Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms

Objective To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images. Methods A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in thi...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 32; no. 2; pp. 761 - 770
Main Authors Guo, Xiang, Wang, Jiehuan, Wang, Xiaoqiang, Liu, Wenjing, Yu, Hao, Xu, Li, Li, Hengyan, Wu, Jiangfen, Dong, Mengxing, Tan, Weixiong, Chen, Weijian, Yang, Yunjun, Chen, Yueqin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-021-08239-4

Cover

Loading…
Abstract Objective To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images. Methods A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module. Results The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively. Conclusions This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images. Key Points • Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.
AbstractList Objective To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images. Methods A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module. Results The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively. Conclusions This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images. Key Points • Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.
To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images.OBJECTIVETo develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images.A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module.METHODSA total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module.The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively.RESULTSThe highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively.This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images.CONCLUSIONSThis study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images.• Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.KEY POINTS• Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.
To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images. A total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module. The highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively. This study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images. • Deep learning models based on conventional MRI and ADC can be used to diagnose ASD. • The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets. • The attention mechanism further improved the diagnostic performance of the models.
ObjectiveTo develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion coefficient (ADC) images.MethodsA total of 151 ASD children and 151 age-matched typically developing (TD) controls were included in this study. The data from these subjects were assigned to training and validation datasets. An additional 20 ASD children and 25 TD controls were acquired, whose data were utilized in an independent test set. All subjects underwent cMRI and diffusion-weighted imaging examination of the brain. We developed a series of DL models to separate ASD from TD based on the cMRI and ADC data. The seven models used include five single-sequence models (SSMs), one dominant-sequence model (DSM), and one all-sequence model (ASM). To enhance the feature detection of the models, we embed an attention mechanism module.ResultsThe highest AUC (0.824 ~ 0.850) was achieved when applying the SSM based on either FLAIR or ADC to the validation and independent test sets. A DSM using the combination of FLAIR and ADC showed an improved AUC in the validation (0.873) and independent test sets (0.876). The ASM also showed better diagnostic value in the validation (AUC = 0.838) and independent test sets (AUC = 0.836) compared to the SSMs. Among the models with attention mechanism, the DSM achieved the highest diagnostic performance with an AUC, accuracy, sensitivity, and specificity of 0.898, 84.4%, 85.0%, and 84.0% respectively.ConclusionsThis study established the potential of DL models to distinguish ASD cases from TD controls based on cMRI and ADC images.Key Points• Deep learning models based on conventional MRI and ADC can be used to diagnose ASD.• The model (DSM) based on the FLAIR and ADC sequence achieved the best diagnostic performance with an AUC of 0.836 in the independent test sets.• The attention mechanism further improved the diagnostic performance of the models.
Author Xu, Li
Wang, Jiehuan
Wang, Xiaoqiang
Tan, Weixiong
Yang, Yunjun
Guo, Xiang
Yu, Hao
Chen, Yueqin
Liu, Wenjing
Li, Hengyan
Wu, Jiangfen
Dong, Mengxing
Chen, Weijian
Author_xml – sequence: 1
  givenname: Xiang
  surname: Guo
  fullname: Guo, Xiang
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 2
  givenname: Jiehuan
  surname: Wang
  fullname: Wang, Jiehuan
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 3
  givenname: Xiaoqiang
  surname: Wang
  fullname: Wang, Xiaoqiang
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 4
  givenname: Wenjing
  surname: Liu
  fullname: Liu, Wenjing
  organization: Children Rehabilitation Center, the Affiliated Hospital of Jining Medical University
– sequence: 5
  givenname: Hao
  surname: Yu
  fullname: Yu, Hao
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 6
  givenname: Li
  surname: Xu
  fullname: Xu, Li
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 7
  givenname: Hengyan
  surname: Li
  fullname: Li, Hengyan
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
– sequence: 8
  givenname: Jiangfen
  surname: Wu
  fullname: Wu, Jiangfen
  organization: Infervision
– sequence: 9
  givenname: Mengxing
  surname: Dong
  fullname: Dong, Mengxing
  organization: Infervision
– sequence: 10
  givenname: Weixiong
  surname: Tan
  fullname: Tan, Weixiong
  organization: Infervision
– sequence: 11
  givenname: Weijian
  surname: Chen
  fullname: Chen, Weijian
  organization: Department of Medical Imaging, the First Affiliated Hospital of Wenzhou Medical University
– sequence: 12
  givenname: Yunjun
  surname: Yang
  fullname: Yang, Yunjun
  organization: Department of Medical Imaging, the First Affiliated Hospital of Wenzhou Medical University
– sequence: 13
  givenname: Yueqin
  orcidid: 0000-0003-0858-5720
  surname: Chen
  fullname: Chen, Yueqin
  email: sdjnchenyueqin@163.com
  organization: Department of Radiology, the Affiliated Hospital of Jining Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34482428$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFDEYh4NU7Lb6BTxIwIuX0fzbmeQo1WqhpVD0HLLJm23KTDImGcFv4Mdudrda6KGnQHie_PK-vxN0FFMEhN5S8pESMnwqhHBOOsJoRyTjqhMv0IoKzjpKpDhCK6K47AalxDE6KeWOEKKoGF6hYy6EZILJFfr7JZhtTCXELTZLDWXCZQZb8zJhF0rKDjIOEdvbMLoMES971Kb4G2INKZoRX91cYBMdNvNsGlKb6H3jUtMSeB9s2N1uTAGHHcCMRzA57iPHbcqh3k7lNXrpzVjgzcN5in6ef_1x9r27vP52cfb5srN8WNc2jWW9IJ4AUwaE3DBPGTgrqfLeOuJ7Zi0I76SggnHm_OCVNWs--MGxfuCn6MPh3TmnXwuUqqdQLIyjiZCWotm6Vz2V_Vo09P0T9C4tuU3cqJ5xqiShvFHvHqhlM4HTcw6TyX_0vx03gB0Am1MpGfx_hBK9K1IfitStSL0vUu-y5RPJhmp2C6_ZhPF5lR_U0nLiFvLjt5-x7gElnbQ9
CitedBy_id crossref_primary_10_1038_s41398_024_03024_5
crossref_primary_10_13005_bpj_2819
crossref_primary_10_3390_math12111648
crossref_primary_10_1007_s00521_023_09031_9
crossref_primary_10_3389_fninf_2022_949926
crossref_primary_10_1109_ACCESS_2024_3441248
crossref_primary_10_3390_app13042302
crossref_primary_10_1016_j_displa_2023_102583
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_1055_a_1755_7539
Cites_doi 10.1007/s00330-020-07267-w
10.1016/S2214-109X(18)30309-7
10.1093/cercor/bhp278
10.1038/s41467-019-13005-8
10.1542/peds.2014-3667B
10.1038/gim.2013.32
10.1093/brain/awu083
10.1007/s13760-014-0384-x
10.1371/journal.pone.0004415
10.1038/nature21369
10.1109/CVPR.2016.90
10.1016/j.brainresbull.2010.12.002
10.3109/08039488.2012.748824
10.1016/j.neuroimage.2007.04.060
10.1093/brain/awu070
10.1093/jnen/nlx003
10.1212/WNL.0b013e3182104347
10.3389/fnins.2017.00460
10.1007/s10278-018-0093-8
10.1002/jmri.26693
10.1007/s10803-006-0314-8
10.1093/cercor/bhr062
10.1007/s10278-019-00196-1
10.1016/j.biopsych.2006.09.040
10.1093/cercor/bhn031
10.1016/j.braindev.2013.01.003
10.1007/s00247-006-0142-1
10.1007/s00247-005-0033-x
10.1093/brain/awx131
10.1186/s13229-018-0245-1
10.1146/annurev-publhealth-031816-044318
10.1044/0161-1461(2003/015)
10.1080/136820310000104830
10.1002/hbm.22188
10.2196/15767
10.1016/j.neuroimage.2006.08.032
10.1002/hbm.24423
10.1109/ICCV.2015.510
10.1016/S1474-4422(15)00050-2
10.15585/mmwr.ss6904a1
10.1002/hbm.24586
10.1002/aur.2239
ContentType Journal Article
Copyright European Society of Radiology 2021
2021. European Society of Radiology.
European Society of Radiology 2021.
Copyright_xml – notice: European Society of Radiology 2021
– notice: 2021. European Society of Radiology.
– notice: European Society of Radiology 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00330-021-08239-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 770
ExternalDocumentID 34482428
10_1007_s00330_021_08239_4
Genre Journal Article
GrantInformation_xml – fundername: Shandong Provincial Development Program of Medical Science and Technology
  grantid: 2016WS0185
– fundername: Shandong Province Graduate Education Quality Improvement Project
  grantid: SDYKC19213
– fundername: Jining Key Research and Development Program
  grantid: 2017SMNS012
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-79c2640f0e29ae48b2f12edc819ffcd0f62cce4fd8414232df7f9ca537f7d2673
IEDL.DBID 7X7
ISSN 0938-7994
1432-1084
IngestDate Thu Jul 10 18:44:56 EDT 2025
Fri Jul 25 18:58:31 EDT 2025
Wed Feb 19 02:27:29 EST 2025
Tue Jul 01 03:08:27 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:46:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Computational neural networks
Magnetic resonance imaging
Autism spectrum disorder
Language English
License 2021. European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-79c2640f0e29ae48b2f12edc819ffcd0f62cce4fd8414232df7f9ca537f7d2673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0858-5720
PMID 34482428
PQID 2623198013
PQPubID 54162
PageCount 10
ParticipantIDs proquest_miscellaneous_2569618654
proquest_journals_2623198013
pubmed_primary_34482428
crossref_primary_10_1007_s00330_021_08239_4
crossref_citationtrail_10_1007_s00330_021_08239_4
springer_journals_10_1007_s00330_021_08239_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lyall, Croen, Daniels (CR3) 2017; 38
Alexander, Lee, Lazar (CR35) 2007; 34
Schaefer, Mendelsohn (CR20) 2013; 15
Xu, Wang, Xu (CR41) 2020; 13
Boddaert, Zilbovicius, Philipe (CR12) 2009; 4
Hazlett, Gu, Munsell (CR25) 2017; 542
Woods, Wetherby (CR5) 2003; 34
Nebel, Joel, Muschelli (CR27) 2014; 35
Guo, Dominick, Minai, Li, Erickson, Lu (CR24) 2017; 11
Akhavan Aghdam, Sharifi (CR22) 2018; 31
Zielinski, Prigge, Nielsen (CR34) 2014; 137
Ben Bashat, Kronfeld-Duenias, Zachor (CR19) 2007; 37
CR31
Ajay, Sundaram, Lalitha (CR38) 2010; 20
CR30
(CR1) 2018; 6
Barber, Srinivasan, Joel, Caffo, Pekar, Mostofsky (CR26) 2012; 22
Sujit, Coronado, Kamali, Narayana, Gabr (CR32) 2019; 50
Aghdam, Sharifi (CR36) 2019; 32
Jurkiewicz, Jozwiak, Bekiesinska-Figatowska, Pakula-Kosciesza, Walecki (CR40) 2006; 36
Hau, Aljawad, Baggett, Fishman, Carper, Müller (CR47) 2019; 40
Maenner, Shaw, Baio (CR2) 2020; 69
Tang, Xu, Liu (CR13) 2020
Sundaram, Kumar, Makki, Behen, Chugani, Chugani (CR37) 2008; 18
Charman, Baron-Cohen, Swettenham, Baird, Drew, Cox (CR4) 2003; 38
Sui, Donaldson, Miles, Babb, Castellanos, Lazar (CR44) 2018; 9
Zwaigenbaum, Bauman, Choueiri (CR7) 2015; 136
Mengotti, D’Agostini, Terlevic (CR18) 2011; 84
Shukla, Keehn, Lincoln, Müller (CR43) 2010; 49
CR6
Numis, Major, Montenegro, Muzykewicz, Pulsifer, Thiele (CR16) 2011; 76
Adorjan, Ahmed, Feher (CR45) 2017; 140
CR29
Nylander, Holmqvist, Gustafson, Gillberg (CR8) 2013; 67
CR28
Pinto Gama, da Rocha, Braga (CR39) 2006; 36
Zeglam, Al-Ogab, Al-Shaftery (CR11) 2015; 115
Postema, van Rooij, Anagnostou (CR42) 2019; 10
Langen, Durston, Staal, Palmen, van Engeland (CR46) 2007; 62
Mandell, Ittenbach, Levy, Pinto-Martin (CR9) 2007; 37
Ecker, Bookheimer, Murphy (CR10) 2015; 14
Abdel Razek, Mazroa, Baz (CR17) 2014; 36
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (CR33) 2018; 17
Chen, Chen, Yuan (CR23) 2020; 8
Paul, Corsello, Kennedy, Adolphs (CR15) 2014; 137
Wegiel, Flory, Kaczmarski (CR14) 2017; 76
Pinaya, Mechelli, Sato (CR21) 2019; 40
SK Sundaram (8239_CR37) 2008; 18
LK Paul (8239_CR15) 2014; 137
AS Heinsfeld (8239_CR33) 2018; 17
I Adorjan (8239_CR45) 2017; 140
8239_CR6
S Tang (8239_CR13) 2020
MA Aghdam (8239_CR36) 2019; 32
DS Mandell (8239_CR9) 2007; 37
E Jurkiewicz (8239_CR40) 2006; 36
K Ajay (8239_CR38) 2010; 20
C Ecker (8239_CR10) 2015; 14
T Chen (8239_CR23) 2020; 8
L Zwaigenbaum (8239_CR7) 2015; 136
AL Numis (8239_CR16) 2011; 76
J Wegiel (8239_CR14) 2017; 76
X Guo (8239_CR24) 2017; 11
MB Nebel (8239_CR27) 2014; 35
MJ Maenner (8239_CR2) 2020; 69
8239_CR29
T Charman (8239_CR4) 2003; 38
AD Barber (8239_CR26) 2012; 22
8239_CR28
Global Research on Developmental Disabilities Collaborators (8239_CR1) 2018; 6
BA Zielinski (8239_CR34) 2014; 137
L Nylander (8239_CR8) 2013; 67
P Mengotti (8239_CR18) 2011; 84
WHL Pinaya (8239_CR21) 2019; 40
GB Schaefer (8239_CR20) 2013; 15
8239_CR31
MC Postema (8239_CR42) 2019; 10
8239_CR30
M Langen (8239_CR46) 2007; 62
K Lyall (8239_CR3) 2017; 38
J Hau (8239_CR47) 2019; 40
HC Hazlett (8239_CR25) 2017; 542
AL Alexander (8239_CR35) 2007; 34
J Xu (8239_CR41) 2020; 13
N Boddaert (8239_CR12) 2009; 4
AM Zeglam (8239_CR11) 2015; 115
A Abdel Razek (8239_CR17) 2014; 36
D Ben Bashat (8239_CR19) 2007; 37
SJ Sujit (8239_CR32) 2019; 50
DK Shukla (8239_CR43) 2010; 49
M Akhavan Aghdam (8239_CR22) 2018; 31
YV Sui (8239_CR44) 2018; 9
JJ Woods (8239_CR5) 2003; 34
HP Pinto Gama (8239_CR39) 2006; 36
References_xml – volume: 15
  start-page: 399
  year: 2013
  end-page: 407
  ident: CR20
  article-title: Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions
  publication-title: Genet Med
– volume: 34
  start-page: 61
  year: 2007
  end-page: 73
  ident: CR35
  article-title: Diffusion tensor imaging of the corpus callosum in autism
  publication-title: Neuroimage
– volume: 38
  start-page: 265
  year: 2003
  end-page: 285
  ident: CR4
  article-title: Predicting language outcome in infants with autism and pervasive developmental disorder
  publication-title: Int J Lang Commun Disord
– volume: 35
  start-page: 567
  year: 2014
  end-page: 580
  ident: CR27
  article-title: Disruption of functional organization within the primary motor cortex in children with autism
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: e1100
  year: 2018
  end-page: e1121
  ident: CR1
  article-title: Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
  publication-title: Lancet Glob Health
– volume: 8
  start-page: e15767
  year: 2020
  ident: CR23
  article-title: The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study
  publication-title: JMIR Med Inform
– volume: 13
  start-page: 410
  year: 2020
  end-page: 422
  ident: CR41
  article-title: Specific functional connectivity patterns of middle temporal gyrus subregions in children and adults with autism spectrum disorder
  publication-title: Autism Res
– volume: 84
  start-page: 189
  year: 2011
  end-page: 195
  ident: CR18
  article-title: Altered white matter integrity and development in children with autism: a combined voxel-based morphometry and diffusion imaging study
  publication-title: Brain Res Bull
– volume: 31
  start-page: 895
  year: 2018
  end-page: 903
  ident: CR22
  article-title: Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network
  publication-title: J Digit Imaging
– ident: CR30
– volume: 37
  start-page: 1795
  year: 2007
  end-page: 1802
  ident: CR9
  article-title: Disparities in diagnoses received prior to a diagnosis of autism spectrum disorder
  publication-title: J Autism Dev Disord
– volume: 50
  start-page: 1260
  year: 2019
  end-page: 1267
  ident: CR32
  article-title: Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks
  publication-title: J Magn Reson Imaging
– volume: 137
  start-page: 1799
  year: 2014
  end-page: 1812
  ident: CR34
  article-title: Longitudinal changes in cortical thickness in autism and typical development
  publication-title: Brain
– volume: 36
  start-page: 119
  year: 2006
  end-page: 125
  ident: CR39
  article-title: Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis
  publication-title: Pediatr Radiol
– volume: 69
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR2
  article-title: Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2016
  publication-title: MMWR Surveill Summ
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: CR33
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: Sensors (Basel)
– volume: 34
  start-page: 180
  year: 2003
  end-page: 193
  ident: CR5
  article-title: Early identification of and intervention for infants and toddlers who are at risk for autism spectrum disorder
  publication-title: Lang Speech Hear Serv Sch
– volume: 18
  start-page: 2659
  year: 2008
  end-page: 2665
  ident: CR37
  article-title: Diffusion tensor imaging of frontal lobe in autism spectrum disorder
  publication-title: Cereb Cortex
– ident: CR6
– ident: CR29
– volume: 14
  start-page: 1121
  year: 2015
  end-page: 1134
  ident: CR10
  article-title: Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan
  publication-title: Lancet Neurol
– volume: 542
  start-page: 348
  year: 2017
  end-page: 351
  ident: CR25
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
– volume: 40
  start-page: 3153
  year: 2019
  end-page: 3164
  ident: CR47
  article-title: The cingulum and cingulate U-fibers in children and adolescents with autism spectrum disorders
  publication-title: Hum Brain Mapp
– volume: 11
  start-page: 460
  year: 2017
  ident: CR24
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Front Neurosci
– volume: 67
  start-page: 344
  year: 2013
  end-page: 350
  ident: CR8
  article-title: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in adult psychiatry. A 20-year register study
  publication-title: Nord J Psychiatry
– volume: 137
  start-page: 1813
  year: 2014
  end-page: 1829
  ident: CR15
  article-title: Agenesis of the corpus callosum and autism: a comprehensive comparison
  publication-title: Brain
– volume: 136
  start-page: S1
  issue: Suppl 1
  year: 2015
  end-page: 9
  ident: CR7
  article-title: Early identification and interventions for autism spectrum disorder: executive summary
  publication-title: Pediatrics
– volume: 38
  start-page: 81
  year: 2017
  end-page: 102
  ident: CR3
  article-title: The changing epidemiology of autism spectrum disorders
  publication-title: Annu Rev Public Health
– volume: 37
  start-page: 40
  year: 2007
  end-page: 47
  ident: CR19
  article-title: Accelerated maturation of white matter in young children with autism: a high b value DWI study
  publication-title: Neuroimage
– volume: 140
  start-page: 2028
  year: 2017
  end-page: 2040
  ident: CR45
  article-title: Calretinin interneuron density in the caudate nucleus is lower in autism spectrum disorder
  publication-title: Brain
– volume: 22
  start-page: 51
  year: 2012
  end-page: 59
  ident: CR26
  article-title: Motor “dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children
  publication-title: Cereb Cortex
– volume: 9
  start-page: 62
  year: 2018
  ident: CR44
  article-title: Diffusional kurtosis imaging of the corpus callosum in autism
  publication-title: Mol Autism
– volume: 36
  start-page: 498
  year: 2006
  end-page: 501
  ident: CR40
  article-title: Cyst-like cortical tubers in patients with tuberous sclerosis complex: MR imaging with the FLAIR sequence
  publication-title: Pediatr Radiol
– volume: 10
  start-page: 4958
  year: 2019
  ident: CR42
  article-title: Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets
  publication-title: Nat Commun
– volume: 4
  start-page: e4415
  year: 2009
  ident: CR12
  article-title: MRI findings in 77 children with non-syndromic autistic disorder
  publication-title: PLoS One
– ident: CR31
– volume: 76
  start-page: 225
  year: 2017
  end-page: 237
  ident: CR14
  article-title: Partial agenesis and hypoplasia of the corpus callosum in idiopathic autism
  publication-title: J Neuropathol Exp Neurol
– volume: 76
  start-page: 981
  year: 2011
  end-page: 987
  ident: CR16
  article-title: Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex
  publication-title: Neurology
– volume: 49
  start-page: 1278.e1261
  issue: 1269–1278
  year: 2010
  end-page: 1262
  ident: CR43
  article-title: White matter compromise of callosal and subcortical fiber tracts in children with autism spectrum disorder: a diffusion tensor imaging study
  publication-title: J Am Acad Child Adolesc Psychiatry
– volume: 40
  start-page: 944
  year: 2019
  end-page: 954
  ident: CR21
  article-title: Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: a large-scale multi-sample study
  publication-title: Hum Brain Mapp
– year: 2020
  ident: CR13
  article-title: Quantitative susceptibility mapping shows lower brain iron content in children with autism
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07267-w
– volume: 115
  start-page: 351
  year: 2015
  end-page: 354
  ident: CR11
  article-title: MRI or not to MRI! Should brain MRI be a routine investigation in children with autistic spectrum disorders?
  publication-title: Acta Neurol Belg
– ident: CR28
– volume: 20
  start-page: 2103
  year: 2010
  end-page: 13
  ident: CR38
  article-title: Alterations in frontal lobe tracts and corpus callosum in young children with autism spectrum disorder
  publication-title: Cereb Cortex
– volume: 36
  start-page: 28
  year: 2014
  end-page: 34
  ident: CR17
  article-title: Assessment of white matter integrity of autistic preschool children with diffusion weighted MR imaging
  publication-title: Brain Dev
– volume: 32
  start-page: 899
  year: 2019
  end-page: 918
  ident: CR36
  article-title: Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks
  publication-title: J Digit Imaging
– volume: 62
  start-page: 262
  year: 2007
  end-page: 266
  ident: CR46
  article-title: Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism
  publication-title: Biol Psychiatry
– volume: 6
  start-page: e1100
  year: 2018
  ident: 8239_CR1
  publication-title: Lancet Glob Health
  doi: 10.1016/S2214-109X(18)30309-7
– ident: 8239_CR28
– volume: 20
  start-page: 2103
  year: 2010
  ident: 8239_CR38
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhp278
– volume: 10
  start-page: 4958
  year: 2019
  ident: 8239_CR42
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13005-8
– volume: 136
  start-page: S1
  issue: Suppl 1
  year: 2015
  ident: 8239_CR7
  publication-title: Pediatrics
  doi: 10.1542/peds.2014-3667B
– volume: 15
  start-page: 399
  year: 2013
  ident: 8239_CR20
  publication-title: Genet Med
  doi: 10.1038/gim.2013.32
– volume: 137
  start-page: 1799
  year: 2014
  ident: 8239_CR34
  publication-title: Brain
  doi: 10.1093/brain/awu083
– volume: 115
  start-page: 351
  year: 2015
  ident: 8239_CR11
  publication-title: Acta Neurol Belg
  doi: 10.1007/s13760-014-0384-x
– volume: 4
  start-page: e4415
  year: 2009
  ident: 8239_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004415
– volume: 542
  start-page: 348
  year: 2017
  ident: 8239_CR25
  publication-title: Nature
  doi: 10.1038/nature21369
– ident: 8239_CR30
  doi: 10.1109/CVPR.2016.90
– volume: 84
  start-page: 189
  year: 2011
  ident: 8239_CR18
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2010.12.002
– volume: 67
  start-page: 344
  year: 2013
  ident: 8239_CR8
  publication-title: Nord J Psychiatry
  doi: 10.3109/08039488.2012.748824
– volume: 37
  start-page: 40
  year: 2007
  ident: 8239_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.04.060
– volume: 137
  start-page: 1813
  year: 2014
  ident: 8239_CR15
  publication-title: Brain
  doi: 10.1093/brain/awu070
– volume: 76
  start-page: 225
  year: 2017
  ident: 8239_CR14
  publication-title: J Neuropathol Exp Neurol
  doi: 10.1093/jnen/nlx003
– volume: 76
  start-page: 981
  year: 2011
  ident: 8239_CR16
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182104347
– volume: 17
  start-page: 16
  year: 2018
  ident: 8239_CR33
  publication-title: Sensors (Basel)
– volume: 11
  start-page: 460
  year: 2017
  ident: 8239_CR24
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00460
– volume: 31
  start-page: 895
  year: 2018
  ident: 8239_CR22
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0093-8
– volume: 50
  start-page: 1260
  year: 2019
  ident: 8239_CR32
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.26693
– volume: 37
  start-page: 1795
  year: 2007
  ident: 8239_CR9
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-006-0314-8
– volume: 22
  start-page: 51
  year: 2012
  ident: 8239_CR26
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr062
– volume: 32
  start-page: 899
  year: 2019
  ident: 8239_CR36
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00196-1
– volume: 62
  start-page: 262
  year: 2007
  ident: 8239_CR46
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.09.040
– volume: 18
  start-page: 2659
  year: 2008
  ident: 8239_CR37
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn031
– volume: 36
  start-page: 28
  year: 2014
  ident: 8239_CR17
  publication-title: Brain Dev
  doi: 10.1016/j.braindev.2013.01.003
– volume: 36
  start-page: 498
  year: 2006
  ident: 8239_CR40
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-006-0142-1
– volume: 36
  start-page: 119
  year: 2006
  ident: 8239_CR39
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-005-0033-x
– volume: 140
  start-page: 2028
  year: 2017
  ident: 8239_CR45
  publication-title: Brain
  doi: 10.1093/brain/awx131
– volume: 9
  start-page: 62
  year: 2018
  ident: 8239_CR44
  publication-title: Mol Autism
  doi: 10.1186/s13229-018-0245-1
– ident: 8239_CR31
– volume: 38
  start-page: 81
  year: 2017
  ident: 8239_CR3
  publication-title: Annu Rev Public Health
  doi: 10.1146/annurev-publhealth-031816-044318
– year: 2020
  ident: 8239_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07267-w
– volume: 34
  start-page: 180
  year: 2003
  ident: 8239_CR5
  publication-title: Lang Speech Hear Serv Sch
  doi: 10.1044/0161-1461(2003/015)
– volume: 38
  start-page: 265
  year: 2003
  ident: 8239_CR4
  publication-title: Int J Lang Commun Disord
  doi: 10.1080/136820310000104830
– volume: 35
  start-page: 567
  year: 2014
  ident: 8239_CR27
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22188
– volume: 49
  start-page: 1278.e1261
  issue: 1269–1278
  year: 2010
  ident: 8239_CR43
  publication-title: J Am Acad Child Adolesc Psychiatry
– volume: 8
  start-page: e15767
  year: 2020
  ident: 8239_CR23
  publication-title: JMIR Med Inform
  doi: 10.2196/15767
– volume: 34
  start-page: 61
  year: 2007
  ident: 8239_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.032
– volume: 40
  start-page: 944
  year: 2019
  ident: 8239_CR21
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24423
– ident: 8239_CR29
  doi: 10.1109/ICCV.2015.510
– ident: 8239_CR6
– volume: 14
  start-page: 1121
  year: 2015
  ident: 8239_CR10
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)00050-2
– volume: 69
  start-page: 1
  year: 2020
  ident: 8239_CR2
  publication-title: MMWR Surveill Summ
  doi: 10.15585/mmwr.ss6904a1
– volume: 40
  start-page: 3153
  year: 2019
  ident: 8239_CR47
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24586
– volume: 13
  start-page: 410
  year: 2020
  ident: 8239_CR41
  publication-title: Autism Res
  doi: 10.1002/aur.2239
SSID ssj0009147
Score 2.4481382
Snippet Objective To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent...
To develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent diffusion...
ObjectiveTo develop and validate deep learning (DL) methods for diagnosing autism spectrum disorder (ASD) based on conventional MRI (cMRI) and apparent...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 761
SubjectTerms Algorithms
Autism
Autism Spectrum Disorder - diagnostic imaging
Child
Children
Data acquisition
Deep Learning
Diagnostic Radiology
Diagnostic systems
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
Humans
Imaging
Imaging Informatics and Artificial Intelligence
Internal Medicine
Interventional Radiology
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Neuroimaging
Neuroradiology
Radiology
Test sets
Ultrasound
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QXwR71anRPBNC22aXvI41DGF-SAO9lbSJtHB1o11-w_-bE_StFOmgm-lPU1Kz0nPl57Lh9B1CDrWtTxuQqXn0kBELhdwJBnLqAIfmxluwP5z1BvQp2E4tEVhZZ3tXockzZe6KXbTtGOeq1MKdHSIuXQTbYV67w5WPCCdVatd39CKwVY9cWPGqC2V-XmM7-5oDWOuxUeN2-nuoV2LF3GnUvA-2pDFAdru24j4Ifq4r3Ll4GbMwYjKCTbFk_PlBAvbWROPClwXbeOlEf2abI77L4-YFwLzmU5HLxZYs6Ys9W80kJOmx4Q-qx2ewELKGbZcEzDl-G06Hy3eJ-URGnQfXu96rmVXcPMgDhfwanIAQ57yJGFc0iQjyidS5AARlMqFpyKS55IqkVBfR3OFihXLeRjEKhYkioNj1CqmhTxF2IsVl3EmgsgDOBOQjAGQ8SMG0AXQWcgd5NcvOc1t63HNgDFOm6bJRjEpKCY1ikmpg26ae2ZV440_pdu17lK7CMuUALTzGbjgwEFXzWVYPjomwgs5XYJMGGnOmyiEIU4qnTfTBbB1BQSTOOi2NoLV4L8_y9n_xM_RDtElFSYTvI1aYCDyAoDOIrs0dv0JkerzUA
  priority: 102
  providerName: Springer Nature
Title Diagnosing autism spectrum disorder in children using conventional MRI and apparent diffusion coefficient based deep learning algorithms
URI https://link.springer.com/article/10.1007/s00330-021-08239-4
https://www.ncbi.nlm.nih.gov/pubmed/34482428
https://www.proquest.com/docview/2623198013
https://www.proquest.com/docview/2569618654
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BroS4IN4UlpWRuIFF4jhxfEIF2l1AXaEVlcopcvxYkLZpoe1_4Gcz4zotaMVekihxnMgzyXz2PD6AlyXKmHJ5eC19xmXhKm4cHnmtWxnQxraRG3ByVp1O5adZOUsLbqsUVtn_E-OP2i0srZG_EWincYKMiOXt8icn1ijyriYKjZtwSKXLKKRLzdS-6G4eCcZw0l5zpbVMSTMxdY5IzDJOAQrka9Jc_muYrqDNK57SaIDGd-FOQo5suBX1Pbjhu_twa5J84w_g94dt1BzezAyq02rOYhrlr82cuVRjk_3oWJ--zTax6d9h52xy_pGZzjGzpMD0bs2IP2VDC2rYzsdqE3SWTJ9jzvslS6wT-MjLCxyu9ff56iFMx6Ov70954lngtlDlGofGIizKQuaFNl7WrQi58M4iWAjBuixUwlovg6tlTn5dF1TQ1pSFCsqJShWP4KBbdP4JsEwF41XriipDYFOIViOkySuNIAZxWmkGkPeD3NhUhJy4MC6bXfnkKJgGBdNEwTRyAK929yy3JTiubX3Uy65Jn-Oq2SvPAF7sLuOHRN4R0_nFBtuUFbHfVCV28Xgr893jCpzEIpapB_C6V4J95_9_l6fXv8szuC0omSLGgB_BASqEf44QZ90eRz3GbT0-OYbD4cm3zyPcvxudfTnHs1Mx_AO8tfts
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQwJeEHcKA4wET2AtcZw4fkAIMUrL1j2gTdpbcHwBpDUttBXiH_Br-I2c4yQtaGJve6tax4n6Hft8zrl8AM9yxJhqeXgpfcJl5gpuHH7yWtcyoI-tozbg5LAYHcsPJ_nJFvzua2EorbLfE-NG7WaW3pHvCvTTeEBGxvJ6_o2TahRFV3sJjdYs9v3PH3hkW7wa7yG-z4UYvjt6O-KdqgC3mcqXXGmLJCAJiRfaeFnWIqTCO4uuMQTrklAIa70MrpQpRTFdUEFbk2cqKCcKleG8l-CyzDJNK6ocvt80-U2joFmicRNRWsuuSCeW6pFoWsIpIYJiW5rLfx3hGXZ7JjIbHd7wBlzvmCp705rWTdjyzS24Muli8bfh116bpYcXM4Pmu5iyWLb5fTVlruvpyb42rC8XZ6s49O80dzb5OGamcczMKRG-WTLSa1nRCzwc52N3C_qWXK1jzvs561Qu8JannxGe5Zfp4g4cXwgCd2G7mTX-PrBEBeNV7bIiQSKViVojhUoLjaQJeWFuBpD2f3Jlu6bnpL1xWq3bNUdgKgSmisBUcgAv1tfM25Yf547e6bGruuW_qDbGOoCn659x4VI0xjR-tsIxeUFqO0WOU9xrMV_fLsNDM3KncgAveyPYTP7_Z3lw_rM8gaujo8lBdTA-3H8I1wQVcsT88x3YRuPwj5BeLevH0aYZfLroRfQH-ds0cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ5p4QeNeNsBI8ATWEseJ64cJIUq1MjohxKS-BccXQFrTQlsh_gG_iV-3c5ykBU3sbW9V6zhRv2OfzzmXD-BZjhhTLQ_vS59wmbmCG4efvNaVDOhjq6gNOD4pjk7lu0k-2YI_XS0MpVV2e2LcqN3M0jvyA4F-Gg_IyFgOQpsW8WEwfDX_zklBiiKtnZxGYyLH_tdPPL4tDkcDxPq5EMO3n94c8VZhgNtM5UuutEVCkITEC2287FcipMI7i24yBOuSUAhrvQyuL1OKaLqggrYmz1RQThQqw3mvwXWV5SmtMTVRm4a_aRQ3SzRuKEpr2RbsxLI9ElBLOCVHUJxLc_mvU7zAdC9EaaPzG-7CzZa1steNmd2CLV_fhp1xG5e_A78HTcYeXswMmvJiymIJ54_VlLm2vyf7VrOudJyt4tC_U97Z-OOImdoxM6ek-HrJSLtlRS_zcJyPnS7oW3K7jjnv56xVvMBbnn1BeJZfp4u7cHolCNyD7XpW-wfAEhWMV5XLigRJVSYqjXQqLTQSKOSIuelB2v3JpW0boJMOx1m5bt0cgSkRmDICU8oevFhfM2_af1w6er_Drmy3gkW5MdwePF3_jIuYIjOm9rMVjskLUt4pcpzifoP5-nYZHqCRR_V78LIzgs3k_3-Wh5c_yxPYweVTvh-dHO_BDUE1HTEVfR-20Tb8I2Ray-pxNGkGn696DZ0DQEc4nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosing+autism+spectrum+disorder+in+children+using+conventional+MRI+and+apparent+diffusion+coefficient+based+deep+learning+algorithms&rft.jtitle=European+radiology&rft.au=Guo%2C+Xiang&rft.au=Wang%2C+Jiehuan&rft.au=Wang%2C+Xiaoqiang&rft.au=Liu%2C+Wenjing&rft.date=2022-02-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=32&rft.issue=2&rft.spage=761&rft.epage=770&rft_id=info:doi/10.1007%2Fs00330-021-08239-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_021_08239_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon