Longitudinal bone microarchitectural changes are best detected using image registration
Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should ther...
Saved in:
Published in | Osteoporosis international Vol. 31; no. 10; pp. 1995 - 2005 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.
Introduction
The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).
Methods
We assessed HR-pQCT scans of the distal radius and tibia for men and women (
N
= 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.
Results
As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.
Conclusions
At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed. |
---|---|
AbstractList | Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.
The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).
We assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.
As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.
At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed. Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).INTRODUCTIONThe purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).We assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.METHODSWe assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.RESULTSAs expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.CONCLUSIONSAt least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed. SummaryLongitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.IntroductionThe purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).MethodsWe assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.ResultsAs expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.ConclusionsAt least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed. Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time. Introduction The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods We assessed HR-pQCT scans of the distal radius and tibia for men and women ( N = 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis. Results As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density. Conclusions At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed. |
Author | de Bakker, C.M.J. Burt, L.A. Kemp, T.D. Gabel, L. Hanley, D.A. Boyd, S.K. Billington, E.O. |
Author_xml | – sequence: 1 givenname: T.D. surname: Kemp fullname: Kemp, T.D. organization: Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, McCaig Institute for Bone and Joint Health, University of Calgary – sequence: 2 givenname: C.M.J. surname: de Bakker fullname: de Bakker, C.M.J. organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary – sequence: 3 givenname: L. surname: Gabel fullname: Gabel, L. organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary – sequence: 4 givenname: D.A. surname: Hanley fullname: Hanley, D.A. organization: McCaig Institute for Bone and Joint Health, University of Calgary – sequence: 5 givenname: E.O. surname: Billington fullname: Billington, E.O. organization: McCaig Institute for Bone and Joint Health, University of Calgary – sequence: 6 givenname: L.A. surname: Burt fullname: Burt, L.A. organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary – sequence: 7 givenname: S.K. orcidid: 0000-0002-2930-5997 surname: Boyd fullname: Boyd, S.K. email: skboyd@ucalgary.ca organization: Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32430614$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxS20CJY_X4BDFakXLikT24kzx2pVoNJKvYDgZtnOJBhlk62dHPrt62VBSHvgZMn-vfF7887YYhgHYuyqgB8FgLqJAAXWOXDIoZQSc37EloUUIudYlQu2BBQqR1k8n7KzGF8hiRDVCTsVXAqoCrlkT-tx6Pw0N34wfWbTB9nGuzCa4F78RG6aQ7p3L2boKGYmUGYpTllDuzdqsjn6ocv8xnSUBep8nIKZ_DhcsOPW9JEu389z9nj762F1n6__3P1e_VznTqhyyhUobglL2TbOSIuElSlbhTWHVjhCZQAlApUWuSgqaCyCsratmqpuoBbinF3v527D-HdO1vTGR0d9bwYa56i5hFKArGue0O8H6Os4hxR7R0le1Yhllahv79RsN9TobUjhwj_9sbIE1HsgbSnGQK12fnrLnKL7Xhegd-3ofTs6taPf2tE7B_xA-jH9S5HYi2KCUwvh0_YXqv8YF6Fs |
CitedBy_id | crossref_primary_10_3390_life13112183 crossref_primary_10_1002_jbm4_10719 crossref_primary_10_1136_bmjopen_2024_093711 crossref_primary_10_1007_s00198_021_05896_5 crossref_primary_10_1002_jbm4_10615 crossref_primary_10_1016_j_bone_2021_115880 crossref_primary_10_1007_s00223_023_01066_3 crossref_primary_10_1007_s11538_024_01267_3 crossref_primary_10_1007_s11914_023_00795_6 crossref_primary_10_1002_cnm_3515 crossref_primary_10_1002_jbmr_4541 crossref_primary_10_1016_j_jocd_2020_10_001 crossref_primary_10_1038_s41598_022_13461_1 crossref_primary_10_1002_jbm4_10493 crossref_primary_10_1016_j_ostima_2022_100068 crossref_primary_10_1055_s_0044_1788623 crossref_primary_10_1002_jbmr_4247 crossref_primary_10_1016_j_bone_2024_117066 crossref_primary_10_1093_jbmrpl_ziae158 crossref_primary_10_1002_acm2_70053 crossref_primary_10_1007_s11914_023_00811_9 crossref_primary_10_1136_bjsports_2020_103602 crossref_primary_10_1117_1_JMI_9_4_044001 crossref_primary_10_1002_jbmr_4285 |
Cites_doi | 10.1016/j.jbiomech.2009.04.017 10.1016/j.bone.2012.03.003 10.1109/TITB.2010.2061234 10.1007/s10439-006-9168-7 10.1016/j.medengphy.2007.11.003 10.1016/S2213-8587(18)30308-5 10.1007/s00198-008-0833-6 10.1002/jbmr.3198 10.1016/j.bone.2007.07.007 10.1002/jbmr.157 10.1088/0031-9155/56/20/001 10.1002/jbmr.2873 10.1007/s00223-013-9809-4 10.1016/j.bone.2013.05.014 10.1002/jbmr.3128 10.1016/j.jocd.2017.01.006 10.1007/s00198-011-1758-z 10.1016/j.cct.2018.02.009 10.1016/j.jocd.2007.12.013 10.1002/jbmr.1996 10.1016/j.bone.2014.03.001 10.1001/jama.2019.11889 10.1002/jbmr.1795 10.1385/JCD:4:2:105 10.1002/jbmr.171 10.1016/j.bone.2010.05.034 10.1016/j.bone.2003.08.012 10.1016/j.bone.2015.06.006 10.1359/jbmr.1999.14.11.1952 10.1359/JBMR.050916 10.1016/j.bone.2009.09.023 10.1002/jbmr.81 |
ContentType | Journal Article |
Copyright | International Osteoporosis Foundation and National Osteoporosis Foundation 2020 International Osteoporosis Foundation and National Osteoporosis Foundation 2020. |
Copyright_xml | – notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2020 – notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7TS 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00198-020-05449-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts ProQuest Nursing & Allied Health Database (NC LIVE) Physical Education Index ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1433-2965 |
EndPage | 2005 |
ExternalDocumentID | 32430614 10_1007_s00198_020_05449_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Pure North S'Energy Foundation |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAS LLZTM M1P M4Y MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7W Z82 Z83 Z87 Z8O Z8Q Z8V Z8W Z91 ZMTXR ZOVNA ZXP ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TS 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c375t-7072be954fdca4b9e96a5f79820f3ce97a09490e5b923160db907bbf6d68d0833 |
IEDL.DBID | U2A |
ISSN | 0937-941X 1433-2965 |
IngestDate | Thu Jul 10 23:55:02 EDT 2025 Sat Jul 26 02:34:48 EDT 2025 Thu Apr 03 06:55:30 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Tue Jul 01 03:18:47 EDT 2025 Fri Feb 21 02:34:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Least significant change HR-pQCT Longitudinal analysis Bone density 3D registration Bone microarchitecture |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-7072be954fdca4b9e96a5f79820f3ce97a09490e5b923160db907bbf6d68d0833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2930-5997 |
PMID | 32430614 |
PQID | 2442689956 |
PQPubID | 33762 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2405304882 proquest_journals_2442689956 pubmed_primary_32430614 crossref_citationtrail_10_1007_s00198_020_05449_2 crossref_primary_10_1007_s00198_020_05449_2 springer_journals_10_1007_s00198_020_05449_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 2020-Oct 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | With other metabolic bone diseases |
PublicationTitle | Osteoporosis international |
PublicationTitleAbbrev | Osteoporos Int |
PublicationTitleAlternate | Osteoporos Int |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Samelson, Broe, Xu, Yang, Boyd, Biver, Szulc, Adachi, Amin, Atkinson, Berger, Burt, Chapurlat, Chevalley, Ferrari, Goltzman, Hanley, Hannan, Khosla, Liu, Lorentzon, Mellstrom, Merle, Nethander, Rizzoli, Sornay-Rendu, van Rietbergen, Sundh, Wong, Ohlsson, Demissie, Kiel, Bouxsein (CR7) 2019; 7 Tsai, Nishiyama, Lin, Yuan, Lee, Bouxsein, Leder (CR10) 2017; 32 Rizzoli, Chapurlat, Laroche, Krieg, Thomas, Frieling, Boutroy, Laib, Bock, Felsenberg (CR8) 2012; 23 Varga, Baumbach, Pahr, Zysset (CR5) 2009; 42 Burt, Liang, Sajobi, Hanley, Boyd (CR4) 2016; 31 Burt, Billington, Rose, Raymond, Hanley, Boyd (CR11) 2019; 322 Burt, Gaudet, Kan, Rose, Billington, Boyd, Hanley (CR23) 2018; 67 Ellouz, Chapurlat, van Rietbergen, Christen, Pialat, Boutroy (CR12) 2014; 63 Burghardt, Kazakia, Ramachandran, Link, Majumdar (CR27) 2010; 25 Burghardt, Pialat, Kazakia, Boutroy, Engelke, Patsch, Valentinitsch, Liu, Szabo, Bogado, Zanchetta, McKay, Shane, Boyd, Bouxsein, Chapurlat, Khosla, Majumdar (CR32) 2013; 28 Seeman, Delmas, Hanley, Sellmeyer, Cheung, Shane, Kearns, Thomas, Boyd, Boutroy, Bogado, Majumdar, Fan, Libanati, Zanchetta (CR9) 2010; 25 Dalzell, Kaptoge, Morris, Berthier, Koller, Braak, van Rietbergen, Reeve (CR3) 2009; 20 Buie, Campbell, Klinck, MacNeil, Boyd (CR28) 2007; 41 Nishiyama, Campbell, Klinck, Boyd (CR19) 2010; 46 Campbell, Tiwari, Grundmann, Purcz, Schem, Glüer (CR21) 2014; 94 Macdonald, Nishiyama, Kang, Hanley, Boyd (CR1) 2011; 26 Chiba, Okazaki, Kurogi, Isobe, Yonekura, Tomita, Osaki (CR15) 2018; 21 Boyd (CR33) 2008; 11 Bonnick, Johnston, Kleerekoper, Lindsay, Miller, Sherwood, Siris (CR30) 2001; 4 Manske, Zhu, Sandino, Boyd (CR26) 2015; 79 Burghardt, Buie, Laib, Majumdar, Boyd (CR31) 2010; 47 Bonaretti, Vilayphiou, Chan (CR14) 2017; 28 Manske, Davison, Burt, Raymond, Boyd (CR25) 2017; 32 CR22 Boyd, Moser, Kuhn, Klinck, Krauze, Müller, Gasser (CR13) 2006; 34 MacNeil, Boyd (CR16) 2008; 30 Shi, Wang, Hung, Yeugn, Griffith, Chu, Heng, Cheng, Qin (CR17) 2010; 14 Pauchard, Ayres, Boyd (CR34) 2011; 56 Christen, Melton, Zwahlen, Shreyasee, Khosla, Müller (CR6) 2013; 28 Lan, Luo, Huh, Chandra, Altman, Qin, Liu (CR20) 2013; 56 Waarsing, Day, van der Linden, Ederveen, Spanjers, De Clerck, Sasov, Verhaar, Weinans (CR18) 2004; 34 Pauchard, Liphardt, Macdonald, Hanley, Boyd (CR24) 2012; 50 Glüer (CR29) 1999; 14 Khosla, Riggs, Atkinson, Oberg, McDaniel, Holets, Peterson, Melton (CR2) 2006; 21 R Rizzoli (5449_CR8) 2012; 23 R Ellouz (5449_CR12) 2014; 63 N Dalzell (5449_CR3) 2009; 20 Y Pauchard (5449_CR24) 2012; 50 SL Manske (5449_CR26) 2015; 79 Y Pauchard (5449_CR34) 2011; 56 LA Burt (5449_CR23) 2018; 67 JN Tsai (5449_CR10) 2017; 32 JH Waarsing (5449_CR18) 2004; 34 S Lan (5449_CR20) 2013; 56 C-C Glüer (5449_CR29) 1999; 14 L Burt (5449_CR4) 2016; 31 S Khosla (5449_CR2) 2006; 21 K Chiba (5449_CR15) 2018; 21 5449_CR22 SL Bonnick (5449_CR30) 2001; 4 L Shi (5449_CR17) 2010; 14 HR Buie (5449_CR28) 2007; 41 JA MacNeil (5449_CR16) 2008; 30 KK Nishiyama (5449_CR19) 2010; 46 AJ Burghardt (5449_CR27) 2010; 25 EJ Samelson (5449_CR7) 2019; 7 P Varga (5449_CR5) 2009; 42 AJ Burghardt (5449_CR32) 2013; 28 S Bonaretti (5449_CR14) 2017; 28 SL Manske (5449_CR25) 2017; 32 LA Burt (5449_CR11) 2019; 322 GM Campbell (5449_CR21) 2014; 94 AJ Burghardt (5449_CR31) 2010; 47 SK Boyd (5449_CR33) 2008; 11 D Christen (5449_CR6) 2013; 28 SK Boyd (5449_CR13) 2006; 34 HM Macdonald (5449_CR1) 2011; 26 E Seeman (5449_CR9) 2010; 25 |
References_xml | – volume: 42 start-page: 1726 year: 2009 end-page: 1731 ident: CR5 article-title: Validation of an anatomy specific finite element model of Colles’ fracture publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.04.017 – ident: CR22 – volume: 50 start-page: 1304 year: 2012 end-page: 1310 ident: CR24 article-title: Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography publication-title: Bone doi: 10.1016/j.bone.2012.03.003 – volume: 14 start-page: 1291 year: 2010 end-page: 1297 ident: CR17 article-title: Fast and accurate 3-D registration of HR-pQCT images publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2010.2061234 – volume: 34 start-page: 1587 year: 2006 end-page: 1599 ident: CR13 article-title: Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography publication-title: Ann Biomed Eng doi: 10.1007/s10439-006-9168-7 – volume: 30 start-page: 792 year: 2008 end-page: 799 ident: CR16 article-title: Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.11.003 – volume: 7 start-page: 34 year: 2019 end-page: 43 ident: CR7 article-title: Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(18)30308-5 – volume: 20 start-page: 1683 year: 2009 end-page: 1694 ident: CR3 article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT publication-title: Osteoporos Int doi: 10.1007/s00198-008-0833-6 – volume: 32 start-page: 2001 year: 2017 end-page: 2009 ident: CR10 article-title: Effects of denosumab and teriparatide transitions on the bone microarchitecture and estimated strength: the DATA-Switch HR-pQCT study publication-title: J Bone Miner Res doi: 10.1002/jbmr.3198 – volume: 41 start-page: 505 year: 2007 end-page: 515 ident: CR28 article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis publication-title: Bone doi: 10.1016/j.bone.2007.07.007 – volume: 25 start-page: 983 year: 2010 end-page: 993 ident: CR27 article-title: Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia publication-title: J Bone Miner Res doi: 10.1002/jbmr.157 – volume: 56 start-page: 6523 year: 2011 end-page: 6543 ident: CR34 article-title: Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/20/001 – volume: 31 start-page: 2041 year: 2016 end-page: 2047 ident: CR4 article-title: Sex- and site-specific normative data curves for HR-pQCT publication-title: J Bone Miner Res doi: 10.1002/jbmr.2873 – volume: 94 start-page: 282 year: 2014 end-page: 292 ident: CR21 article-title: Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models publication-title: Calcif Tissue Int doi: 10.1007/s00223-013-9809-4 – volume: 56 start-page: 83 year: 2013 end-page: 90 ident: CR20 article-title: 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (muCT) publication-title: Bone doi: 10.1016/j.bone.2013.05.014 – volume: 32 start-page: 1514 year: 2017 end-page: 1524 ident: CR25 article-title: The estimation of second-generation HR-pQCT from first-generation HR-pQCT using in vivo cross-calibration publication-title: J Bone Miner Res doi: 10.1002/jbmr.3128 – volume: 21 start-page: 295 year: 2018 end-page: 302 ident: CR15 article-title: Precision of second-generation high-resolution peripheral quantitative computed tomography: intra- and intertester reproducibilities and factors involved in the reproducibility of cortical porosity publication-title: J Clin Densitom doi: 10.1016/j.jocd.2017.01.006 – volume: 23 start-page: 305 year: 2012 end-page: 315 ident: CR8 article-title: Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis publication-title: Osteoporos Int doi: 10.1007/s00198-011-1758-z – volume: 67 start-page: 68 year: 2018 end-page: 73 ident: CR23 article-title: Methods and procedures for: a randomized double-blind study investigating dose-dependent longitudinal effects of vitamin D supplementation on bone health publication-title: Contemp Clin Trials doi: 10.1016/j.cct.2018.02.009 – volume: 11 start-page: 424 year: 2008 end-page: 430 ident: CR33 article-title: Site-specific variation of bone micro-architecture in the distal radius and tibia publication-title: J Clin Densitom doi: 10.1016/j.jocd.2007.12.013 – volume: 28 start-page: 2601 year: 2013 end-page: 2608 ident: CR6 article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius publication-title: J Bone Miner Res doi: 10.1002/jbmr.1996 – volume: 63 start-page: 147 year: 2014 end-page: 157 ident: CR12 article-title: Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility publication-title: Bone doi: 10.1016/j.bone.2014.03.001 – volume: 322 start-page: 736 year: 2019 end-page: 745 ident: CR11 article-title: Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength publication-title: JAMA doi: 10.1001/jama.2019.11889 – volume: 28 start-page: 524 year: 2013 end-page: 536 ident: CR32 article-title: Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography publication-title: J Bone Miner Res doi: 10.1002/jbmr.1795 – volume: 4 start-page: 105 year: 2001 end-page: 110 ident: CR30 article-title: Importance of precision in bone density measurements publication-title: J Clin Densitom doi: 10.1385/JCD:4:2:105 – volume: 26 start-page: 50 year: 2011 end-page: 62 ident: CR1 article-title: Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study publication-title: J Bone Miner Res doi: 10.1002/jbmr.171 – volume: 47 start-page: 519 year: 2010 end-page: 528 ident: CR31 article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT publication-title: Bone doi: 10.1016/j.bone.2010.05.034 – volume: 34 start-page: 163 year: 2004 end-page: 169 ident: CR18 article-title: Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data publication-title: Bone doi: 10.1016/j.bone.2003.08.012 – volume: 28 start-page: 247 year: 2017 end-page: 257 ident: CR14 article-title: Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training publication-title: Osteoporos Int – volume: 79 start-page: 213 year: 2015 end-page: 221 ident: CR26 article-title: Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT publication-title: Bone doi: 10.1016/j.bone.2015.06.006 – volume: 14 start-page: 1952 year: 1999 end-page: 1962 ident: CR29 article-title: Monitoring skeletal changes by radiological techniques publication-title: J Bone Miner Res doi: 10.1359/jbmr.1999.14.11.1952 – volume: 21 start-page: 124 year: 2006 end-page: 131 ident: CR2 article-title: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment publication-title: J Bone Miner Res doi: 10.1359/JBMR.050916 – volume: 46 start-page: 155 year: 2010 end-page: 161 ident: CR19 article-title: Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration publication-title: Bone doi: 10.1016/j.bone.2009.09.023 – volume: 25 start-page: 1886 year: 2010 end-page: 1894 ident: CR9 article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate publication-title: J Bone Miner Res doi: 10.1002/jbmr.81 – volume: 47 start-page: 519 year: 2010 ident: 5449_CR31 publication-title: Bone doi: 10.1016/j.bone.2010.05.034 – volume: 31 start-page: 2041 year: 2016 ident: 5449_CR4 publication-title: J Bone Miner Res doi: 10.1002/jbmr.2873 – volume: 322 start-page: 736 year: 2019 ident: 5449_CR11 publication-title: JAMA doi: 10.1001/jama.2019.11889 – volume: 25 start-page: 983 year: 2010 ident: 5449_CR27 publication-title: J Bone Miner Res doi: 10.1002/jbmr.157 – volume: 20 start-page: 1683 year: 2009 ident: 5449_CR3 publication-title: Osteoporos Int doi: 10.1007/s00198-008-0833-6 – volume: 41 start-page: 505 year: 2007 ident: 5449_CR28 publication-title: Bone doi: 10.1016/j.bone.2007.07.007 – volume: 14 start-page: 1952 year: 1999 ident: 5449_CR29 publication-title: J Bone Miner Res doi: 10.1359/jbmr.1999.14.11.1952 – volume: 4 start-page: 105 year: 2001 ident: 5449_CR30 publication-title: J Clin Densitom doi: 10.1385/JCD:4:2:105 – volume: 63 start-page: 147 year: 2014 ident: 5449_CR12 publication-title: Bone doi: 10.1016/j.bone.2014.03.001 – volume: 94 start-page: 282 year: 2014 ident: 5449_CR21 publication-title: Calcif Tissue Int doi: 10.1007/s00223-013-9809-4 – volume: 79 start-page: 213 year: 2015 ident: 5449_CR26 publication-title: Bone doi: 10.1016/j.bone.2015.06.006 – volume: 21 start-page: 295 year: 2018 ident: 5449_CR15 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2017.01.006 – volume: 25 start-page: 1886 year: 2010 ident: 5449_CR9 publication-title: J Bone Miner Res doi: 10.1002/jbmr.81 – volume: 30 start-page: 792 year: 2008 ident: 5449_CR16 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.11.003 – volume: 56 start-page: 83 year: 2013 ident: 5449_CR20 publication-title: Bone doi: 10.1016/j.bone.2013.05.014 – volume: 26 start-page: 50 year: 2011 ident: 5449_CR1 publication-title: J Bone Miner Res doi: 10.1002/jbmr.171 – volume: 7 start-page: 34 year: 2019 ident: 5449_CR7 publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(18)30308-5 – volume: 23 start-page: 305 year: 2012 ident: 5449_CR8 publication-title: Osteoporos Int doi: 10.1007/s00198-011-1758-z – volume: 14 start-page: 1291 year: 2010 ident: 5449_CR17 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2010.2061234 – volume: 34 start-page: 1587 year: 2006 ident: 5449_CR13 publication-title: Ann Biomed Eng doi: 10.1007/s10439-006-9168-7 – volume: 28 start-page: 2601 year: 2013 ident: 5449_CR6 publication-title: J Bone Miner Res doi: 10.1002/jbmr.1996 – volume: 21 start-page: 124 year: 2006 ident: 5449_CR2 publication-title: J Bone Miner Res doi: 10.1359/JBMR.050916 – volume: 28 start-page: 524 year: 2013 ident: 5449_CR32 publication-title: J Bone Miner Res doi: 10.1002/jbmr.1795 – volume: 42 start-page: 1726 year: 2009 ident: 5449_CR5 publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.04.017 – volume: 32 start-page: 1514 year: 2017 ident: 5449_CR25 publication-title: J Bone Miner Res doi: 10.1002/jbmr.3128 – volume: 67 start-page: 68 year: 2018 ident: 5449_CR23 publication-title: Contemp Clin Trials doi: 10.1016/j.cct.2018.02.009 – volume: 50 start-page: 1304 year: 2012 ident: 5449_CR24 publication-title: Bone doi: 10.1016/j.bone.2012.03.003 – ident: 5449_CR22 – volume: 34 start-page: 163 year: 2004 ident: 5449_CR18 publication-title: Bone doi: 10.1016/j.bone.2003.08.012 – volume: 32 start-page: 2001 year: 2017 ident: 5449_CR10 publication-title: J Bone Miner Res doi: 10.1002/jbmr.3198 – volume: 11 start-page: 424 year: 2008 ident: 5449_CR33 publication-title: J Clin Densitom doi: 10.1016/j.jocd.2007.12.013 – volume: 28 start-page: 247 year: 2017 ident: 5449_CR14 publication-title: Osteoporos Int – volume: 46 start-page: 155 year: 2010 ident: 5449_CR19 publication-title: Bone doi: 10.1016/j.bone.2009.09.023 – volume: 56 start-page: 6523 year: 2011 ident: 5449_CR34 publication-title: Phys Med Biol doi: 10.1088/0031-9155/56/20/001 |
SSID | ssj0007997 |
Score | 2.4488404 |
Snippet | Summary
Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study,... Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we... SummaryLongitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1995 |
SubjectTerms | Aged Bone and Bones Bone Density Bone imaging Bone mineral density Computed tomography Endocrinology Female Humans Image processing Longitudinal studies Male Medicine Medicine & Public Health Middle Aged Original Article Orthopedics Osteoporosis Physiology Radius Radius - diagnostic imaging Registration Rheumatology Tibia Tibia - diagnostic imaging Tomography, X-Ray Computed |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxMGgF8SK-rVaJ4E2D-8hukpOIWIpYTxZ7W_JaEbTVPv7fmW12VcReN9lkyLwzmRlCziMTlwZkHsut0owLa5nUuWRRYp12WEJMYYJz_zHvDfj9MBuGC7dpeFZZy8RKULuxxTvyK1BDSS4xD_P645Nh1yiMroYWGqtkDUuXIVWLYeNwRUJVzVXAaRdM8XgYkmaq1Dm0bRAkDAVzrljyWzH9sTb_REorBdTdIpvBcqQ3C1RvkxU_2iHr_RAb3yXPD2PsPTR32OeKmvHI03d8bfcjVADfF4m-U6onnhrYmTqPY95RfAH_Ql_fQcBQbNdQF9TdI4Pu3dNtj4W2CcymIpsxEYnEeJXx0lnNjfIq11kpFOj6MrVeCQ0unYp8ZtC4yyNnwEE2psxdLh1YZOk-aY0AyENCTaJ4VsbSAKtyaaWW1sepLIG1NE-dbJO4PrPChpri2NrirWiqIVfnXMA5F9U5F0mbXDT_fCwqaiyd3alRUQTumhbftNAmZ80w8AUGO_TIj-c4B2BG8QRLHCxQ2GwHRmSKnnCbXNY4_V78f1iOlsNyTDYSpKfqpV-HtGaTuT8Bi2VmTiuy_AJl5OUD priority: 102 providerName: ProQuest |
Title | Longitudinal bone microarchitectural changes are best detected using image registration |
URI | https://link.springer.com/article/10.1007/s00198-020-05449-2 https://www.ncbi.nlm.nih.gov/pubmed/32430614 https://www.proquest.com/docview/2442689956 https://www.proquest.com/docview/2405304882 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dSxtBcKgK4kvR1ta0GrbgW124j73b3cdEEkVrEDE0fTr260TQREzy_ztzubsqWsGXW7jdm11mbmZnmC-Aw8jGpUWZx3OnDRfSOa5MrniUOG88lRDTlOB8McpPx-Jskk3qpLB5E-3euCQrSd0mu5E2QkDIeSuE5ih4NzK03SmQa5z0WvkrddVSBU11ybWIJ3WqzOswnl9HL3TMF_7R6toZbsPHWl9kvRWBd-BDmH6CzYvaI_4Zfv-aUcehpafuVszOpoHdU4zdEwcBvl-l986ZeQzM4s7MB5oLnlHc-w27vUexwqhJQ1NGdxfGw8H18SmvmyVwl8pswWUkExt0JkrvjLA66NxkpdR4w5epC1oaNOR0FDJLKl0eeYtmsbVl7nPlUQ9Lv8D6FA-5B8wmWmRlrCwyqFBOGeVCnKoSGcqI1KsOxA3OCldXEqeGFndFWwO5wnOBeC4qPBdJB3623zys6mi8uXq_IUVR89S8QEUkyRVl4nbgRzuN3EAuDjMNsyWtwTOTUEIQX1ckbLdD1TEl-7cDRw1N_wH__1m-vW_5d9hK6P-q4v32YX3xuAwHqLcsbBfW5ETiUx3HXdjoDfv9EY0nf84HOPYHo8urbvUr_wXKA-gs |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcJQWiXJBpRQIFFgkeior7PXa3j2gCgWqtE1yStXczL5cVaJJaRIhfopvZMaPBFTRW69ee3c17_G8AN5HNi4tyjyeOW24zJ3jymSKR8J546mFmKYC5-Eo65_Jk0k66cDvthaG0ipbmVgJaj9z9I_8I6ohkSmqwzy8_sFpahRFV9sRGjVZnIZfP9Flm386_oL43Rfi6Ou41-fNVAHukjxd8DzKhQ06laV3RloddGbSMteoCsvEBZ0b9Hh0FFJLtk8WeYv-o7Vl5jPl0WBJcN8NeCATZE2qTO-tU0pyXQ1ziVDlcy3jSVOkU5XqkS1FIKDQs5Sai38V4S3r9lZktlJ4R9vwuLFU2eeatJ5AJ0x34OGwicU_hfPBjGYdLT3N1WJ2Ng3sirL7_gpN4PO6sHjOzE1gFk9mPtBa8Iwy7i_Y5RUKNEbjIdoGvrtwdi8AfQabU7zkC2BWaJmWsbIoGqRyyigX4kSVyMpGJl51IW5hVrimhzmN0vherLovV3AuEM5FBedCdOFg9c113cHjzrf3WlQUDTfPizXtdeHdahn5kIIrZhpmS3oH70ziELd4XqNwdRwarQl53l340OJ0vfn_7_Ly7ru8ha3-eDgoBsej01fwSBBtVVmGe7C5uFmG12gtLeybikQZfLtvnvgDrSwhYQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JThRB9AUxIV6ILOogSJnASSt0V1d3VR0MIeAEZIkHiXNra2tDAjPIzMT4a36d7_UyoyFy49rVXVV5--u3AewkLq0cyjxeeGO5VN5zbQvNE-GDDdRCzFCB8_lFcXwpPw3ywQL87mphKK2yk4m1oA4jT__I91ANiUJTHeZe1aZFfD7q79_-4DRBiiKt3TiNhkRO46-f6L6NP5wcIa53heh__HJ4zNsJA9xnKp9wlSjhosllFbyVzkRT2LxSBtVilflolEXvxyQxd2QHFUlw6Es6VxWh0AGNlwz3fQJPVaY08Zg-nKeXKFMPdklQ_XMj00FbsFOX7ZFdReCgMLSUhot_leI9S_delLZWfv3nsNxareygIbMVWIjDVVg6b-Pya_D1bERzj6aBZmwxNxpGdkOZfn-FKfB5U2Q8ZvYuMocnsxBpLQZG2fff2dUNCjdGoyK6Zr7rcPkoAH0Bi0O85CtgThiZV6l2KCak9tpqH9NMV8jWVmZB9yDtYFb6tp85jdW4LmedmGs4lwjnsoZzKXrwbvbNbdPN48G3NztUlC1nj8s5Hfbg7WwZeZICLXYYR1N6B-9MohG3eNmgcHYcGrAZeeE9eN_hdL75_--y8fBdtmEJuaE8O7k4fQ3PBJFWnXC4CYuTu2ncQsNp4t7UFMrg22OzxB9O6CWX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+bone+microarchitectural+changes+are+best+detected+using+image+registration&rft.jtitle=Osteoporosis+international&rft.au=Kemp%2C+T+D&rft.au=de+Bakker%2C+C+M+J&rft.au=Gabel%2C+L&rft.au=Hanley%2C+D+A&rft.date=2020-10-01&rft.issn=1433-2965&rft.eissn=1433-2965&rft.volume=31&rft.issue=10&rft.spage=1995&rft_id=info:doi/10.1007%2Fs00198-020-05449-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-941X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-941X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-941X&client=summon |