Longitudinal bone microarchitectural changes are best detected using image registration

Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should ther...

Full description

Saved in:
Bibliographic Details
Published inOsteoporosis international Vol. 31; no. 10; pp. 1995 - 2005
Main Authors Kemp, T.D., de Bakker, C.M.J., Gabel, L., Hanley, D.A., Billington, E.O., Burt, L.A., Boyd, S.K.
Format Journal Article
LanguageEnglish
Published London Springer London 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time. Introduction The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods We assessed HR-pQCT scans of the distal radius and tibia for men and women ( N  = 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis. Results As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density. Conclusions At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.
AbstractList Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time. The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT). We assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis. As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density. At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.
Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).INTRODUCTIONThe purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).We assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.METHODSWe assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55-70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.RESULTSAs expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.CONCLUSIONSAt least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.
SummaryLongitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time.IntroductionThe purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT).MethodsWe assessed HR-pQCT scans of the distal radius and tibia for men and women (N = 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis.ResultsAs expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density.ConclusionsAt least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.
Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we determined that three-dimensional image processing techniques best capture realistic longitudinal changes in bone density and should therefore be used with high-resolution imaging when studying bone changes over time. Introduction The purpose of this study was to determine which longitudinal analysis technique (no registration (NR), slice-match (SM) registration, or three-dimensional registration (3DR)) produced the most realistic longitudinal changes in a 3-year study of bone density and structure using high-resolution peripheral quantitative computed tomography (HR-pQCT). Methods We assessed HR-pQCT scans of the distal radius and tibia for men and women ( N  = 40) aged 55–70 years at baseline and 6, 12, 24, and 36 months. To evaluate which longitudinal analysis technique (NR, SM, or 3DR) best captured physiologically reasonable 3-year changes, we calculated the standard deviation of the absolute rate of change in each bone parameter. The data were compared between longitudinal analysis techniques using repeated measures ANOVA and post hoc analysis. Results As expected, both SM and 3DR better captured physiological longitudinal changes than NR. At the tibia, there were no differences between SM and 3DR; however, at the radius where precision was lower, 3DR produced better results for total bone mineral density. Conclusions At least SM or 3DR should be implemented in longitudinal studies using HR-pQCT. 3DR is preferable, particularly at the radius, to ensure that physiological changes in bone density are observed.
Author de Bakker, C.M.J.
Burt, L.A.
Kemp, T.D.
Gabel, L.
Hanley, D.A.
Boyd, S.K.
Billington, E.O.
Author_xml – sequence: 1
  givenname: T.D.
  surname: Kemp
  fullname: Kemp, T.D.
  organization: Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, McCaig Institute for Bone and Joint Health, University of Calgary
– sequence: 2
  givenname: C.M.J.
  surname: de Bakker
  fullname: de Bakker, C.M.J.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary
– sequence: 3
  givenname: L.
  surname: Gabel
  fullname: Gabel, L.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary
– sequence: 4
  givenname: D.A.
  surname: Hanley
  fullname: Hanley, D.A.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary
– sequence: 5
  givenname: E.O.
  surname: Billington
  fullname: Billington, E.O.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary
– sequence: 6
  givenname: L.A.
  surname: Burt
  fullname: Burt, L.A.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary
– sequence: 7
  givenname: S.K.
  orcidid: 0000-0002-2930-5997
  surname: Boyd
  fullname: Boyd, S.K.
  email: skboyd@ucalgary.ca
  organization: Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, McCaig Institute for Bone and Joint Health, University of Calgary, Department of Radiology, Cumming School of Medicine, University of Calgary
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32430614$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxS20CJY_X4BDFakXLikT24kzx2pVoNJKvYDgZtnOJBhlk62dHPrt62VBSHvgZMn-vfF7887YYhgHYuyqgB8FgLqJAAXWOXDIoZQSc37EloUUIudYlQu2BBQqR1k8n7KzGF8hiRDVCTsVXAqoCrlkT-tx6Pw0N34wfWbTB9nGuzCa4F78RG6aQ7p3L2boKGYmUGYpTllDuzdqsjn6ocv8xnSUBep8nIKZ_DhcsOPW9JEu389z9nj762F1n6__3P1e_VznTqhyyhUobglL2TbOSIuElSlbhTWHVjhCZQAlApUWuSgqaCyCsratmqpuoBbinF3v527D-HdO1vTGR0d9bwYa56i5hFKArGue0O8H6Os4hxR7R0le1Yhllahv79RsN9TobUjhwj_9sbIE1HsgbSnGQK12fnrLnKL7Xhegd-3ofTs6taPf2tE7B_xA-jH9S5HYi2KCUwvh0_YXqv8YF6Fs
CitedBy_id crossref_primary_10_3390_life13112183
crossref_primary_10_1002_jbm4_10719
crossref_primary_10_1136_bmjopen_2024_093711
crossref_primary_10_1007_s00198_021_05896_5
crossref_primary_10_1002_jbm4_10615
crossref_primary_10_1016_j_bone_2021_115880
crossref_primary_10_1007_s00223_023_01066_3
crossref_primary_10_1007_s11538_024_01267_3
crossref_primary_10_1007_s11914_023_00795_6
crossref_primary_10_1002_cnm_3515
crossref_primary_10_1002_jbmr_4541
crossref_primary_10_1016_j_jocd_2020_10_001
crossref_primary_10_1038_s41598_022_13461_1
crossref_primary_10_1002_jbm4_10493
crossref_primary_10_1016_j_ostima_2022_100068
crossref_primary_10_1055_s_0044_1788623
crossref_primary_10_1002_jbmr_4247
crossref_primary_10_1016_j_bone_2024_117066
crossref_primary_10_1093_jbmrpl_ziae158
crossref_primary_10_1002_acm2_70053
crossref_primary_10_1007_s11914_023_00811_9
crossref_primary_10_1136_bjsports_2020_103602
crossref_primary_10_1117_1_JMI_9_4_044001
crossref_primary_10_1002_jbmr_4285
Cites_doi 10.1016/j.jbiomech.2009.04.017
10.1016/j.bone.2012.03.003
10.1109/TITB.2010.2061234
10.1007/s10439-006-9168-7
10.1016/j.medengphy.2007.11.003
10.1016/S2213-8587(18)30308-5
10.1007/s00198-008-0833-6
10.1002/jbmr.3198
10.1016/j.bone.2007.07.007
10.1002/jbmr.157
10.1088/0031-9155/56/20/001
10.1002/jbmr.2873
10.1007/s00223-013-9809-4
10.1016/j.bone.2013.05.014
10.1002/jbmr.3128
10.1016/j.jocd.2017.01.006
10.1007/s00198-011-1758-z
10.1016/j.cct.2018.02.009
10.1016/j.jocd.2007.12.013
10.1002/jbmr.1996
10.1016/j.bone.2014.03.001
10.1001/jama.2019.11889
10.1002/jbmr.1795
10.1385/JCD:4:2:105
10.1002/jbmr.171
10.1016/j.bone.2010.05.034
10.1016/j.bone.2003.08.012
10.1016/j.bone.2015.06.006
10.1359/jbmr.1999.14.11.1952
10.1359/JBMR.050916
10.1016/j.bone.2009.09.023
10.1002/jbmr.81
ContentType Journal Article
Copyright International Osteoporosis Foundation and National Osteoporosis Foundation 2020
International Osteoporosis Foundation and National Osteoporosis Foundation 2020.
Copyright_xml – notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2020
– notice: International Osteoporosis Foundation and National Osteoporosis Foundation 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7TS
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00198-020-05449-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
ProQuest Nursing & Allied Health Database (NC LIVE)
Physical Education Index
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1433-2965
EndPage 2005
ExternalDocumentID 32430614
10_1007_s00198_020_05449_2
Genre Journal Article
GrantInformation_xml – fundername: Pure North S'Energy Foundation
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAS
LLZTM
M1P
M4Y
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7W
Z82
Z83
Z87
Z8O
Z8Q
Z8V
Z8W
Z91
ZMTXR
ZOVNA
ZXP
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c375t-7072be954fdca4b9e96a5f79820f3ce97a09490e5b923160db907bbf6d68d0833
IEDL.DBID U2A
ISSN 0937-941X
1433-2965
IngestDate Thu Jul 10 23:55:02 EDT 2025
Sat Jul 26 02:34:48 EDT 2025
Thu Apr 03 06:55:30 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Tue Jul 01 03:18:47 EDT 2025
Fri Feb 21 02:34:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Least significant change
HR-pQCT
Longitudinal analysis
Bone density
3D registration
Bone microarchitecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-7072be954fdca4b9e96a5f79820f3ce97a09490e5b923160db907bbf6d68d0833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2930-5997
PMID 32430614
PQID 2442689956
PQPubID 33762
PageCount 11
ParticipantIDs proquest_miscellaneous_2405304882
proquest_journals_2442689956
pubmed_primary_32430614
crossref_citationtrail_10_1007_s00198_020_05449_2
crossref_primary_10_1007_s00198_020_05449_2
springer_journals_10_1007_s00198_020_05449_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
2020-Oct
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle With other metabolic bone diseases
PublicationTitle Osteoporosis international
PublicationTitleAbbrev Osteoporos Int
PublicationTitleAlternate Osteoporos Int
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Samelson, Broe, Xu, Yang, Boyd, Biver, Szulc, Adachi, Amin, Atkinson, Berger, Burt, Chapurlat, Chevalley, Ferrari, Goltzman, Hanley, Hannan, Khosla, Liu, Lorentzon, Mellstrom, Merle, Nethander, Rizzoli, Sornay-Rendu, van Rietbergen, Sundh, Wong, Ohlsson, Demissie, Kiel, Bouxsein (CR7) 2019; 7
Tsai, Nishiyama, Lin, Yuan, Lee, Bouxsein, Leder (CR10) 2017; 32
Rizzoli, Chapurlat, Laroche, Krieg, Thomas, Frieling, Boutroy, Laib, Bock, Felsenberg (CR8) 2012; 23
Varga, Baumbach, Pahr, Zysset (CR5) 2009; 42
Burt, Liang, Sajobi, Hanley, Boyd (CR4) 2016; 31
Burt, Billington, Rose, Raymond, Hanley, Boyd (CR11) 2019; 322
Burt, Gaudet, Kan, Rose, Billington, Boyd, Hanley (CR23) 2018; 67
Ellouz, Chapurlat, van Rietbergen, Christen, Pialat, Boutroy (CR12) 2014; 63
Burghardt, Kazakia, Ramachandran, Link, Majumdar (CR27) 2010; 25
Burghardt, Pialat, Kazakia, Boutroy, Engelke, Patsch, Valentinitsch, Liu, Szabo, Bogado, Zanchetta, McKay, Shane, Boyd, Bouxsein, Chapurlat, Khosla, Majumdar (CR32) 2013; 28
Seeman, Delmas, Hanley, Sellmeyer, Cheung, Shane, Kearns, Thomas, Boyd, Boutroy, Bogado, Majumdar, Fan, Libanati, Zanchetta (CR9) 2010; 25
Dalzell, Kaptoge, Morris, Berthier, Koller, Braak, van Rietbergen, Reeve (CR3) 2009; 20
Buie, Campbell, Klinck, MacNeil, Boyd (CR28) 2007; 41
Nishiyama, Campbell, Klinck, Boyd (CR19) 2010; 46
Campbell, Tiwari, Grundmann, Purcz, Schem, Glüer (CR21) 2014; 94
Macdonald, Nishiyama, Kang, Hanley, Boyd (CR1) 2011; 26
Chiba, Okazaki, Kurogi, Isobe, Yonekura, Tomita, Osaki (CR15) 2018; 21
Boyd (CR33) 2008; 11
Bonnick, Johnston, Kleerekoper, Lindsay, Miller, Sherwood, Siris (CR30) 2001; 4
Manske, Zhu, Sandino, Boyd (CR26) 2015; 79
Burghardt, Buie, Laib, Majumdar, Boyd (CR31) 2010; 47
Bonaretti, Vilayphiou, Chan (CR14) 2017; 28
Manske, Davison, Burt, Raymond, Boyd (CR25) 2017; 32
CR22
Boyd, Moser, Kuhn, Klinck, Krauze, Müller, Gasser (CR13) 2006; 34
MacNeil, Boyd (CR16) 2008; 30
Shi, Wang, Hung, Yeugn, Griffith, Chu, Heng, Cheng, Qin (CR17) 2010; 14
Pauchard, Ayres, Boyd (CR34) 2011; 56
Christen, Melton, Zwahlen, Shreyasee, Khosla, Müller (CR6) 2013; 28
Lan, Luo, Huh, Chandra, Altman, Qin, Liu (CR20) 2013; 56
Waarsing, Day, van der Linden, Ederveen, Spanjers, De Clerck, Sasov, Verhaar, Weinans (CR18) 2004; 34
Pauchard, Liphardt, Macdonald, Hanley, Boyd (CR24) 2012; 50
Glüer (CR29) 1999; 14
Khosla, Riggs, Atkinson, Oberg, McDaniel, Holets, Peterson, Melton (CR2) 2006; 21
R Rizzoli (5449_CR8) 2012; 23
R Ellouz (5449_CR12) 2014; 63
N Dalzell (5449_CR3) 2009; 20
Y Pauchard (5449_CR24) 2012; 50
SL Manske (5449_CR26) 2015; 79
Y Pauchard (5449_CR34) 2011; 56
LA Burt (5449_CR23) 2018; 67
JN Tsai (5449_CR10) 2017; 32
JH Waarsing (5449_CR18) 2004; 34
S Lan (5449_CR20) 2013; 56
C-C Glüer (5449_CR29) 1999; 14
L Burt (5449_CR4) 2016; 31
S Khosla (5449_CR2) 2006; 21
K Chiba (5449_CR15) 2018; 21
5449_CR22
SL Bonnick (5449_CR30) 2001; 4
L Shi (5449_CR17) 2010; 14
HR Buie (5449_CR28) 2007; 41
JA MacNeil (5449_CR16) 2008; 30
KK Nishiyama (5449_CR19) 2010; 46
AJ Burghardt (5449_CR27) 2010; 25
EJ Samelson (5449_CR7) 2019; 7
P Varga (5449_CR5) 2009; 42
AJ Burghardt (5449_CR32) 2013; 28
S Bonaretti (5449_CR14) 2017; 28
SL Manske (5449_CR25) 2017; 32
LA Burt (5449_CR11) 2019; 322
GM Campbell (5449_CR21) 2014; 94
AJ Burghardt (5449_CR31) 2010; 47
SK Boyd (5449_CR33) 2008; 11
D Christen (5449_CR6) 2013; 28
SK Boyd (5449_CR13) 2006; 34
HM Macdonald (5449_CR1) 2011; 26
E Seeman (5449_CR9) 2010; 25
References_xml – volume: 42
  start-page: 1726
  year: 2009
  end-page: 1731
  ident: CR5
  article-title: Validation of an anatomy specific finite element model of Colles’ fracture
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.04.017
– ident: CR22
– volume: 50
  start-page: 1304
  year: 2012
  end-page: 1310
  ident: CR24
  article-title: Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/j.bone.2012.03.003
– volume: 14
  start-page: 1291
  year: 2010
  end-page: 1297
  ident: CR17
  article-title: Fast and accurate 3-D registration of HR-pQCT images
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2010.2061234
– volume: 34
  start-page: 1587
  year: 2006
  end-page: 1599
  ident: CR13
  article-title: Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-006-9168-7
– volume: 30
  start-page: 792
  year: 2008
  end-page: 799
  ident: CR16
  article-title: Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.11.003
– volume: 7
  start-page: 34
  year: 2019
  end-page: 43
  ident: CR7
  article-title: Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(18)30308-5
– volume: 20
  start-page: 1683
  year: 2009
  end-page: 1694
  ident: CR3
  article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-008-0833-6
– volume: 32
  start-page: 2001
  year: 2017
  end-page: 2009
  ident: CR10
  article-title: Effects of denosumab and teriparatide transitions on the bone microarchitecture and estimated strength: the DATA-Switch HR-pQCT study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3198
– volume: 41
  start-page: 505
  year: 2007
  end-page: 515
  ident: CR28
  article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis
  publication-title: Bone
  doi: 10.1016/j.bone.2007.07.007
– volume: 25
  start-page: 983
  year: 2010
  end-page: 993
  ident: CR27
  article-title: Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.157
– volume: 56
  start-page: 6523
  year: 2011
  end-page: 6543
  ident: CR34
  article-title: Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/20/001
– volume: 31
  start-page: 2041
  year: 2016
  end-page: 2047
  ident: CR4
  article-title: Sex- and site-specific normative data curves for HR-pQCT
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2873
– volume: 94
  start-page: 282
  year: 2014
  end-page: 292
  ident: CR21
  article-title: Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-013-9809-4
– volume: 56
  start-page: 83
  year: 2013
  end-page: 90
  ident: CR20
  article-title: 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (muCT)
  publication-title: Bone
  doi: 10.1016/j.bone.2013.05.014
– volume: 32
  start-page: 1514
  year: 2017
  end-page: 1524
  ident: CR25
  article-title: The estimation of second-generation HR-pQCT from first-generation HR-pQCT using in vivo cross-calibration
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3128
– volume: 21
  start-page: 295
  year: 2018
  end-page: 302
  ident: CR15
  article-title: Precision of second-generation high-resolution peripheral quantitative computed tomography: intra- and intertester reproducibilities and factors involved in the reproducibility of cortical porosity
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2017.01.006
– volume: 23
  start-page: 305
  year: 2012
  end-page: 315
  ident: CR8
  article-title: Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-011-1758-z
– volume: 67
  start-page: 68
  year: 2018
  end-page: 73
  ident: CR23
  article-title: Methods and procedures for: a randomized double-blind study investigating dose-dependent longitudinal effects of vitamin D supplementation on bone health
  publication-title: Contemp Clin Trials
  doi: 10.1016/j.cct.2018.02.009
– volume: 11
  start-page: 424
  year: 2008
  end-page: 430
  ident: CR33
  article-title: Site-specific variation of bone micro-architecture in the distal radius and tibia
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2007.12.013
– volume: 28
  start-page: 2601
  year: 2013
  end-page: 2608
  ident: CR6
  article-title: Improved fracture risk assessment based on nonlinear micro-finite element simulations from HRpQCT images at the distal radius
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1996
– volume: 63
  start-page: 147
  year: 2014
  end-page: 157
  ident: CR12
  article-title: Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility
  publication-title: Bone
  doi: 10.1016/j.bone.2014.03.001
– volume: 322
  start-page: 736
  year: 2019
  end-page: 745
  ident: CR11
  article-title: Effect of high-dose vitamin D supplementation on volumetric bone density and bone strength
  publication-title: JAMA
  doi: 10.1001/jama.2019.11889
– volume: 28
  start-page: 524
  year: 2013
  end-page: 536
  ident: CR32
  article-title: Multicenter precision of cortical and trabecular bone quality measures assessed by high-resolution peripheral quantitative computed tomography
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1795
– volume: 4
  start-page: 105
  year: 2001
  end-page: 110
  ident: CR30
  article-title: Importance of precision in bone density measurements
  publication-title: J Clin Densitom
  doi: 10.1385/JCD:4:2:105
– volume: 26
  start-page: 50
  year: 2011
  end-page: 62
  ident: CR1
  article-title: Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.171
– volume: 47
  start-page: 519
  year: 2010
  end-page: 528
  ident: CR31
  article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT
  publication-title: Bone
  doi: 10.1016/j.bone.2010.05.034
– volume: 34
  start-page: 163
  year: 2004
  end-page: 169
  ident: CR18
  article-title: Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data
  publication-title: Bone
  doi: 10.1016/j.bone.2003.08.012
– volume: 28
  start-page: 247
  year: 2017
  end-page: 257
  ident: CR14
  article-title: Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training
  publication-title: Osteoporos Int
– volume: 79
  start-page: 213
  year: 2015
  end-page: 221
  ident: CR26
  article-title: Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT
  publication-title: Bone
  doi: 10.1016/j.bone.2015.06.006
– volume: 14
  start-page: 1952
  year: 1999
  end-page: 1962
  ident: CR29
  article-title: Monitoring skeletal changes by radiological techniques
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.1999.14.11.1952
– volume: 21
  start-page: 124
  year: 2006
  end-page: 131
  ident: CR2
  article-title: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050916
– volume: 46
  start-page: 155
  year: 2010
  end-page: 161
  ident: CR19
  article-title: Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration
  publication-title: Bone
  doi: 10.1016/j.bone.2009.09.023
– volume: 25
  start-page: 1886
  year: 2010
  end-page: 1894
  ident: CR9
  article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.81
– volume: 47
  start-page: 519
  year: 2010
  ident: 5449_CR31
  publication-title: Bone
  doi: 10.1016/j.bone.2010.05.034
– volume: 31
  start-page: 2041
  year: 2016
  ident: 5449_CR4
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2873
– volume: 322
  start-page: 736
  year: 2019
  ident: 5449_CR11
  publication-title: JAMA
  doi: 10.1001/jama.2019.11889
– volume: 25
  start-page: 983
  year: 2010
  ident: 5449_CR27
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.157
– volume: 20
  start-page: 1683
  year: 2009
  ident: 5449_CR3
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-008-0833-6
– volume: 41
  start-page: 505
  year: 2007
  ident: 5449_CR28
  publication-title: Bone
  doi: 10.1016/j.bone.2007.07.007
– volume: 14
  start-page: 1952
  year: 1999
  ident: 5449_CR29
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.1999.14.11.1952
– volume: 4
  start-page: 105
  year: 2001
  ident: 5449_CR30
  publication-title: J Clin Densitom
  doi: 10.1385/JCD:4:2:105
– volume: 63
  start-page: 147
  year: 2014
  ident: 5449_CR12
  publication-title: Bone
  doi: 10.1016/j.bone.2014.03.001
– volume: 94
  start-page: 282
  year: 2014
  ident: 5449_CR21
  publication-title: Calcif Tissue Int
  doi: 10.1007/s00223-013-9809-4
– volume: 79
  start-page: 213
  year: 2015
  ident: 5449_CR26
  publication-title: Bone
  doi: 10.1016/j.bone.2015.06.006
– volume: 21
  start-page: 295
  year: 2018
  ident: 5449_CR15
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2017.01.006
– volume: 25
  start-page: 1886
  year: 2010
  ident: 5449_CR9
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.81
– volume: 30
  start-page: 792
  year: 2008
  ident: 5449_CR16
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.11.003
– volume: 56
  start-page: 83
  year: 2013
  ident: 5449_CR20
  publication-title: Bone
  doi: 10.1016/j.bone.2013.05.014
– volume: 26
  start-page: 50
  year: 2011
  ident: 5449_CR1
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.171
– volume: 7
  start-page: 34
  year: 2019
  ident: 5449_CR7
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(18)30308-5
– volume: 23
  start-page: 305
  year: 2012
  ident: 5449_CR8
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-011-1758-z
– volume: 14
  start-page: 1291
  year: 2010
  ident: 5449_CR17
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2010.2061234
– volume: 34
  start-page: 1587
  year: 2006
  ident: 5449_CR13
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-006-9168-7
– volume: 28
  start-page: 2601
  year: 2013
  ident: 5449_CR6
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1996
– volume: 21
  start-page: 124
  year: 2006
  ident: 5449_CR2
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050916
– volume: 28
  start-page: 524
  year: 2013
  ident: 5449_CR32
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.1795
– volume: 42
  start-page: 1726
  year: 2009
  ident: 5449_CR5
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.04.017
– volume: 32
  start-page: 1514
  year: 2017
  ident: 5449_CR25
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3128
– volume: 67
  start-page: 68
  year: 2018
  ident: 5449_CR23
  publication-title: Contemp Clin Trials
  doi: 10.1016/j.cct.2018.02.009
– volume: 50
  start-page: 1304
  year: 2012
  ident: 5449_CR24
  publication-title: Bone
  doi: 10.1016/j.bone.2012.03.003
– ident: 5449_CR22
– volume: 34
  start-page: 163
  year: 2004
  ident: 5449_CR18
  publication-title: Bone
  doi: 10.1016/j.bone.2003.08.012
– volume: 32
  start-page: 2001
  year: 2017
  ident: 5449_CR10
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.3198
– volume: 11
  start-page: 424
  year: 2008
  ident: 5449_CR33
  publication-title: J Clin Densitom
  doi: 10.1016/j.jocd.2007.12.013
– volume: 28
  start-page: 247
  year: 2017
  ident: 5449_CR14
  publication-title: Osteoporos Int
– volume: 46
  start-page: 155
  year: 2010
  ident: 5449_CR19
  publication-title: Bone
  doi: 10.1016/j.bone.2009.09.023
– volume: 56
  start-page: 6523
  year: 2011
  ident: 5449_CR34
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/20/001
SSID ssj0007997
Score 2.4488404
Snippet Summary Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study,...
Longitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study, we...
SummaryLongitudinal studies of bone using high-resolution medical imaging may result in non-physiological measurements of longitudinal changes. In this study,...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1995
SubjectTerms Aged
Bone and Bones
Bone Density
Bone imaging
Bone mineral density
Computed tomography
Endocrinology
Female
Humans
Image processing
Longitudinal studies
Male
Medicine
Medicine & Public Health
Middle Aged
Original Article
Orthopedics
Osteoporosis
Physiology
Radius
Radius - diagnostic imaging
Registration
Rheumatology
Tibia
Tibia - diagnostic imaging
Tomography, X-Ray Computed
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxMGgF8SK-rVaJ4E2D-8hukpOIWIpYTxZ7W_JaEbTVPv7fmW12VcReN9lkyLwzmRlCziMTlwZkHsut0owLa5nUuWRRYp12WEJMYYJz_zHvDfj9MBuGC7dpeFZZy8RKULuxxTvyK1BDSS4xD_P645Nh1yiMroYWGqtkDUuXIVWLYeNwRUJVzVXAaRdM8XgYkmaq1Dm0bRAkDAVzrljyWzH9sTb_REorBdTdIpvBcqQ3C1RvkxU_2iHr_RAb3yXPD2PsPTR32OeKmvHI03d8bfcjVADfF4m-U6onnhrYmTqPY95RfAH_Ql_fQcBQbNdQF9TdI4Pu3dNtj4W2CcymIpsxEYnEeJXx0lnNjfIq11kpFOj6MrVeCQ0unYp8ZtC4yyNnwEE2psxdLh1YZOk-aY0AyENCTaJ4VsbSAKtyaaWW1sepLIG1NE-dbJO4PrPChpri2NrirWiqIVfnXMA5F9U5F0mbXDT_fCwqaiyd3alRUQTumhbftNAmZ80w8AUGO_TIj-c4B2BG8QRLHCxQ2GwHRmSKnnCbXNY4_V78f1iOlsNyTDYSpKfqpV-HtGaTuT8Bi2VmTiuy_AJl5OUD
  priority: 102
  providerName: ProQuest
Title Longitudinal bone microarchitectural changes are best detected using image registration
URI https://link.springer.com/article/10.1007/s00198-020-05449-2
https://www.ncbi.nlm.nih.gov/pubmed/32430614
https://www.proquest.com/docview/2442689956
https://www.proquest.com/docview/2405304882
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dSxtBcKgK4kvR1ta0GrbgW124j73b3cdEEkVrEDE0fTr260TQREzy_ztzubsqWsGXW7jdm11mbmZnmC-Aw8jGpUWZx3OnDRfSOa5MrniUOG88lRDTlOB8McpPx-Jskk3qpLB5E-3euCQrSd0mu5E2QkDIeSuE5ih4NzK03SmQa5z0WvkrddVSBU11ybWIJ3WqzOswnl9HL3TMF_7R6toZbsPHWl9kvRWBd-BDmH6CzYvaI_4Zfv-aUcehpafuVszOpoHdU4zdEwcBvl-l986ZeQzM4s7MB5oLnlHc-w27vUexwqhJQ1NGdxfGw8H18SmvmyVwl8pswWUkExt0JkrvjLA66NxkpdR4w5epC1oaNOR0FDJLKl0eeYtmsbVl7nPlUQ9Lv8D6FA-5B8wmWmRlrCwyqFBOGeVCnKoSGcqI1KsOxA3OCldXEqeGFndFWwO5wnOBeC4qPBdJB3623zys6mi8uXq_IUVR89S8QEUkyRVl4nbgRzuN3EAuDjMNsyWtwTOTUEIQX1ckbLdD1TEl-7cDRw1N_wH__1m-vW_5d9hK6P-q4v32YX3xuAwHqLcsbBfW5ETiUx3HXdjoDfv9EY0nf84HOPYHo8urbvUr_wXKA-gs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcJQWiXJBpRQIFFgkeior7PXa3j2gCgWqtE1yStXczL5cVaJJaRIhfopvZMaPBFTRW69ee3c17_G8AN5HNi4tyjyeOW24zJ3jymSKR8J546mFmKYC5-Eo65_Jk0k66cDvthaG0ipbmVgJaj9z9I_8I6ohkSmqwzy8_sFpahRFV9sRGjVZnIZfP9Flm386_oL43Rfi6Ou41-fNVAHukjxd8DzKhQ06laV3RloddGbSMteoCsvEBZ0b9Hh0FFJLtk8WeYv-o7Vl5jPl0WBJcN8NeCATZE2qTO-tU0pyXQ1ziVDlcy3jSVOkU5XqkS1FIKDQs5Sai38V4S3r9lZktlJ4R9vwuLFU2eeatJ5AJ0x34OGwicU_hfPBjGYdLT3N1WJ2Ng3sirL7_gpN4PO6sHjOzE1gFk9mPtBa8Iwy7i_Y5RUKNEbjIdoGvrtwdi8AfQabU7zkC2BWaJmWsbIoGqRyyigX4kSVyMpGJl51IW5hVrimhzmN0vherLovV3AuEM5FBedCdOFg9c113cHjzrf3WlQUDTfPizXtdeHdahn5kIIrZhpmS3oH70ziELd4XqNwdRwarQl53l340OJ0vfn_7_Ly7ru8ha3-eDgoBsej01fwSBBtVVmGe7C5uFmG12gtLeybikQZfLtvnvgDrSwhYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JThRB9AUxIV6ILOogSJnASSt0V1d3VR0MIeAEZIkHiXNra2tDAjPIzMT4a36d7_UyoyFy49rVXVV5--u3AewkLq0cyjxeeGO5VN5zbQvNE-GDDdRCzFCB8_lFcXwpPw3ywQL87mphKK2yk4m1oA4jT__I91ANiUJTHeZe1aZFfD7q79_-4DRBiiKt3TiNhkRO46-f6L6NP5wcIa53heh__HJ4zNsJA9xnKp9wlSjhosllFbyVzkRT2LxSBtVilflolEXvxyQxd2QHFUlw6Es6VxWh0AGNlwz3fQJPVaY08Zg-nKeXKFMPdklQ_XMj00FbsFOX7ZFdReCgMLSUhot_leI9S_delLZWfv3nsNxareygIbMVWIjDVVg6b-Pya_D1bERzj6aBZmwxNxpGdkOZfn-FKfB5U2Q8ZvYuMocnsxBpLQZG2fff2dUNCjdGoyK6Zr7rcPkoAH0Bi0O85CtgThiZV6l2KCak9tpqH9NMV8jWVmZB9yDtYFb6tp85jdW4LmedmGs4lwjnsoZzKXrwbvbNbdPN48G3NztUlC1nj8s5Hfbg7WwZeZICLXYYR1N6B-9MohG3eNmgcHYcGrAZeeE9eN_hdL75_--y8fBdtmEJuaE8O7k4fQ3PBJFWnXC4CYuTu2ncQsNp4t7UFMrg22OzxB9O6CWX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+bone+microarchitectural+changes+are+best+detected+using+image+registration&rft.jtitle=Osteoporosis+international&rft.au=Kemp%2C+T+D&rft.au=de+Bakker%2C+C+M+J&rft.au=Gabel%2C+L&rft.au=Hanley%2C+D+A&rft.date=2020-10-01&rft.issn=1433-2965&rft.eissn=1433-2965&rft.volume=31&rft.issue=10&rft.spage=1995&rft_id=info:doi/10.1007%2Fs00198-020-05449-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-941X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-941X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-941X&client=summon