mediterranean Conference on Control & Automation (MED) Powell MJ (1987) Radial basis functions for multivariable interpolation: a review. Algorithms for approximation, pp 143–167 NishadAUpadhyayAPachoriRBAcharyaURAutomated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signalsFuture Gener Comp Syst201993961010.1016/j.future.2018.10.005 CatonRThe electric currents of the brainAm J EEG Technol1875101121410.1080/00029238.1970.11080764 HanJKamberMPeiJData mining concepts and techniques20123Elsevier, Morgan Kaufmann PublishersSan Francisco Kurita Y, Tada M, Matsumoto Y, Ogasawara T (2002) Simultaneous measurement of the grip/load force and the finger EMG: effects of the grasping condition. In: 11th IEEE International Workshop on Robot and Human Interactive Communication DietterichTGApproximate statistical tests for comparing supervised classification learning algorithmsNeural Comput1998107189519231:STN:280:DC%2BC2sjotVartA%3D%3D10.1162/089976698300017197 Khezri M, Jahed M (2008) Surface electromyogram signal estimation based on wavelet thresholding technique. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4752–4755 MewettDTReynoldsKJNazeranHReducing power line interference in digitised electromyogram recordings by spectrum interpolationMed Biol Eng Comput20044245245311:STN:280:DC%2BD2cvhsFagtA%3D%3D10.1007/BF02350994 YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002 Subasi A, Alharbi L, Madani R, Qaisar SM (2018) Surface EMG based classification of basic hand movements using rotation forest. In 2018 advances in science and engineering technology international conferences (ASET), pp 1–5 Iqbal O, Fattah SA, Zahin S (2017) Hand movement recognition based on singular value decomposition of surface EMG signal. In Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10, pp 837–842 Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit HAL working as operator's muscle using biological and dynamical information. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3063–3068 CochockiAUnbehauenRNeural networks for optimization and signal processing1993HobokenWiley WangNLaoKZhangXDesign and myoelectric control of an anthropomorphic prosthetic handJ Bionic Eng2017141475910.1016/S1672-6529(16)60377-3 CarrollDSubbiahARecent advances in biosensors and biosensing protocolsJ Biosens Bioelectron20123310.4172/2155-6210.1000e112 HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl2010713713 PachoriRBDiscrimination between ictal and seizure-free EEG signals using empirical mode decompositionRes Lett Signal Process2008141610.1155/2008/293056 FinneranAO'SullivanLEffects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracyInt J Ind Ergon2013431919910.1016/j.ergon.2012.11.012 OppenheimAVSchaferRWFrom frequency to quefrency: a history of the cepstrumIEEE Signal Process Mag20042159510610.1109/MSP.2004.1328092 Kiguchi K, Hayashi YA (2012) A study of EMG and EEG during perception-assist with an upper-limb power-assist robot. In: 2012 IEEE International Conference on Robotics and Automation Sapsanis C, Georgoulas G, Tzes A, Lymberopoulos D (2013) Improving EMG based classification of basic hand movements using EMD. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) YavuzETopuzVA phoneme-based approach for eliminating out-of-vocabulary problem of Turkish speech recognition using Hidden Markov ModelComput Syst Sci Eng2018336429445 SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002 MerlettiRDi TorinoPStandards for reporting EMG dataJ Electromyogr Kinesiol19999134 OuyangGZhuXJuZLiuHDynamical characteristics of surface EMG signals of hand grasps via recurrence plotIEEE J Biomed Health201418125726510.1109/JBHI.2013.2261311 Kakoty NM, Hazarika SM (2011) Recognition of grasp types through principal components of dwt based emg features. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp 1–6 ParkerPEnglehartKHudginsBMyoelectric signal processing for control of powered limb prosthesesJ Electromyogr Kinesiol20061665415481:STN:280:DC%2BD28nltFantQ%3D%3D10.1016/j.jelekin.2006.08.006 LiuJZhouPA novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injuryIEEE Trans Neural Syst Rehabil Eng20132119610310.1109/TNSRE.2012.2218832 Sapsanis C, Georgoulas G, Tzes A (2013) sEMG for basic hand movements data set, UCI machine LearningRepository. https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements . Accessed October 9, 2018 KiguchiKTanakaTFukudaTNeuro-fuzzy control of a robotic exoskeleton with EMG signalsIEEE Trans Fuzzy Syst200412448149010.1109/TFUZZ.2004.832525 Z Ju (2024_CR24) 2014; 19 K Kiguchi (2024_CR15) 2004; 12 STEVEN B. DAVIS (2024_CR36) 1990 AV Oppenheim (2024_CR32) 2004; 21 N Mogran (2024_CR38) 2004 E Kaniusas (2024_CR10) 2012 BP Bogert (2024_CR33) 1963 J Holmes (2024_CR37) 2001 JL Pons (2024_CR13) 2007 DT Mewett (2024_CR17) 2004; 42 2024_CR12 2024_CR56 A Nishad (2024_CR6) 2019; 93 2024_CR57 2024_CR14 SM Tabatabaei (2024_CR27) 2019; 13 SA Hannan (2024_CR48) 2010; 7 R Merletti (2024_CR29) 1999; 9 J Han (2024_CR53) 2012 2024_CR44 D Carroll (2024_CR11) 2012; 3 E Yavuz (2024_CR42) 2018; 38 T Østensvik (2024_CR31) 2019; 46 Z Zainuddin (2024_CR52) 2013; 6 LV Fausett (2024_CR41) 1994 K Polat (2024_CR51) 2007; 187 2024_CR46 M Sokolova (2024_CR55) 2009; 45 2024_CR49 R Sharma (2024_CR59) 2015; 42 RJ Schalkoff (2024_CR45) 1997 P Parker (2024_CR19) 2006; 16 RB Randall (2024_CR34) 2017; 97 E Yavuz (2024_CR39) 2018; 33 H Demuth (2024_CR50) 2006 MT Hagan (2024_CR43) 1996 F Salo (2024_CR40) 2019; 148 2024_CR30 Y Yamanoi (2024_CR20) 2017; 38 A Finneran (2024_CR8) 2013; 43 J Liu (2024_CR9) 2013; 21 2024_CR1 2024_CR2 2024_CR5 RB Pachori (2024_CR58) 2008; 14 2024_CR4 G Ouyang (2024_CR25) 2014; 18 2024_CR7 2024_CR21 2024_CR22 LR Rabiner (2024_CR35) 2007; 1 C Eyupoglu (2024_CR54) 2018; 20 2024_CR23 TG Dietterich (2024_CR61) 1998; 10 W Wang (2024_CR16) 2019; 98 R Caton (2024_CR3) 1875; 10 2024_CR28 A Cochocki (2024_CR47) 1993 N Wang (2024_CR18) 2017; 14 SB Akben (2024_CR26) 2017; 28 D Bhati (2024_CR60) 2017; 62 |
References_xml | – reference: MogranNBourlardHHermanskyHAutomatic speech recognition: an auditory perspectiveSpeech processing in the auditory system2004New YorkSpringer30933810.1007/0-387-21575-1_6 – reference: SharmaRPachoriRBClassification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functionsExpert Syst Appl20154231106111710.1016/j.eswa.2014.08.030 – reference: BogertBPHealyMJRTukeyJWRosenblattMThe quefrency analysis of time series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe crackingProc. of the Symp. On time series analysis1963HobokenWiley209243 – reference: Subasi A, Alharbi L, Madani R, Qaisar SM (2018) Surface EMG based classification of basic hand movements using rotation forest. In 2018 advances in science and engineering technology international conferences (ASET), pp 1–5 – reference: OppenheimAVSchaferRWFrom frequency to quefrency: a history of the cepstrumIEEE Signal Process Mag20042159510610.1109/MSP.2004.1328092 – reference: Powell MJ (1987) Radial basis functions for multivariable interpolation: a review. Algorithms for approximation, pp 143–167 – reference: YavuzEKasapbaşıMCEyüpoğluCYazıcıRAn epileptic seizure detection system based on cepstral analysis and generalized regression neural networkBiocybern Biomed Eng201838220121610.1016/j.bbe.2018.01.002 – reference: FinneranAO'SullivanLEffects of grip type and wrist posture on forearm EMG activity, endurance time and movement accuracyInt J Ind Ergon2013431919910.1016/j.ergon.2012.11.012 – reference: ZainuddinZHuongLKPaulineOReliable epileptic seizure detection using an improved wavelet neural networkAustralas Med J20136530831410.4066/AMJ.2013.1640 – reference: PonsJLRoconERuizAFMorenoJCUpper-limb robotic rehabilitation exoskeleton: tremor suppressionRehabilitation robotics2007LondonInTech – reference: Bauer MM (1995) General regression neural network for technical use, Master’s thesis. University of Wisconsin-Madison – reference: HolmesJHolmesWSpeech synthesis and recognition2001LondonTaylor & Francis – reference: RabinerLRSchaferRWIntroduction to digital speech processingFound Trends Signal Process20071119410.1561/2000000001 – reference: NishadAUpadhyayAPachoriRBAcharyaURAutomated classification of hand movements using tunable-Q wavelet transform based filter-bank with surface electromyogram signalsFuture Gener Comp Syst201993961010.1016/j.future.2018.10.005 – reference: BhatiDSharmaMPachoriRBGadreVMTime–frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classificationDigit Signal Process20176225927310.1016/j.dsp.2016.12.004 – reference: OuyangGZhuXJuZLiuHDynamical characteristics of surface EMG signals of hand grasps via recurrence plotIEEE J Biomed Health201418125726510.1109/JBHI.2013.2261311 – reference: DemuthHBealeMHaganMNeural network toolbox user’s guide2006NatickThe MathWorks Inc – reference: HanJKamberMPeiJData mining concepts and techniques20123Elsevier, Morgan Kaufmann PublishersSan Francisco – reference: Yavuz E, Eyupoglu C, Sanver U, Yazici R (2017) An ensemble of neural networks for breast cancer diagnosis. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp 538–543 – reference: SokolovaMLapalmeGA systematic analysis of performance measures for classification tasksInf Process Manag200945442743710.1016/j.ipm.2009.03.002 – reference: PachoriRBDiscrimination between ictal and seizure-free EEG signals using empirical mode decompositionRes Lett Signal Process2008141610.1155/2008/293056 – reference: AkbenSBLow-cost and easy-to-use grasp classification, using a simple 2-channel surface electromyography (sEMG)Biomed Res2017282577582India – reference: FausettLVFundamentals of neural networks: architectures, algorithms, and applications1994Englewood CliffsPrentice-Hall – reference: Iqbal O, Fattah SA, Zahin S (2017) Hand movement recognition based on singular value decomposition of surface EMG signal. In Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region 10, pp 837–842 – reference: MathWorks Statistics and Machine Learning Toolbox (2018) The MathWorks Inc – reference: KiguchiKTanakaTFukudaTNeuro-fuzzy control of a robotic exoskeleton with EMG signalsIEEE Trans Fuzzy Syst200412448149010.1109/TFUZZ.2004.832525 – reference: HannanSAManzaRRRamtekeRJGeneralized regression neural network and radial basis function for heart disease diagnosisInt J Comput Appl2010713713 – reference: PolatKGüneşSClassification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transformAppl Math Comput2007187210171026 – reference: Kurita Y, Tada M, Matsumoto Y, Ogasawara T (2002) Simultaneous measurement of the grip/load force and the finger EMG: effects of the grasping condition. In: 11th IEEE International Workshop on Robot and Human Interactive Communication – reference: YamanoiYMorishitaSKatoRYokoiHDevelopment of myoelectric hand that determines hand posture and estimates grip force simultaneouslyBiomed Signal Process Control20173831232110.1016/j.bspc.2017.06.019 – reference: JuZLiuHHuman hand motion analysis with multisensory informationIEEE-ASME Trans Mech201419245646610.1109/TMECH.2013.2240312 – reference: CochockiAUnbehauenRNeural networks for optimization and signal processing1993HobokenWiley – reference: ParkerPEnglehartKHudginsBMyoelectric signal processing for control of powered limb prosthesesJ Electromyogr Kinesiol20061665415481:STN:280:DC%2BD28nltFantQ%3D%3D10.1016/j.jelekin.2006.08.006 – reference: Kiguchi K, Hayashi YA (2012) A study of EMG and EEG during perception-assist with an upper-limb power-assist robot. In: 2012 IEEE International Conference on Robotics and Automation – reference: Sapsanis C, Georgoulas G, Tzes A, Lymberopoulos D (2013) Improving EMG based classification of basic hand movements using EMD. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – reference: CarrollDSubbiahARecent advances in biosensors and biosensing protocolsJ Biosens Bioelectron20123310.4172/2155-6210.1000e112 – reference: RandallRBA history of cepstrum analysis and its application to mechanical problemsMech Syst Signal Process20179731910.1016/j.ymssp.2016.12.026 – reference: DAVISSTEVEN B.MERMELSTEINPAULComparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken SentencesReadings in Speech Recognition1990657410.1016/B978-0-08-051584-7.50010-3 – reference: WangWZhangGYangLBalajiVSElamaranVArunkumarNRevisiting signal processing with spectrogram analysis on EEG, ECG and speech signalsFuture Gener Comp Syst2019982272321:CAS:528:DC%2BC1cXitlGgtLjI10.1016/j.future.2018.12.060 – reference: DietterichTGApproximate statistical tests for comparing supervised classification learning algorithmsNeural Comput1998107189519231:STN:280:DC%2BC2sjotVartA%3D%3D10.1162/089976698300017197 – reference: KaniusasEFundamentals of biosignalsBiomedical signals and sensors I2012BerlinSpringer12610.1007/978-3-642-24843-6 – reference: Hayashi T, Kawamoto H, Sankai Y (2005) Control method of robot suit HAL working as operator's muscle using biological and dynamical information. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 3063–3068 – reference: CatonRThe electric currents of the brainAm J EEG Technol1875101121410.1080/00029238.1970.11080764 – reference: TabatabaeiSMChalechaleALocal binary patterns for noise-tolerant sEMG classificationSIViP201913349149810.1007/s11760-018-1374-x – reference: Sapsanis C, Georgoulas G, Tzes A (2013) sEMG for basic hand movements data set, UCI machine LearningRepository. https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements . Accessed October 9, 2018 – reference: MerlettiRDi TorinoPStandards for reporting EMG dataJ Electromyogr Kinesiol19999134 – reference: EyupogluCAydinMAZaimAHSertbasAAn efficient big data anonymization algorithm based on chaos and perturbation techniquesEntropy201820537310.3390/e20050373 – reference: ØstensvikTBelboHVeierstedKBAn automatic pre-processing method to detect and reject signal artifacts from full-shift field-work sEMG recordings of bilateral trapezius activityJ Electromyogr Kinesiol201946495410.1016/j.jelekin.2019.03.009 – reference: LiuJZhouPA novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injuryIEEE Trans Neural Syst Rehabil Eng20132119610310.1109/TNSRE.2012.2218832 – reference: Sapsanis C, Georgoulas G, Tzes A (2013) EMG based classification of basic hand movements based on time-frequency features. In: 2013 21st Mediterranean Conference on Control & Automation (MED) – reference: WangNLaoKZhangXDesign and myoelectric control of an anthropomorphic prosthetic handJ Bionic Eng2017141475910.1016/S1672-6529(16)60377-3 – reference: Ruangpaisarn Y, Jaiyen S (2015) sEMG signal classification using SMO algorithm and singular value decomposition. In: 2015 7th International Conference on Information Technology and Electrical Engineering (ICITEE) – reference: Nazemi A, Maleki A (2014) Artificial neural network classifier in comparison with LDA and LS-SVM classifiers to recognize 52 hand postures and movements. In: 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE), pp 18–22 – reference: MewettDTReynoldsKJNazeranHReducing power line interference in digitised electromyogram recordings by spectrum interpolationMed Biol Eng Comput20044245245311:STN:280:DC%2BD2cvhsFagtA%3D%3D10.1007/BF02350994 – reference: Khezri M, Jahed M (2008) Surface electromyogram signal estimation based on wavelet thresholding technique. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4752–4755 – reference: Perrott MH (2007) Lecture notes of basic communication course. MIT, Cambridge http://web.mit.edu/6.02/www/s2007/lec10.pdf. Accessed November 2, 2018 – reference: SaloFNassifABEssexADimensionality reduction with IG-PCA and ensemble classifier for network intrusion detectionComput Netw201914816417510.1016/j.comnet.2018.11.010 – reference: YavuzETopuzVA phoneme-based approach for eliminating out-of-vocabulary problem of Turkish speech recognition using Hidden Markov ModelComput Syst Sci Eng2018336429445 – reference: SchalkoffRJArtificial neural networks1997New YorkMcGraw-Hill – reference: Kakoty NM, Hazarika SM (2011) Recognition of grasp types through principal components of dwt based emg features. In: 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), pp 1–6 – reference: HaganMTDemuthHBBealeMHDe JesúsONeural network design1996BostonPws Pub – volume: 10 start-page: 12 issue: 1 year: 1875 ident: 2024_CR3 publication-title: Am J EEG Technol doi: 10.1080/00029238.1970.11080764 – volume-title: Artificial neural networks year: 1997 ident: 2024_CR45 – ident: 2024_CR22 – volume: 38 start-page: 312 year: 2017 ident: 2024_CR20 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.06.019 – volume: 33 start-page: 429 issue: 6 year: 2018 ident: 2024_CR39 publication-title: Comput Syst Sci Eng doi: 10.32604/csse.2018.33.429 – ident: 2024_CR49 – volume: 97 start-page: 3 year: 2017 ident: 2024_CR34 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.12.026 – ident: 2024_CR7 – volume: 42 start-page: 1106 issue: 3 year: 2015 ident: 2024_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.030 – volume-title: Data mining concepts and techniques year: 2012 ident: 2024_CR53 – volume: 14 start-page: 47 issue: 1 year: 2017 ident: 2024_CR18 publication-title: J Bionic Eng doi: 10.1016/S1672-6529(16)60377-3 – ident: 2024_CR21 doi: 10.1109/IEMBS.2008.4650275 – volume: 28 start-page: 577 issue: 2 year: 2017 ident: 2024_CR26 publication-title: Biomed Res – ident: 2024_CR23 doi: 10.1109/ICCKE.2014.6993343 – volume: 43 start-page: 91 issue: 1 year: 2013 ident: 2024_CR8 publication-title: Int J Ind Ergon doi: 10.1016/j.ergon.2012.11.012 – ident: 2024_CR14 doi: 10.1109/IROS.2005.1545505 – volume: 18 start-page: 257 issue: 1 year: 2014 ident: 2024_CR25 publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2013.2261311 – ident: 2024_CR5 doi: 10.1109/MED.2013.6608802 – volume: 10 start-page: 1895 issue: 7 year: 1998 ident: 2024_CR61 publication-title: Neural Comput doi: 10.1162/089976698300017197 – volume: 7 start-page: 7 issue: 13 year: 2010 ident: 2024_CR48 publication-title: Int J Comput Appl – volume: 9 start-page: 3 issue: 1 year: 1999 ident: 2024_CR29 publication-title: J Electromyogr Kinesiol – volume-title: Rehabilitation robotics year: 2007 ident: 2024_CR13 – ident: 2024_CR44 – volume-title: Speech synthesis and recognition year: 2001 ident: 2024_CR37 – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 2024_CR55 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2009.03.002 – volume-title: Neural network toolbox user’s guide year: 2006 ident: 2024_CR50 – volume: 1 start-page: 1 year: 2007 ident: 2024_CR35 publication-title: Found Trends Signal Process doi: 10.1561/2000000001 – volume: 62 start-page: 259 year: 2017 ident: 2024_CR60 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2016.12.004 – volume: 19 start-page: 456 issue: 2 year: 2014 ident: 2024_CR24 publication-title: IEEE-ASME Trans Mech doi: 10.1109/TMECH.2013.2240312 – ident: 2024_CR12 doi: 10.1109/R10-HTC.2017.8289085 – volume: 38 start-page: 201 issue: 2 year: 2018 ident: 2024_CR42 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2018.01.002 – ident: 2024_CR46 doi: 10.1109/UBMK.2017.8093456 – volume: 93 start-page: 96 year: 2019 ident: 2024_CR6 publication-title: Future Gener Comp Syst doi: 10.1016/j.future.2018.10.005 – volume: 187 start-page: 1017 issue: 2 year: 2007 ident: 2024_CR51 publication-title: Appl Math Comput – ident: 2024_CR2 doi: 10.1109/EMBC.2013.6610858 – volume: 20 start-page: 373 issue: 5 year: 2018 ident: 2024_CR54 publication-title: Entropy doi: 10.3390/e20050373 – ident: 2024_CR1 doi: 10.1109/ICITEED.2015.7408910 – ident: 2024_CR28 – ident: 2024_CR30 – volume-title: Neural network design year: 1996 ident: 2024_CR43 – volume: 21 start-page: 96 issue: 1 year: 2013 ident: 2024_CR9 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2012.2218832 – volume: 46 start-page: 49 year: 2019 ident: 2024_CR31 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2019.03.009 – volume-title: Fundamentals of neural networks: architectures, algorithms, and applications year: 1994 ident: 2024_CR41 – start-page: 1 volume-title: Biomedical signals and sensors I year: 2012 ident: 2024_CR10 doi: 10.1007/978-3-642-24843-6 – ident: 2024_CR4 doi: 10.1109/ICRA.2012.6225027 – volume: 16 start-page: 541 issue: 6 year: 2006 ident: 2024_CR19 publication-title: J Electromyogr Kinesiol doi: 10.1016/j.jelekin.2006.08.006 – start-page: 65 volume-title: Readings in Speech Recognition year: 1990 ident: 2024_CR36 doi: 10.1016/B978-0-08-051584-7.50010-3 – volume: 14 start-page: 1 year: 2008 ident: 2024_CR58 publication-title: Res Lett Signal Process doi: 10.1155/2008/293056 – volume: 148 start-page: 164 year: 2019 ident: 2024_CR40 publication-title: Comput Netw doi: 10.1016/j.comnet.2018.11.010 – start-page: 309 volume-title: Speech processing in the auditory system year: 2004 ident: 2024_CR38 doi: 10.1007/0-387-21575-1_6 – volume: 98 start-page: 227 year: 2019 ident: 2024_CR16 publication-title: Future Gener Comp Syst doi: 10.1016/j.future.2018.12.060 – volume: 3 start-page: 3 year: 2012 ident: 2024_CR11 publication-title: J Biosens Bioelectron doi: 10.4172/2155-6210.1000e112 – volume: 42 start-page: 524 issue: 4 year: 2004 ident: 2024_CR17 publication-title: Med Biol Eng Comput doi: 10.1007/BF02350994 – volume: 13 start-page: 491 issue: 3 year: 2019 ident: 2024_CR27 publication-title: SIViP doi: 10.1007/s11760-018-1374-x – volume: 21 start-page: 95 issue: 5 year: 2004 ident: 2024_CR32 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2004.1328092 – volume: 12 start-page: 481 issue: 4 year: 2004 ident: 2024_CR15 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2004.832525 – volume-title: Neural networks for optimization and signal processing year: 1993 ident: 2024_CR47 – ident: 2024_CR57 doi: 10.1109/ICASET.2018.8376887 – ident: 2024_CR56 – start-page: 209 volume-title: Proc. of the Symp. On time series analysis year: 1963 ident: 2024_CR33 – volume: 6 start-page: 308 issue: 5 year: 2013 ident: 2024_CR52 publication-title: Australas Med J doi: 10.4066/AMJ.2013.1640 |
SSID | ssj0021524 |
Score | 2.3946178 |
Snippet | It is of great importance to effectively process and interpret surface electromyogram (sEMG) signals to actuate a robotic and prosthetic exoskeleton hand... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2179 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Cepstral analysis Classification Computer Applications Electromyography Exoskeleton Exoskeletons Feature extraction Female Hand Hand - physiology Human Physiology Humans Imaging Iterative methods Male Movement - physiology Neural networks Neural Networks, Computer Original Article Principal Component Analysis Prostheses Radiology Regression analysis Seismology Signal classification Signal processing Signal Processing, Computer-Assisted Statistical analysis Statistical tests Training |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgSIgL4k1hoCBxg4i2Sdv0hCa0MSGNE5N2q7o0ObEHbPv_2Gm6CU1wqxS3jWwn_hw7NsB9KESiUyV4qoXkaK81H1cqxKeSqpUnKtd0NDB4T_tD-TZKRv7AbeHTKps90W3U1UzTGfkTwgSFzhTCg-f5F6euURRd9S00dmGPSpdRSlc22jhcaJvkOoURkbS_NFNfnUNTR0mXOUfAFEuufhumLbS5FSl1Bqh3BIceObJOLepj2DHTE9gf-Nj4KQw7TJs51YOdsNKXGuFkpCqmCSJTTpATA6u7RjOEq4zOzdlk5oqGL9li9W1LbVh38MoosQNV8wyGve7HS5_7pglciyxZ8qxCnzZMlckUYi9rldVKW6NCoSqZUZKItVlss2gcGyTTIsbxEsmiVEmS2jm0prOpuQRmU4R3RuqqtFYmhKVwdQurKoR4Ev2UAKKGY4X2FcWpscVnsamFTFwukMuF43KhAnhYvzOv62n8S91uBFH4tbUoNpoQwN16GFcFhTrKqZmtHE2OSCuO8wAuagGufycioVQehgE8NhLdfPzvuVz9P5drOIhJm1yeXxtaKG1zg3hlOb51SvkDT8Tifw priority: 102 providerName: ProQuest |
Title | A cepstrum analysis-based classification method for hand movement surface EMG signals |
URI | https://link.springer.com/article/10.1007/s11517-019-02024-8 https://www.ncbi.nlm.nih.gov/pubmed/31388900 https://www.proquest.com/docview/2268837112 https://www.proquest.com/docview/2269397229 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8APFF_LZ-jAi-aaBr0vb6uOk2USYiDuZT6dLkyW3i5v_vXdd2iB_gS1PItQ13l97vcpcLwIWvVGgiVDIySkuy10aOcvTpLuNq5SEmhpcG-g_R7UDfDcNhuSlsVmW7VyHJ4k-93OxGxonTJBNJECfQEldhPWTfnbR4ELRqN4sskq4TFwk_l1tlfn7HV3P0DWN-i48WZqe7DVslXhSthYB3YMVOdmGjX0bE92DQEsa-cRXYscjKAiOSTVMuDANjzgQqmC8WZ0ULAqmCV8vFeFqUCp-L2ce7y4wVnX5PcDoHKeQ-DLqd5-tbWR6VII2Kw7mMc_Jk_QhtjIS4nENn0DiLvsJcx5wa4lwcuLg5CiyRGRVQf0ZkzQg1y-oA1ibTiT0C4SICdVabPHNOh4ygaE4rhzkBO03eiQfNimOpKeuI83EWr-myAjJzOSUupwWXU_Tgsn7mbVFF40_q00oQaTmjZinBRKShEDz04LzuprnAAY5sYqcfBU1C-CoIEg8OFwKsP6eaCjHxfQ-uKokuX_77WI7_R34CmwFrV5HtdwprJH17RqhlPmrAajyM6YrdXgPWW-2bdpfb3st9h9p25-HxqVEo8idz2OXP |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tqdRyQW0pENi2RqKn1iJrO8nkUFWoZVkey4mVuIWsY5_YB91FVf9UfyMzea0qVG7cItlxnHl4vrHHMwAHodaRjVHL2GojyV5bOS4wpKecs5VHmFreGhhexoORObuOrjvwt7kLw2GVzZpYLtTFzPIe-SHBBCRniuDB9_md5KpRfLralNCoxOLc_flNLtvi2-lP4u9npfrHVz8Gsq4qIK1OoqVMCnL6whhdggROvEdv0XqHocbCJBxF4X2ifNIbK0fdrFbUnlO3XoyGf4vGfQEvjdYpaxT2T1oHj2yhaUMmCbnXl3Sqq3pkWjnIM5UE0JSR-K8hfIRuH53Mlgav_wY2aqQqjirRegsdN30Hr4b1WfwmjI6EdXPOPzsReZ3aRLJRLIRlSM4xSCXbRVWlWhA8FrxPLyazMkn5Uizuf_ncOnE8PBEcSEKq8B5Gz0LOLVibzqZuB4SPCU46Y4vcexMxdqPVRHssCFIa8osC6DUUy2ydwZwLadxmq9zLTOWMqJyVVM4wgC_tO_Mqf8eTvbsNI7JalxfZSvIC2G-bSQv5aCWfutl92SclZKdUGsB2xcD2c7qnEdMwDOBrw9HV4P-fy-7Tc_kErwdXw4vs4vTyfA_WFUtWGWPYhTXivPtAWGk5_lgKqICb59aIB2klIH4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB7xQELvgtgehNVIcOJZJLaTOAeEEFDWIg5U6i2kjn2iC7QI8df4dcxkaYUQ3LhFsuM4s3i-scczALu-lKGJtOSRkYqjvTa8k2sfnzLKVh7qxNDWQPM2umipq3bYnoL3-i4MhVXWa2KxUOd9Q3vkBwgTNDpTCA8OXBUWcXfaOBo8caogRSetdTmNUkSu7dsrum_Dw8tT5PWeEI2z-5MLXlUY4EbG4YjHOTqAfqRtrBGoOKed0cZZ7Uudq5giKpyLhYuDjrDYzUiB7Rl2CyKt6Bdx3D8wE8swIB2L2xNnD-2iGodPIoqvLuyU1_bQzFLAZ8IRrAnF9Wej-AXpfjmlLYxfYx7mKtTKjksxW4Ap21uE2WZ1Lr8ErWNm7IBy0XZZVqU54WQgc2YInlM8UiECrKxYzRAqM9qzZ91-kbB8xIYvzy4zlp01zxkFlaBaLEPrV8j5D6Z7_Z5dBeYihJZWmTxzToWE43BlkU7nCC8V-kgeBDXFUlNlM6eiGo_pJA8zUTlFKqcFlVPtwf74nUGZy-PH3hs1I9JKr4fpRAo92Bk3o0bSMUvWs_2Xok-CKE-IxIOVkoHjz8lAap34vgf_a45OBv9-Lms_z2UbZlEX0pvL2-t1-CtIsIpwww2YRsbbTYRNo85WIZ8MHn5bIT4A12Ukqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cepstrum+analysis-based+classification+method+for+hand+movement+surface+EMG+signals&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Yavuz%2C+Erdem&rft.au=Eyupoglu%2C+Can&rft.date=2019-10-01&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=57&rft.issue=10&rft.spage=2179&rft.epage=2201&rft_id=info:doi/10.1007%2Fs11517-019-02024-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11517_019_02024_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |