Approximating subject-specific brain injury models via scaling based on head–brain morphological relationships
Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In...
Saved in:
Published in | Biomechanics and modeling in mechanobiology Vol. 22; no. 1; pp. 159 - 175 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (
N
= 191; 141 males and 50 females with age ranging 14–25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted
R
2
and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from “morphed models” derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01–1.03 for gray and white matter regions versus 1.16–1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations. |
---|---|
AbstractList | Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations. Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information ( N = 191; 141 males and 50 females with age ranging 14–25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted R 2 and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from “morphed models” derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01–1.03 for gray and white matter regions versus 1.16–1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations. Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations.Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14-25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted [Formula: see text] and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from "morphed models" derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01-1.03 for gray and white matter regions versus 1.16-1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations. Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a subject-specific basis. Subject-specific models can be developed from neuroimages; however, neuroimages are not typically available in practice. In this study, we establish simple and elegant regression models between brain outer surface morphology and head dimensions measured from neuroimages along with age and sex information (N = 191; 141 males and 50 females with age ranging 14–25 years). The regression models are then used to approximate subject-specific brain models by scaling a generic counterpart, without using neuroimages. Model geometrical accuracy is assessed using adjusted R2 and absolute percentage error (e.g., 0.720 and 3.09 ± 2.38%, respectively, for brain volume when incorporating tragion-to-top). For a subset of 11 subjects (from smallest to largest in brain volume), impact-induced brain strains are compared with those from “morphed models” derived from neuroimage-based mesh warping. We find that regional peak strains from the scaled subject-specific models are comparable to those of the morphed counterparts but could be considerably different from those of the generic model (e.g., linear regression slope of 1.01–1.03 for gray and white matter regions versus 1.16–1.19, or up to ~ 20% overestimation for the smallest brain studied). These results highlight the importance of incorporating brain morphological variations in impact simulation and demonstrate the feasibility of approximating subject-specific brain models without neuroimages using age, sex, and easily measurable head dimensions. The scaled models may improve subject specificity for future TBI investigations. |
Author | Wu, Shaoju Zhao, Wei Hu, Jingwen Ji, Songbai Wu, Zheyang McAllister, Thomas |
Author_xml | – sequence: 1 givenname: Shaoju surname: Wu fullname: Wu, Shaoju organization: Department of Biomedical Engineering, Worcester Polytechnic Institute – sequence: 2 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: Department of Biomedical Engineering, Worcester Polytechnic Institute – sequence: 3 givenname: Zheyang surname: Wu fullname: Wu, Zheyang organization: Mathematical Sciences, Worcester Polytechnic Institute – sequence: 4 givenname: Thomas surname: McAllister fullname: McAllister, Thomas organization: Department of Psychiatry, Indiana University School of Medicine – sequence: 5 givenname: Jingwen surname: Hu fullname: Hu, Jingwen organization: University of Michigan Transportation Research Institute, Department of Mechanical Engineering, University of Michigan – sequence: 6 givenname: Songbai orcidid: 0000-0002-2886-5781 surname: Ji fullname: Ji, Songbai email: sji@wpi.edu organization: Department of Biomedical Engineering, Worcester Polytechnic Institute, Department of Mechanical Engineering, Worcester Polytechnic Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36201071$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3TAQRq2Kqvy0L9BFZYkNm9CxndjJEiEoSEjdtGvLcZx7fZXYqSepYMc79A37JDUEqMSClb04ZzTzfYdkL8TgCPnM4JQBqK_IgAtVAOcFMCnqQr4jB0wyVaimhL2Xf9Xsk0PEHQAHUYsPZF9IDgwUOyDT2TSleOtHM_uwobi0O2fnAidnfe8tbZPxgfqwW9IdHWPnBqS_vaFozfAgtAZdR2OgW2e6v_d_Vn6MadrGIW58xmhyQ54eA279hB_J-94M6D49vUfk5-XFj_Or4ub7t-vzs5vCClXNheylAJC8bCppaqhUV3VgACrZGsW46KBpO1eXyja1Naouraj6hpdKMRBcgTgiJ-vcfN6vxeGsR4_WDYMJLi6oueJcMF6rMqPHr9BdXFLI22Uqx1epHHOmvjxRSzu6Tk8ph5bu9HOWGahXwKaImFyvrZ8fD59zKINmoB9q02ttOtemH2vTMqv8lfo8_U1JrBJmOGxc-r_2G9Y_FZyqQg |
CitedBy_id | crossref_primary_10_1007_s11517_024_03267_w crossref_primary_10_1007_s10439_024_03513_0 crossref_primary_10_1115_1_4062937 crossref_primary_10_1089_neu_2022_0339 crossref_primary_10_1007_s10439_024_03514_z crossref_primary_10_1016_j_brain_2023_100075 |
Cites_doi | 10.1007/s10237-021-01508-7 10.1007/s10237-015-0754-1 10.1080/15389588.2014.931948 10.1055/s-2002-36735 10.1016/B978-0-12-809831-8.00010-6 10.3389/fbioe.2020.00309 10.4271/2006-22-0017 10.1007/s10439-020-02584-z 10.1016/J.NEUROIMAGE.2010.01.111 10.1007/s10439-020-02703-w 10.1089/neu.2018.5634 10.1007/S10935-014-0355-2/TABLES/6 10.1016/j.neuroimage.2014.01.009 10.1007/s10237-019-01261-y 10.1007/s10237-017-0915-5 10.1007/s10439-018-1988-8 10.1016/j.neuroimage.2007.09.031 10.3389/fbioe.2021.706566 10.1016/J.JBIOMECH.2014.04.045 10.1089/neu.2013.3268 10.1016/j.jmbbm.2016.03.021 10.4271/2014-22-0002 10.1007/s10439-011-0409-z 10.1136/IP.5.3.194 10.3171/2017.10.JNS17352 10.1007/s10439-018-02166-0 10.1007/s00707-009-0274-0 10.2217/cnc-2017-0015 10.1007/0-387-27614-9 10.1111/JOA.12247 10.1089/neu.2018.6143 10.1016/j.jpeds.2010.01.009 10.1148/radiology.216.3.r00au37672 10.1115/1.4040230 10.1007/s10439-020-02496-y 10.1089/neu.2017.5362 10.1016/J.JBIOMECH.2022.111036 10.1016/j.finel.2011.05.007 10.1007/s10237-017-0887-5 10.1016/j.clinbiomech.2018.02.019 10.1016/j.jbiomech.2016.06.020 10.1007/s10439-022-02999-w 10.1016/j.jbiomech.2014.09.031 10.1016/0950-3293(91)90027-C 10.1101/2020.05.20.105635 10.1016/J.MEDENGPHY.2019.04.007 10.4271/2019-22-0001 10.1016/J.CMA.2022.114913 10.1016/j.aap.2016.03.013 10.1007/s10439-021-02821-z 10.1089/neu.2020.7281 10.1097/00001199-200609000-00001 10.1007/s10439-020-02684-w 10.1115/1.4051050 10.1016/j.jbiomech.2014.09.010 10.1016/S0021-9290(01)00202-0 10.1007/s10439-011-0402-6 10.1136/bjsports-2017-097729 10.1016/j.jmbbm.2021.104967 10.1007/s10439-019-02239-8 10.1093/brain/aww317 10.1002/HBM.10062 10.1016/j.pmrj.2011.07.017 10.1007/s10237-014-0634-0 10.1007/s10237-020-01341-4 10.1002/9781118625590 10.1080/1750984X.2020.1824243 10.1177/17543371211020614 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
DBID | AAYXX CITATION NPM 3V. 7QO 7QP 7TB 7TK 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M2P M7P M7S P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U S0W 7X8 |
DOI | 10.1007/s10237-022-01638-6 |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1617-7940 |
EndPage | 175 |
ExternalDocumentID | 36201071 10_1007_s10237_022_01638_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: 2114697 funderid: http://dx.doi.org/10.13039/100000147 – fundername: National Institute of Neurological Disorders and Stroke grantid: R01 NS092853 funderid: http://dx.doi.org/10.13039/100000065 – fundername: NINDS NIH HHS grantid: R01 NS092853 – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: 2114697 |
GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7QP 7TB 7TK 7XB 8FD 8FK ABRTQ FR3 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-6f6300624956a8057d5d0a0056ba7123d09bde847c98ca784c35f924771032703 |
IEDL.DBID | 7X7 |
ISSN | 1617-7959 1617-7940 |
IngestDate | Mon Jul 21 09:27:01 EDT 2025 Fri Jul 25 19:09:56 EDT 2025 Thu Apr 03 07:01:56 EDT 2025 Tue Jul 01 00:54:40 EDT 2025 Thu Apr 24 22:51:17 EDT 2025 Fri Feb 21 02:44:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Brain injury model Head morphology Concussion Subject-specific model Worcester head injury model (WHIM) |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-6f6300624956a8057d5d0a0056ba7123d09bde847c98ca784c35f924771032703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2886-5781 |
PMID | 36201071 |
PQID | 2779557237 |
PQPubID | 54766 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2722312874 proquest_journals_2779557237 pubmed_primary_36201071 crossref_citationtrail_10_1007_s10237_022_01638_6 crossref_primary_10_1007_s10237_022_01638_6 springer_journals_10_1007_s10237_022_01638_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 2023-Feb 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Dordrecht |
PublicationTitle | Biomechanics and modeling in mechanobiology |
PublicationTitleAbbrev | Biomech Model Mechanobiol |
PublicationTitleAlternate | Biomech Model Mechanobiol |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Chen, Ostoja-Starzewski (CR10) 2010; 213 Thai, McIntosh, Pang (CR58) 2015; 16 Ghazi, Wu, Zhao, Ji (CR21) 2021; 38 Zhao, Ji (CR69) 2020; 20 Fahlstedt, Abayazid, Panzer (CR17) 2021; 49 Alshareef, Giudice, Forman (CR1) 2018; 35 Wang, Brede, Lange (CR61) 2004; 48 Atsumi, Nakahira, Tanaka, Iwamoto (CR4) 2018; 46 Iverson, Gardner, Terry (CR27) 2017; 51 Shattuck, Mirza, Adisetiyo (CR52) 2008; 39 Varentsova, Zhang, Arfanakis (CR60) 2014 Hardy, Mason, Foster (CR25) 2007; 51 Bian, Mao (CR6) 2020; 1–19 McAllister, Ford, Ji (CR43) 2012; 40 Takhounts, Ridella, Tannous (CR56) 2008; 52 Smith (CR55) 2002; 17 Wu, Zhao, Rowson (CR65) 2020; 19 Sahoo, Deck, Willinger (CR50) 2016; 92 Ji, Ford, Greenwald (CR28) 2011; 47 Chan, Knutsen, Lu (CR9) 2018; 140 Li, Zhou, Kleiven (CR39) 2020 Shi, Cao, Reed (CR53) 2014; 47 Draper, Smith (CR16) 1998 CR8 CR7 Li (CR36) 2021 CR46 Alshareef, Wu, Giudice, Panzer (CR2) 2021 Zhao, Ji (CR70) 2022; 126 Zhao, Wu, Ji (CR73) 2021; 143 Courchesne, Chisum, Townsend (CR12) 2000; 216 Rivara, Astley, Clarren (CR47) 1999; 5 Sanchez, Gabler, Good (CR51) 2018; 64 Rowson, Duma (CR49) 2020; 48 Giudice, Alshareef, Wu (CR24) 2020 Liu, Jin, Judy, Eckner (CR41) 2022; 135 Dewan, Rattani, Gupta (CR14) 2019; 130 Danelson, Geer, Stitzel (CR13) 2008; 52 Langlois, Rutland-Brown, Wald (CR34) 2006; 21 CR18 Bartholomeusz, Courchesne, Karns (CR5) 2002; 33 Li, Hu, Reed (CR37) 2011; 39 Wu, Alshareef, Giudice, Panzer (CR64) 2019 Ji, Zhao, Ford (CR29) 2015; 32 Kleiven, von Holst (CR31) 2002; 35 Garimella, Menghani, Gerber (CR19) 2019; 47 Hu (CR26) 2018 Collins, Fletcher, Fields (CR11) 2014; 35 Tang, Hojatkashani, Dinov (CR57) 2010; 51 Urban, Weaver, Lillie (CR59) 2016; 229 Wang, Cao, Bai (CR62) 2016; 49 Mollayeva, El-Khechen-Richandi, Colantonio (CR45) 2018; 3 Wu, Zhao, Ji (CR66) 2022; 394 Zhao, Cai, Li, Ji (CR72) 2017; 16 Giordano, Kleiven (CR22) 2014; 58 Wu, Cai, Li (CR63) 2019; 70 Zhao, Ji (CR68) 2019; 36 Ghajari, Hellyer, Sharp (CR20) 2017; 140 Zhou, Li, Kleiven (CR74) 2019; 36 Liu, Domel, Cecchi (CR40) 2021 Knutsen, Magrath, McEntee (CR32) 2014; 47 Ji, Ghajari, Mao (CR30) 2022 Laker (CR33) 2011; 3 Lee, Shin, Istook (CR35) 2006; 7 Miller, Urban, Stitzel (CR44) 2016; 15 Yang, Hu, White (CR67) 2006; 50 Giordano, Zappalà, Kleiven (CR23) 2017; 16 Zhao, Ruan, Ji (CR71) 2015; 14 Dijksterhuis, Gower (CR15) 1991; 3 Rollins, Collins, Holden (CR48) 2010; 156 Slice (CR54) 2005 Li, Han, Ge, Ma (CR38) 2016; 60 Lu, Untaroiu (CR42) 2014; 47 Anderson, Giudice, Wu (CR3) 2020; 8 E Courchesne (1638_CR12) 2000; 216 C Giordano (1638_CR23) 2017; 16 S Wu (1638_CR66) 2022; 394 KH Yang (1638_CR67) 2006; 50 AK Knutsen (1638_CR32) 2014; 47 SC Wang (1638_CR61) 2004; 48 JS Giudice (1638_CR24) 2020 NR Draper (1638_CR16) 1998 W Zhao (1638_CR72) 2017; 16 SM Smith (1638_CR55) 2002; 17 M Ghajari (1638_CR20) 2017; 140 S Wu (1638_CR65) 2020; 19 M Fahlstedt (1638_CR17) 2021; 49 A Alshareef (1638_CR1) 2018; 35 A Alshareef (1638_CR2) 2021 JE Urban (1638_CR59) 2016; 229 KA Danelson (1638_CR13) 2008; 52 DE Slice (1638_CR54) 2005 D Sahoo (1638_CR50) 2016; 92 S Ji (1638_CR29) 2015; 32 EG Takhounts (1638_CR56) 2008; 52 T Mollayeva (1638_CR45) 2018; 3 HT Garimella (1638_CR19) 2019; 47 Y Chen (1638_CR10) 2010; 213 SR Laker (1638_CR33) 2011; 3 K Bian (1638_CR6) 2020; 1–19 D Chan (1638_CR9) 2018; 140 J Wu (1638_CR63) 2019; 70 JL Liu (1638_CR41) 2022; 135 1638_CR7 MC Dewan (1638_CR14) 2019; 130 X Li (1638_CR39) 2020 D Shattuck (1638_CR52) 2008; 39 C Giordano (1638_CR22) 2014; 58 1638_CR8 GB Dijksterhuis (1638_CR15) 1991; 3 1638_CR18 KT Thai (1638_CR58) 2015; 16 Y Liu (1638_CR40) 2021 Y Wang (1638_CR62) 2016; 49 N Atsumi (1638_CR4) 2018; 46 X Li (1638_CR36) 2021 ED Anderson (1638_CR3) 2020; 8 S Ji (1638_CR28) 2011; 47 X Shi (1638_CR53) 2014; 47 W Zhao (1638_CR69) 2020; 20 W Zhao (1638_CR71) 2015; 14 Z Zhou (1638_CR74) 2019; 36 GL Iverson (1638_CR27) 2017; 51 YC Lu (1638_CR42) 2014; 47 HH Bartholomeusz (1638_CR5) 2002; 33 Z Li (1638_CR38) 2016; 60 CL Collins (1638_CR11) 2014; 35 W Zhao (1638_CR70) 2022; 126 Z Li (1638_CR37) 2011; 39 A Varentsova (1638_CR60) 2014 WN Hardy (1638_CR25) 2007; 51 S Ji (1638_CR30) 2022 1638_CR46 FP Rivara (1638_CR47) 1999; 5 B Rowson (1638_CR49) 2020; 48 LE Miller (1638_CR44) 2016; 15 JA Langlois (1638_CR34) 2006; 21 J-H Lee (1638_CR35) 2006; 7 EJ Sanchez (1638_CR51) 2018; 64 W Zhao (1638_CR73) 2021; 143 J Hu (1638_CR26) 2018 W Zhao (1638_CR68) 2019; 36 T Wu (1638_CR64) 2019 JD Rollins (1638_CR48) 2010; 156 Y Tang (1638_CR57) 2010; 51 K Ghazi (1638_CR21) 2021; 38 TW McAllister (1638_CR43) 2012; 40 S Kleiven (1638_CR31) 2002; 35 |
References_xml | – year: 2021 ident: CR2 article-title: Toward subject-specific evaluation: methods of evaluating finite element brain models using experimental high-rate rotational brain motion publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01508-7 – volume: 15 start-page: 1201 year: 2016 end-page: 1214 ident: CR44 article-title: Development and validation of an atlas-based finite element brain model model publication-title: Biomech Model doi: 10.1007/s10237-015-0754-1 – volume: 16 start-page: 268 year: 2015 end-page: 275 ident: CR58 article-title: Bicycle helmet size, adjustment, and stability publication-title: Traffic Inj Prev doi: 10.1080/15389588.2014.931948 – volume: 33 start-page: 239 year: 2002 end-page: 241 ident: CR5 article-title: Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults publication-title: Neuropediatrics doi: 10.1055/s-2002-36735 – start-page: 417 year: 2018 end-page: 445 ident: CR26 publication-title: Parametric human modelling. Basic finite element method as applied to injury biomechanics doi: 10.1016/B978-0-12-809831-8.00010-6 – volume: 8 start-page: 309 year: 2020 ident: CR3 article-title: Predicting concussion outcome by integrating finite element modeling and network analysis publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00309 – volume: 52 start-page: 59 year: 2008 end-page: 81 ident: CR13 article-title: Age and gender based biomechanical shape and size analysis of the pediatric brain publication-title: Stapp Car Crash J – volume: 50 start-page: 429 year: 2006 end-page: 490 ident: CR67 article-title: Development of numerical models for injury biomechanics research: a review of 50 years of publications in the Stapp Car Crash Conference publication-title: Stapp Car Crash J doi: 10.4271/2006-22-0017 – year: 2020 ident: CR24 article-title: An image registration-based morphing technique for generating subject-specific brain finite element models publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02584-z – volume: 51 start-page: 33 year: 2010 end-page: 41 ident: CR57 article-title: The construction of a Chinese MRI brain atlas: a morphometric comparison study between Chinese and Caucasian cohorts publication-title: Neuroimage doi: 10.1016/J.NEUROIMAGE.2010.01.111 – volume: 49 start-page: 1097 year: 2021 end-page: 1109 ident: CR17 article-title: Ranking and rating bicycle helmet safety performance in oblique impacts using eight different brain injury models publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02703-w – volume: 36 start-page: 250 year: 2019 end-page: 263 ident: CR68 article-title: White matter anisotropy for impact simulation and response sampling in traumatic brain injury publication-title: J Neurotrauma doi: 10.1089/neu.2018.5634 – volume: 35 start-page: 309 year: 2014 end-page: 319 ident: CR11 article-title: Neck strength: a protective factor reducing risk for concussion in high school sports publication-title: J Prim Prev doi: 10.1007/S10935-014-0355-2/TABLES/6 – year: 2014 ident: CR60 article-title: Development of a high angular resolution diffusion imaging human brain template publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.009 – volume: 19 start-page: 927 year: 2020 end-page: 942 ident: CR65 article-title: A network-based response feature matrix as a brain injury metric publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-019-01261-y – ident: CR8 – volume: 16 start-page: 1709 year: 2017 end-page: 1727 ident: CR72 article-title: Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0915-5 – volume: 46 start-page: 736 year: 2018 end-page: 748 ident: CR4 article-title: Human brain modeling with its anatomical structure and realistic material properties for brain injury prediction publication-title: Ann Biomed Eng doi: 10.1007/s10439-018-1988-8 – volume: 39 start-page: 1064 year: 2008 end-page: 1080 ident: CR52 article-title: Construction of a 3D probabilistic atlas of human cortical structures publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – year: 2021 ident: CR36 article-title: Subject-specific head model generation by mesh morphing: a personalization framework and its applications publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.706566 – ident: CR46 – volume: 47 start-page: 2277 year: 2014 end-page: 2285 ident: CR53 article-title: A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index publication-title: J Biomech doi: 10.1016/J.JBIOMECH.2014.04.045 – volume: 32 start-page: 441 year: 2015 end-page: 454 ident: CR29 article-title: Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion publication-title: J Neurotrauma doi: 10.1089/neu.2013.3268 – volume: 60 start-page: 557 year: 2016 end-page: 567 ident: CR38 article-title: A semi-automatic method of generating subject-specific pediatric head finite element models for impact dynamic responses to head injury publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2016.03.021 – volume: 58 start-page: 29 year: 2014 end-page: 61 ident: CR22 article-title: Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling publication-title: Stapp Car Crash J doi: 10.4271/2014-22-0002 – volume: 39 start-page: 2984 year: 2011 end-page: 2997 ident: CR37 article-title: Development, validation, and application of a parametric pediatric head finite element model for impact simulations publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0409-z – volume: 5 start-page: 194 year: 1999 end-page: 197 ident: CR47 article-title: Fit of bicycle safety helmets and risk of head injuries in children publication-title: Inj Prev doi: 10.1136/IP.5.3.194 – volume: 130 start-page: 1080 year: 2019 end-page: 1097 ident: CR14 article-title: Estimating the global incidence of traumatic brain injury publication-title: J Neurosurg doi: 10.3171/2017.10.JNS17352 – volume: 47 start-page: 1 year: 2019 end-page: 19 ident: CR19 article-title: Embedded finite elements for modeling axonal injury publication-title: Ann Biomed Eng doi: 10.1007/s10439-018-02166-0 – volume: 213 start-page: 155 year: 2010 end-page: 167 ident: CR10 article-title: MRI-based finite element modeling of head trauma: spherically focusing shear waves publication-title: Acta Mech doi: 10.1007/s00707-009-0274-0 – volume: 3 start-page: CNC51 year: 2018 ident: CR45 article-title: Sex & gender considerations in concussion research publication-title: Concussion doi: 10.2217/cnc-2017-0015 – year: 2005 ident: CR54 article-title: Modern morphometrics in physical anthropology publication-title: Mod Morphometrics Phys Anthropol doi: 10.1007/0-387-27614-9 – volume: 229 start-page: 838 year: 2016 end-page: 846 ident: CR59 article-title: Evaluation of morphological changes in the adult skull with age and sex publication-title: J Anat doi: 10.1111/JOA.12247 – volume: 36 start-page: 2099 year: 2019 end-page: 2108 ident: CR74 article-title: Biomechanics of acute subdural hematoma in the elderly: a fluid-structure interaction study publication-title: J Neurotrauma doi: 10.1089/neu.2018.6143 – volume: 7 start-page: 77 year: 2006 end-page: 83 ident: CR35 article-title: Analysis of human head shapes in the United States publication-title: Int J Hum Ecol – volume: 156 start-page: 907 year: 2010 end-page: 913.e2 ident: CR48 article-title: United States head circumference growth reference charts: birth to 21 years publication-title: J Pediatr doi: 10.1016/j.jpeds.2010.01.009 – volume: 216 start-page: 672 year: 2000 end-page: 682 ident: CR12 article-title: Normal brain development and aging quantitative analysis at in vivo mr imaging in healthy volunteers publication-title: Radiology doi: 10.1148/radiology.216.3.r00au37672 – volume: 52 start-page: 1 year: 2008 end-page: 31 ident: CR56 article-title: Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model publication-title: Stapp Car Crash J – volume: 140 start-page: 1 year: 2018 end-page: 13 ident: CR9 article-title: Statistical characterization of human brain deformation during mild angular acceleration measured in vivo by tagged MRI publication-title: J Biomech Eng doi: 10.1115/1.4040230 – ident: CR18 – volume: 20 start-page: 1661 year: 2020 end-page: 1677 ident: CR69 article-title: Displacement- and strain-based discrimination of head injury models across a wide range of blunt conditions publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02496-y – volume: 35 start-page: 780 year: 2018 end-page: 789 ident: CR1 article-title: A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry publication-title: J Neurotrauma doi: 10.1089/neu.2017.5362 – volume: 135 year: 2022 ident: CR41 article-title: Influence of morphological variation on brain impact responses among youth and young adults publication-title: J Biomech doi: 10.1016/J.JBIOMECH.2022.111036 – volume: 47 start-page: 1178 year: 2011 end-page: 1185 ident: CR28 article-title: Automated subject-specific, hexahedral mesh generation via image registration publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.05.007 – volume: 16 start-page: 1269 year: 2017 end-page: 1293 ident: CR23 article-title: Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0887-5 – volume: 64 start-page: 82 year: 2018 end-page: 89 ident: CR51 article-title: A reanalysis of football impact reconstructions for head kinematics and finite element modeling publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2018.02.019 – volume: 49 start-page: 2791 year: 2016 end-page: 2798 ident: CR62 article-title: A parametric ribcage geometry model accounting for variations among the adult population publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.06.020 – year: 2022 ident: CR30 article-title: Use of brain biomechanical models for monitoring impact exposure in contact sports publication-title: Ann Biomed Eng doi: 10.1007/s10439-022-02999-w – volume: 47 start-page: 3681 year: 2014 end-page: 3688 ident: CR42 article-title: A statistical geometrical description of the human liver for probabilistic occupant models publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.09.031 – volume: 3 start-page: 67 year: 1991 end-page: 87 ident: CR15 article-title: The interpretation of generalized procrustes analysis and allied methods publication-title: Food Qual Prefer doi: 10.1016/0950-3293(91)90027-C – volume: 48 start-page: 287 year: 2004 ident: CR61 article-title: Gender differences in hip anatomy: possible implications for injury tolerance in frontal collisions publication-title: Annu Proc Assoc Adv Automot Med – year: 2020 ident: CR39 article-title: An anatomically accurate and personalizable head injury model: significance of brain and white matter tract morphological variability on strain publication-title: Biomech Model Mechanobiol doi: 10.1101/2020.05.20.105635 – volume: 70 start-page: 62 year: 2019 end-page: 71 ident: CR63 article-title: Development and validation of a semi-automatic landmark extraction method for mesh morphing publication-title: Med Eng Phys doi: 10.1016/J.MEDENGPHY.2019.04.007 – volume: 51 start-page: 17 year: 2007 end-page: 80 ident: CR25 article-title: A study of the response of the human cadaver head to impact publication-title: Stapp Car Crash J doi: 10.4271/2019-22-0001 – volume: 394 year: 2022 ident: CR66 article-title: Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact publication-title: Comput Methods Appl Mech Eng doi: 10.1016/J.CMA.2022.114913 – volume: 92 start-page: 53 year: 2016 end-page: 70 ident: CR50 article-title: Brain injury tolerance limit based on computation of axonal strain publication-title: Accid Anal Prev doi: 10.1016/j.aap.2016.03.013 – year: 2021 ident: CR40 article-title: Time window of head impact kinematics measurement for calculation of brain strain and strain rate in american football publication-title: Ann Biomed Eng doi: 10.1007/s10439-021-02821-z – volume: 38 start-page: 1023 year: 2021 end-page: 1035 ident: CR21 article-title: Instantaneous whole-brain strain estimation in dynamic head impact publication-title: J Neurotrauma doi: 10.1089/neu.2020.7281 – volume: 21 start-page: 375 year: 2006 end-page: 378 ident: CR34 article-title: The epidemiology and impact of traumatic brain injury a brief overview publication-title: J Head Trauma Rehabil doi: 10.1097/00001199-200609000-00001 – volume: 48 start-page: 1 year: 2020 end-page: 17 ident: CR49 article-title: A review of on-field investigations into the biomechanics of concussion in football and translation to head injury mitigation strategies publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02684-w – volume: 143 start-page: 1 year: 2021 end-page: 10 ident: CR73 article-title: Displacement error propagation from embedded markers to brain strain publication-title: J Biomech Eng doi: 10.1115/1.4051050 – volume: 47 start-page: 3475 year: 2014 end-page: 3481 ident: CR32 article-title: Improved measurement of brain deformation during mild head acceleration using a novel tagged MRI sequence publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.09.010 – volume: 35 start-page: 153 year: 2002 end-page: 160 ident: CR31 article-title: Consequences of head size following trauma to the human head publication-title: J Biomech doi: 10.1016/S0021-9290(01)00202-0 – volume: 40 start-page: 127 year: 2012 end-page: 140 ident: CR43 article-title: Maximum principal strain and strain rate associated with concussion diagnosis correlates with changes in corpus callosum white matter indices publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0402-6 – volume: 51 start-page: 941 year: 2017 end-page: 948 ident: CR27 article-title: Predictors of clinical recovery from concussion: a systematic review publication-title: Br J Sports Med doi: 10.1136/bjsports-2017-097729 – volume: 126 year: 2022 ident: CR70 article-title: Cerebral vascular strains in dynamic head impact using an upgraded model with brain material property heterogeneity publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2021.104967 – year: 2019 ident: CR64 article-title: Explicit modeling of white matter axonal fiber tracts in a finite element brain model publication-title: Ann Biomed Eng doi: 10.1007/s10439-019-02239-8 – volume: 140 start-page: 333 year: 2017 end-page: 343 ident: CR20 article-title: Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology publication-title: Brain doi: 10.1093/brain/aww317 – ident: CR7 – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: CR55 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/HBM.10062 – volume: 3 start-page: S354 year: 2011 end-page: S358 ident: CR33 article-title: Epidemiology of concussion and mild traumatic brain injury publication-title: PM&R doi: 10.1016/j.pmrj.2011.07.017 – volume: 14 start-page: 753 year: 2015 end-page: 766 ident: CR71 article-title: Brain pressure responses in translational head impact: a dimensional analysis and a further computational study publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-014-0634-0 – volume: 1–19 start-page: 2323 year: 2020 end-page: 2341 ident: CR6 article-title: Mechanisms and variances of rotation-induced brain injury: a parametric investigation between head kinematics and brain strain publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-020-01341-4 – year: 1998 ident: CR16 publication-title: Applied Regression Analysis doi: 10.1002/9781118625590 – volume: 213 start-page: 155 year: 2010 ident: 1638_CR10 publication-title: Acta Mech doi: 10.1007/s00707-009-0274-0 – volume: 394 year: 2022 ident: 1638_CR66 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/J.CMA.2022.114913 – volume: 33 start-page: 239 year: 2002 ident: 1638_CR5 publication-title: Neuropediatrics doi: 10.1055/s-2002-36735 – year: 2005 ident: 1638_CR54 publication-title: Mod Morphometrics Phys Anthropol doi: 10.1007/0-387-27614-9 – volume: 35 start-page: 780 year: 2018 ident: 1638_CR1 publication-title: J Neurotrauma doi: 10.1089/neu.2017.5362 – volume: 39 start-page: 1064 year: 2008 ident: 1638_CR52 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.031 – volume: 14 start-page: 753 year: 2015 ident: 1638_CR71 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-014-0634-0 – year: 2014 ident: 1638_CR60 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.009 – year: 2021 ident: 1638_CR2 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-021-01508-7 – volume: 48 start-page: 1 year: 2020 ident: 1638_CR49 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02684-w – volume: 21 start-page: 375 year: 2006 ident: 1638_CR34 publication-title: J Head Trauma Rehabil doi: 10.1097/00001199-200609000-00001 – volume: 52 start-page: 1 year: 2008 ident: 1638_CR56 publication-title: Stapp Car Crash J – volume: 36 start-page: 2099 year: 2019 ident: 1638_CR74 publication-title: J Neurotrauma doi: 10.1089/neu.2018.6143 – volume: 51 start-page: 941 year: 2017 ident: 1638_CR27 publication-title: Br J Sports Med doi: 10.1136/bjsports-2017-097729 – volume: 5 start-page: 194 year: 1999 ident: 1638_CR47 publication-title: Inj Prev doi: 10.1136/IP.5.3.194 – volume: 135 year: 2022 ident: 1638_CR41 publication-title: J Biomech doi: 10.1016/J.JBIOMECH.2022.111036 – volume: 52 start-page: 59 year: 2008 ident: 1638_CR13 publication-title: Stapp Car Crash J – volume: 60 start-page: 557 year: 2016 ident: 1638_CR38 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2016.03.021 – volume: 47 start-page: 3475 year: 2014 ident: 1638_CR32 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.09.010 – volume: 32 start-page: 441 year: 2015 ident: 1638_CR29 publication-title: J Neurotrauma doi: 10.1089/neu.2013.3268 – year: 2020 ident: 1638_CR24 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02584-z – volume: 20 start-page: 1661 year: 2020 ident: 1638_CR69 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02496-y – volume: 46 start-page: 736 year: 2018 ident: 1638_CR4 publication-title: Ann Biomed Eng doi: 10.1007/s10439-018-1988-8 – year: 2021 ident: 1638_CR36 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.706566 – volume: 47 start-page: 1178 year: 2011 ident: 1638_CR28 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.05.007 – volume: 36 start-page: 250 year: 2019 ident: 1638_CR68 publication-title: J Neurotrauma doi: 10.1089/neu.2018.5634 – volume: 15 start-page: 1201 year: 2016 ident: 1638_CR44 publication-title: Biomech Model doi: 10.1007/s10237-015-0754-1 – volume: 216 start-page: 672 year: 2000 ident: 1638_CR12 publication-title: Radiology doi: 10.1148/radiology.216.3.r00au37672 – volume: 49 start-page: 2791 year: 2016 ident: 1638_CR62 publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.06.020 – volume: 1–19 start-page: 2323 year: 2020 ident: 1638_CR6 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-020-01341-4 – ident: 1638_CR8 – volume: 3 start-page: S354 year: 2011 ident: 1638_CR33 publication-title: PM&R doi: 10.1016/j.pmrj.2011.07.017 – volume: 126 year: 2022 ident: 1638_CR70 publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2021.104967 – volume: 50 start-page: 429 year: 2006 ident: 1638_CR67 publication-title: Stapp Car Crash J doi: 10.4271/2006-22-0017 – volume: 92 start-page: 53 year: 2016 ident: 1638_CR50 publication-title: Accid Anal Prev doi: 10.1016/j.aap.2016.03.013 – ident: 1638_CR18 doi: 10.1080/1750984X.2020.1824243 – volume: 16 start-page: 1709 year: 2017 ident: 1638_CR72 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0915-5 – volume-title: Applied Regression Analysis year: 1998 ident: 1638_CR16 doi: 10.1002/9781118625590 – volume: 48 start-page: 287 year: 2004 ident: 1638_CR61 publication-title: Annu Proc Assoc Adv Automot Med – volume: 140 start-page: 1 year: 2018 ident: 1638_CR9 publication-title: J Biomech Eng doi: 10.1115/1.4040230 – volume: 35 start-page: 153 year: 2002 ident: 1638_CR31 publication-title: J Biomech doi: 10.1016/S0021-9290(01)00202-0 – year: 2020 ident: 1638_CR39 publication-title: Biomech Model Mechanobiol doi: 10.1101/2020.05.20.105635 – volume: 16 start-page: 1269 year: 2017 ident: 1638_CR23 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0887-5 – volume: 8 start-page: 309 year: 2020 ident: 1638_CR3 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2020.00309 – year: 2022 ident: 1638_CR30 publication-title: Ann Biomed Eng doi: 10.1007/s10439-022-02999-w – volume: 3 start-page: 67 year: 1991 ident: 1638_CR15 publication-title: Food Qual Prefer doi: 10.1016/0950-3293(91)90027-C – volume: 7 start-page: 77 year: 2006 ident: 1638_CR35 publication-title: Int J Hum Ecol – volume: 47 start-page: 1 year: 2019 ident: 1638_CR19 publication-title: Ann Biomed Eng doi: 10.1007/s10439-018-02166-0 – ident: 1638_CR7 – volume: 16 start-page: 268 year: 2015 ident: 1638_CR58 publication-title: Traffic Inj Prev doi: 10.1080/15389588.2014.931948 – volume: 51 start-page: 33 year: 2010 ident: 1638_CR57 publication-title: Neuroimage doi: 10.1016/J.NEUROIMAGE.2010.01.111 – volume: 70 start-page: 62 year: 2019 ident: 1638_CR63 publication-title: Med Eng Phys doi: 10.1016/J.MEDENGPHY.2019.04.007 – year: 2019 ident: 1638_CR64 publication-title: Ann Biomed Eng doi: 10.1007/s10439-019-02239-8 – volume: 39 start-page: 2984 year: 2011 ident: 1638_CR37 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0409-z – volume: 40 start-page: 127 year: 2012 ident: 1638_CR43 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0402-6 – volume: 17 start-page: 143 year: 2002 ident: 1638_CR55 publication-title: Hum Brain Mapp doi: 10.1002/HBM.10062 – volume: 38 start-page: 1023 year: 2021 ident: 1638_CR21 publication-title: J Neurotrauma doi: 10.1089/neu.2020.7281 – volume: 156 start-page: 907 year: 2010 ident: 1638_CR48 publication-title: J Pediatr doi: 10.1016/j.jpeds.2010.01.009 – volume: 64 start-page: 82 year: 2018 ident: 1638_CR51 publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2018.02.019 – volume: 49 start-page: 1097 year: 2021 ident: 1638_CR17 publication-title: Ann Biomed Eng doi: 10.1007/s10439-020-02703-w – volume: 229 start-page: 838 year: 2016 ident: 1638_CR59 publication-title: J Anat doi: 10.1111/JOA.12247 – volume: 58 start-page: 29 year: 2014 ident: 1638_CR22 publication-title: Stapp Car Crash J doi: 10.4271/2014-22-0002 – start-page: 417 volume-title: Parametric human modelling. Basic finite element method as applied to injury biomechanics year: 2018 ident: 1638_CR26 doi: 10.1016/B978-0-12-809831-8.00010-6 – volume: 47 start-page: 2277 year: 2014 ident: 1638_CR53 publication-title: J Biomech doi: 10.1016/J.JBIOMECH.2014.04.045 – volume: 130 start-page: 1080 year: 2019 ident: 1638_CR14 publication-title: J Neurosurg doi: 10.3171/2017.10.JNS17352 – volume: 143 start-page: 1 year: 2021 ident: 1638_CR73 publication-title: J Biomech Eng doi: 10.1115/1.4051050 – volume: 3 start-page: CNC51 year: 2018 ident: 1638_CR45 publication-title: Concussion doi: 10.2217/cnc-2017-0015 – volume: 51 start-page: 17 year: 2007 ident: 1638_CR25 publication-title: Stapp Car Crash J doi: 10.4271/2019-22-0001 – year: 2021 ident: 1638_CR40 publication-title: Ann Biomed Eng doi: 10.1007/s10439-021-02821-z – ident: 1638_CR46 doi: 10.1177/17543371211020614 – volume: 35 start-page: 309 year: 2014 ident: 1638_CR11 publication-title: J Prim Prev doi: 10.1007/S10935-014-0355-2/TABLES/6 – volume: 140 start-page: 333 year: 2017 ident: 1638_CR20 publication-title: Brain doi: 10.1093/brain/aww317 – volume: 47 start-page: 3681 year: 2014 ident: 1638_CR42 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.09.031 – volume: 19 start-page: 927 year: 2020 ident: 1638_CR65 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-019-01261-y |
SSID | ssj0020383 |
Score | 2.3776445 |
Snippet | Most human head/brain models represent a generic adult male head/brain. They may suffer in accuracy when investigating traumatic brain injury (TBI) on a... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | Age Approximation Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Brain Engineering Finite element method Geometric accuracy Head Head injuries Model accuracy Morphology Neuroimaging Original Paper Regression analysis Regression models Sex Substantia alba Theoretical and Applied Mechanics Traumatic brain injury |
Title | Approximating subject-specific brain injury models via scaling based on head–brain morphological relationships |
URI | https://link.springer.com/article/10.1007/s10237-022-01638-6 https://www.ncbi.nlm.nih.gov/pubmed/36201071 https://www.proquest.com/docview/2779557237 https://www.proquest.com/docview/2722312874 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD5oi-BLqffYWkbwTQezSWYmeZKt7LYoFhEX1qcwt-iKJttmV_TN_-A_9Jf0nGSyixT7kkAyuXBOcs43M2e-D-CZcEWVZCLl0mgarbIV14kyCOR85lyV-0LT2uF3Z_J0lr2Zi3kYcGtDWeUQE7tA7RpLY-QvE6UKIVSSqlfLc06qUTS7GiQ0bsIuUZdRSZeabztccU_DSRCek6Z2WDQTls7hrTjVsscESbj8NzFdQZtXZkq7BDTdh72AHNm4d_UduOHru3Cr15L8dQ-WY2IH_7kgBFp_Zu3a0AgLp5WUVA3EDGlBsEX9FY3IOv2blv1YaNaik-gCSmeONTXD6Oz-_v7Tt__eoB-G-Mguhsq5L4tlex9m08nH16c8yClwmyqx4rIiei1JYtNS54jTnHCxJi5QoxUmMBcXxnnMVrbIrVZ5ZlNRYfdMKSLdw8jwAHbqpvaPgLk4zaQsrPHCZFmaFJ5kS5LEeDXSsbURjAZbljZwjZPkxbdyy5JM9i_R_mVn_1JG8HxzzbJn2ri29eHgojL8dW25_UYieLo5jf8LTYLo2jdraoOAaEQs_xE87F27eRwmc-yeqlEELwZfb2_-_3d5fP27HMBt0qjvS70PYWd1sfZPEMmszFH3ueI2n54cwe745NPbCe6PJ2fvP-DRWTK-BFAF8y4 |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaxmndhODghVwLKlj1Mr9Rb8CiyCZGl2gd74D_wPfhS_hJk8doUqeus5tmPNyzP2zHwAT6TPS5HKhCtr6LbKldwIbdGRC6n3ZRZyQ7XDe_tqcpi-O5JHa_B7qIWhtMrBJraG2teO7sg3hda5lFok-uXsKyfUKHpdHSA0OrHYCSffMWRrXmy_Rv4-FWL85uDVhPeoAtwlWs65KqnLlCLMZWUydFe89LGhlpjWaLTjPs6tD2i0XZ45o7PUJbLEKEVr6j2HCoLrXoCLaZLkpFHZ-O0ywIu7tp8UMnDC8O6LdPpSPdw6p9z5mFwgrv49CE95t6deZtsDb3wNrvaeKtvqROs6rIXqBlzqsCtPbsJsi7qR_5iSx1t9YM3C0o0Op8pNyj5ilrAn2LT6hExjLd5Ow75NDWtQKGgCHZ-e1RXD08D_-fmrG_-lRr4P9pgdD5l6H6ez5hYcnguhb8N6VVfhLjAfJ6lSubNB2jRNRB4IJkUIG_TIxM5FMBpoWbi-tzlBbHwuVl2Zif4F0r9o6V-oCJ4t58y6zh5njt4YWFT0Wt4UK5mM4PHyM-onPbqYKtQLGoMO2IhQBSK407F2-Tt0HjAc1qMIng-8Xi3-_73cO3svj-Dy5GBvt9jd3t-5D1cETu_SzDdgfX68CA_Qi5rbh63oMnh_3rryF9wzJ-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtNAFL1qU4FggUp5mbYwldjBKH7OxMuINgotVF0QKTtrXi5B4ERxgtod_8Af8iW91480VQtS175-yGc894zn3nMA3iU2zcM4ibjQiv5WmZyrUGokci62Nu-5VFHv8JdTMRzFx-NkvNbFX1W7t1uSdU8DqTQVi-7M5t21xrcwkpwq0X0iFFxswhZOxwGN61HYXy25_FqIk0g8J1ftpm3m7mvcTE23-OatvdIqBQ224UnDHVm_BvspbLhiBx7UbpKXO_B4TVvwGcz6pBZ-MSFGWpyzcqnpjwunzkqqDmKavCHYpPiOL5VVfjgl-zVRrETQ6ARKb5ZNC4aztf37-08d_3OKuLTzJZu3lXTfJrPyOYwGR18_Dnljr8BNJJMFFznJbQkynxaqh7zNJtZXpA2qlcSEZv1UW4fZy6Q9o2QvNlGS43JNShLhw5niBXSKaeFeAbN-FAuRGu0SHcdRmDqyMQlD7WSgfGM8CNo3m5lGe5wsMH5k16rJhEaGaGQVGpnw4P3qnFmtvPHf6L0WsKz5CssslIh5IjHUg4PVYfx-aFNEFW66pBgkSAGp_nvwsgZ6dTtM7rhclYEHH1rkry_-72d5fb_wt_Dw7HCQff50erILj8jOvq4K34POYr50-0h6FvpNNa6vABZn9rA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximating+subject-specific+brain+injury+models+via+scaling+based+on+head-brain+morphological+relationships&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Wu%2C+Shaoju&rft.au=Zhao%2C+Wei&rft.au=Wu%2C+Zheyang&rft.au=McAllister%2C+Thomas&rft.date=2023-02-01&rft.issn=1617-7940&rft.eissn=1617-7940&rft.volume=22&rft.issue=1&rft.spage=159&rft_id=info:doi/10.1007%2Fs10237-022-01638-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |