Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs

Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from bot...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 19; no. 4; pp. 597 - 618
Main Authors Ntiri, Emmanuel E., Holmes, Melissa F., Forooshani, Parisa M., Ramirez, Joel, Gao, Fuqiang, Ozzoude, Miracle, Adamo, Sabrina, Scott, Christopher J. M., Dowlatshahi, Dar, Lawrence-Dewar, Jane M., Kwan, Donna, Lang, Anthony E., Symons, Sean, Bartha, Robert, Strother, Stephen, Tardif, Jean-Claude, Masellis, Mario, Swartz, Richard H., Moody, Alan, Black, Sandra E., Goubran, Maged
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies ( N  = 528 subjects for ICV, N  = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
AbstractList Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies (N = 528 subjects for ICV, N = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We present iCVMapper and VentMapper, robust algorithms that use a convolutional neural network (CNN) to segment the ICV and ventricles from both single and multi-contrast MRI data. Our models were trained on a large dataset from two multi-site studies ( N  = 528 subjects for ICV, N  = 501 for ventricular segmentation) consisting of older adults with varying degrees of cerebrovascular lesions and atrophy, which pose significant challenges for most segmentation approaches. The models were tested on 238 participants, including subjects with vascular cognitive impairment and high white matter hyperintensity burden. Two of the three test sets came from studies not used in the training dataset. We assessed our algorithms relative to four state-of-the-art ICV extraction methods (MONSTR, BET, Deep Extraction, FreeSurfer, DeepMedic), as well as two ventricular segmentation tools (FreeSurfer, DeepMedic). Our multi-contrast models outperformed other methods across many of the evaluation metrics, with average Dice coefficients of 0.98 and 0.96 for ICV and ventricular segmentation respectively. Both models were also the most time efficient, segmenting the structures in orders of magnitude faster than some of the other available methods. Our networks showed an increased accuracy with the use of a conditional random field (CRF) as a post-processing step. We further validated both segmentation models, highlighting their robustness to images with lower resolution and signal-to-noise ratio, compared to tested techniques. The pipeline and models are available at: https://icvmapp3r.readthedocs.io and https://ventmapp3r.readthedocs.io to enable further investigation of the roles of ICV and ventricles in relation to normal aging and neurodegeneration in large multi-site studies.
Author Lawrence-Dewar, Jane M.
Masellis, Mario
Moody, Alan
Holmes, Melissa F.
Swartz, Richard H.
Tardif, Jean-Claude
Black, Sandra E.
Ntiri, Emmanuel E.
Scott, Christopher J. M.
Symons, Sean
Forooshani, Parisa M.
Lang, Anthony E.
Bartha, Robert
Ramirez, Joel
Gao, Fuqiang
Ozzoude, Miracle
Dowlatshahi, Dar
Strother, Stephen
Kwan, Donna
Adamo, Sabrina
Goubran, Maged
Author_xml – sequence: 1
  givenname: Emmanuel E.
  surname: Ntiri
  fullname: Ntiri, Emmanuel E.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 2
  givenname: Melissa F.
  surname: Holmes
  fullname: Holmes, Melissa F.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 3
  givenname: Parisa M.
  surname: Forooshani
  fullname: Forooshani, Parisa M.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 4
  givenname: Joel
  surname: Ramirez
  fullname: Ramirez, Joel
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 5
  givenname: Fuqiang
  surname: Gao
  fullname: Gao, Fuqiang
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 6
  givenname: Miracle
  surname: Ozzoude
  fullname: Ozzoude, Miracle
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 7
  givenname: Sabrina
  surname: Adamo
  fullname: Adamo, Sabrina
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 8
  givenname: Christopher J. M.
  surname: Scott
  fullname: Scott, Christopher J. M.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto
– sequence: 9
  givenname: Dar
  surname: Dowlatshahi
  fullname: Dowlatshahi, Dar
  organization: Department of Medicine, The Ottawa Hospital, Faculty of Medicine, University of Ottawa
– sequence: 10
  givenname: Jane M.
  surname: Lawrence-Dewar
  fullname: Lawrence-Dewar, Jane M.
  organization: Thunder Bay Regional Health Research Institute
– sequence: 11
  givenname: Donna
  surname: Kwan
  fullname: Kwan, Donna
  organization: Department of Psychology, Faculty of Health, York University
– sequence: 12
  givenname: Anthony E.
  surname: Lang
  fullname: Lang, Anthony E.
  organization: The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Department of Medicine (Neurology division), University of Toronto
– sequence: 13
  givenname: Sean
  surname: Symons
  fullname: Symons, Sean
  organization: Department of Medical Imaging, University of Toronto
– sequence: 14
  givenname: Robert
  surname: Bartha
  fullname: Bartha, Robert
  organization: Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario
– sequence: 15
  givenname: Stephen
  surname: Strother
  fullname: Strother, Stephen
  organization: Department of Medical Biophysics, University of Toronto
– sequence: 16
  givenname: Jean-Claude
  surname: Tardif
  fullname: Tardif, Jean-Claude
  organization: Montreal Heart Institute, Université de Montreal
– sequence: 17
  givenname: Mario
  surname: Masellis
  fullname: Masellis, Mario
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation
– sequence: 18
  givenname: Richard H.
  surname: Swartz
  fullname: Swartz, Richard H.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation
– sequence: 19
  givenname: Alan
  surname: Moody
  fullname: Moody, Alan
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medical Imaging, University of Toronto
– sequence: 20
  givenname: Sandra E.
  surname: Black
  fullname: Black, Sandra E.
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medicine (Neurology division), University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation
– sequence: 21
  givenname: Maged
  orcidid: 0000-0001-5880-0818
  surname: Goubran
  fullname: Goubran, Maged
  email: maged.goubran@utoronto.ca
  organization: Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Department of Medical Biophysics, University of Toronto, Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33527307$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_wAiyQJTZsAse3OF5Ww22kUUGCdhs5HnvGVWIPdgLqE_DaOJMCUhddHNmyv__38fnP0UmIwSL0ksBbAiDfZUKBkupYShCoyBN0RoRQFUCjTuY9UxWVipyi85xvAWgtAZ6hU8YElQzkGfq9Hg4p_rRb_M3uBhtGPfoYcHR43Fu8DmPSJungdY912OKbQiRvpl4nfBP7abAZ-4C_xkM5mpUZ__LjHq9ssl3x1XlhNzYfL2ePyzHFw_4OX2cfdpi9x6urq_wcPXW6z_bF_XqBrj9--L76XG2-fFqvLjeVYVKMlTTCOSc7obqOGmgMqTk4zrsyEFXrhivjGsYd3XItNXDdgZXcqhq4oLru2AV6s_iWX_-YbB7bwWdj-14HG6fcUt4IQQRhoqCvH6C3cUqhdNdSoaiUhFEo1Kt7auoGu20PyQ863bV_R1wAugAmxZyTdf8QAu2cY7vk2B5rzrElRdQ8EBm_RFMC8f3jUrZIc3kn7Gz63_Yjqj9ov7G9
CitedBy_id crossref_primary_10_3389_fneur_2023_1221892
crossref_primary_10_3389_fnagi_2021_783092
crossref_primary_10_3389_fnins_2024_1401329
crossref_primary_10_1007_s12194_023_00728_z
crossref_primary_10_1038_s41467_024_49300_2
crossref_primary_10_1002_hbm_25784
crossref_primary_10_1007_s00521_022_07048_0
crossref_primary_10_3390_electronics13244919
crossref_primary_10_1177_0271678X231152001
crossref_primary_10_3233_JAD_215068
crossref_primary_10_1097_WCO_0000000000001198
crossref_primary_10_1097_YCO_0000000000000920
crossref_primary_10_1038_s43856_024_00541_8
Cites_doi 10.1111/j.1469-8137.1912.tb05611.x
10.1161/01.STR.0000127810.92616.78
10.1176/appi.neuropsych.13040088
10.1016/j.neuroimage.2009.02.015
10.1161/01.STR.25.6.1109
10.1161/STROKEAHA.107.507392
10.1109/TMI.2010.2046908
10.1002/hbm.10062
10.1212/WNL.0b013e3181a82634
10.1055/s-0037-1608808
10.1016/S0197-4580(02)00045-3
10.1016/S0896-6273(02)00569-X
10.1016/j.neuroimage.2010.09.013
10.1001/archneur.57.2.220
10.1371/journal.pone.0047406
10.1002/hbm.23432
10.1016/j.neuroimage.2006.01.015
10.1186/s13195-018-0408-5
10.1016/j.neuroimage.2016.11.017
10.1098/rspl.1895.0041
10.1093/brain/awh088
10.1016/j.media.2016.10.004
10.1016/j.neuroimage.2016.01.024
10.1111/ene.12675
10.1093/brain/awn146
10.1161/STROKEAHA.107.491936
10.1016/j.neurobiolaging.2003.08.006
10.1097/WAD.0b013e3182163b62
10.2307/1932409
10.1109/5.726791
10.1145/3065386
10.1016/0925-4927(93)90016-B
10.1016/j.neurobiolaging.2010.05.001
10.1097/00004424-200109000-00006
10.1016/j.neuroimage.2004.03.040
10.1002/hbm.20161
10.1109/TMI.2016.2535302
10.1097/WAD.0b013e318032d2b1
10.1002/ana.24320
10.1097/00004728-200105000-00022
10.1007/s00330-012-2677-x
10.1212/WNL.0000000000001716
10.1007/978-3-319-24574-4_28
10.1016/j.neurobiolaging.2014.03.044
10.1111/j.1552-6569.2004.tb00249.x
10.1007/978-3-7091-6139-5_2
10.1109/3DV.2016.79
10.1006/nimg.1998.0396
10.3791/50887
10.1007/978-3-319-46723-8_49
10.1007/978-3-030-00928-1_56
10.1002/hbm.24811
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s12021-021-09510-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0089
EndPage 618
ExternalDocumentID 33527307
10_1007_s12021_021_09510_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: L.C. Campbell Foundation (CA)
– fundername: Réseau en Bio-Imagerie du Quebec
  grantid: NCT02330510
  funderid: http://dx.doi.org/10.13039/100010571
– fundername: Ontario Brain Institute
  funderid: http://dx.doi.org/10.13039/100008914
– fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (CA)
  grantid: 13129
– fundername: Canadian Institute for Health Research (CIHR) (CA)
  grantid: 159910
– fundername: Heart and Stroke Foundation of Canada
  funderid: http://dx.doi.org/10.13039/100004411
– fundername: CIHR
  grantid: 159910
– fundername: CIHR
  grantid: MOP 13129
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c375t-7c5fff7b59bb2c08c1640f44b10096a849cf834f2d4a7a04ab0e74e960452a6b3
IEDL.DBID U2A
ISSN 1539-2791
1559-0089
IngestDate Thu Jul 10 17:04:45 EDT 2025
Fri Jul 25 18:53:22 EDT 2025
Mon Jul 21 06:05:50 EDT 2025
Tue Jul 01 04:24:53 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 21 02:47:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Vascular lesions
Image segmentation
Total intracranial volume
Ventricles
Brain atrophy
Language English
License 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7c5fff7b59bb2c08c1640f44b10096a849cf834f2d4a7a04ab0e74e960452a6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5880-0818
PMID 33527307
PQID 2592771320
PQPubID 54206
PageCount 22
ParticipantIDs proquest_miscellaneous_2485515135
proquest_journals_2592771320
pubmed_primary_33527307
crossref_primary_10_1007_s12021_021_09510_1
crossref_citationtrail_10_1007_s12021_021_09510_1
springer_journals_10_1007_s12021_021_09510_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kleesiek, Urban, Hubert, Schwarz, Maier-Hein, Bendszus, Biller (CR29) 2016; 129
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR60) 2006; 31
Stebbins, Nyenhuis, Wang, Cox, Freels, Bangen, Leyla deToledo-Morrell, et al. (CR50) 2008; 39
CR39
Dong, Nabizadeh, Caunca, Cheung, Rundek, Elkind, DeCarli, Sacco, Stern, Wright (CR13) 2015; 85
CR37
CR35
van Loenhoud, Groot, Vogel, van der Flier, Ossenkoppele (CR34) 2018; 10
Aribisala, Valdés Hernández, Royle, Morris, Maniega, Bastin, Deary, Wardlaw (CR2) 2012; 23
CR31
CR30
Driscoll, Davatzikos, An, Wu, Shen, Kraut, Resnick (CR14) 2009; 72
Apostolova, Green, Babakchanian, Hwang, Chou, Toga, Thompson (CR1) 2012; 26
Lecun, Bottou, Bengio, Haffner (CR33) 1998; 86
Ross, Ochs, DeSmit, Seabaugh, Havranek (CR44) 2015; 27
Krizhevsky, Sutskever, Hinton (CR32) 2017; 60
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (CR26) 2017; 36
Mathalon, Sullivan, Rawles, Pfefferbaum (CR36) 1993; 50
Boccardi (CR4) 2003; 24
Roy, Butman, Pham, Initiative (CR45) 2017; 146
Chou, Leporé, Avedissian, Madsen, Parikshak, Xue, Leslie M. Shaw, et al. (CR8) 2009; 46
Smith, De Stefano, Jenkinson, Matthews (CR47) 2001; 25
Tajbakhsh, Shin, Gurudu, Todd Hurst, Kendall, Gotway, Liang (CR52) 2016; 35
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, van der Kouwe, Killiany, Kennedy, Klaveness, Montillo, Makris, Rosen, Dale (CR16) 2002; 33
CR43
CR42
Burton, McKeith, Burn, David Williams, O’Brien (CR6) 2004; 127
Bigler, Tate (CR3) 2001; 36
Kamnitsas, Liang, Ledig, Rueckert, Glocker (CR25) 2015; 13
Staffaroni, Elahi, McDermott, Marton, Karageorgiou, Sacco, Paoletti (CR49) 2017; 37
Ramirez, Gibson, Quddus, Lobaugh, Feinstein, Levine, Scott, Levy-Cooperman, Gao, Black (CR41) 2011; 54
Pearson, Galton (CR40) 1895; 58
Smith (CR48) 2002; 17
Smith, O’Donnell, Dagenais, Lear, Wielgosz, Sharma, Poirier (CR46) 2015; 77
Breteler, van Amerongen, van Swieten, Claus, Grobbee, van Gijn, Hofman, van Harskamp (CR5) 1994; 25
Thompson, Hayashi, De Zubicaray, Janke, Rose, Semple, Michael S. Hong, et al. (CR53) 2004; 22
CR19
CR18
CR17
CR59
CR12
CR55
CR10
Yang, Tan, Qiu (CR58) 2012; 7
Carmichael, Kuller, Lopez, Thompson, Dutton, Lu, Sharon E. Lee, et al. (CR7) 2007; 21
Ivan, Seshadri, Beiser, Rhoda, Kase, Kelly-Hayes, Wolf (CR22) 2004; 35
Chou, Leporé, Saharan, Madsen, Xue, Jack, Leslie M. Shaw, et al. (CR9) 2010; 31
Whitwell, Boeve, Weigand, Senjem, Gunter, Baker, DeJesus-Hernandez, Knopman, Wszolek, Petersen, Rademakers, Jack, Josephs (CR56) 2015; 22
Swartz, Stuss, Gao, Black (CR51) 2008; 39
Nestor, Rupsingh, Borrie, Smith, Accomazzi, Wells, Fogarty, Bartha, Initiative (CR38) 2008; 131
Wolf, Hensel, Kruggel, Riedel-Heller, Arendt, Wahlund, Gertz (CR57) 2004; 25
Jaccard (CR23) 1912; 11
Dice (CR11) 1945; 26
CR28
CR27
Jenkins, Fox, Rossor, Harvey, Rossor (CR24) 2000; 57
Fennema-Notestine, Burak Ozyurt, Clark, Morris, Bischoff-Grethe, Bondi, Terry L. Jernigan, et al. (CR15) 2006; 27
Tustison, Avants, Cook, Zheng, Egan, Yushkevich, Gee (CR54) 2010; 29
CR21
Huo, Asman, Plassard, Landman (CR20) 2017; 38
ED Bigler (9510_CR3) 2001; 36
Y Huo (9510_CR20) 2017; 38
PA Yushkevich (9510_CR60) 2006; 31
N Tajbakhsh (9510_CR52) 2016; 35
EE Smith (9510_CR46) 2015; 77
R Jenkins (9510_CR24) 2000; 57
GT Stebbins (9510_CR50) 2008; 39
JL Whitwell (9510_CR56) 2015; 22
C Fennema-Notestine (9510_CR15) 2006; 27
LG Apostolova (9510_CR1) 2012; 26
RH Swartz (9510_CR51) 2008; 39
OT Carmichael (9510_CR7) 2007; 21
9510_CR43
9510_CR42
NJ Tustison (9510_CR54) 2010; 29
X Yang (9510_CR58) 2012; 7
S Roy (9510_CR45) 2017; 146
MM Breteler (9510_CR5) 1994; 25
CS Ivan (9510_CR22) 2004; 35
9510_CR39
AM Staffaroni (9510_CR49) 2017; 37
9510_CR37
AC van Loenhoud (9510_CR34) 2018; 10
SM Nestor (9510_CR38) 2008; 131
9510_CR35
LR Dice (9510_CR11) 1945; 26
Y Lecun (9510_CR33) 1998; 86
P Jaccard (9510_CR23) 1912; 11
9510_CR31
9510_CR30
C Dong (9510_CR13) 2015; 85
K Kamnitsas (9510_CR25) 2015; 13
J Ramirez (9510_CR41) 2011; 54
K Kamnitsas (9510_CR26) 2017; 36
Y-Y Chou (9510_CR9) 2010; 31
SM Smith (9510_CR47) 2001; 25
9510_CR28
9510_CR27
DH Mathalon (9510_CR36) 1993; 50
K Pearson (9510_CR40) 1895; 58
M Boccardi (9510_CR4) 2003; 24
9510_CR21
PM Thompson (9510_CR53) 2004; 22
SM Smith (9510_CR48) 2002; 17
EJ Burton (9510_CR6) 2004; 127
B Fischl (9510_CR16) 2002; 33
BS Aribisala (9510_CR2) 2012; 23
Y-Y Chou (9510_CR8) 2009; 46
I Driscoll (9510_CR14) 2009; 72
9510_CR19
9510_CR18
DE Ross (9510_CR44) 2015; 27
9510_CR17
J Kleesiek (9510_CR29) 2016; 129
9510_CR59
H Wolf (9510_CR57) 2004; 25
9510_CR12
9510_CR55
9510_CR10
A Krizhevsky (9510_CR32) 2017; 60
References_xml – volume: 11
  start-page: 37
  issue: 2
  year: 1912
  end-page: 50
  ident: CR23
  article-title: The distribution of the Flora in the Alpine zone. 1
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 13
  start-page: 46
  year: 2015
  ident: CR25
  article-title: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI
  publication-title: Ischemic Stroke Lesion Segmentation
– ident: CR39
– volume: 35
  start-page: 1264
  issue: 6
  year: 2004
  end-page: 1268
  ident: CR22
  article-title: Dementia after stroke: The Framingham study
  publication-title: Stroke
  doi: 10.1161/01.STR.0000127810.92616.78
– volume: 27
  start-page: 147
  issue: 2
  year: 2015
  end-page: 152
  ident: CR44
  article-title: Man versus machine part 2: Comparison of radiologists’ interpretations and NeuroQuant measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury
  publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences
  doi: 10.1176/appi.neuropsych.13040088
– ident: CR12
– volume: 46
  start-page: 394
  issue: 2
  year: 2009
  end-page: 410
  ident: CR8
  article-title: Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s Disease, mild cognitive impairment and elderly controls
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.015
– ident: CR35
– volume: 25
  start-page: 1109
  issue: 6
  year: 1994
  end-page: 1115
  ident: CR5
  article-title: Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging. The Rotterdam study
  publication-title: Stroke
  doi: 10.1161/01.STR.25.6.1109
– volume: 39
  start-page: 785
  issue: 3
  year: 2008
  end-page: 793
  ident: CR50
  article-title: Gray matter atrophy in patients with ischemic stroke with cognitive impairment
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.507392
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  end-page: 1320
  ident: CR54
  article-title: N4ITK: Improved N3 Bias Correction
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  end-page: 155
  ident: CR48
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 72
  start-page: 1906
  issue: 22
  year: 2009
  end-page: 1913
  ident: CR14
  article-title: Longitudinal pattern of regional brain volume change differentiates Normal Aging from MCI
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a82634
– volume: 37
  start-page: 510
  issue: 5
  year: 2017
  end-page: 537
  ident: CR49
  article-title: Neuroimaging in Dementia
  publication-title: Semin Neurol
  doi: 10.1055/s-0037-1608808
– ident: CR42
– ident: CR21
– volume: 24
  start-page: 95
  issue: 1
  year: 2003
  end-page: 103
  ident: CR4
  article-title: The MRI pattern of frontal and temporal brain atrophy in Fronto-temporal dementia
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(02)00045-3
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  end-page: 355
  ident: CR16
  article-title: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– ident: CR19
– volume: 54
  start-page: 963
  issue: 2
  year: 2011
  end-page: 973
  ident: CR41
  article-title: Lesion explorer: A comprehensive segmentation and Parcellation package to obtain regional Volumetrics for subcortical Hyperintensities and intracranial tissue
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.013
– volume: 57
  start-page: 220
  issue: 2
  year: 2000
  end-page: 224
  ident: CR24
  article-title: Intracranial volume and Alzheimer Disease: Evidence against the cerebral reserve hypothesis
  publication-title: Arch Neurol
  doi: 10.1001/archneur.57.2.220
– volume: 7
  issue: 12
  year: 2012
  ident: CR58
  article-title: CSF and brain structural imaging markers of the Alzheimer’s pathological cascade
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047406
– volume: 38
  start-page: 599
  issue: 2
  year: 2017
  end-page: 616
  ident: CR20
  article-title: Simultaneous Total intracranial volume and posterior Fossa volume estimation using multi-atlas label fusion
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23432
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  end-page: 1128
  ident: CR60
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 10
  start-page: 91
  issue: 1
  year: 2018
  ident: CR34
  article-title: Is Intracranial Volume a Suitable Proxy for Brain Reserve?
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-018-0408-5
– volume: 146
  start-page: 132
  issue: February
  year: 2017
  end-page: 147
  ident: CR45
  article-title: Robust skull stripping using multiple MR image contrasts insensitive to pathology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.017
– volume: 58
  start-page: 240
  issue: 347-352
  year: 1895
  end-page: 242
  ident: CR40
  article-title: VII. Note on regression and inheritance in the case of two parents
  publication-title: Proc R Soc Lond
  doi: 10.1098/rspl.1895.0041
– volume: 127
  start-page: 791
  issue: Pt 4
  year: 2004
  end-page: 800
  ident: CR6
  article-title: Cerebral atrophy in Parkinson’s Disease with and without dementia: A comparison with Alzheimer's Disease, dementia with Lewy bodies and controls
  publication-title: Brain J Neurol
  doi: 10.1093/brain/awh088
– ident: CR18
– ident: CR43
– volume: 36
  start-page: 61
  issue: February
  year: 2017
  end-page: 78
  ident: CR26
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– ident: CR37
– volume: 129
  start-page: 460
  issue: April
  year: 2016
  end-page: 469
  ident: CR29
  article-title: Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: CR30
– volume: 22
  start-page: 745
  issue: 5
  year: 2015
  end-page: 752
  ident: CR56
  article-title: Brain atrophy over time in genetic and sporadic Frontotemporal dementia: A study of 198 serial magnetic resonance images
  publication-title: European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies
  doi: 10.1111/ene.12675
– volume: 131
  start-page: 2443
  issue: Pt 9
  year: 2008
  end-page: 2454
  ident: CR38
  article-title: Ventricular enlargement as a possible measure of Alzheimer’s Disease progression validated using the Alzheimer's Disease Neuroimaging Initiative database
  publication-title: Brain J Neurol
  doi: 10.1093/brain/awn146
– ident: CR10
– volume: 39
  start-page: 822
  issue: 3
  year: 2008
  end-page: 830
  ident: CR51
  article-title: Independent cognitive effects of atrophy and diffuse subcortical and Thalamico-cortical cerebrovascular Disease in dementia
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.491936
– volume: 25
  start-page: 913
  issue: 7
  year: 2004
  end-page: 924
  ident: CR57
  article-title: Structural correlates of mild cognitive impairment
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2003.08.006
– ident: CR27
– volume: 26
  start-page: 17
  issue: 1
  year: 2012
  end-page: 27
  ident: CR1
  article-title: Hippocampal atrophy and ventricular enlargement in Normal aging, mild cognitive impairment (MCI), and Alzheimer Disease
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e3182163b62
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  end-page: 302
  ident: CR11
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR33
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR32
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 50
  start-page: 121
  issue: 2
  year: 1993
  end-page: 139
  ident: CR36
  article-title: Correction for head size in brain-imaging measurements
  publication-title: Psychiatry Res
  doi: 10.1016/0925-4927(93)90016-B
– volume: 31
  start-page: 1386
  issue: 8
  year: 2010
  end-page: 1400
  ident: CR9
  article-title: Ventricular maps in 804 ADNI subjects: Correlations with CSF biomarkers and clinical decline
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.05.001
– volume: 36
  start-page: 539
  issue: 9
  year: 2001
  end-page: 546
  ident: CR3
  article-title: Brain Volume, Intracranial Volume, and Dementia
  publication-title: Investig Radiol
  doi: 10.1097/00004424-200109000-00006
– ident: CR17
– volume: 22
  start-page: 1754
  issue: 4
  year: 2004
  end-page: 1766
  ident: CR53
  article-title: Mapping hippocampal and ventricular change in Alzheimer Disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.03.040
– ident: CR31
– volume: 27
  start-page: 99
  issue: 2
  year: 2006
  end-page: 113
  ident: CR15
  article-title: Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, Bias correction, and slice location
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20161
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  end-page: 1312
  ident: CR52
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: CR55
– volume: 21
  start-page: 14
  issue: 1
  year: 2007
  end-page: 24
  ident: CR7
  article-title: Cerebral ventricular changes associated with transitions between Normal cognitive function, mild cognitive impairment, and dementia
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e318032d2b1
– volume: 77
  start-page: 251
  issue: 2
  year: 2015
  end-page: 261
  ident: CR46
  article-title: Early cerebral small vessel Disease and brain volume, cognition, and gait
  publication-title: Ann Neurol
  doi: 10.1002/ana.24320
– ident: CR59
– ident: CR28
– volume: 25
  start-page: 466
  issue: 3
  year: 2001
  end-page: 475
  ident: CR47
  article-title: Normalized accurate measurement of longitudinal brain change
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-200105000-00022
– volume: 23
  start-page: 1084
  issue: 4
  year: 2012
  end-page: 1092
  ident: CR2
  article-title: Brain atrophy associations with white matter lesions in the ageing brain: The Lothian birth cohort 1936
  publication-title: Eur Radiol
  doi: 10.1007/s00330-012-2677-x
– volume: 85
  start-page: 441
  issue: 5
  year: 2015
  end-page: 449
  ident: CR13
  article-title: Cognitive correlates of white matter lesion load and brain atrophy: The northern Manhattan study
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001716
– volume: 85
  start-page: 441
  issue: 5
  year: 2015
  ident: 9510_CR13
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001716
– volume: 10
  start-page: 91
  issue: 1
  year: 2018
  ident: 9510_CR34
  publication-title: Alzheimers Res Ther
  doi: 10.1186/s13195-018-0408-5
– volume: 26
  start-page: 17
  issue: 1
  year: 2012
  ident: 9510_CR1
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e3182163b62
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 9510_CR11
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 9510_CR16
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 21
  start-page: 14
  issue: 1
  year: 2007
  ident: 9510_CR7
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e318032d2b1
– ident: 9510_CR27
– ident: 9510_CR43
  doi: 10.1007/978-3-319-24574-4_28
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 9510_CR32
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 9510_CR35
  doi: 10.1016/j.neurobiolaging.2014.03.044
– ident: 9510_CR30
  doi: 10.1111/j.1552-6569.2004.tb00249.x
– volume: 27
  start-page: 99
  issue: 2
  year: 2006
  ident: 9510_CR15
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20161
– volume: 77
  start-page: 251
  issue: 2
  year: 2015
  ident: 9510_CR46
  publication-title: Ann Neurol
  doi: 10.1002/ana.24320
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 9510_CR33
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 9510_CR21
– volume: 37
  start-page: 510
  issue: 5
  year: 2017
  ident: 9510_CR49
  publication-title: Semin Neurol
  doi: 10.1055/s-0037-1608808
– ident: 9510_CR12
  doi: 10.1007/978-3-7091-6139-5_2
– volume: 25
  start-page: 913
  issue: 7
  year: 2004
  ident: 9510_CR57
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2003.08.006
– volume: 7
  issue: 12
  year: 2012
  ident: 9510_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047406
– ident: 9510_CR59
– volume: 72
  start-page: 1906
  issue: 22
  year: 2009
  ident: 9510_CR14
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181a82634
– volume: 27
  start-page: 147
  issue: 2
  year: 2015
  ident: 9510_CR44
  publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences
  doi: 10.1176/appi.neuropsych.13040088
– volume: 25
  start-page: 1109
  issue: 6
  year: 1994
  ident: 9510_CR5
  publication-title: Stroke
  doi: 10.1161/01.STR.25.6.1109
– ident: 9510_CR37
  doi: 10.1109/3DV.2016.79
– ident: 9510_CR28
– ident: 9510_CR31
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 9510_CR52
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 38
  start-page: 599
  issue: 2
  year: 2017
  ident: 9510_CR20
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23432
– volume: 131
  start-page: 2443
  issue: Pt 9
  year: 2008
  ident: 9510_CR38
  publication-title: Brain J Neurol
  doi: 10.1093/brain/awn146
– volume: 24
  start-page: 95
  issue: 1
  year: 2003
  ident: 9510_CR4
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(02)00045-3
– volume: 58
  start-page: 240
  issue: 347-352
  year: 1895
  ident: 9510_CR40
  publication-title: Proc R Soc Lond
  doi: 10.1098/rspl.1895.0041
– volume: 54
  start-page: 963
  issue: 2
  year: 2011
  ident: 9510_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.013
– volume: 11
  start-page: 37
  issue: 2
  year: 1912
  ident: 9510_CR23
  publication-title: The New Phytologist
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: 9510_CR17
  doi: 10.1006/nimg.1998.0396
– volume: 23
  start-page: 1084
  issue: 4
  year: 2012
  ident: 9510_CR2
  publication-title: Eur Radiol
  doi: 10.1007/s00330-012-2677-x
– volume: 31
  start-page: 1386
  issue: 8
  year: 2010
  ident: 9510_CR9
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2010.05.001
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 9510_CR60
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 22
  start-page: 745
  issue: 5
  year: 2015
  ident: 9510_CR56
  publication-title: European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies
  doi: 10.1111/ene.12675
– ident: 9510_CR42
  doi: 10.3791/50887
– ident: 9510_CR55
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  ident: 9510_CR54
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 46
  start-page: 394
  issue: 2
  year: 2009
  ident: 9510_CR8
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.015
– ident: 9510_CR10
  doi: 10.1007/978-3-319-46723-8_49
– volume: 36
  start-page: 539
  issue: 9
  year: 2001
  ident: 9510_CR3
  publication-title: Investig Radiol
  doi: 10.1097/00004424-200109000-00006
– volume: 129
  start-page: 460
  issue: April
  year: 2016
  ident: 9510_CR29
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: 9510_CR39
  doi: 10.1007/978-3-030-00928-1_56
– volume: 50
  start-page: 121
  issue: 2
  year: 1993
  ident: 9510_CR36
  publication-title: Psychiatry Res
  doi: 10.1016/0925-4927(93)90016-B
– volume: 25
  start-page: 466
  issue: 3
  year: 2001
  ident: 9510_CR47
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/00004728-200105000-00022
– volume: 39
  start-page: 822
  issue: 3
  year: 2008
  ident: 9510_CR51
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.491936
– ident: 9510_CR18
  doi: 10.1002/hbm.24811
– volume: 22
  start-page: 1754
  issue: 4
  year: 2004
  ident: 9510_CR53
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.03.040
– volume: 35
  start-page: 1264
  issue: 6
  year: 2004
  ident: 9510_CR22
  publication-title: Stroke
  doi: 10.1161/01.STR.0000127810.92616.78
– volume: 39
  start-page: 785
  issue: 3
  year: 2008
  ident: 9510_CR50
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.507392
– volume: 13
  start-page: 46
  year: 2015
  ident: 9510_CR25
  publication-title: Ischemic Stroke Lesion Segmentation
– volume: 127
  start-page: 791
  issue: Pt 4
  year: 2004
  ident: 9510_CR6
  publication-title: Brain J Neurol
  doi: 10.1093/brain/awh088
– volume: 146
  start-page: 132
  issue: February
  year: 2017
  ident: 9510_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.017
– ident: 9510_CR19
  doi: 10.1109/CVPR.2016.90
– volume: 57
  start-page: 220
  issue: 2
  year: 2000
  ident: 9510_CR24
  publication-title: Arch Neurol
  doi: 10.1001/archneur.57.2.220
– volume: 36
  start-page: 61
  issue: February
  year: 2017
  ident: 9510_CR26
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.10.004
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 9510_CR48
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
SSID ssj0026700
Score 2.3921878
Snippet Successful segmentation of the total intracranial vault (ICV) and ventricles is of critical importance when studying neurodegeneration through neuroimaging. We...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 597
SubjectTerms Aged
Aging
Algorithms
Atrophy
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Cerebral Ventricles - diagnostic imaging
Cerebral Ventricles - pathology
Cognitive ability
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Humans
Image processing
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Neural networks
Neural Networks, Computer
Neurodegeneration
Neuroimaging
Neurology
Neurosciences
Segmentation
Software Original Article
Substantia alba
Ventricle
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLigQnmkDzRIiAtYJI4dJ6dqtVAVBCskaLW3yE9UiSbtZnvgF_C38TjerFBFD87FjmNlxuOZz_Mg5HUpmWbaMMpNER5VpWijeE6dqUpbVLXlFqGBr4vq9Ix_XoplAtyG5Fa5kYlRUNveIEb-PqjpTEoM-D2-uqZYNQpvV1MJjfvkAaYuQ5cuudwaXCkEJWzqhjLZFCloZgydY-icEBsqGbT492C6pW3euimNB9DJLnmUNEeYjaR-TO657gnZm3XBar78DW8g-nJGkHyP_BmxAmfhu_t5mcKLOug9BH0PPiGga8IhFXgPVGfhHCHei-iRCudRXA1w0cG3qbjXAIjXwtytggk9ea_CFzfETpxjtl71gWQQfRCg_ADzxWJ4Ss5OPv6Yn9JUcoGaUoo1lUZ476UWjdbM5LUJ1lTuOdcF2jqq5o3xdck9s1xJlXOlcye5wwwvgqlKl8_ITtd37gUBjymPuclzE4jPhFWmEMaUdS2c87bwGSk2_7s1KR85lsX41W4zKSON2tiQRm2RkbfTO1djNo47Rx9uyNimnTm0Wz7KyKupO-wpvChRnetvwhjMmBNUoVJk5PlI_ulzGKMWpKLMyLsNP2wn__9a9u9eywF5GPkxegkekp316sYdBW1nrV9Glv4Lnrn56A
  priority: 102
  providerName: ProQuest
Title Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs
URI https://link.springer.com/article/10.1007/s12021-021-09510-1
https://www.ncbi.nlm.nih.gov/pubmed/33527307
https://www.proquest.com/docview/2592771320
https://www.proquest.com/docview/2485515135
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBQHmEltUgIS4QKXHsODmGZUt5rSpgq-UU2Y6NKtFstdke-AX8bWa8SVaogMTBycGOE2XG9nzjb8aMPcsUN9xYHgub4iXPdVxqkcTO5lmT5kUjGnINfJznJwvxbimXfVBYN7Ddhy3JMFPvgt040QlCIbMgRsyzLwm7oxYveDXCrD7wBIdyGXNVpn2ozJ_7-H05umZjXtsfDcvO8R12u7cXodoK-C674dp77KBqEStf_IDnEBicwTV-wH5uPQSugc_u20UfVNTCygNaefCW3LgWlybUONBtA2fk2D0PPFQ4C5NUB-ctnI5HenVAXlqYujUC55GzCh9cFyqpj2qzXqGgIDAPIHsN0_m8u88Wx7Mv05O4P2ghtpmSm1hZ6b1XRpbGcJsUFjFU4oUwKSEcXYjS-iITnjdCK50IbRKnhKO8LpLr3GQP2F67at0jBp4SHQubJBZFzmWjbSqtzYpCOueb1EcsHf53bfss5HQYxvd6lz-ZZFSHQjKq04i9GJ-53Obg-Gfro0GMdT8euxpBHleKwsUj9nSsxpFE2yO6dasrbEN5ctAAymTEHm7FP76OItNwLlQReznow67zv3_L4_9rfshuBf0MXMEjtrdZX7knaPNszITdVEs1YfvVm6_vZ3h_NZuffpoExf8FyOz6xA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiPQAEjAReImjjO64DQsm21S7dRBW3VW3AcG1WiSdlshfoL-Df8RmacxwpV9NaDc7HjWJnP45nxPABeBzEveKG4K5SPjyiSbiqF52oVBaUfJaUoyTSwn0XTI_H5JDxZgz99LAy5VfY80TLqslZkI99CMZ3HMQX8fjz_6VLVKLpd7UtotLDY05e_UGVrPsy2kb5vON_dOZxM3a6qgKuCOFy6sQqNMXERpkXBlZcoVBg8I0ThkzgvE5EqkwTC8FLIWHpCFp6OhaYkJiGXURHgvLdgXQSoyoxg_dNOdvBlUPG6oBdkI6nL49TvwnTaYD1O7hC2kVjj-v8ehVfk2yt3s_bI270HdztZlY1bcN2HNV09gI1xhXr62SV7y6z3qDXLb8Dv1jqhS_ZVfz_rApoqVhuGEiabkQlZ4bGIaGeyKtkxGZVPrQ8sO7YMsmGnFTsYyok1jCzEbKIXqLQP_rJsrhvbSXOMl4saQcKs1wMLttkky5qHcHQj5HgEo6qu9BNghpIsC-V5CuHGw1IqP1QqSJJQa1P6xgG__9-56jKgUyGOH_kqdzPRKLeNaJT7Drwb3jlv839cO3qzJ2Pe8YImXyHXgVdDN-5iupqRla4vcAzl6EHhKwgdeNySf_gcRcUhH44deN_jYTX5_9fy9Pq1vITb08P9eT6fZXvP4I7FpvVR3ITRcnGhn6OstSxedABn8O2m99RfALc38g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPlAJGAi4QNXbsODkgtNpl1aVlVQla7S04jo0qtUnZbIX6C_hP_Do8zmOFKnrrwbnYcazM5_HMeB4Ar2PJClZoFnJN3SNJVJgpHoVGJ3FJk7TkJZoGvsyTvSP-eSEWG_Cnj4VBt8qeJ3pGXdYabeS7TkxnUmLA767t3CIOJ9OP5z9DrCCFN619OY0WIvvm8pdT35oPs4mj9RvGpp--jffCrsJAqGMpVqHUwlorC5EVBdNRqp3yEFnOC4qivUp5pm0ac8tKrqSKuCoiI7nBhCaCqaSI3by34LaMBcU9JhdrZa8Lf3EMJQuZzGgXsNOG7TF0jPANBZyQ_nsoXpF0r9zS-sNveh_udVIrGbUwewAbpnoIW6PKaexnl-Qt8X6k3kC_Bb9bO4UpyVfz46wLbapIbYmTNckMjcnaHZAO90RVJTlG8_KJ94Ylx55VNuSkIodDYbGGoK2YjM3Sqe-D5yw5MI3vxDlGq2Xt4EK8_wOJJ2Q8nzeP4OhGiPEYNqu6Mk-BWEy3zHUUaQc8JkqlqdA6TlNhjC2pDYD2_zvXXS50LMlxmq-zOCONct-QRjkN4N3wznmbCeTa0Ts9GfOOKzT5GsMBvBq63X7GSxpVmfrCjcFsPU4Mi0UAT1ryD5_D-DjHkWUA73s8rCf__1q2r1_LS7jjdlJ-MJvvP4O7HpreWXEHNlfLC_PcCV2r4oVHN4HvN72d_gJHODrC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Segmentation+of+the+Intracranial+and+Ventricular+Volumes+in+Populations+with+Cerebrovascular+Lesions+and+Atrophy+Using+3D+CNNs&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Ntiri%2C+Emmanuel+E.&rft.au=Holmes%2C+Melissa+F.&rft.au=Forooshani%2C+Parisa+M.&rft.au=Ramirez%2C+Joel&rft.date=2021-10-01&rft.pub=Springer+US&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=19&rft.issue=4&rft.spage=597&rft.epage=618&rft_id=info:doi/10.1007%2Fs12021-021-09510-1&rft.externalDocID=10_1007_s12021_021_09510_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon