Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs
Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from bot...
Saved in:
Published in | Neuroinformatics (Totowa, N.J.) Vol. 19; no. 4; pp. 597 - 618 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (
N
= 528 subjects for ICV,
N
= 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at:
https://icvmapp3r.readthedocs.io
and
https://ventmapp3r.readthedocs.io
to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies. |
---|---|
AbstractList | Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies. Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies. Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies ( N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies. |
Author | Lawrence-Dewar, Jane M. Masellis, Mario Moody, Alan Holmes, Melissa F. Swartz, Richard H. Tardif, Jean-Claude Black, Sandra E. Ntiri, Emmanuel E. Scott, Christopher J. M. Symons, Sean Forooshani, Parisa M. Lang, Anthony E. Bartha, Robert Ramirez, Joel Gao, Fuqiang Ozzoude, Miracle Dowlatshahi, Dar Strother, Stephen Kwan, Donna Adamo, Sabrina Goubran, Maged |
Author_xml | – sequence: 1 givenname: Emmanuel E. surname: Ntiri fullname: Ntiri, Emmanuel E. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 2 givenname: Melissa F. surname: Holmes fullname: Holmes, Melissa F. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 3 givenname: Parisa M. surname: Forooshani fullname: Forooshani, Parisa M. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 4 givenname: Joel surname: Ramirez fullname: Ramirez, Joel organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 5 givenname: Fuqiang surname: Gao fullname: Gao, Fuqiang organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 6 givenname: Miracle surname: Ozzoude fullname: Ozzoude, Miracle organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 7 givenname: Sabrina surname: Adamo fullname: Adamo, Sabrina organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 8 givenname: Christopher J. M. surname: Scott fullname: Scott, Christopher J. M. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto – sequence: 9 givenname: Dar surname: Dowlatshahi fullname: Dowlatshahi, Dar organization: Department of Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa – sequence: 10 givenname: Jane M. surname: Lawrence-Dewar fullname: Lawrence-Dewar, Jane M. organization: Thunder Bay Regional Health Research Institute – sequence: 11 givenname: Donna surname: Kwan fullname: Kwan, Donna organization: Department of Psychology, Faculty of Health, York University – sequence: 12 givenname: Anthony E. surname: Lang fullname: Lang, Anthony E. organization: The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Department of Medicine (Neurology division), University of Toronto – sequence: 13 givenname: Sean surname: Symons fullname: Symons, Sean organization: Department of Medical Imaging, University of Toronto – sequence: 14 givenname: Robert surname: Bartha fullname: Bartha, Robert organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario – sequence: 15 givenname: Stephen surname: Strother fullname: Strother, Stephen organization: Department of Medical Biophysics, University of Toronto – sequence: 16 givenname: Jean-Claude surname: Tardif fullname: Tardif, Jean-Claude organization: Montreal Heart Institute, Université de Montreal – sequence: 17 givenname: Mario surname: Masellis fullname: Masellis, Mario organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation – sequence: 18 givenname: Richard H. surname: Swartz fullname: Swartz, Richard H. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation – sequence: 19 givenname: Alan surname: Moody fullname: Moody, Alan organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medical Imaging, University of Toronto – sequence: 20 givenname: Sandra E. surname: Black fullname: Black, Sandra E. organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation – sequence: 21 givenname: Maged orcidid: 0000-0001-5880-0818 surname: Goubran fullname: Goubran, Maged email: maged.goubran@utoronto.ca organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medical Biophysics, University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33527307$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhi1URC_wAiyQJTZsAse3OF5Ww22kUUGCdhs5HnvGVWIPdgLqE_DaOJMCUhddHNmyv__38fnP0UmIwSL0ksBbAiDfZUKBkupYShCoyBN0RoRQFUCjTuY9UxWVipyi85xvAWgtAZ6hU8YElQzkGfq9Hg4p_rRb_M3uBhtGPfoYcHR43Fu8DmPSJungdY912OKbQiRvpl4nfBP7abAZ-4C_xkM5mpUZ__LjHq9ssl3x1XlhNzYfL2ePyzHFw_4OX2cfdpi9x6urq_wcPXW6z_bF_XqBrj9--L76XG2-fFqvLjeVYVKMlTTCOSc7obqOGmgMqTk4zrsyEFXrhivjGsYd3XItNXDdgZXcqhq4oLru2AV6s_iWX_-YbB7bwWdj-14HG6fcUt4IQQRhoqCvH6C3cUqhdNdSoaiUhFEo1Kt7auoGu20PyQ863bV_R1wAugAmxZyTdf8QAu2cY7vk2B5rzrElRdQ8EBm_RFMC8f3jUrZIc3kn7Gz63_Yjqj9ov7G9 |
CitedBy_id | crossref_primary_10_3389_fneur_2023_1221892 crossref_primary_10_3389_fnagi_2021_783092 crossref_primary_10_3389_fnins_2024_1401329 crossref_primary_10_1007_s12194_023_00728_z crossref_primary_10_1038_s41467_024_49300_2 crossref_primary_10_1002_hbm_25784 crossref_primary_10_1007_s00521_022_07048_0 crossref_primary_10_3390_electronics13244919 crossref_primary_10_1177_0271678X231152001 crossref_primary_10_3233_JAD_215068 crossref_primary_10_1097_WCO_0000000000001198 crossref_primary_10_1097_YCO_0000000000000920 crossref_primary_10_1038_s43856_024_00541_8 |
Cites_doi | 10.1111/j.1469-8137.1912.tb05611.x 10.1161/01.STR.0000127810.92616.78 10.1176/appi.neuropsych.13040088 10.1016/j.neuroimage.2009.02.015 10.1161/01.STR.25.6.1109 10.1161/STROKEAHA.107.507392 10.1109/TMI.2010.2046908 10.1002/hbm.10062 10.1212/WNL.0b013e3181a82634 10.1055/s-0037-1608808 10.1016/S0197-4580(02)00045-3 10.1016/S0896-6273(02)00569-X 10.1016/j.neuroimage.2010.09.013 10.1001/archneur.57.2.220 10.1371/journal.pone.0047406 10.1002/hbm.23432 10.1016/j.neuroimage.2006.01.015 10.1186/s13195-018-0408-5 10.1016/j.neuroimage.2016.11.017 10.1098/rspl.1895.0041 10.1093/brain/awh088 10.1016/j.media.2016.10.004 10.1016/j.neuroimage.2016.01.024 10.1111/ene.12675 10.1093/brain/awn146 10.1161/STROKEAHA.107.491936 10.1016/j.neurobiolaging.2003.08.006 10.1097/WAD.0b013e3182163b62 10.2307/1932409 10.1109/5.726791 10.1145/3065386 10.1016/0925-4927(93)90016-B 10.1016/j.neurobiolaging.2010.05.001 10.1097/00004424-200109000-00006 10.1016/j.neuroimage.2004.03.040 10.1002/hbm.20161 10.1109/TMI.2016.2535302 10.1097/WAD.0b013e318032d2b1 10.1002/ana.24320 10.1097/00004728-200105000-00022 10.1007/s00330-012-2677-x 10.1212/WNL.0000000000001716 10.1007/978-3-319-24574-4_28 10.1016/j.neurobiolaging.2014.03.044 10.1111/j.1552-6569.2004.tb00249.x 10.1007/978-3-7091-6139-5_2 10.1109/3DV.2016.79 10.1006/nimg.1998.0396 10.3791/50887 10.1007/978-3-319-46723-8_49 10.1007/978-3-030-00928-1_56 10.1002/hbm.24811 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s12021-021-09510-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-0089 |
EndPage | 618 |
ExternalDocumentID | 33527307 10_1007_s12021_021_09510_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: L.C. Campbell Foundation (CA) – fundername: Réseau en Bio-Imagerie du Quebec grantid: NCT02330510 funderid: http://dx.doi.org/10.13039/100010571 – fundername: Ontario Brain Institute funderid: http://dx.doi.org/10.13039/100008914 – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (CA) grantid: 13129 – fundername: Canadian Institute for Health Research (CIHR) (CA) grantid: 159910 – fundername: Heart and Stroke Foundation of Canada funderid: http://dx.doi.org/10.13039/100004411 – fundername: CIHR grantid: 159910 – fundername: CIHR grantid: MOP 13129 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-7c5fff7b59bb2c08c1640f44b10096a849cf834f2d4a7a04ab0e74e960452a6b3 |
IEDL.DBID | U2A |
ISSN | 1539-2791 1559-0089 |
IngestDate | Thu Jul 10 17:04:45 EDT 2025 Fri Jul 25 18:53:22 EDT 2025 Mon Jul 21 06:05:50 EDT 2025 Tue Jul 01 04:24:53 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 21 02:47:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Deep learning Vascular lesions Image segmentation Total intracranial volume Ventricles Brain atrophy |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-7c5fff7b59bb2c08c1640f44b10096a849cf834f2d4a7a04ab0e74e960452a6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5880-0818 |
PMID | 33527307 |
PQID | 2592771320 |
PQPubID | 54206 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2485515135 proquest_journals_2592771320 pubmed_primary_33527307 crossref_primary_10_1007_s12021_021_09510_1 crossref_citationtrail_10_1007_s12021_021_09510_1 springer_journals_10_1007_s12021_021_09510_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211000 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationTitle | Neuroinformatics (Totowa, N.J.) |
PublicationTitleAbbrev | Neuroinform |
PublicationTitleAlternate | Neuroinformatics |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (CR29) 2016; 129 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR60) 2006; 31 Stebbins, Nyenhuis, Wang, Cox, Freels, Bangen, Leyla deToledo-Morrell, et al. (CR50) 2008; 39 CR39 Dong, Nabizadeh, Caunca, Cheung, Rundek, Elkind, DeCarli, Sacco, Stern, Wright (CR13) 2015; 85 CR37 CR35 van Loenhoud, Groot, Vogel, van der Flier, Ossenkoppele (CR34) 2018; 10 Aribisala, Valdés Hernández, Royle, Morris, Maniega, Bastin, Deary, Wardlaw (CR2) 2012; 23 CR31 CR30 Driscoll, Davatzikos, An, Wu, Shen, Kraut, Resnick (CR14) 2009; 72 Apostolova, Green, Babakchanian, Hwang, Chou, Toga, Thompson (CR1) 2012; 26 Lecun, Bottou, Bengio, Haffner (CR33) 1998; 86 Ross, Ochs, DeSmit, Seabaugh, Havranek (CR44) 2015; 27 Krizhevsky, Sutskever, Hinton (CR32) 2017; 60 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR26) 2017; 36 Mathalon, Sullivan, Rawles, Pfefferbaum (CR36) 1993; 50 Boccardi (CR4) 2003; 24 Roy, Butman, Pham, Initiative (CR45) 2017; 146 Chou, Leporé, Avedissian, Madsen, Parikshak, Xue, Leslie M. Shaw, et al. (CR8) 2009; 46 Smith, De Stefano, Jenkinson, Matthews (CR47) 2001; 25 Tajbakhsh, Shin, Gurudu, Todd Hurst, Kendall, Gotway, Liang (CR52) 2016; 35 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (CR16) 2002; 33 CR43 CR42 Burton, McKeith, Burn, David Williams, O’Brien (CR6) 2004; 127 Bigler, Tate (CR3) 2001; 36 Kamnitsas, Liang, Ledig, Rueckert, Glocker (CR25) 2015; 13 Staffaroni, Elahi, McDermott, Marton, Karageorgiou, Sacco, Paoletti (CR49) 2017; 37 Ramirez, Gibson, Quddus, Lobaugh, Feinstein, Levine, Scott, Levy-Cooperman, Gao, Black (CR41) 2011; 54 Pearson, Galton (CR40) 1895; 58 Smith (CR48) 2002; 17 Smith, O’Donnell, Dagenais, Lear, Wielgosz, Sharma, Poirier (CR46) 2015; 77 Breteler, van Amerongen, van Swieten, Claus, Grobbee, van Gijn, Hofman, van Harskamp (CR5) 1994; 25 Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Michael S. Hong, et al. (CR53) 2004; 22 CR19 CR18 CR17 CR59 CR12 CR55 CR10 Yang, Tan, Qiu (CR58) 2012; 7 Carmichael, Kuller, Lopez, Thompson, Dutton, Lu, Sharon E. Lee, et al. (CR7) 2007; 21 Ivan, Seshadri, Beiser, Rhoda, Kase, Kelly-Hayes, Wolf (CR22) 2004; 35 Chou, Leporé, Saharan, Madsen, Xue, Jack, Leslie M. Shaw, et al. (CR9) 2010; 31 Whitwell, Boeve, Weigand, Senjem, Gunter, Baker, DeJesus-Hernandez, Knopman, Wszolek, Petersen, Rademakers, Jack, Josephs (CR56) 2015; 22 Swartz, Stuss, Gao, Black (CR51) 2008; 39 Nestor, Rupsingh, Borrie, Smith, Accomazzi, Wells, Fogarty, Bartha, Initiative (CR38) 2008; 131 Wolf, Hensel, Kruggel, Riedel-Heller, Arendt, Wahlund, Gertz (CR57) 2004; 25 Jaccard (CR23) 1912; 11 Dice (CR11) 1945; 26 CR28 CR27 Jenkins, Fox, Rossor, Harvey, Rossor (CR24) 2000; 57 Fennema-Notestine, Burak Ozyurt, Clark, Morris, Bischoff-Grethe, Bondi, Terry L. Jernigan, et al. (CR15) 2006; 27 Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (CR54) 2010; 29 CR21 Huo, Asman, Plassard, Landman (CR20) 2017; 38 ED Bigler (9510_CR3) 2001; 36 Y Huo (9510_CR20) 2017; 38 PA Yushkevich (9510_CR60) 2006; 31 N Tajbakhsh (9510_CR52) 2016; 35 EE Smith (9510_CR46) 2015; 77 R Jenkins (9510_CR24) 2000; 57 GT Stebbins (9510_CR50) 2008; 39 JL Whitwell (9510_CR56) 2015; 22 C Fennema-Notestine (9510_CR15) 2006; 27 LG Apostolova (9510_CR1) 2012; 26 RH Swartz (9510_CR51) 2008; 39 OT Carmichael (9510_CR7) 2007; 21 9510_CR43 9510_CR42 NJ Tustison (9510_CR54) 2010; 29 X Yang (9510_CR58) 2012; 7 S Roy (9510_CR45) 2017; 146 MM Breteler (9510_CR5) 1994; 25 CS Ivan (9510_CR22) 2004; 35 9510_CR39 AM Staffaroni (9510_CR49) 2017; 37 9510_CR37 AC van Loenhoud (9510_CR34) 2018; 10 SM Nestor (9510_CR38) 2008; 131 9510_CR35 LR Dice (9510_CR11) 1945; 26 Y Lecun (9510_CR33) 1998; 86 P Jaccard (9510_CR23) 1912; 11 9510_CR31 9510_CR30 C Dong (9510_CR13) 2015; 85 K Kamnitsas (9510_CR25) 2015; 13 J Ramirez (9510_CR41) 2011; 54 K Kamnitsas (9510_CR26) 2017; 36 Y-Y Chou (9510_CR9) 2010; 31 SM Smith (9510_CR47) 2001; 25 9510_CR28 9510_CR27 DH Mathalon (9510_CR36) 1993; 50 K Pearson (9510_CR40) 1895; 58 M Boccardi (9510_CR4) 2003; 24 9510_CR21 PM Thompson (9510_CR53) 2004; 22 SM Smith (9510_CR48) 2002; 17 EJ Burton (9510_CR6) 2004; 127 B Fischl (9510_CR16) 2002; 33 BS Aribisala (9510_CR2) 2012; 23 Y-Y Chou (9510_CR8) 2009; 46 I Driscoll (9510_CR14) 2009; 72 9510_CR19 9510_CR18 DE Ross (9510_CR44) 2015; 27 9510_CR17 J Kleesiek (9510_CR29) 2016; 129 9510_CR59 H Wolf (9510_CR57) 2004; 25 9510_CR12 9510_CR55 9510_CR10 A Krizhevsky (9510_CR32) 2017; 60 |
References_xml | – volume: 11 start-page: 37 issue: 2 year: 1912 end-page: 50 ident: CR23 article-title: The distribution of the Flora in the Alpine zone. 1 publication-title: The New Phytologist doi: 10.1111/j.1469-8137.1912.tb05611.x – volume: 13 start-page: 46 year: 2015 ident: CR25 article-title: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI publication-title: Ischemic Stroke Lesion Segmentation – ident: CR39 – volume: 35 start-page: 1264 issue: 6 year: 2004 end-page: 1268 ident: CR22 article-title: Dementia after stroke: The Framingham study publication-title: Stroke doi: 10.1161/01.STR.0000127810.92616.78 – volume: 27 start-page: 147 issue: 2 year: 2015 end-page: 152 ident: CR44 article-title: Man versus machine part 2: Comparison of radiologists’ interpretations and NeuroQuant measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences doi: 10.1176/appi.neuropsych.13040088 – ident: CR12 – volume: 46 start-page: 394 issue: 2 year: 2009 end-page: 410 ident: CR8 article-title: Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s Disease, mild cognitive impairment and elderly controls publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.015 – ident: CR35 – volume: 25 start-page: 1109 issue: 6 year: 1994 end-page: 1115 ident: CR5 article-title: Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging. The Rotterdam study publication-title: Stroke doi: 10.1161/01.STR.25.6.1109 – volume: 39 start-page: 785 issue: 3 year: 2008 end-page: 793 ident: CR50 article-title: Gray matter atrophy in patients with ischemic stroke with cognitive impairment publication-title: Stroke doi: 10.1161/STROKEAHA.107.507392 – volume: 29 start-page: 1310 issue: 6 year: 2010 end-page: 1320 ident: CR54 article-title: N4ITK: Improved N3 Bias Correction publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2046908 – volume: 17 start-page: 143 issue: 3 year: 2002 end-page: 155 ident: CR48 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – volume: 72 start-page: 1906 issue: 22 year: 2009 end-page: 1913 ident: CR14 article-title: Longitudinal pattern of regional brain volume change differentiates Normal Aging from MCI publication-title: Neurology doi: 10.1212/WNL.0b013e3181a82634 – volume: 37 start-page: 510 issue: 5 year: 2017 end-page: 537 ident: CR49 article-title: Neuroimaging in Dementia publication-title: Semin Neurol doi: 10.1055/s-0037-1608808 – ident: CR42 – ident: CR21 – volume: 24 start-page: 95 issue: 1 year: 2003 end-page: 103 ident: CR4 article-title: The MRI pattern of frontal and temporal brain atrophy in Fronto-temporal dementia publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00045-3 – volume: 33 start-page: 341 issue: 3 year: 2002 end-page: 355 ident: CR16 article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – ident: CR19 – volume: 54 start-page: 963 issue: 2 year: 2011 end-page: 973 ident: CR41 article-title: Lesion explorer: A comprehensive segmentation and Parcellation package to obtain regional Volumetrics for subcortical Hyperintensities and intracranial tissue publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.013 – volume: 57 start-page: 220 issue: 2 year: 2000 end-page: 224 ident: CR24 article-title: Intracranial volume and Alzheimer Disease: Evidence against the cerebral reserve hypothesis publication-title: Arch Neurol doi: 10.1001/archneur.57.2.220 – volume: 7 issue: 12 year: 2012 ident: CR58 article-title: CSF and brain structural imaging markers of the Alzheimer’s pathological cascade publication-title: PLoS One doi: 10.1371/journal.pone.0047406 – volume: 38 start-page: 599 issue: 2 year: 2017 end-page: 616 ident: CR20 article-title: Simultaneous Total intracranial volume and posterior Fossa volume estimation using multi-atlas label fusion publication-title: Hum Brain Mapp doi: 10.1002/hbm.23432 – volume: 31 start-page: 1116 issue: 3 year: 2006 end-page: 1128 ident: CR60 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 10 start-page: 91 issue: 1 year: 2018 ident: CR34 article-title: Is Intracranial Volume a Suitable Proxy for Brain Reserve? publication-title: Alzheimers Res Ther doi: 10.1186/s13195-018-0408-5 – volume: 146 start-page: 132 issue: February year: 2017 end-page: 147 ident: CR45 article-title: Robust skull stripping using multiple MR image contrasts insensitive to pathology publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.017 – volume: 58 start-page: 240 issue: 347-352 year: 1895 end-page: 242 ident: CR40 article-title: VII. Note on regression and inheritance in the case of two parents publication-title: Proc R Soc Lond doi: 10.1098/rspl.1895.0041 – volume: 127 start-page: 791 issue: Pt 4 year: 2004 end-page: 800 ident: CR6 article-title: Cerebral atrophy in Parkinson’s Disease with and without dementia: A comparison with Alzheimer's Disease, dementia with Lewy bodies and controls publication-title: Brain J Neurol doi: 10.1093/brain/awh088 – ident: CR18 – ident: CR43 – volume: 36 start-page: 61 issue: February year: 2017 end-page: 78 ident: CR26 article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation publication-title: Med Image Anal doi: 10.1016/j.media.2016.10.004 – ident: CR37 – volume: 129 start-page: 460 issue: April year: 2016 end-page: 469 ident: CR29 article-title: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.024 – ident: CR30 – volume: 22 start-page: 745 issue: 5 year: 2015 end-page: 752 ident: CR56 article-title: Brain atrophy over time in genetic and sporadic Frontotemporal dementia: A study of 198 serial magnetic resonance images publication-title: European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies doi: 10.1111/ene.12675 – volume: 131 start-page: 2443 issue: Pt 9 year: 2008 end-page: 2454 ident: CR38 article-title: Ventricular enlargement as a possible measure of Alzheimer’s Disease progression validated using the Alzheimer's Disease Neuroimaging Initiative database publication-title: Brain J Neurol doi: 10.1093/brain/awn146 – ident: CR10 – volume: 39 start-page: 822 issue: 3 year: 2008 end-page: 830 ident: CR51 article-title: Independent cognitive effects of atrophy and diffuse subcortical and Thalamico-cortical cerebrovascular Disease in dementia publication-title: Stroke doi: 10.1161/STROKEAHA.107.491936 – volume: 25 start-page: 913 issue: 7 year: 2004 end-page: 924 ident: CR57 article-title: Structural correlates of mild cognitive impairment publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2003.08.006 – ident: CR27 – volume: 26 start-page: 17 issue: 1 year: 2012 end-page: 27 ident: CR1 article-title: Hippocampal atrophy and ventricular enlargement in Normal aging, mild cognitive impairment (MCI), and Alzheimer Disease publication-title: Alzheimer Dis Assoc Disord doi: 10.1097/WAD.0b013e3182163b62 – volume: 26 start-page: 297 issue: 3 year: 1945 end-page: 302 ident: CR11 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 ident: CR33 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR32 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM doi: 10.1145/3065386 – volume: 50 start-page: 121 issue: 2 year: 1993 end-page: 139 ident: CR36 article-title: Correction for head size in brain-imaging measurements publication-title: Psychiatry Res doi: 10.1016/0925-4927(93)90016-B – volume: 31 start-page: 1386 issue: 8 year: 2010 end-page: 1400 ident: CR9 article-title: Ventricular maps in 804 ADNI subjects: Correlations with CSF biomarkers and clinical decline publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.05.001 – volume: 36 start-page: 539 issue: 9 year: 2001 end-page: 546 ident: CR3 article-title: Brain Volume, Intracranial Volume, and Dementia publication-title: Investig Radiol doi: 10.1097/00004424-200109000-00006 – ident: CR17 – volume: 22 start-page: 1754 issue: 4 year: 2004 end-page: 1766 ident: CR53 article-title: Mapping hippocampal and ventricular change in Alzheimer Disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.03.040 – ident: CR31 – volume: 27 start-page: 99 issue: 2 year: 2006 end-page: 113 ident: CR15 article-title: Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, Bias correction, and slice location publication-title: Hum Brain Mapp doi: 10.1002/hbm.20161 – volume: 35 start-page: 1299 issue: 5 year: 2016 end-page: 1312 ident: CR52 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: CR55 – volume: 21 start-page: 14 issue: 1 year: 2007 end-page: 24 ident: CR7 article-title: Cerebral ventricular changes associated with transitions between Normal cognitive function, mild cognitive impairment, and dementia publication-title: Alzheimer Dis Assoc Disord doi: 10.1097/WAD.0b013e318032d2b1 – volume: 77 start-page: 251 issue: 2 year: 2015 end-page: 261 ident: CR46 article-title: Early cerebral small vessel Disease and brain volume, cognition, and gait publication-title: Ann Neurol doi: 10.1002/ana.24320 – ident: CR59 – ident: CR28 – volume: 25 start-page: 466 issue: 3 year: 2001 end-page: 475 ident: CR47 article-title: Normalized accurate measurement of longitudinal brain change publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-200105000-00022 – volume: 23 start-page: 1084 issue: 4 year: 2012 end-page: 1092 ident: CR2 article-title: Brain atrophy associations with white matter lesions in the ageing brain: The Lothian birth cohort 1936 publication-title: Eur Radiol doi: 10.1007/s00330-012-2677-x – volume: 85 start-page: 441 issue: 5 year: 2015 end-page: 449 ident: CR13 article-title: Cognitive correlates of white matter lesion load and brain atrophy: The northern Manhattan study publication-title: Neurology doi: 10.1212/WNL.0000000000001716 – volume: 85 start-page: 441 issue: 5 year: 2015 ident: 9510_CR13 publication-title: Neurology doi: 10.1212/WNL.0000000000001716 – volume: 10 start-page: 91 issue: 1 year: 2018 ident: 9510_CR34 publication-title: Alzheimers Res Ther doi: 10.1186/s13195-018-0408-5 – volume: 26 start-page: 17 issue: 1 year: 2012 ident: 9510_CR1 publication-title: Alzheimer Dis Assoc Disord doi: 10.1097/WAD.0b013e3182163b62 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 9510_CR11 publication-title: Ecology doi: 10.2307/1932409 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 9510_CR16 publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 21 start-page: 14 issue: 1 year: 2007 ident: 9510_CR7 publication-title: Alzheimer Dis Assoc Disord doi: 10.1097/WAD.0b013e318032d2b1 – ident: 9510_CR27 – ident: 9510_CR43 doi: 10.1007/978-3-319-24574-4_28 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 9510_CR32 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 9510_CR35 doi: 10.1016/j.neurobiolaging.2014.03.044 – ident: 9510_CR30 doi: 10.1111/j.1552-6569.2004.tb00249.x – volume: 27 start-page: 99 issue: 2 year: 2006 ident: 9510_CR15 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20161 – volume: 77 start-page: 251 issue: 2 year: 2015 ident: 9510_CR46 publication-title: Ann Neurol doi: 10.1002/ana.24320 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 9510_CR33 publication-title: Proc IEEE doi: 10.1109/5.726791 – ident: 9510_CR21 – volume: 37 start-page: 510 issue: 5 year: 2017 ident: 9510_CR49 publication-title: Semin Neurol doi: 10.1055/s-0037-1608808 – ident: 9510_CR12 doi: 10.1007/978-3-7091-6139-5_2 – volume: 25 start-page: 913 issue: 7 year: 2004 ident: 9510_CR57 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2003.08.006 – volume: 7 issue: 12 year: 2012 ident: 9510_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0047406 – ident: 9510_CR59 – volume: 72 start-page: 1906 issue: 22 year: 2009 ident: 9510_CR14 publication-title: Neurology doi: 10.1212/WNL.0b013e3181a82634 – volume: 27 start-page: 147 issue: 2 year: 2015 ident: 9510_CR44 publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences doi: 10.1176/appi.neuropsych.13040088 – volume: 25 start-page: 1109 issue: 6 year: 1994 ident: 9510_CR5 publication-title: Stroke doi: 10.1161/01.STR.25.6.1109 – ident: 9510_CR37 doi: 10.1109/3DV.2016.79 – ident: 9510_CR28 – ident: 9510_CR31 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 9510_CR52 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – volume: 38 start-page: 599 issue: 2 year: 2017 ident: 9510_CR20 publication-title: Hum Brain Mapp doi: 10.1002/hbm.23432 – volume: 131 start-page: 2443 issue: Pt 9 year: 2008 ident: 9510_CR38 publication-title: Brain J Neurol doi: 10.1093/brain/awn146 – volume: 24 start-page: 95 issue: 1 year: 2003 ident: 9510_CR4 publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00045-3 – volume: 58 start-page: 240 issue: 347-352 year: 1895 ident: 9510_CR40 publication-title: Proc R Soc Lond doi: 10.1098/rspl.1895.0041 – volume: 54 start-page: 963 issue: 2 year: 2011 ident: 9510_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.013 – volume: 11 start-page: 37 issue: 2 year: 1912 ident: 9510_CR23 publication-title: The New Phytologist doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: 9510_CR17 doi: 10.1006/nimg.1998.0396 – volume: 23 start-page: 1084 issue: 4 year: 2012 ident: 9510_CR2 publication-title: Eur Radiol doi: 10.1007/s00330-012-2677-x – volume: 31 start-page: 1386 issue: 8 year: 2010 ident: 9510_CR9 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2010.05.001 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 9510_CR60 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 22 start-page: 745 issue: 5 year: 2015 ident: 9510_CR56 publication-title: European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies doi: 10.1111/ene.12675 – ident: 9510_CR42 doi: 10.3791/50887 – ident: 9510_CR55 – volume: 29 start-page: 1310 issue: 6 year: 2010 ident: 9510_CR54 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2010.2046908 – volume: 46 start-page: 394 issue: 2 year: 2009 ident: 9510_CR8 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.015 – ident: 9510_CR10 doi: 10.1007/978-3-319-46723-8_49 – volume: 36 start-page: 539 issue: 9 year: 2001 ident: 9510_CR3 publication-title: Investig Radiol doi: 10.1097/00004424-200109000-00006 – volume: 129 start-page: 460 issue: April year: 2016 ident: 9510_CR29 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.01.024 – ident: 9510_CR39 doi: 10.1007/978-3-030-00928-1_56 – volume: 50 start-page: 121 issue: 2 year: 1993 ident: 9510_CR36 publication-title: Psychiatry Res doi: 10.1016/0925-4927(93)90016-B – volume: 25 start-page: 466 issue: 3 year: 2001 ident: 9510_CR47 publication-title: J Comput Assist Tomogr doi: 10.1097/00004728-200105000-00022 – volume: 39 start-page: 822 issue: 3 year: 2008 ident: 9510_CR51 publication-title: Stroke doi: 10.1161/STROKEAHA.107.491936 – ident: 9510_CR18 doi: 10.1002/hbm.24811 – volume: 22 start-page: 1754 issue: 4 year: 2004 ident: 9510_CR53 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.03.040 – volume: 35 start-page: 1264 issue: 6 year: 2004 ident: 9510_CR22 publication-title: Stroke doi: 10.1161/01.STR.0000127810.92616.78 – volume: 39 start-page: 785 issue: 3 year: 2008 ident: 9510_CR50 publication-title: Stroke doi: 10.1161/STROKEAHA.107.507392 – volume: 13 start-page: 46 year: 2015 ident: 9510_CR25 publication-title: Ischemic Stroke Lesion Segmentation – volume: 127 start-page: 791 issue: Pt 4 year: 2004 ident: 9510_CR6 publication-title: Brain J Neurol doi: 10.1093/brain/awh088 – volume: 146 start-page: 132 issue: February year: 2017 ident: 9510_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.017 – ident: 9510_CR19 doi: 10.1109/CVPR.2016.90 – volume: 57 start-page: 220 issue: 2 year: 2000 ident: 9510_CR24 publication-title: Arch Neurol doi: 10.1001/archneur.57.2.220 – volume: 36 start-page: 61 issue: February year: 2017 ident: 9510_CR26 publication-title: Med Image Anal doi: 10.1016/j.media.2016.10.004 – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 9510_CR48 publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 |
SSID | ssj0026700 |
Score | 2.3921878 |
Snippet | Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 597 |
SubjectTerms | Aged Aging Algorithms Atrophy Bioinformatics Biomedical and Life Sciences Biomedicine Cerebral Ventricles - diagnostic imaging Cerebral Ventricles - pathology Cognitive ability Computational Biology/Bioinformatics Computer Appl. in Life Sciences Humans Image processing Image Processing, Computer-Assisted Magnetic Resonance Imaging Neural networks Neural Networks, Computer Neurodegeneration Neuroimaging Neurology Neurosciences Segmentation Software Original Article Substantia alba Ventricle |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigQnmkDzRIiAtYJI4dJ6dqtVAVBCskaLW3yE9UiSbtZnvgF_C38TjerFBFD87FjmNlxuOZz_Mg5HUpmWbaMMpNER5VpWijeE6dqUpbVLXlFqGBr4vq9Ix_XoplAtyG5Fa5kYlRUNveIEb-PqjpTEoM-D2-uqZYNQpvV1MJjfvkAaYuQ5cuudwaXCkEJWzqhjLZFCloZgydY-icEBsqGbT492C6pW3euimNB9DJLnmUNEeYjaR-TO657gnZm3XBar78DW8g-nJGkHyP_BmxAmfhu_t5mcKLOug9BH0PPiGga8IhFXgPVGfhHCHei-iRCudRXA1w0cG3qbjXAIjXwtytggk9ea_CFzfETpxjtl71gWQQfRCg_ADzxWJ4Ss5OPv6Yn9JUcoGaUoo1lUZ476UWjdbM5LUJ1lTuOdcF2jqq5o3xdck9s1xJlXOlcye5wwwvgqlKl8_ITtd37gUBjymPuclzE4jPhFWmEMaUdS2c87bwGSk2_7s1KR85lsX41W4zKSON2tiQRm2RkbfTO1djNo47Rx9uyNimnTm0Wz7KyKupO-wpvChRnetvwhjMmBNUoVJk5PlI_ulzGKMWpKLMyLsNP2wn__9a9u9eywF5GPkxegkekp316sYdBW1nrV9Glv4Lnrn56A priority: 102 providerName: ProQuest |
Title | Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs |
URI | https://link.springer.com/article/10.1007/s12021-021-09510-1 https://www.ncbi.nlm.nih.gov/pubmed/33527307 https://www.proquest.com/docview/2592771320 https://www.proquest.com/docview/2485515135 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBQHmEltUgIS4QKXHsODmGZUt5rSpgq-UU2Y6NKtFstdke-AX8bWa8SVaogMTBycGOE2XG9nzjb8aMPcsUN9xYHgub4iXPdVxqkcTO5lmT5kUjGnINfJznJwvxbimXfVBYN7Ddhy3JMFPvgt040QlCIbMgRsyzLwm7oxYveDXCrD7wBIdyGXNVpn2ozJ_7-H05umZjXtsfDcvO8R12u7cXodoK-C674dp77KBqEStf_IDnEBicwTV-wH5uPQSugc_u20UfVNTCygNaefCW3LgWlybUONBtA2fk2D0PPFQ4C5NUB-ctnI5HenVAXlqYujUC55GzCh9cFyqpj2qzXqGgIDAPIHsN0_m8u88Wx7Mv05O4P2ghtpmSm1hZ6b1XRpbGcJsUFjFU4oUwKSEcXYjS-iITnjdCK50IbRKnhKO8LpLr3GQP2F67at0jBp4SHQubJBZFzmWjbSqtzYpCOueb1EcsHf53bfss5HQYxvd6lz-ZZFSHQjKq04i9GJ-53Obg-Gfro0GMdT8euxpBHleKwsUj9nSsxpFE2yO6dasrbEN5ctAAymTEHm7FP76OItNwLlQReznow67zv3_L4_9rfshuBf0MXMEjtrdZX7knaPNszITdVEs1YfvVm6_vZ3h_NZuffpoExf8FyOz6xA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjAReImjjO64DQsm21S7dRBW3VW3AcG1WiSdlshfoL-Df8RmacxwpV9NaDc7HjWJnP45nxPABeBzEveKG4K5SPjyiSbiqF52oVBaUfJaUoyTSwn0XTI_H5JDxZgz99LAy5VfY80TLqslZkI99CMZ3HMQX8fjz_6VLVKLpd7UtotLDY05e_UGVrPsy2kb5vON_dOZxM3a6qgKuCOFy6sQqNMXERpkXBlZcoVBg8I0ThkzgvE5EqkwTC8FLIWHpCFp6OhaYkJiGXURHgvLdgXQSoyoxg_dNOdvBlUPG6oBdkI6nL49TvwnTaYD1O7hC2kVjj-v8ehVfk2yt3s_bI270HdztZlY1bcN2HNV09gI1xhXr62SV7y6z3qDXLb8Dv1jqhS_ZVfz_rApoqVhuGEiabkQlZ4bGIaGeyKtkxGZVPrQ8sO7YMsmGnFTsYyok1jCzEbKIXqLQP_rJsrhvbSXOMl4saQcKs1wMLttkky5qHcHQj5HgEo6qu9BNghpIsC-V5CuHGw1IqP1QqSJJQa1P6xgG__9-56jKgUyGOH_kqdzPRKLeNaJT7Drwb3jlv839cO3qzJ2Pe8YImXyHXgVdDN-5iupqRla4vcAzl6EHhKwgdeNySf_gcRcUhH44deN_jYTX5_9fy9Pq1vITb08P9eT6fZXvP4I7FpvVR3ITRcnGhn6OstSxedABn8O2m99RfALc38g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPlAJGAi4QNXbsODkgtNpl1aVlVQla7S04jo0qtUnZbIX6C_hP_Do8zmOFKnrrwbnYcazM5_HMeB4Ar2PJClZoFnJN3SNJVJgpHoVGJ3FJk7TkJZoGvsyTvSP-eSEWG_Cnj4VBt8qeJ3pGXdYabeS7TkxnUmLA767t3CIOJ9OP5z9DrCCFN619OY0WIvvm8pdT35oPs4mj9RvGpp--jffCrsJAqGMpVqHUwlorC5EVBdNRqp3yEFnOC4qivUp5pm0ac8tKrqSKuCoiI7nBhCaCqaSI3by34LaMBcU9JhdrZa8Lf3EMJQuZzGgXsNOG7TF0jPANBZyQ_nsoXpF0r9zS-sNveh_udVIrGbUwewAbpnoIW6PKaexnl-Qt8X6k3kC_Bb9bO4UpyVfz46wLbapIbYmTNckMjcnaHZAO90RVJTlG8_KJ94Ylx55VNuSkIodDYbGGoK2YjM3Sqe-D5yw5MI3vxDlGq2Xt4EK8_wOJJ2Q8nzeP4OhGiPEYNqu6Mk-BWEy3zHUUaQc8JkqlqdA6TlNhjC2pDYD2_zvXXS50LMlxmq-zOCONct-QRjkN4N3wznmbCeTa0Ts9GfOOKzT5GsMBvBq63X7GSxpVmfrCjcFsPU4Mi0UAT1ryD5_D-DjHkWUA73s8rCf__1q2r1_LS7jjdlJ-MJvvP4O7HpreWXEHNlfLC_PcCV2r4oVHN4HvN72d_gJHODrC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Segmentation+of+the+Intracranial+and+Ventricular+Volumes+in+Populations+with+Cerebrovascular+Lesions+and+Atrophy+Using+3D+CNNs&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Ntiri%2C+Emmanuel+E.&rft.au=Holmes%2C+Melissa+F.&rft.au=Forooshani%2C+Parisa+M.&rft.au=Ramirez%2C+Joel&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=19&rft.issue=4&rft.spage=597&rft.epage=618&rft_id=info:doi/10.1007%2Fs12021-021-09510-1&rft.externalDocID=10_1007_s12021_021_09510_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |