Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system

•A machine learning model for eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system are established.•The eutectics formation in the high entropy system is uncovered via data mining with machine learning.•A novel eutectic high entropy alloy design method with three steps is proposed. Eutectics in hig...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 182; pp. 278 - 286
Main Authors Wu, Qingfeng, Wang, Zhijun, Hu, Xiaobing, Zheng, Tao, Yang, Zhongsheng, He, Feng, Li, Junjie, Wang, Jincheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A machine learning model for eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system are established.•The eutectics formation in the high entropy system is uncovered via data mining with machine learning.•A novel eutectic high entropy alloy design method with three steps is proposed. Eutectics in high entropy alloys (HEAs) have shown excellent properties and promising applications. With empirical rules, various of eutectic high entropy alloys (EHEAs) have been proposed. The current design strategies shed light on the formation of eutectics in HEAs, but they are incapable of confirming multiple variables quantitatively in the selection of a specific system. In the present study, the eutectic formation in the multi-principal element systems is uncovered via data mining with machine learning (ML), where the critical elements and strongly associated elements were discovered. Taking the Al–Co–Cr–Fe–Ni system as an example, Al is confirmed to be the critical element for the eutectic formation and Cr is the strongly associated element with Al, Ni, Co, Fe and minor additions with comparably large solid solubility can be considered overall. With these understandings, a three-step approach can be summarized for designing EHEAs in a given system. Within the designed EHEAs, properties can be tested for optimization of application orientated design. The findings can not only accelerate the exploitation of EHEAs with better performance but also provide new ideas for designing compositionally complex alloys. [Display omitted]
AbstractList •A machine learning model for eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system are established.•The eutectics formation in the high entropy system is uncovered via data mining with machine learning.•A novel eutectic high entropy alloy design method with three steps is proposed. Eutectics in high entropy alloys (HEAs) have shown excellent properties and promising applications. With empirical rules, various of eutectic high entropy alloys (EHEAs) have been proposed. The current design strategies shed light on the formation of eutectics in HEAs, but they are incapable of confirming multiple variables quantitatively in the selection of a specific system. In the present study, the eutectic formation in the multi-principal element systems is uncovered via data mining with machine learning (ML), where the critical elements and strongly associated elements were discovered. Taking the Al–Co–Cr–Fe–Ni system as an example, Al is confirmed to be the critical element for the eutectic formation and Cr is the strongly associated element with Al, Ni, Co, Fe and minor additions with comparably large solid solubility can be considered overall. With these understandings, a three-step approach can be summarized for designing EHEAs in a given system. Within the designed EHEAs, properties can be tested for optimization of application orientated design. The findings can not only accelerate the exploitation of EHEAs with better performance but also provide new ideas for designing compositionally complex alloys. [Display omitted]
Author Li, Junjie
Wang, Zhijun
Yang, Zhongsheng
Wang, Jincheng
He, Feng
Wu, Qingfeng
Zheng, Tao
Hu, Xiaobing
Author_xml – sequence: 1
  givenname: Qingfeng
  surname: Wu
  fullname: Wu, Qingfeng
– sequence: 2
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
  email: zhjwang@nwpu.edu.cn
– sequence: 3
  givenname: Xiaobing
  surname: Hu
  fullname: Hu, Xiaobing
– sequence: 4
  givenname: Tao
  surname: Zheng
  fullname: Zheng, Tao
– sequence: 5
  givenname: Zhongsheng
  surname: Yang
  fullname: Yang, Zhongsheng
– sequence: 6
  givenname: Feng
  orcidid: 0000-0001-6838-3675
  surname: He
  fullname: He, Feng
– sequence: 7
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
– sequence: 8
  givenname: Jincheng
  surname: Wang
  fullname: Wang, Jincheng
  email: jchwang@nwpu.edu.cn
BookMark eNqFkEFOwzAQRS1UJNrCEZB8gQQ7jpNGLFBVUUCqYFPWkTuZNK4Sp7JNpe64AzfkJDi0KzbM4o81-n_keRMyMr1BQm45iznj2d0uVuBVp3ycMF6EWcxScUHGfJaLKEmlGIW3kEWUpTK9IhPndozxJE_ZmOC7gf6AVpst9Q1S_PAIXoOjFTq9NXRzpJ2CRhukLSprBqM2v955-_35tegHsUGWGORV00ZvG4rG235_pO7oPHbX5LJWrcObc5-S9fJxvXiOVm9PL4v5KgKRSx-FH6VZzphUgosM0hmrJLBkM1OsAs4AuApVCZZnUBd1BQUKyTJZ5MFWo5gSeVoLtnfOYl3ure6UPZaclQOqcleeUZUDqmEcUIXc_Z8caK-87sMRSrf_ph9OaQyXHTTa0oFGA1hpG1iWVa__2fADGSqPhw
CitedBy_id crossref_primary_10_1016_j_matdes_2021_109497
crossref_primary_10_1016_j_jallcom_2024_177087
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_apsusc_2024_160539
crossref_primary_10_1016_j_msea_2023_144725
crossref_primary_10_3390_s20061707
crossref_primary_10_1063_1_5144154
crossref_primary_10_2139_ssrn_4148218
crossref_primary_10_1016_j_matdes_2021_109777
crossref_primary_10_1002_adem_202200486
crossref_primary_10_1016_j_matdes_2021_109532
crossref_primary_10_1016_j_msea_2020_140634
crossref_primary_10_1016_j_jallcom_2023_169052
crossref_primary_10_1016_j_jallcom_2024_175987
crossref_primary_10_1016_j_matdes_2024_112785
crossref_primary_10_1016_j_scriptamat_2020_06_022
crossref_primary_10_1016_j_commatsci_2020_110244
crossref_primary_10_1007_s11661_021_06341_2
crossref_primary_10_1007_s12666_022_02765_5
crossref_primary_10_1016_j_intermet_2022_107476
crossref_primary_10_1016_j_jmst_2020_09_021
crossref_primary_10_1007_s41403_023_00442_7
crossref_primary_10_1016_j_matchar_2024_114122
crossref_primary_10_1016_j_intermet_2023_108170
crossref_primary_10_2139_ssrn_3994644
crossref_primary_10_1007_s11661_022_06831_x
crossref_primary_10_1038_s43246_024_00487_3
crossref_primary_10_1016_j_jallcom_2022_164338
crossref_primary_10_1016_j_jmst_2022_03_008
crossref_primary_10_2139_ssrn_3805157
crossref_primary_10_1016_j_jallcom_2022_165382
crossref_primary_10_1016_j_mser_2021_100645
crossref_primary_10_1038_s41524_023_01021_8
crossref_primary_10_1016_j_jmrt_2024_10_147
crossref_primary_10_1016_j_mtcomm_2023_107757
crossref_primary_10_1016_j_jmrt_2023_10_126
crossref_primary_10_1002_aenm_202201463
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_1016_j_corsci_2023_111457
crossref_primary_10_1038_s41578_021_00340_w
crossref_primary_10_1016_j_ijmecsci_2023_108148
crossref_primary_10_1016_j_matlet_2021_131340
crossref_primary_10_1016_j_msea_2024_147574
crossref_primary_10_1016_j_mtcomm_2022_103172
crossref_primary_10_1016_j_msea_2023_145136
crossref_primary_10_1007_s42864_021_00129_y
crossref_primary_10_1080_27660400_2024_2326305
crossref_primary_10_1016_j_scriptamat_2023_115502
crossref_primary_10_2139_ssrn_4181218
crossref_primary_10_1007_s12540_022_01338_x
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1016_j_matdes_2024_112929
crossref_primary_10_1016_j_jmrt_2022_10_101
crossref_primary_10_1007_s40195_021_01234_0
crossref_primary_10_1016_j_jmrt_2024_12_197
crossref_primary_10_1016_j_jallcom_2024_177823
crossref_primary_10_1016_j_jmst_2022_04_022
crossref_primary_10_1016_j_jmst_2024_09_006
crossref_primary_10_1016_j_msea_2022_144190
crossref_primary_10_1016_j_vacuum_2023_112835
crossref_primary_10_1016_j_jallcom_2023_173144
crossref_primary_10_1016_j_commatsci_2021_110381
crossref_primary_10_1016_j_ijmecsci_2022_107065
crossref_primary_10_1016_j_mtcomm_2024_110209
crossref_primary_10_1016_j_jma_2024_08_016
crossref_primary_10_1038_s41524_024_01385_5
crossref_primary_10_1016_j_jallcom_2025_179332
crossref_primary_10_1016_j_commatsci_2023_112089
crossref_primary_10_1016_j_jmst_2024_03_027
crossref_primary_10_1007_s10765_022_03035_8
crossref_primary_10_1016_j_jallcom_2022_166734
crossref_primary_10_1016_j_msea_2022_142856
crossref_primary_10_1016_j_commatsci_2023_112129
crossref_primary_10_1016_j_msea_2020_139420
crossref_primary_10_1016_j_mser_2023_100746
crossref_primary_10_1016_j_jallcom_2022_165400
crossref_primary_10_1007_s12540_020_00655_3
crossref_primary_10_1016_j_jallcom_2021_160295
crossref_primary_10_1016_j_jallcom_2022_168194
crossref_primary_10_1016_j_jallcom_2023_173278
crossref_primary_10_1007_s10853_024_10251_0
crossref_primary_10_1016_j_commatsci_2020_110135
crossref_primary_10_1016_j_jmst_2023_04_034
crossref_primary_10_1016_j_ijmecsci_2022_108026
crossref_primary_10_1016_j_msea_2021_142325
crossref_primary_10_1016_j_scriptamat_2024_116178
crossref_primary_10_1016_j_matdes_2022_111222
crossref_primary_10_1016_j_intermet_2024_108535
crossref_primary_10_1016_j_matchar_2021_111449
crossref_primary_10_1016_j_msea_2023_145217
crossref_primary_10_1016_j_jmrt_2024_03_014
crossref_primary_10_1002_adem_202300291
crossref_primary_10_1557_s43577_022_00284_8
crossref_primary_10_1016_j_matdes_2022_110724
crossref_primary_10_1007_s40195_024_01752_7
crossref_primary_10_1016_j_scriptamat_2022_114875
crossref_primary_10_2139_ssrn_4147567
crossref_primary_10_1007_s11661_022_06764_5
crossref_primary_10_1007_s42864_022_00169_y
crossref_primary_10_1016_j_mser_2024_100834
crossref_primary_10_1016_j_jmst_2021_08_015
crossref_primary_10_1002_mgea_87
crossref_primary_10_1063_5_0065303
crossref_primary_10_1007_s40195_022_01393_8
crossref_primary_10_1016_j_jmrt_2023_08_071
crossref_primary_10_1038_s41467_022_32444_4
crossref_primary_10_1016_j_commatsci_2021_110723
crossref_primary_10_1007_s42864_022_00175_0
crossref_primary_10_1016_j_jmst_2022_04_004
crossref_primary_10_1016_j_pmatsci_2021_100777
crossref_primary_10_1007_s10853_024_09752_9
crossref_primary_10_1002_adem_202301013
crossref_primary_10_1016_j_actamat_2022_118103
crossref_primary_10_1016_j_msea_2023_145741
crossref_primary_10_1016_j_matdes_2022_110795
crossref_primary_10_1016_j_jallcom_2023_169806
crossref_primary_10_1016_j_commatsci_2024_112925
crossref_primary_10_3390_met11091487
crossref_primary_10_1007_s12540_025_01918_7
crossref_primary_10_1016_j_jallcom_2022_164135
crossref_primary_10_1016_j_jmst_2023_10_057
crossref_primary_10_1016_j_msea_2023_144919
crossref_primary_10_1016_j_jmrt_2024_01_257
crossref_primary_10_1016_j_jwpe_2023_103805
crossref_primary_10_1038_s41586_022_04914_8
crossref_primary_10_3390_met12050756
crossref_primary_10_1016_j_actamat_2022_118512
crossref_primary_10_1016_j_actamat_2023_119427
crossref_primary_10_1002_adts_202100411
crossref_primary_10_1016_j_actamat_2022_118230
crossref_primary_10_1016_j_apsusc_2024_162093
crossref_primary_10_1016_j_matdes_2023_112111
crossref_primary_10_1016_j_ijplas_2022_103505
crossref_primary_10_1126_science_abf6986
crossref_primary_10_1007_s44210_024_00047_x
crossref_primary_10_1016_j_msea_2023_145957
crossref_primary_10_1016_j_commatsci_2023_112612
crossref_primary_10_1016_j_jmrt_2022_05_165
crossref_primary_10_1016_j_matchar_2023_113464
crossref_primary_10_1063_5_0061641
crossref_primary_10_1016_j_jallcom_2024_175849
crossref_primary_10_1016_j_mtcomm_2024_108833
crossref_primary_10_1016_j_mtcomm_2023_107102
crossref_primary_10_1016_j_commatsci_2021_110623
crossref_primary_10_1080_21663831_2024_2383352
crossref_primary_10_1016_j_jmrt_2024_06_059
crossref_primary_10_1016_j_jallcom_2024_174597
crossref_primary_10_1002_adem_202301673
crossref_primary_10_1016_j_addma_2024_104258
crossref_primary_10_1016_j_msea_2024_147469
crossref_primary_10_1016_j_actamat_2023_119179
crossref_primary_10_1016_j_msea_2023_145720
crossref_primary_10_1016_j_msea_2023_145443
crossref_primary_10_1016_j_jallcom_2023_171164
crossref_primary_10_12677_MS_2021_113024
crossref_primary_10_1016_j_mtcomm_2022_103919
crossref_primary_10_1007_s00339_022_06073_z
crossref_primary_10_1007_s42864_021_00092_8
crossref_primary_10_1016_j_chemolab_2022_104621
crossref_primary_10_1016_j_intermet_2023_108030
crossref_primary_10_1016_j_jallcom_2023_173190
crossref_primary_10_1016_j_jmst_2021_06_038
crossref_primary_10_1016_j_jallcom_2023_168975
crossref_primary_10_1016_j_scriptamat_2021_113952
crossref_primary_10_1016_j_jmrt_2024_05_257
crossref_primary_10_1016_j_matlet_2022_132902
crossref_primary_10_1016_j_ijplas_2024_104223
crossref_primary_10_1016_j_jmrt_2023_10_144
crossref_primary_10_3389_fmats_2020_00290
crossref_primary_10_1016_j_intermet_2022_107722
crossref_primary_10_1016_j_msea_2024_147594
crossref_primary_10_1007_s11661_021_06165_0
crossref_primary_10_1016_j_jmst_2022_05_017
crossref_primary_10_1016_j_jallcom_2024_175431
crossref_primary_10_1016_j_mtcomm_2023_107298
crossref_primary_10_1016_j_matlet_2024_136074
crossref_primary_10_1016_j_commatsci_2022_111185
Cites_doi 10.1016/j.matchar.2018.07.030
10.1016/j.jmmm.2014.07.023
10.1038/nature17981
10.1016/j.actamat.2017.07.041
10.1016/j.matdes.2017.06.007
10.1016/j.jallcom.2008.12.088
10.1007/s11431-017-9051-6
10.1007/BF03258828
10.1016/j.matdes.2018.01.057
10.1016/j.actamat.2015.08.076
10.1080/21663831.2016.1160451
10.1016/j.matlet.2016.01.096
10.1016/j.jallcom.2018.08.176
10.1126/science.aas8815
10.1038/srep06200
10.1103/PhysRevLett.113.107001
10.1016/j.msea.2016.08.048
10.1016/j.matlet.2019.06.067
10.1016/j.actamat.2018.08.002
10.1016/j.jallcom.2015.07.185
10.1016/j.jallcom.2015.09.153
10.1007/s00339-014-8964-4
10.1016/j.intermet.2017.09.001
10.1016/j.intermet.2009.01.012
10.1016/j.matchemphys.2018.09.044
10.1038/s41598-018-33330-0
10.1103/PhysRevB.73.104114
10.1038/s41598-018-19449-0
10.1016/j.matlet.2018.01.017
10.1007/s40843-017-9195-8
10.1016/j.intermet.2012.03.005
10.1016/j.msea.2013.08.005
10.1038/s41467-019-08460-2
10.1007/s11665-017-3096-6
10.1007/s11661-997-0066-x
10.1016/j.actamat.2017.10.058
10.1016/j.eml.2016.04.013
10.1016/j.actamat.2019.03.010
10.1016/j.intermet.2015.01.004
10.1007/s00339-019-2506-z
10.1038/nature17439
10.1016/j.actamat.2013.06.018
10.1038/s41586-018-0337-2
10.1016/j.actamat.2019.09.050
10.1002/adem.200300567
10.1016/j.actamat.2018.08.022
10.1016/j.matdes.2018.01.025
10.1016/j.actamat.2019.01.048
10.1016/j.actamat.2013.09.037
10.1016/j.actamat.2016.11.016
10.1007/s11669-018-0659-7
10.1016/j.commatsci.2018.09.003
10.1126/science.1254581
10.1063/1.3587228
10.1016/j.jallcom.2019.03.235
10.1038/s41598-018-21385-y
10.1016/j.actamat.2019.03.012
10.1016/j.jallcom.2018.07.336
ContentType Journal Article
Copyright 2019 Acta Materialia Inc.
Copyright_xml – notice: 2019 Acta Materialia Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.actamat.2019.10.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 286
ExternalDocumentID 10_1016_j_actamat_2019_10_043
S1359645419307050
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
TN5
XPP
ZMT
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
R2-
SEW
SSH
T9H
ZY4
ID FETCH-LOGICAL-c375t-740467005a3136c480d5c02b8a0dc10cc1aaaad3076cf9fdc9e35065975c0fe3
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Tue Jul 01 01:20:48 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Feb 23 02:41:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mechanical properties
Eutectic high entropy alloys
Alloy design
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-740467005a3136c480d5c02b8a0dc10cc1aaaad3076cf9fdc9e35065975c0fe3
ORCID 0000-0001-6838-3675
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_actamat_2019_10_043
crossref_citationtrail_10_1016_j_actamat_2019_10_043
elsevier_sciencedirect_doi_10_1016_j_actamat_2019_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jin, Zhou, Zhang, Du, Li (bib0036) 2018; 143
Li, Pradeep, Deng, Raabe, Tasan (bib0002) 2016; 534
Liu, He, Huang, Wang, Lu, Liu (bib0057) 2015; 60
Dong, Lu (bib0055) 2017; 27
Borkar, Chaudhary, Gwalani, Choudhuri, Mikler, Soni, Alam, Ramanujan, Banerjee (bib0050) 2017; 19
Lu, Dong, Guo, Jiang, Kang, Wang, Wen, Wang, Jie, Cao, Ruan, Li (bib0015) 2014; 4
Huang, Martin, Zhuang (bib0041) 2019; 169
X. Liu, J. Zhang, M. Eisenbach, Y. Wang, Machine Learning Modeling of High Entropy Alloy: The Role of Short-Range Order, arXiv
Ding, He, Yang (bib0033) 2017; 61
Zuo, Li, Ren, Zhang (bib0049) 2014; 371
Wang, Lu, Yu, Zhang (bib0054) 2018; 8
Wu, Wang, Zheng, Chen, Yang, Li, Kai, Wang (bib0026) 2019; 253
Jin, Zhou, Zhang, Du, Li (bib0024) 2018; 216
Jin, Bi, Zhang, Zhou, Du, Liang, Li (bib0025) 2019; 770
He, Liu, Wang, Wu, Liu, Nieh, Lu (bib0056) 2014; 62
Yang, Wang, Wu, Zheng, Zhao, Zhao, Chen (bib0027) 2019; 125
Baker, Munroe (bib0058) 1988; 40
Shi, Ren, Zheng, Ren, Hou, Peng, Hu, Gao, Zhong, Liaw (bib0031) 2019; 10
Jiang, Cao, Jie, Zhang, Lu, Wang, Li (bib0022) 2015; 649
Lazar (bib0059) 2006; 73
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0001) 2004; 6
Wei, Li, Schönecker, Jiang, Choi, Lee, Kim, Chiba, Kato (bib0010) 2019; 181
He, Wang, Ai, Li, Wang, Kai (bib0035) 2019; 221
Koželj, Vrtnik, Jelen, Jazbec, Jagličić, Maiti, Feuerbacher, Steurer, Dolinšek (bib0004) 2014; 113
He, Wang, Cheng, Wang, Li, Dang, Wang, Liu (bib0020) 2016; 656
Gao, Lu, Zhang, Liang, Wu, Sha, Liu, Zhao (bib0017) 2017; 141
Ward, O'Keeffe, Stevick, Jelbert, Aykol, Wolverton (bib0039) 2018; 159
Zhou, Zhou, Jin, Zhang, Du, Li (bib0008) 2018; 8
Zhang, Liaw, Zhang (bib0009) 2018; 61
He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib0012) 2016; 102
Li, Lu, Yong, Wang, Cao, Li (bib0021) 2015; 119
He, Wang, Han, Wu, Chen, Li, Wang, Liu, Kai (bib0051) 2018; 769
Guo, Ng, Lu, Liu (bib0052) 2011; 109
Raccuglia, Elbert, Adler, Falk, Wenny, Mollo, Zeller, Friedler, Schrier, Norquist (bib0038) 2016; 533
Chang, Fang, Bai, Xia, Zhang, Yu, Liu, Yin (bib0007) 2019; 790
Conduit, Jones, Stone, Conduit (bib0045) 2017; 131
Baker, Wu, Wang (bib0019) 2019; 147
Wang, Wang, Wang, Tsai, Lai, Yeh (bib0048) 2012; 26
Shun, Du (bib0011) 2009; 479
Wen, Zhang, Wang, Xue, Bai, Antonov, Dai, Lookman, Su (bib0042) 2019; 170
He, Chen, Han, Wu, Wang, Wei, Wei, Wang, Liu, Kai (bib0013) 2019; 167
Misra, Gibala (bib0047) 1997; 28
Bhattacharjee, Wani, Sheikh, Clark, Okawa, Guo, Bhattacharjee, Tsuji (bib0030) 2018; 8
Butler, Davies, Cartwright, Isayev, Walsh (bib0037) 2018; 559
Cassar, de Carvalho, Zanotto (bib0040) 2018; 159
Wu, Wang, He, Li, Wang (bib0014) 2018; 39
Wani, Bhattacharjee, Sheikh, Bhattacharjee, Guo, Tsuji (bib0028) 2016; 675
Lu, Jiang, Guo, Wang, Cao, Li (bib0032) 2017; 91
Chen, Qin, Zheng, Wang, Su, Chiu, Ding, Guo, Fu (bib0053) 2018; 144
Gludovatz, Hohenwarter, Catoor, Chang, George, Ritchie (bib0006) 2014; 345
2019.
Otto, Dlouhý, Somsen, Bei, Eggeler, George (bib0005) 2013; 61
Hu, Wang, Wang, Li, Wang, Dang, Gu (bib0044) 2018; 155
Giwa, Liaw, Dahmen, Greer (bib0046) 2016; 8
Lazar, Podloucky (bib0060) 2009; 17
Meng, Qiu, Baker (bib0018) 2013; 586
Dong, Gao, Lu, Wang, Li (bib0023) 2016; 169
Yang, Zhao, Tong, Jiao, Wei, Cai, Han, Chen, Hu, Kai, Lu, Liu, Liu (bib0003) 2018; 362
Jiang, Han, Gao, Lu, Cao, Gao, Hawk, Li (bib0034) 2018; 142
Wani, Bhattacharjee, Sheikh, Lu, Chatterjee, Bhattacharjee, Guo, Tsuji (bib0029) 2016; 4
Lu, Gao, Jiang, Chen, Wang, Jie, Kang, Zhang, Guo, Ruan, Zhao, Cao, Li (bib0016) 2017; 124
Guo (10.1016/j.actamat.2019.10.043_bib0052) 2011; 109
Hu (10.1016/j.actamat.2019.10.043_bib0044) 2018; 155
He (10.1016/j.actamat.2019.10.043_bib0013) 2019; 167
Borkar (10.1016/j.actamat.2019.10.043_bib0050) 2017; 19
Jin (10.1016/j.actamat.2019.10.043_bib0024) 2018; 216
Jin (10.1016/j.actamat.2019.10.043_bib0025) 2019; 770
Jiang (10.1016/j.actamat.2019.10.043_bib0022) 2015; 649
Dong (10.1016/j.actamat.2019.10.043_bib0023) 2016; 169
Yang (10.1016/j.actamat.2019.10.043_bib0027) 2019; 125
Wen (10.1016/j.actamat.2019.10.043_bib0042) 2019; 170
Shun (10.1016/j.actamat.2019.10.043_bib0011) 2009; 479
Chen (10.1016/j.actamat.2019.10.043_bib0053) 2018; 144
Conduit (10.1016/j.actamat.2019.10.043_bib0045) 2017; 131
Wang (10.1016/j.actamat.2019.10.043_bib0048) 2012; 26
Jiang (10.1016/j.actamat.2019.10.043_bib0034) 2018; 142
He (10.1016/j.actamat.2019.10.043_bib0012) 2016; 102
Giwa (10.1016/j.actamat.2019.10.043_bib0046) 2016; 8
Jin (10.1016/j.actamat.2019.10.043_bib0036) 2018; 143
Lazar (10.1016/j.actamat.2019.10.043_bib0060) 2009; 17
Meng (10.1016/j.actamat.2019.10.043_bib0018) 2013; 586
Li (10.1016/j.actamat.2019.10.043_bib0002) 2016; 534
Huang (10.1016/j.actamat.2019.10.043_bib0041) 2019; 169
Zuo (10.1016/j.actamat.2019.10.043_bib0049) 2014; 371
Wani (10.1016/j.actamat.2019.10.043_bib0028) 2016; 675
Yeh (10.1016/j.actamat.2019.10.043_bib0001) 2004; 6
Lu (10.1016/j.actamat.2019.10.043_bib0016) 2017; 124
He (10.1016/j.actamat.2019.10.043_bib0051) 2018; 769
Lu (10.1016/j.actamat.2019.10.043_bib0032) 2017; 91
Cassar (10.1016/j.actamat.2019.10.043_bib0040) 2018; 159
Zhou (10.1016/j.actamat.2019.10.043_bib0008) 2018; 8
10.1016/j.actamat.2019.10.043_bib0043
Liu (10.1016/j.actamat.2019.10.043_bib0057) 2015; 60
Ding (10.1016/j.actamat.2019.10.043_bib0033) 2017; 61
Wu (10.1016/j.actamat.2019.10.043_bib0014) 2018; 39
Li (10.1016/j.actamat.2019.10.043_bib0021) 2015; 119
Gao (10.1016/j.actamat.2019.10.043_bib0017) 2017; 141
Ward (10.1016/j.actamat.2019.10.043_bib0039) 2018; 159
Wei (10.1016/j.actamat.2019.10.043_bib0010) 2019; 181
Zhang (10.1016/j.actamat.2019.10.043_bib0009) 2018; 61
Raccuglia (10.1016/j.actamat.2019.10.043_bib0038) 2016; 533
Wu (10.1016/j.actamat.2019.10.043_bib0026) 2019; 253
Dong (10.1016/j.actamat.2019.10.043_bib0055) 2017; 27
Wang (10.1016/j.actamat.2019.10.043_bib0054) 2018; 8
Lu (10.1016/j.actamat.2019.10.043_bib0015) 2014; 4
He (10.1016/j.actamat.2019.10.043_bib0020) 2016; 656
Otto (10.1016/j.actamat.2019.10.043_bib0005) 2013; 61
Shi (10.1016/j.actamat.2019.10.043_bib0031) 2019; 10
Wani (10.1016/j.actamat.2019.10.043_bib0029) 2016; 4
Misra (10.1016/j.actamat.2019.10.043_bib0047) 1997; 28
Butler (10.1016/j.actamat.2019.10.043_bib0037) 2018; 559
Yang (10.1016/j.actamat.2019.10.043_bib0003) 2018; 362
He (10.1016/j.actamat.2019.10.043_bib0056) 2014; 62
Chang (10.1016/j.actamat.2019.10.043_bib0007) 2019; 790
Baker (10.1016/j.actamat.2019.10.043_bib0058) 1988; 40
Koželj (10.1016/j.actamat.2019.10.043_bib0004) 2014; 113
Baker (10.1016/j.actamat.2019.10.043_bib0019) 2019; 147
Bhattacharjee (10.1016/j.actamat.2019.10.043_bib0030) 2018; 8
He (10.1016/j.actamat.2019.10.043_bib0035) 2019; 221
Lazar (10.1016/j.actamat.2019.10.043_bib0059) 2006; 73
Gludovatz (10.1016/j.actamat.2019.10.043_bib0006) 2014; 345
References_xml – volume: 10
  start-page: 489
  year: 2019
  ident: bib0031
  article-title: Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae
  publication-title: Nat. Commun.
– volume: 534
  start-page: 227
  year: 2016
  end-page: 230
  ident: bib0002
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
– volume: 649
  start-page: 585
  year: 2015
  end-page: 590
  ident: bib0022
  article-title: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNi
  publication-title: J. Alloys Compd.
– volume: 109
  year: 2011
  ident: bib0052
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
– volume: 124
  start-page: 143
  year: 2017
  end-page: 150
  ident: bib0016
  article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range
  publication-title: Acta Mater.
– volume: 8
  start-page: 14910
  year: 2018
  ident: bib0054
  article-title: The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy alcocrfeni
  publication-title: Sci. Rep.
– volume: 8
  start-page: 3276
  year: 2018
  ident: bib0030
  article-title: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi
  publication-title: Sci. Rep.
– volume: 91
  start-page: 124
  year: 2017
  end-page: 128
  ident: bib0032
  article-title: A new strategy to design eutectic high-entropy alloys using mixing enthalpy
  publication-title: Intermetallics
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib0001
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 253
  start-page: 268
  year: 2019
  end-page: 271
  ident: bib0026
  article-title: A casting eutectic high entropy alloy with superior strength-ductility combination
  publication-title: Mater. Lett.
– volume: 125
  start-page: 208
  year: 2019
  ident: bib0027
  article-title: Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition
  publication-title: Appl. Phys. A
– volume: 61
  start-page: 159
  year: 2017
  end-page: 167
  ident: bib0033
  article-title: Exploring the design of eutectic or near-eutectic multicomponent alloys: from binary to high entropy alloys
  publication-title: Sci. China Technol. Sci.
– volume: 8
  start-page: 220
  year: 2016
  end-page: 228
  ident: bib0046
  article-title: Microstructure and small-scale size effects in plasticity of individual phases of Al
  publication-title: Extrem. Mech. Lett.
– volume: 770
  start-page: 655
  year: 2019
  end-page: 661
  ident: bib0025
  article-title: A new CrFeNi
  publication-title: J. Alloys Compd.
– volume: 170
  start-page: 109
  year: 2019
  end-page: 117
  ident: bib0042
  article-title: Machine learning assisted design of high entropy alloys with desired property
  publication-title: Acta Mater.
– reference: 2019.
– volume: 769
  start-page: 490
  year: 2018
  end-page: 502
  ident: bib0051
  article-title: Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys
  publication-title: J. Alloys Compd.
– volume: 61
  start-page: 1
  year: 2018
  end-page: 21
  ident: bib0009
  article-title: Science and technology in high-entropy alloys
  publication-title: Sci. China Mater.
– volume: 159
  start-page: 249
  year: 2018
  end-page: 256
  ident: bib0040
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
– volume: 17
  start-page: 675
  year: 2009
  end-page: 679
  ident: bib0060
  article-title: Ductility and magnetism: an ab-initio study of NiAl–Fe and NiAl–Mn alloys
  publication-title: Intermetallics
– volume: 61
  start-page: 5743
  year: 2013
  end-page: 5755
  ident: bib0005
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
– volume: 479
  start-page: 157
  year: 2009
  end-page: 160
  ident: bib0011
  article-title: Microstructure and tensile behaviors of FCC Al0. 3CoCrFeNi high entropy alloy
  publication-title: J. Alloys Compd.
– volume: 216
  start-page: 144
  year: 2018
  end-page: 146
  ident: bib0024
  article-title: A novel Fe
  publication-title: Mater. Lett.
– volume: 62
  start-page: 105
  year: 2014
  end-page: 113
  ident: bib0056
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
– volume: 533
  start-page: 73
  year: 2016
  ident: bib0038
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 39
  start-page: 446
  year: 2018
  end-page: 453
  ident: bib0014
  article-title: Revealing the selection of σ and μ Phases in CoCrFeNiMo
  publication-title: J. Phase Equilib. Diffus.
– volume: 142
  start-page: 101
  year: 2018
  end-page: 105
  ident: bib0034
  article-title: A new strategy to design eutectic high-entropy alloys using simple mixture method
  publication-title: Mater. Des.
– volume: 4
  start-page: 174
  year: 2016
  end-page: 179
  ident: bib0029
  article-title: Ultrafine-grained AlCoCrFeNi
  publication-title: Mater. Res. Lett.
– volume: 144
  start-page: 129
  year: 2018
  end-page: 137
  ident: bib0053
  article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility
  publication-title: Acta Mater.
– volume: 141
  start-page: 59
  year: 2017
  end-page: 66
  ident: bib0017
  article-title: Microstructural origins of high strength and high ductility in an AlCoCrFeNi
  publication-title: Acta Mater.
– volume: 27
  start-page: 109
  year: 2017
  end-page: 115
  ident: bib0055
  article-title: Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi
  publication-title: J. Mater. Eng. Perform.
– volume: 40
  start-page: 28
  year: 1988
  end-page: 31
  ident: bib0058
  article-title: Improving intermetallic ductility and Toughness
  publication-title: JOM
– volume: 362
  start-page: 933
  year: 2018
  end-page: 937
  ident: bib0003
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
– reference: X. Liu, J. Zhang, M. Eisenbach, Y. Wang, Machine Learning Modeling of High Entropy Alloy: The Role of Short-Range Order, arXiv:
– volume: 586
  start-page: 45
  year: 2013
  end-page: 52
  ident: bib0018
  article-title: The effects of chromium on the microstructure and tensile behavior of Fe
  publication-title: Mater. Sci. Eng. A
– volume: 155
  start-page: 331
  year: 2018
  end-page: 339
  ident: bib0044
  article-title: Two-way design of alloys for advanced ultra supercritical plants based on machine learning
  publication-title: Comput. Mater. Sci.
– volume: 675
  start-page: 99
  year: 2016
  end-page: 109
  ident: bib0028
  article-title: Tailoring nanostructures and mechanical properties of AlCoCrFeNi
  publication-title: Mater. Sci. Eng. A
– volume: 119
  start-page: 291
  year: 2015
  end-page: 297
  ident: bib0021
  article-title: Effects of Nb addition on structural evolution and properties of the CoFeNi
  publication-title: Appl. Phys. A
– volume: 169
  start-page: 62
  year: 2016
  end-page: 64
  ident: bib0023
  article-title: A multi-component AlCrFe
  publication-title: Mater. Lett.
– volume: 60
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0057
  article-title: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys
  publication-title: Intermetallics
– volume: 159
  start-page: 102
  year: 2018
  end-page: 111
  ident: bib0039
  article-title: A machine learning approach for engineering bulk metallic glass alloys
  publication-title: Acta Mater.
– volume: 345
  start-page: 1153
  year: 2014
  end-page: 1158
  ident: bib0006
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
– volume: 8
  start-page: 1236
  year: 2018
  ident: bib0008
  article-title: Design of non-equiatomic medium-entropy alloys
  publication-title: Sci. Rep.
– volume: 143
  start-page: 49
  year: 2018
  end-page: 55
  ident: bib0036
  article-title: A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration
  publication-title: Mater. Des.
– volume: 221
  start-page: 138
  year: 2019
  end-page: 143
  ident: bib0035
  article-title: Grouping strategy in eutectic multi-principal-component alloys
  publication-title: Mater. Chem. Phys.
– volume: 26
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib0048
  article-title: Effects of Al addition on the microstructure and mechanical property of Al
  publication-title: Intermetallics
– volume: 147
  start-page: 545
  year: 2019
  end-page: 557
  ident: bib0019
  article-title: Eutectic/eutectoid multi-principle component alloys: a review
  publication-title: Mater. Charact.
– volume: 371
  start-page: 60
  year: 2014
  end-page: 68
  ident: bib0049
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn. Mater.
– volume: 102
  start-page: 187
  year: 2016
  end-page: 196
  ident: bib0012
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
– volume: 656
  start-page: 284
  year: 2016
  end-page: 289
  ident: bib0020
  article-title: Designing eutectic high entropy alloys of CoCrFeNiNb
  publication-title: J. Alloys Compd.
– volume: 4
  start-page: 6200
  year: 2014
  ident: bib0015
  article-title: A promising new class of high-temperature alloys: eutectic high-entropy alloys
  publication-title: Sci. Rep.
– volume: 28
  start-page: 795
  year: 1997
  end-page: 807
  ident: bib0047
  article-title: Room-temperature deformation behavior of directionally solidified multiphase Ni–Fe–Al alloys
  publication-title: Metall. Mater. Trans. A
– volume: 113
  year: 2014
  ident: bib0004
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
– volume: 131
  start-page: 358
  year: 2017
  end-page: 365
  ident: bib0045
  article-title: Design of a nickel-base superalloy using a neural network
  publication-title: Mater. Des
– volume: 19
  year: 2017
  ident: bib0050
  article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCo
  publication-title: Eng. Mater.
– volume: 790
  start-page: 732
  year: 2019
  end-page: 743
  ident: bib0007
  article-title: Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys
  publication-title: J. Alloys Compd.
– volume: 559
  start-page: 547
  year: 2018
  ident: bib0037
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
– volume: 169
  start-page: 225
  year: 2019
  end-page: 236
  ident: bib0041
  article-title: Machine-learning phase prediction of high-entropy alloys
  publication-title: Acta Mater.
– volume: 73
  start-page: 4114
  year: 2006
  ident: bib0059
  article-title: Ab initio study of the mechanical properties of NiAl microalloyed by X= Cr, Mo, Ti, Ga
  publication-title: Phys. Rev. B
– volume: 167
  start-page: 275
  year: 2019
  end-page: 286
  ident: bib0013
  article-title: Design of D022 superlattice with superior strengthening effect in high entropy alloys
  publication-title: Acta Mater.
– volume: 181
  start-page: 318
  year: 2019
  end-page: 330
  ident: bib0010
  article-title: Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys
  publication-title: Acta Mater.
– volume: 147
  start-page: 545
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0019
  article-title: Eutectic/eutectoid multi-principle component alloys: a review
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.07.030
– volume: 19
  issue: 8
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0050
  article-title: A combinatorial approach for assessing the magnetic properties of high entropy alloys: role of Cr in AlCoxCr1-xFeNi advanced
  publication-title: Eng. Mater.
– volume: 371
  start-page: 60
  year: 2014
  ident: 10.1016/j.actamat.2019.10.043_bib0049
  article-title: Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.07.023
– volume: 534
  start-page: 227
  issue: 7606
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0002
  article-title: Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
  publication-title: Nature
  doi: 10.1038/nature17981
– volume: 141
  start-page: 59
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0017
  article-title: Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.041
– volume: 131
  start-page: 358
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0045
  article-title: Design of a nickel-base superalloy using a neural network
  publication-title: Mater. Des
  doi: 10.1016/j.matdes.2017.06.007
– volume: 479
  start-page: 157
  issue: 1–2
  year: 2009
  ident: 10.1016/j.actamat.2019.10.043_bib0011
  article-title: Microstructure and tensile behaviors of FCC Al0. 3CoCrFeNi high entropy alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.12.088
– volume: 61
  start-page: 159
  issue: 2
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0033
  article-title: Exploring the design of eutectic or near-eutectic multicomponent alloys: from binary to high entropy alloys
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-017-9051-6
– volume: 40
  start-page: 28
  issue: 2
  year: 1988
  ident: 10.1016/j.actamat.2019.10.043_bib0058
  article-title: Improving intermetallic ductility and Toughness
  publication-title: JOM
  doi: 10.1007/BF03258828
– volume: 143
  start-page: 49
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0036
  article-title: A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.01.057
– volume: 102
  start-page: 187
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0012
  article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.08.076
– volume: 4
  start-page: 174
  issue: 3
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0029
  article-title: Ultrafine-grained AlCoCrFeNi2.1 eutectic high-entropy alloy
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1160451
– volume: 169
  start-page: 62
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0023
  article-title: A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.096
– volume: 770
  start-page: 655
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0025
  article-title: A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.08.176
– volume: 362
  start-page: 933
  issue: 6417
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0003
  article-title: Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys
  publication-title: Science
  doi: 10.1126/science.aas8815
– volume: 4
  start-page: 6200
  year: 2014
  ident: 10.1016/j.actamat.2019.10.043_bib0015
  article-title: A promising new class of high-temperature alloys: eutectic high-entropy alloys
  publication-title: Sci. Rep.
  doi: 10.1038/srep06200
– volume: 113
  issue: 10
  year: 2014
  ident: 10.1016/j.actamat.2019.10.043_bib0004
  article-title: Discovery of a superconducting high-entropy alloy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.107001
– volume: 675
  start-page: 99
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0028
  article-title: Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.08.048
– volume: 253
  start-page: 268
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0026
  article-title: A casting eutectic high entropy alloy with superior strength-ductility combination
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.06.067
– volume: 159
  start-page: 102
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0039
  article-title: A machine learning approach for engineering bulk metallic glass alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.002
– volume: 649
  start-page: 585
  year: 2015
  ident: 10.1016/j.actamat.2019.10.043_bib0022
  article-title: Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.07.185
– volume: 656
  start-page: 284
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0020
  article-title: Designing eutectic high entropy alloys of CoCrFeNiNbx
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.09.153
– volume: 119
  start-page: 291
  issue: 1
  year: 2015
  ident: 10.1016/j.actamat.2019.10.043_bib0021
  article-title: Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-014-8964-4
– volume: 91
  start-page: 124
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0032
  article-title: A new strategy to design eutectic high-entropy alloys using mixing enthalpy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2017.09.001
– volume: 17
  start-page: 675
  issue: 9
  year: 2009
  ident: 10.1016/j.actamat.2019.10.043_bib0060
  article-title: Ductility and magnetism: an ab-initio study of NiAl–Fe and NiAl–Mn alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2009.01.012
– volume: 221
  start-page: 138
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0035
  article-title: Grouping strategy in eutectic multi-principal-component alloys
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.09.044
– volume: 8
  start-page: 14910
  issue: 1
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0054
  article-title: The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy alcocrfeni
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33330-0
– volume: 73
  start-page: 4114
  issue: 10
  year: 2006
  ident: 10.1016/j.actamat.2019.10.043_bib0059
  article-title: Ab initio study of the mechanical properties of NiAl microalloyed by X= Cr, Mo, Ti, Ga
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.104114
– volume: 8
  start-page: 1236
  issue: 1
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0008
  article-title: Design of non-equiatomic medium-entropy alloys
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19449-0
– volume: 216
  start-page: 144
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0024
  article-title: A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.017
– volume: 61
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0009
  article-title: Science and technology in high-entropy alloys
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-017-9195-8
– volume: 26
  start-page: 44
  year: 2012
  ident: 10.1016/j.actamat.2019.10.043_bib0048
  article-title: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2012.03.005
– volume: 586
  start-page: 45
  year: 2013
  ident: 10.1016/j.actamat.2019.10.043_bib0018
  article-title: The effects of chromium on the microstructure and tensile behavior of Fe30Ni20Mn35Al15
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.08.005
– volume: 10
  start-page: 489
  issue: 1
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0031
  article-title: Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08460-2
– volume: 27
  start-page: 109
  issue: 1
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0055
  article-title: Effects of tungsten addition on the microstructure and mechanical properties of near-eutectic AlCoCrFeNi2 high-entropy alloy
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-3096-6
– volume: 28
  start-page: 795
  issue: 3
  year: 1997
  ident: 10.1016/j.actamat.2019.10.043_bib0047
  article-title: Room-temperature deformation behavior of directionally solidified multiphase Ni–Fe–Al alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-997-0066-x
– volume: 144
  start-page: 129
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0053
  article-title: Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.10.058
– volume: 8
  start-page: 220
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0046
  article-title: Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2016.04.013
– volume: 170
  start-page: 109
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0042
  article-title: Machine learning assisted design of high entropy alloys with desired property
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.010
– volume: 60
  start-page: 1
  year: 2015
  ident: 10.1016/j.actamat.2019.10.043_bib0057
  article-title: Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.01.004
– volume: 125
  start-page: 208
  issue: 3
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0027
  article-title: Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2506-z
– volume: 533
  start-page: 73
  issue: 7601
  year: 2016
  ident: 10.1016/j.actamat.2019.10.043_bib0038
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
  doi: 10.1038/nature17439
– volume: 61
  start-page: 5743
  issue: 15
  year: 2013
  ident: 10.1016/j.actamat.2019.10.043_bib0005
  article-title: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.06.018
– volume: 559
  start-page: 547
  issue: 7715
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0037
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 181
  start-page: 318
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0010
  article-title: Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.09.050
– volume: 6
  start-page: 299
  issue: 5
  year: 2004
  ident: 10.1016/j.actamat.2019.10.043_bib0001
  article-title: Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 159
  start-page: 249
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0040
  article-title: Predicting glass transition temperatures using neural networks
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.08.022
– volume: 142
  start-page: 101
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0034
  article-title: A new strategy to design eutectic high-entropy alloys using simple mixture method
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.01.025
– ident: 10.1016/j.actamat.2019.10.043_bib0043
– volume: 167
  start-page: 275
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0013
  article-title: Design of D022 superlattice with superior strengthening effect in high entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.01.048
– volume: 62
  start-page: 105
  year: 2014
  ident: 10.1016/j.actamat.2019.10.043_bib0056
  article-title: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.09.037
– volume: 124
  start-page: 143
  year: 2017
  ident: 10.1016/j.actamat.2019.10.043_bib0016
  article-title: Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.11.016
– volume: 39
  start-page: 446
  issue: 4
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0014
  article-title: Revealing the selection of σ and μ Phases in CoCrFeNiMox high entropy alloys by CALPHAD
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-018-0659-7
– volume: 155
  start-page: 331
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0044
  article-title: Two-way design of alloys for advanced ultra supercritical plants based on machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.09.003
– volume: 345
  start-page: 1153
  issue: 6201
  year: 2014
  ident: 10.1016/j.actamat.2019.10.043_bib0006
  article-title: A fracture-resistant high-entropy alloy for cryogenic applications
  publication-title: Science
  doi: 10.1126/science.1254581
– volume: 109
  issue: 10
  year: 2011
  ident: 10.1016/j.actamat.2019.10.043_bib0052
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587228
– volume: 790
  start-page: 732
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0007
  article-title: Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.03.235
– volume: 8
  start-page: 3276
  issue: 1
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0030
  article-title: Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by Cryo-rolling and Annealing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21385-y
– volume: 169
  start-page: 225
  year: 2019
  ident: 10.1016/j.actamat.2019.10.043_bib0041
  article-title: Machine-learning phase prediction of high-entropy alloys
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.03.012
– volume: 769
  start-page: 490
  year: 2018
  ident: 10.1016/j.actamat.2019.10.043_bib0051
  article-title: Solid solubility, precipitates, and stacking fault energy of micro-alloyed CoCrFeNi high entropy alloys
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.336
SSID ssj0012740
Score 2.651926
Snippet •A machine learning model for eutectic high entropy alloys in Al–Co–Cr–Fe–Ni system are established.•The eutectics formation in the high entropy system is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 278
SubjectTerms Alloy design
Eutectic high entropy alloys
Machine learning
Mechanical properties
Title Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system
URI https://dx.doi.org/10.1016/j.actamat.2019.10.043
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NasMwDDalu2yHsV_W_eHDrmma2HGSYykr3Qa9rIXeQmI7I6VLS5ceehl7h73hnmRS4nQdjA2WgyFGAkcRsmR_kgi5cblQDksRh5MEFk8TacXSFVbCwHdOhYYtqATIDsVgzO8n3qRBenUuDMIqje2vbHpprc2MbaRpL7LMfnSYF2I9KnBBQG_LuJ1zH7W8_bqBeTgQdVWZwl5oIfVXFo89hSUXMTiGiPAK2wjy4uzn_Wlrz-kfkH3jLNJutZ5D0tD5EdnbKiF4TPQ4l4jChBcKvhzVK7wVyOQLVSU2gyZr-lwCJjU1HSKeaJaXtN3Zx9t7b47DEoa-hmGYUaxgTPHQd75Y06rS8wkZ9W9HvYFlWidYkvleYcFHc0zA8WLmMCF50FGe7LhJEHeUdDpSOjE8CgQnZBqmSoaaeXjF6gNZqtkpaebzXJ8RqpQvfSEU0CkumQsRM8S1SgcsTpTvshbhtbwiacqKY3eLWVTjx6aREXOEYsZpEHOLtDdsi6quxl8MQf0zom8KEoHt_531_P-sF2TXxQC7PHO5JM1iudJX4IUUyXWpZtdkp3v3MBh-AqjL4PY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGxFOUpwfWNA_HeYxVRdXS0oVW6hYltoNSlbQq7dCN_8A_5Jdwl7gFJAQSGSzF8knOxTrf-b77TMit43rSZinicJLAcNNEGLFwPCNh4DunnoItqADIDrzOyL0f83GFtDa1MAir1La_tOmFtdY9ptamOc8y89FmPEQ-KnBBYN1i3F5DdipeJbVmt9cZbJMJEHiVxcI8NFDgs5DHnMCslzH4hgjyChuI83LZz1vUl22nfUD2tb9Im-WUDklF5Udk7wuL4DFRo1wgEBNeKLhzVK0wMZCJFyoLeAZN1vS5wEwqqi-JeKJZXoxtTt9f31ozbBbQtBU0g4wiiTHFc9_ZfE1LsucTMmzfDVsdQ9-eYAjm86UBH-1iDQ6Pmc084QaW5MJykiC2pLAtIewYHgm680QaplKEinHMsvowLFXslFTzWa7OCJXSF77nSRgnXcEcCJohtJUqYHEifYfVibvRVyQ0szhecDGNNhCySaTVHKGasRvUXCeNrdi8pNb4SyDY_Izo2xqJwPz_Lnr-f9EbstMZPvSjfnfQuyC7DsbbxRHMJakuFyt1BU7JMrnWi-4DXDbjpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+the+eutectics+design+by+machine+learning+in+the+Al%E2%80%93Co%E2%80%93Cr%E2%80%93Fe%E2%80%93Ni+high+entropy+system&rft.jtitle=Acta+materialia&rft.au=Wu%2C+Qingfeng&rft.au=Wang%2C+Zhijun&rft.au=Hu%2C+Xiaobing&rft.au=Zheng%2C+Tao&rft.date=2020-01-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=182&rft.spage=278&rft.epage=286&rft_id=info:doi/10.1016%2Fj.actamat.2019.10.043&rft.externalDocID=S1359645419307050
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon