Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes
Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and...
Saved in:
Published in | Journal of hazardous materials Vol. 437; p. 129356 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2022.129356 |
Cover
Loading…
Abstract | Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils.
[Display omitted]
•A total of 157 potential human bacterial pathogens were detected, accounting about 1.33% of total bacteria screened.•Abundant and diverse virulence factor genes and antibiotic resistance genes were identified in the agricultural soils.•The coexistence of many antibiotic resistance genes and virulence factor genes was found in human bacterial pathogens.•Pig manure and silkworm excrement increased higher microbiological risks in farmland soil. |
---|---|
AbstractList | Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils.
[Display omitted]
•A total of 157 potential human bacterial pathogens were detected, accounting about 1.33% of total bacteria screened.•Abundant and diverse virulence factor genes and antibiotic resistance genes were identified in the agricultural soils.•The coexistence of many antibiotic resistance genes and virulence factor genes was found in human bacterial pathogens.•Pig manure and silkworm excrement increased higher microbiological risks in farmland soil. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils.Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils. |
ArticleNumber | 129356 |
Author | Zhu, Lin Lian, Yulu Lin, Da Wang, Meizhen Huang, Dan Yao, Yanlai Ju, Feng |
Author_xml | – sequence: 1 givenname: Lin surname: Zhu fullname: Zhu, Lin organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China – sequence: 2 givenname: Yulu surname: Lian fullname: Lian, Yulu organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China – sequence: 3 givenname: Da surname: Lin fullname: Lin, Da organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China – sequence: 4 givenname: Dan surname: Huang fullname: Huang, Dan organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China – sequence: 5 givenname: Yanlai surname: Yao fullname: Yao, Yanlai organization: Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China – sequence: 6 givenname: Feng surname: Ju fullname: Ju, Feng organization: Key laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China – sequence: 7 givenname: Meizhen surname: Wang fullname: Wang, Meizhen email: wmz@mail.zjgsu.edu.cn organization: School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China |
BookMark | eNqNkctq3DAUhk1JoZO0j1DQsot6Klm2ZbeLUkIvgUA36VocS8fxGWxpKsmB5JH6lJUzWXWTLoRA_wX0_efFmfMOi-Kt4HvBRfvhsD9M8LBA2le8qvai6mXTvih2olOylFK2Z8WOS16XsuvrV8V5jAfOuVBNvSv-XLlIt1OKjFzybCET_EAwM-NdgoUcJPIui2xZ50Rluj8iW8CtAUtY0Fm0LHqa40d2MyE7Bj_SjMyPbFqzjQ1gEoat8Ahp8rfo4nt2R2Gd0RlkY5Z9YPkZIwNn80k0kE9kWMBIMcFme9RfFy9HmCO-ebovil_fvt5c_iivf36_uvxyXRqpmlQqI20trOlUi2YEtFgPtufSiholVEoNFswoZdO1Qw2C1z2vjQIxIlSiEr28KN6devNnfq8Yk14oGpxncOjXqCsluqquGv4f1lb1KqOXKls_nawZcIwBR20oPcJNAWjWguttTH3QT2PqbUx9GjOnm3_Sx0ALhPtnc59POczA7giDjoY28pYCmqStp2ca_gJIQsNy |
CitedBy_id | crossref_primary_10_1016_j_biortech_2022_128241 crossref_primary_10_1016_j_envint_2023_107761 crossref_primary_10_1016_j_jenvman_2023_119771 crossref_primary_10_1016_j_jhazmat_2023_133333 crossref_primary_10_1016_j_jhazmat_2024_136005 crossref_primary_10_1007_s11368_024_03755_4 crossref_primary_10_1016_j_apsoil_2023_105152 crossref_primary_10_3390_toxics13040239 crossref_primary_10_1016_j_chemosphere_2024_143458 crossref_primary_10_1140_epjs_s11734_024_01450_6 crossref_primary_10_1016_j_watres_2024_121289 crossref_primary_10_2478_cdem_2022_0005 crossref_primary_10_1016_j_scitotenv_2024_170080 crossref_primary_10_1016_j_envpol_2024_124621 crossref_primary_10_1016_j_scitotenv_2023_162046 crossref_primary_10_3389_fcimb_2022_1073118 crossref_primary_10_1007_s11274_024_04214_5 crossref_primary_10_1016_j_envres_2023_115616 crossref_primary_10_1016_j_scitotenv_2023_161790 crossref_primary_10_1021_acs_est_4c05829 crossref_primary_10_1128_aem_01107_23 crossref_primary_10_1016_j_envint_2024_108753 crossref_primary_10_1016_j_cej_2023_143143 crossref_primary_10_1016_j_envint_2024_109247 crossref_primary_10_1016_j_envint_2024_108431 crossref_primary_10_1016_j_envpol_2024_125040 crossref_primary_10_1016_j_jhazmat_2024_133792 crossref_primary_10_1016_j_jhazmat_2024_135133 crossref_primary_10_1016_j_envint_2024_108834 crossref_primary_10_1016_j_jhazmat_2023_133272 crossref_primary_10_1016_j_jhazmat_2024_136142 crossref_primary_10_1016_j_jhazmat_2024_134886 crossref_primary_10_1016_j_jhazmat_2025_137717 crossref_primary_10_1016_j_envpol_2023_121238 crossref_primary_10_1016_j_envpol_2023_121118 crossref_primary_10_1016_j_jenvman_2025_124115 crossref_primary_10_1016_j_jhazmat_2024_133477 crossref_primary_10_1016_j_envint_2024_109116 crossref_primary_10_1016_j_scitotenv_2023_169571 crossref_primary_10_3390_plants14071019 crossref_primary_10_3390_ani14010055 crossref_primary_10_1002_jeq2_20567 crossref_primary_10_1016_j_ecoenv_2024_117118 crossref_primary_10_1016_j_jenvman_2022_116377 crossref_primary_10_1016_j_scitotenv_2023_169139 crossref_primary_10_1016_j_envint_2024_108902 crossref_primary_10_1021_acs_est_3c06513 crossref_primary_10_19047_0136_1694_2023_115_160_198 crossref_primary_10_1016_j_biombioe_2022_106689 crossref_primary_10_1016_j_jhazmat_2024_134677 crossref_primary_10_1021_acs_est_4c07668 crossref_primary_10_1007_s11368_024_03918_3 crossref_primary_10_1016_j_wasman_2023_09_021 crossref_primary_10_1016_j_jhazmat_2024_133788 crossref_primary_10_1016_j_scitotenv_2023_164523 crossref_primary_10_1016_j_scitotenv_2022_158667 crossref_primary_10_1016_j_scitotenv_2025_178514 crossref_primary_10_1016_j_envres_2022_113835 crossref_primary_10_1016_j_jhazmat_2023_131706 |
Cites_doi | 10.1093/bioinformatics/btv033 10.1128/AEM.02710-07 10.1093/bioinformatics/bty053 10.3389/fmicb.2020.01173 10.1093/nar/gkq275 10.1016/S1473-3099(17)30753-3 10.1038/ismej.2015.59 10.1038/nmeth.1650 10.1126/science.1220761 10.1111/j.1462-2920.2005.00891.x 10.1111/ejss.12494 10.1186/1471-2164-15-885 10.3389/fmicb.2016.00173 10.1016/j.tim.2018.12.012 10.3906/vet-1912-13 10.1001/jama.2017.13836 10.1007/s10096-008-0518-2 10.1016/j.wasman.2018.08.019 10.1186/gb-2011-12-6-r60 10.1101/gr.1239303 10.1016/j.ecoenv.2015.10.014 10.1089/fpd.2010.0673 10.1056/NEJMp0804651 10.1021/acs.est.5b02345 10.1021/es060413l 10.1111/j.1541-0420.2011.01616.x 10.5114/pdia.2013.38361 10.1186/s40168-021-01047-4 10.1089/vbz.2012.1164 10.2134/jeq2011.0172 10.1073/pnas.1222743110 10.1016/j.watres.2019.115160 10.1093/nar/gkab1107 10.1016/j.envint.2015.11.011 10.1038/nmeth.3176 10.1038/nature11450 10.1126/science.1120800 10.1093/nar/gki008 10.1128/CMR.11.4.589 10.1038/nrg3962 10.1016/j.mimet.2010.12.008 10.1021/acs.est.5b01012 10.1016/S1473-3099(09)70083-0 10.1038/nature10388 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2022.129356 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2022_129356 S0304389422011499 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c375t-7c3d41dc876ecfaede4bd903d14e3a277bdacf33586b4a104904c7a1fea212193 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Wed Jul 02 03:23:28 EDT 2025 Fri Jul 11 16:17:20 EDT 2025 Tue Jul 01 01:05:45 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Fri Feb 23 02:37:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Human bacterial pathogens Microbiological risk Manure Virulence factor genes Antibiotic resistance genes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-7c3d41dc876ecfaede4bd903d14e3a277bdacf33586b4a104904c7a1fea212193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2679703037 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718242509 proquest_miscellaneous_2679703037 crossref_citationtrail_10_1016_j_jhazmat_2022_129356 crossref_primary_10_1016_j_jhazmat_2022_129356 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2022_129356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-05 |
PublicationDateYYYYMMDD | 2022-09-05 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | accessed October 2013. Bondarczuk, Markowicz, Piotrowska-Seget (bib4) 2016; 87 Pruden, Pei, Storteboom, Carlson (bib28) 2006; 40 Buchfink, Xie, Huson (bib5) 2015; 12 Soucy, Huang, Gogarten (bib35) 2015; 16 Wilkinson (bib42) 2011; 67 Durso, Harhay, Bono, Smith (bib12) 2011; 84 Rebets, Tokovenko, Lushchyk, Rückert, Zaburannyi, Bechthold, Kalinowski, Luzhetskyy (bib31) 2014; 15 Ferens, Hovde (bib13) 2011; 8 Yin, Jiang, Chai, Li, Yang, Cole, Tiedje, Zhang (bib47) 2018; 34 Knights, Kuczynski, Charlson, Zaneveld, Mozer, Collman, Bushman, Knight, Kelley (bib15) 2011; 8 D'Costa, King, Kalan, Morar, Sung, Schwarz, Froese, Zazula, Calmels, Debruyne, Golding, Poinar, Wright (bib9) 2011; 477 Paez, Tengan, Barone, Levin, Costa (bib26) 2008; 27 Liu, Zheng, Zhou, Chen, Yang (bib20) 2022; 50 Su, Wei, Ou-Yang, Huang, Zhao, Xu, Zhu (bib36) 2015; 49 Duriez, Zhang, Lu, Scott, Topp (bib11) 2008; 74 Chen, Yang, Yu, Yao, Sun, Shen, Jin (bib7) 2005; 33 Qin, Li, Cai, Li, Zhu, Zhang, Liang, Zhang, Guan, Shen, Peng, Zhang, Jie, Wu, Qin, Xue, Li, Han, Lu, Wu, Dai, Sun, Li, Tang, Zhong, Li, Chen, Xu, Wang, Feng, Gong, Yu, Zhang, Zhang, Hansen, Sanchez, Raes, Falony, Okuda, Almeida, LeChatelier, Renault, Pons, Batto, Zhang, Chen, Yang, Zheng, Li, Yang, Wang, Ehrlich, Nielsen, Pedersen, Kristiansen, Wang (bib30) 2012; 490 Zhu, Johnson, Su, Qiao, Guo, Stedtfeld, Hashsham, Tiedje (bib50) 2013; 110 Forsberg, Reyes, Wang, Selleck, Sommer, Dantas (bib14) 2012; 337 Looney, Narita, Mühlemann (bib23) 2009; 9 Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib34) 2003; 13 Willyard and Cassandra (2017) Drug-resistant bacteria ranked-World Health Organization hopes list will drive development of much-needed antibiotics. Zukiewicz-Sobczak, Chmielewska-Badora, Wróblewska, Zwoliński (bib51) 2013; 30 Rhee, Dantes, Epstein, Murphy, Seymour, Iwashyna, Kadri, Angus, Danner, Fiore, Jernigan, Martin, Septimus, Warren, Karcz, Chan, Menchaca, Wang, Gruber, Klompas (bib32) 2017; 318 Best, Abu Kwaik (bib3) 2019; 27 Yushchuk, Binda, Marinelli (bib48) 2020; 11 Berg, Eberl, Hartmann (bib2) 2005; 7 Woolhouse, Evans (bib44) 2015 Tacconelli, Carrara, Savoldi, Harbarth, Mendelson, Monnet, Pulcini, Kahlmeter, Kluytmans, Carmeli, Ouellette, Outterson, Patel, Cavaleri, Cox, Houchens, Grayson, Hansen, Singh, Theuretzbacher, Magrini (bib37) 2018; 18 Unc, Zurek, Peterson, Narayanan, Springthorpe, Sattar (bib38) 2012; 41 CDC, 2013, Antibiotic resistance threats in the United States, Available at McDaniel, Cardwell, Moeller, Gray (bib25) 2014; 14 Xie, Shen, Zhao (bib46) 2017; 69 Dulger (bib10) 2020; 44 Wang, Guo, Xu, Ding, Shen, Zheng, Feng (bib41) 2016; 124 Liang, Mao, Yin, Ma, Liu, Bai, Zhang, Qu (bib19) 2020; 168 Wright (bib45) 2007; 5 von Wintersdorff, Penders, van Niekerk, Mills, Majumder, van Alphen, Savelkoul, Wolffs (bib40) 2016; 7 Qian, Gunturu, Guo, Chai, Cole, Gu, Tiedje (bib29) 2021; 9 Arias, Murray (bib1) 2009; 360 D’Costa, McGrann, Hughes, Wright (bib8) 2006; 311 Łochyńska, Frankowski (bib22) 2018; 79 Segata, Izard, Waldron, Gevers, Miropolsky, Garrett, Huttenhower (bib33) 2011; 12 Urban, Cuzick, Seager, Wood, Rutherford, Venkatesh, De Silva, Martinez, Pedro, Yates, Hassani-Pak, Hammond-Kosack (bib39) 2020; 48 Li, Yang, Ma, Ju, Guo, Tiedje, Zhang (bib17) 2015; 9 Li, Liu, Luo, Sadakane, Lam (bib18) 2015; 31 Zhu, Lomsadze, Borodovsky (bib49) 2010; 38 Martínez, Coque, Baquero (bib24) 2015; 13 Li, Ju, Cai, Zhang (bib16) 2015; 49 Liu, X., 2018, Study Oil Nutrients Balance and Requirement in Agricultural Production in China. Chinese Academy of Agricultural Sciences, Beijing, China. Podschun, Ullmann (bib27) 1998; 11 Durso (10.1016/j.jhazmat.2022.129356_bib12) 2011; 84 Best (10.1016/j.jhazmat.2022.129356_bib3) 2019; 27 Forsberg (10.1016/j.jhazmat.2022.129356_bib14) 2012; 337 Liu (10.1016/j.jhazmat.2022.129356_bib20) 2022; 50 Wilkinson (10.1016/j.jhazmat.2022.129356_bib42) 2011; 67 10.1016/j.jhazmat.2022.129356_bib43 Arias (10.1016/j.jhazmat.2022.129356_bib1) 2009; 360 Chen (10.1016/j.jhazmat.2022.129356_bib7) 2005; 33 D'Costa (10.1016/j.jhazmat.2022.129356_bib9) 2011; 477 Segata (10.1016/j.jhazmat.2022.129356_bib33) 2011; 12 Su (10.1016/j.jhazmat.2022.129356_bib36) 2015; 49 Zhu (10.1016/j.jhazmat.2022.129356_bib49) 2010; 38 Wang (10.1016/j.jhazmat.2022.129356_bib41) 2016; 124 Zukiewicz-Sobczak (10.1016/j.jhazmat.2022.129356_bib51) 2013; 30 Podschun (10.1016/j.jhazmat.2022.129356_bib27) 1998; 11 Urban (10.1016/j.jhazmat.2022.129356_bib39) 2020; 48 Berg (10.1016/j.jhazmat.2022.129356_bib2) 2005; 7 Qian (10.1016/j.jhazmat.2022.129356_bib29) 2021; 9 von Wintersdorff (10.1016/j.jhazmat.2022.129356_bib40) 2016; 7 Li (10.1016/j.jhazmat.2022.129356_bib16) 2015; 49 Li (10.1016/j.jhazmat.2022.129356_bib17) 2015; 9 McDaniel (10.1016/j.jhazmat.2022.129356_bib25) 2014; 14 Pruden (10.1016/j.jhazmat.2022.129356_bib28) 2006; 40 Shannon (10.1016/j.jhazmat.2022.129356_bib34) 2003; 13 Ferens (10.1016/j.jhazmat.2022.129356_bib13) 2011; 8 Woolhouse (10.1016/j.jhazmat.2022.129356_bib44) 2015 Xie (10.1016/j.jhazmat.2022.129356_bib46) 2017; 69 10.1016/j.jhazmat.2022.129356_bib21 Soucy (10.1016/j.jhazmat.2022.129356_bib35) 2015; 16 Paez (10.1016/j.jhazmat.2022.129356_bib26) 2008; 27 Liang (10.1016/j.jhazmat.2022.129356_bib19) 2020; 168 Qin (10.1016/j.jhazmat.2022.129356_bib30) 2012; 490 Bondarczuk (10.1016/j.jhazmat.2022.129356_bib4) 2016; 87 Rebets (10.1016/j.jhazmat.2022.129356_bib31) 2014; 15 Łochyńska (10.1016/j.jhazmat.2022.129356_bib22) 2018; 79 Zhu (10.1016/j.jhazmat.2022.129356_bib50) 2013; 110 Knights (10.1016/j.jhazmat.2022.129356_bib15) 2011; 8 Li (10.1016/j.jhazmat.2022.129356_bib18) 2015; 31 Yushchuk (10.1016/j.jhazmat.2022.129356_bib48) 2020; 11 Looney (10.1016/j.jhazmat.2022.129356_bib23) 2009; 9 Yin (10.1016/j.jhazmat.2022.129356_bib47) 2018; 34 Dulger (10.1016/j.jhazmat.2022.129356_bib10) 2020; 44 Tacconelli (10.1016/j.jhazmat.2022.129356_bib37) 2018; 18 Unc (10.1016/j.jhazmat.2022.129356_bib38) 2012; 41 D’Costa (10.1016/j.jhazmat.2022.129356_bib8) 2006; 311 Buchfink (10.1016/j.jhazmat.2022.129356_bib5) 2015; 12 Rhee (10.1016/j.jhazmat.2022.129356_bib32) 2017; 318 10.1016/j.jhazmat.2022.129356_bib6 Wright (10.1016/j.jhazmat.2022.129356_bib45) 2007; 5 Duriez (10.1016/j.jhazmat.2022.129356_bib11) 2008; 74 Martínez (10.1016/j.jhazmat.2022.129356_bib24) 2015; 13 |
References_xml | – volume: 490 start-page: 55 year: 2012 end-page: 60 ident: bib30 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature – volume: 11 start-page: 589 year: 1998 end-page: 603 ident: bib27 article-title: spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors publication-title: Clin. Microbiol. Rev. – volume: 48 year: 2020 ident: bib39 article-title: PHI-base: the pathogen-host interactions database publication-title: Nucleic Acids Res. – volume: 40 start-page: 7445 year: 2006 end-page: 7450 ident: bib28 article-title: Antibiotic resistance genes as emerging contaminants: studies in northern Colorado publication-title: Environ. Sci. Technol. – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: bib34 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – volume: 49 start-page: 7356 year: 2015 end-page: 7363 ident: bib36 article-title: Antibiotic resistome and its association with bacterial communities during sewage sludge composting publication-title: Environ. Sci. Technol. – reference: Willyard and Cassandra (2017) Drug-resistant bacteria ranked-World Health Organization hopes list will drive development of much-needed antibiotics. – volume: 38 year: 2010 ident: bib49 article-title: Ab initio gene identification in metagenomic sequences publication-title: Nucleic Acids Res. – volume: 18 start-page: 318 year: 2018 end-page: 327 ident: bib37 article-title: Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis publication-title: Lancet Infect. Dis. – reference: CDC, 2013, Antibiotic resistance threats in the United States, Available at: – volume: 50 start-page: D912 year: 2022 end-page: D917 ident: bib20 article-title: VFDB 2022: a general classification scheme for bacterial virulence factors publication-title: Nucleic Acids Res. – volume: 11 start-page: 1173 year: 2020 ident: bib48 article-title: Glycopeptide antibiotic resistance genes: distribution and function in the producer actinomycetes publication-title: Front. Microbiol. – volume: 84 start-page: 278 year: 2011 end-page: 282 ident: bib12 article-title: Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach publication-title: J. Microbiol. Methods – volume: 14 start-page: 1 year: 2014 end-page: 19 ident: bib25 article-title: Humans and cattle: a review of bovine zoonoses publication-title: Vector Borne Zoonotic Dis. – year: 2015 ident: bib44 article-title: T16: quantitative analysis of the characteristics of emerging and re-emerging human pathogens publication-title: Cent. Infect. Dis., Univ. Edinb. – volume: 8 start-page: 465 year: 2011 end-page: 487 ident: bib13 article-title: O157:H7: animal reservoir and sources of human infection publication-title: Foodborne Pathog. Dis. – volume: 41 start-page: 534 year: 2012 end-page: 543 ident: bib38 article-title: Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek publication-title: J. Environ. Qual. – volume: 360 start-page: 439 year: 2009 end-page: 443 ident: bib1 article-title: Antibiotic-resistant bugs in the 21st century-a clinical super-challenge publication-title: New Engl. J. Med. – volume: 13 start-page: 116 year: 2015 end-page: 123 ident: bib24 article-title: What is a resistance gene? Ranking risk in resistomes publication-title: Nat. Rev.: Microbiol. – volume: 5 start-page: 175 year: 2007 end-page: 186 ident: bib45 article-title: The antibiotic resistome: the nexus of chemical and genetic diversity publication-title: Nat. Rev.: Microbiol. – volume: 9 start-page: 2490 year: 2015 end-page: 2502 ident: bib17 article-title: Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes publication-title: ISME J. – volume: 8 start-page: 761 year: 2011 end-page: 763 ident: bib15 article-title: Bayesian community-wide culture-independent microbial source tracking publication-title: Nat. Methods – volume: 27 start-page: 550 year: 2019 end-page: 561 ident: bib3 article-title: Nutrition and bipartite metabolism of intracellular pathogens publication-title: Trends Microbiol. – volume: 74 start-page: 3935 year: 2008 end-page: 3942 ident: bib11 article-title: Loss of virulence genes in Escherichia coli populations during manure storage on a commercial swine farm publication-title: Appl. Environ. Microbiol. – volume: 311 start-page: 374 year: 2006 end-page: 377 ident: bib8 article-title: Sampling the antibiotic resistome publication-title: Science – volume: 79 start-page: 564 year: 2018 end-page: 570 ident: bib22 article-title: The biogas production potential from silkworm waste publication-title: Waste Manag. – volume: 30 start-page: 311 year: 2013 end-page: 315 ident: bib51 article-title: Farmers’ occupational diseases of allergenic and zoonotic origin publication-title: Post. Dermatol. Alergol. – reference: , accessed October 2013. – volume: 337 start-page: 1107 year: 2012 end-page: 1111 ident: bib14 article-title: The shared antibiotic resistome of soil bacteria and human pathogens publication-title: Science – volume: 12 start-page: R60 year: 2011 ident: bib33 article-title: Metagenomic biomarker discovery and explanation. publication-title: Genome. Biol. – volume: 124 start-page: 239 year: 2016 end-page: 247 ident: bib41 article-title: Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi publication-title: Ecotoxicol. Environ. Saf. – volume: 7 start-page: 1673 year: 2005 end-page: 1685 ident: bib2 article-title: The rhizosphere as a reservoir for opportunistic human pathogenic bacteria publication-title: Environ. Microbiol. – volume: 15 start-page: 885 year: 2014 ident: bib31 article-title: Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin publication-title: BMC Genom. – volume: 31 start-page: 1674 year: 2015 end-page: 1676 ident: bib18 article-title: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics – volume: 16 start-page: 472 year: 2015 end-page: 482 ident: bib35 article-title: Horizontal gene transfer: building the web of life publication-title: Nat. Rev. Genet. – volume: 34 start-page: 2263 year: 2018 end-page: 2270 ident: bib47 article-title: ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes publication-title: Bioinformatics – volume: 477 start-page: 457 year: 2011 end-page: 461 ident: bib9 article-title: Antibiotic resistance is ancient publication-title: Nature – volume: 7 start-page: 173 year: 2016 ident: bib40 article-title: Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer publication-title: Front. Microbiol. – volume: 69 start-page: 181 year: 2017 end-page: 195 ident: bib46 article-title: Antibiotics and antibiotic resistance from animal manures to soil: a review publication-title: Eur. J. Soil Sci. – volume: 168 year: 2020 ident: bib19 article-title: Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment publication-title: Water Res. – volume: 49 start-page: 10492 year: 2015 end-page: 10502 ident: bib16 article-title: Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach publication-title: Environ. Sci. Technol. – volume: 87 start-page: 49 year: 2016 end-page: 55 ident: bib4 article-title: The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application publication-title: Environ. Int. – volume: 12 start-page: 59 year: 2015 end-page: 60 ident: bib5 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods – volume: 27 start-page: 901 year: 2008 end-page: 906 ident: bib26 article-title: Factors associated with mortality in patients with bloodstream infection and pneumonia due to publication-title: Eur. J. Clin. Microbiol. Infect. Dis. – volume: 9 start-page: 108 year: 2021 ident: bib29 article-title: Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems publication-title: Microbiome – reference: Liu, X., 2018, Study Oil Nutrients Balance and Requirement in Agricultural Production in China. Chinese Academy of Agricultural Sciences, Beijing, China. – volume: 110 start-page: 3435 year: 2013 end-page: 3440 ident: bib50 article-title: Diverse and abundant antibiotic resistance genes in Chinese swine farms publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 573 year: 2020 end-page: 580 ident: bib10 article-title: Statistical analysis of the relationship between mortality and nosocomial factors in patients with septicemia and the importance of Pseudomonas aeruginosa publication-title: Turk. J. Vet. Anim. Sci. – volume: 33 start-page: D325 year: 2005 end-page: D328 ident: bib7 article-title: VFDB: a reference database for bacterial virulence factors publication-title: Nucleic Acids Res. – volume: 67 start-page: 245 year: 2011 end-page: 246 ident: bib42 article-title: ggplot2: elegant Graphics for Data Analysis by Hadley Wickham publication-title: Biometrics – volume: 318 start-page: 1241 year: 2017 end-page: 1249 ident: bib32 article-title: Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014 publication-title: JAMA – volume: 9 start-page: 312 year: 2009 end-page: 323 ident: bib23 article-title: : an emerging opportunist human pathogen publication-title: Lancet Infect. Dis. – volume: 31 start-page: 1674 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib18 article-title: MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume: 74 start-page: 3935 year: 2008 ident: 10.1016/j.jhazmat.2022.129356_bib11 article-title: Loss of virulence genes in Escherichia coli populations during manure storage on a commercial swine farm publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02710-07 – ident: 10.1016/j.jhazmat.2022.129356_bib21 – volume: 34 start-page: 2263 year: 2018 ident: 10.1016/j.jhazmat.2022.129356_bib47 article-title: ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty053 – volume: 11 start-page: 1173 year: 2020 ident: 10.1016/j.jhazmat.2022.129356_bib48 article-title: Glycopeptide antibiotic resistance genes: distribution and function in the producer actinomycetes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01173 – volume: 5 start-page: 175 year: 2007 ident: 10.1016/j.jhazmat.2022.129356_bib45 article-title: The antibiotic resistome: the nexus of chemical and genetic diversity publication-title: Nat. Rev.: Microbiol. – volume: 38 year: 2010 ident: 10.1016/j.jhazmat.2022.129356_bib49 article-title: Ab initio gene identification in metagenomic sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq275 – volume: 18 start-page: 318 year: 2018 ident: 10.1016/j.jhazmat.2022.129356_bib37 article-title: Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(17)30753-3 – volume: 9 start-page: 2490 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib17 article-title: Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes publication-title: ISME J. doi: 10.1038/ismej.2015.59 – volume: 8 start-page: 761 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib15 article-title: Bayesian community-wide culture-independent microbial source tracking publication-title: Nat. Methods doi: 10.1038/nmeth.1650 – volume: 337 start-page: 1107 year: 2012 ident: 10.1016/j.jhazmat.2022.129356_bib14 article-title: The shared antibiotic resistome of soil bacteria and human pathogens publication-title: Science doi: 10.1126/science.1220761 – volume: 7 start-page: 1673 year: 2005 ident: 10.1016/j.jhazmat.2022.129356_bib2 article-title: The rhizosphere as a reservoir for opportunistic human pathogenic bacteria publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00891.x – volume: 69 start-page: 181 year: 2017 ident: 10.1016/j.jhazmat.2022.129356_bib46 article-title: Antibiotics and antibiotic resistance from animal manures to soil: a review publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12494 – volume: 15 start-page: 885 year: 2014 ident: 10.1016/j.jhazmat.2022.129356_bib31 article-title: Complete genome sequence of producer of the glycopeptide antibiotic Aculeximycin Kutzneria albida DSM 43870T, a representative of minor genus of Pseudonocardiaceae publication-title: BMC Genom. doi: 10.1186/1471-2164-15-885 – volume: 7 start-page: 173 year: 2016 ident: 10.1016/j.jhazmat.2022.129356_bib40 article-title: Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.00173 – volume: 27 start-page: 550 year: 2019 ident: 10.1016/j.jhazmat.2022.129356_bib3 article-title: Nutrition and bipartite metabolism of intracellular pathogens publication-title: Trends Microbiol. doi: 10.1016/j.tim.2018.12.012 – volume: 44 start-page: 573 year: 2020 ident: 10.1016/j.jhazmat.2022.129356_bib10 article-title: Statistical analysis of the relationship between mortality and nosocomial factors in patients with septicemia and the importance of Pseudomonas aeruginosa publication-title: Turk. J. Vet. Anim. Sci. doi: 10.3906/vet-1912-13 – volume: 318 start-page: 1241 year: 2017 ident: 10.1016/j.jhazmat.2022.129356_bib32 article-title: Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014 publication-title: JAMA doi: 10.1001/jama.2017.13836 – volume: 13 start-page: 116 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib24 article-title: What is a resistance gene? Ranking risk in resistomes publication-title: Nat. Rev.: Microbiol. – ident: 10.1016/j.jhazmat.2022.129356_bib43 – volume: 27 start-page: 901 year: 2008 ident: 10.1016/j.jhazmat.2022.129356_bib26 article-title: Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-008-0518-2 – volume: 79 start-page: 564 year: 2018 ident: 10.1016/j.jhazmat.2022.129356_bib22 article-title: The biogas production potential from silkworm waste publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.08.019 – volume: 12 start-page: R60 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib33 article-title: Metagenomic biomarker discovery and explanation. publication-title: Genome. Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 13 start-page: 2498 year: 2003 ident: 10.1016/j.jhazmat.2022.129356_bib34 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 124 start-page: 239 year: 2016 ident: 10.1016/j.jhazmat.2022.129356_bib41 article-title: Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.10.014 – volume: 8 start-page: 465 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib13 article-title: Escherichia coli O157:H7: animal reservoir and sources of human infection publication-title: Foodborne Pathog. Dis. doi: 10.1089/fpd.2010.0673 – volume: 360 start-page: 439 year: 2009 ident: 10.1016/j.jhazmat.2022.129356_bib1 article-title: Antibiotic-resistant bugs in the 21st century-a clinical super-challenge publication-title: New Engl. J. Med. doi: 10.1056/NEJMp0804651 – volume: 49 start-page: 10492 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib16 article-title: Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02345 – volume: 40 start-page: 7445 year: 2006 ident: 10.1016/j.jhazmat.2022.129356_bib28 article-title: Antibiotic resistance genes as emerging contaminants: studies in northern Colorado publication-title: Environ. Sci. Technol. doi: 10.1021/es060413l – volume: 67 start-page: 245 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib42 article-title: ggplot2: elegant Graphics for Data Analysis by Hadley Wickham publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01616.x – volume: 30 start-page: 311 year: 2013 ident: 10.1016/j.jhazmat.2022.129356_bib51 article-title: Farmers’ occupational diseases of allergenic and zoonotic origin publication-title: Post. Dermatol. Alergol. doi: 10.5114/pdia.2013.38361 – volume: 9 start-page: 108 year: 2021 ident: 10.1016/j.jhazmat.2022.129356_bib29 article-title: Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems publication-title: Microbiome doi: 10.1186/s40168-021-01047-4 – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.jhazmat.2022.129356_bib25 article-title: Humans and cattle: a review of bovine zoonoses publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2012.1164 – volume: 48 year: 2020 ident: 10.1016/j.jhazmat.2022.129356_bib39 article-title: PHI-base: the pathogen-host interactions database publication-title: Nucleic Acids Res. – volume: 41 start-page: 534 year: 2012 ident: 10.1016/j.jhazmat.2022.129356_bib38 article-title: Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek publication-title: J. Environ. Qual. doi: 10.2134/jeq2011.0172 – ident: 10.1016/j.jhazmat.2022.129356_bib6 – volume: 110 start-page: 3435 year: 2013 ident: 10.1016/j.jhazmat.2022.129356_bib50 article-title: Diverse and abundant antibiotic resistance genes in Chinese swine farms publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1222743110 – volume: 168 year: 2020 ident: 10.1016/j.jhazmat.2022.129356_bib19 article-title: Identification and quantification of bacterial genomes carrying antibiotic resistance genes and virulence factor genes for aquatic microbiological risk assessment publication-title: Water Res. doi: 10.1016/j.watres.2019.115160 – volume: 50 start-page: D912 year: 2022 ident: 10.1016/j.jhazmat.2022.129356_bib20 article-title: VFDB 2022: a general classification scheme for bacterial virulence factors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1107 – volume: 87 start-page: 49 year: 2016 ident: 10.1016/j.jhazmat.2022.129356_bib4 article-title: The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application publication-title: Environ. Int. doi: 10.1016/j.envint.2015.11.011 – volume: 12 start-page: 59 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib5 article-title: Fast and sensitive protein alignment using DIAMOND publication-title: Nat. Methods doi: 10.1038/nmeth.3176 – volume: 490 start-page: 55 year: 2012 ident: 10.1016/j.jhazmat.2022.129356_bib30 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature doi: 10.1038/nature11450 – volume: 311 start-page: 374 year: 2006 ident: 10.1016/j.jhazmat.2022.129356_bib8 article-title: Sampling the antibiotic resistome publication-title: Science doi: 10.1126/science.1120800 – volume: 33 start-page: D325 year: 2005 ident: 10.1016/j.jhazmat.2022.129356_bib7 article-title: VFDB: a reference database for bacterial virulence factors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki008 – year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib44 article-title: T16: quantitative analysis of the characteristics of emerging and re-emerging human pathogens publication-title: Cent. Infect. Dis., Univ. Edinb. – volume: 11 start-page: 589 year: 1998 ident: 10.1016/j.jhazmat.2022.129356_bib27 article-title: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.11.4.589 – volume: 16 start-page: 472 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib35 article-title: Horizontal gene transfer: building the web of life publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3962 – volume: 84 start-page: 278 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib12 article-title: Virulence-associated and antibiotic resistance genes of microbial populations in cattle feces analyzed using a metagenomic approach publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2010.12.008 – volume: 49 start-page: 7356 year: 2015 ident: 10.1016/j.jhazmat.2022.129356_bib36 article-title: Antibiotic resistome and its association with bacterial communities during sewage sludge composting publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01012 – volume: 9 start-page: 312 year: 2009 ident: 10.1016/j.jhazmat.2022.129356_bib23 article-title: Stenotrophomonas maltophilia: an emerging opportunist human pathogen publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(09)70083-0 – volume: 477 start-page: 457 year: 2011 ident: 10.1016/j.jhazmat.2022.129356_bib9 article-title: Antibiotic resistance is ancient publication-title: Nature doi: 10.1038/nature10388 |
SSID | ssj0001754 |
Score | 2.6148934 |
Snippet | Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129356 |
SubjectTerms | agricultural soils antibiotic resistance Antibiotic resistance genes cow manure excreta Human bacterial pathogens humans Manure microbial contamination Microbiological risk mineral fertilizers pig manure poultry manure risk silkworms vancomycin virulence Virulence factor genes |
Title | Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes |
URI | https://dx.doi.org/10.1016/j.jhazmat.2022.129356 https://www.proquest.com/docview/2679703037 https://www.proquest.com/docview/2718242509 |
Volume | 437 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAXuBQtRTEo0VTiWOzu4mdx3JDqGhpC5cWiZs1dhzIik0Q2S1SD_1B_MrOOElpKwRSDzkktiMrM5n5xvMSYt-NDBahyQKD1gbc5YjkIMaBtAnhOSnRIZ9Dnp4lk3P16SK-WBJHfS4Mh1V2sr-V6V5ad0-G3dcc3pTl8Cs79Ujdqoh1GAF3zmBXKXP54OdDmAepx7aEFHsAaPZDFs9wOphe4Q8ChmQmRtGANR_3sX5cP_0jqb36OX4lXna4EQ7brb0WS65aF2t_VBNcF8tf8O6NuD-pGja4GyireQ2z0ldaoqUclI4c-MKkoEHwsYQBn8HCDDlfOMCZPxCHpi6vmwMgFoKupzfUBfh2fmDa8s70Qm5mXBP_NR_ge3m78NlL0PbvgUsWoYBVThdnpdS0bSDLntEqT_PjG-L8-OO3o0nQNWQIrEzjeZBamaswtyRBnS3Q5U6ZfDySeaicxChNTY62kDLOEqMwZKeisimGhUPSkAQVN8VKVVduS0BmTCQLNEUcFQptMs6cJSPfETyK8zjLtoXqyaBtV62cm2Zc6z4sbao76mmmnm6pty0Gv5fdtOU6nluQ9TTWf_GdJpXy3NL3PU9o-ifZ0YKVqxeNjpJ0zJJUpk_MIVDA5t5ovPP_W9gVq3znY97it2Jlfrtw7wgkzc2e_wv2xIvDk8-Ts19BjRca |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QE4ICggytNIHMnuJraTLLeqotql273QSr1ZY8cpWXWTqtltJX4Sv5IZxykPISpxyCXORFbG-eYbex6MvXdjA2Vs8siAtRF1OUIcBBUJmyKfEwIc0D7k8SKdnsrPZ-psix30uTAUVhmwv8N0j9bhzih8zdFlVY2-0KEemluZkA1D4r7Ndqg6lRqwnf3Z0XRxC8hoIbsqUnQIgAI_E3lGy-HyK3xDboieYpIMyfhRK-u_m6g_wNpboMNH7GGgjny_m91jtuXqXfbgl4KCu2x7DjdP2PdZ3ZLP3fKqXjd8VfliSyhKcelAsS-kDRzkPpwwom1YvgJKGY5g5ffEedtUF-1HjquIh7bevCm57-jHTVfhGV9I_YwbXILtB35dXW18AhPvWvjwc0JRDnWBFyWmNDhtjs49EVZ6zI8_ZaeHn04OplHoyRBZkal1lFlRyLiwCKLOluAKJ00xGYsilk5AkmWmAFsKofLUSIjpXFHaDOLSARpJZIvP2KBuavec8dyYRJRgSpWUEmw6yZ1FP98hQ1KFyvM9Jns1aBsKllPfjAvdR6YtddCeJu3pTnt7bHgrdtlV7LhLIO91rH9behqtyl2i7_o1ofG3pLMWqF2zaXWSZhMCU5H94xnkBeTxjScv_n8Kb9m96cnxXM9ni6OX7D6N-BA49YoN1lcb9xo509q8Cf_ED7S7Gcs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+microbial+contamination+in+multi-type+manure-amended+soils%3A+The+profile+of+human+bacterial+pathogens%2C+virulence+factor+genes+and+antibiotic+resistance+genes&rft.jtitle=Journal+of+hazardous+materials&rft.au=Zhu%2C+Lin&rft.au=Lian%2C+Yulu&rft.au=Lin%2C+Da&rft.au=Huang%2C+Dan&rft.date=2022-09-05&rft.issn=0304-3894&rft.volume=437&rft.spage=129356&rft_id=info:doi/10.1016%2Fj.jhazmat.2022.129356&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2022_129356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |