Capturing differential diffusion effects in large eddy simulation of turbulent premixed flames

The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Combustion Institute Vol. 40; no. 1-4; p. 105500
Main Authors Yao, Matthew X., Blanquart, Guillaume
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2024
Elsevier
Subjects
Online AccessGet full text
ISSN1540-7489
1873-2704
DOI10.1016/j.proci.2024.105500

Cover

Loading…
Abstract The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and hence small Lewis number, of hydrogen. The numerical modelling of these flows remains challenging because the transition of small scale instabilities into large scale turbulent structures cannot be modelled by conventional strategies. Recently, Schlup and Blanquart (2019) developed a two-equation model which captures successfully the phenomena arising from differential diffusion and curvature effects. The chemistry tabulation framework is based on the classical progress variable approach and introduces an additional transport equation to account for fluctuations in the local equivalence ratio due to these effects. In the current work, this model is extended to large eddy simulation (LES) of an LSB. The LES model is applied first to a CH4/air flame (ϕ=0.59) to validate the overall simulation framework and then to a H2/air flame (ϕ=0.4). The results obtained with this new formulation show significant improvement over the traditional one-equation formulation. The unique flow field exhibited by lean hydrogen is reproduced successfully using the two-equation model.
AbstractList The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and hence small Lewis number, of hydrogen. The numerical modelling of these flows remains challenging because the transition of small scale instabilities into large scale turbulent structures cannot be modelled by conventional strategies. Recently, Schlup and Blanquart (2019) developed a two-equation model which captures successfully the phenomena arising from differential diffusion and curvature effects. The chemistry tabulation framework is based on the classical progress variable approach and introduces an additional transport equation to account for fluctuations in the local equivalence ratio due to these effects. In the current work, this model is extended to large eddy simulation (LES) of an LSB. The LES model is applied first to a CH4/air flame (ϕ=0.59) to validate the overall simulation framework and then to a H2/air flame (ϕ=0.4). The results obtained with this new formulation show significant improvement over the traditional one-equation formulation. The unique flow field exhibited by lean hydrogen is reproduced successfully using the two-equation model.
ArticleNumber 105500
Author Yao, Matthew X.
Blanquart, Guillaume
Author_xml – sequence: 1
  givenname: Matthew X.
  orcidid: 0000-0001-6141-1477
  surname: Yao
  fullname: Yao, Matthew X.
  email: mxyao@princeton.edu
– sequence: 2
  givenname: Guillaume
  orcidid: 0000-0002-5074-9728
  surname: Blanquart
  fullname: Blanquart, Guillaume
BackLink https://www.osti.gov/biblio/2407153$$D View this record in Osti.gov
BookMark eNqFkL1OwzAUhS1UJErhCVgs9hQnjuN6YEAVf1IlFlixHPu6uEqcyE4RfXuchokBJl9fne_onnOOZr7zgNBVTpY5yaub3bIPnXbLghRl2jBGyAma5ytOs4KTcpZmVpKMlytxhs5j3BFCOaFsjt7Xqh_2wfktNs5aCOAHp5rjZx9d5zGkrR4idh43KmwBgzEHHF27b9QwCjqLk0O9bxKK-wCt-wKDbaNaiBfo1KomwuXPu0BvD_ev66ds8_L4vL7bZJpyNmQVGGGIqKraUG5JaYtcVIRVXECVIoGAWlNT5EytrLa1towxq7kwggleWk0X6Hry7eLgZNRuAP2hO-_T6bIoCc8ZTSI6iXToYgxgZR9cq8JB5kSOPcqdPPYoxx7l1GOixC8quR-TD0G55h_2dmIhZf90EMbTwGswLoyXmc79yX8De2KTbg
CitedBy_id crossref_primary_10_1017_dce_2025_1
Cites_doi 10.1016/j.proci.2022.07.159
10.1063/1.868999
10.1063/1.870436
10.1016/j.proci.2014.06.050
10.1017/S0022112096007379
10.1016/0010-2180(87)90146-5
10.1080/13647830.2021.1970232
10.1080/13647830.2017.1398350
10.1016/S0082-0784(00)80594-9
10.1016/j.combustflame.2012.10.004
10.1016/j.combustflame.2005.12.015
10.1016/j.combustflame.2016.11.015
10.1063/1.868693
10.1016/j.combustflame.2008.10.029
10.1016/j.proci.2012.06.108
10.1016/j.proci.2016.07.127
10.1002/kin.20771
10.1016/j.proci.2010.06.010
10.1016/j.fuel.2015.07.016
10.1016/j.combustflame.2017.12.022
10.1006/jcph.1996.0130
10.1016/S0010-2180(01)00316-9
10.1016/j.proci.2018.06.211
10.1007/s10494-010-9279-y
10.1016/j.proci.2006.07.076
10.1016/j.proci.2004.08.062
10.1063/1.869832
10.1016/j.combustflame.2011.10.003
10.1007/s10494-005-8592-3
10.1146/annurev.fluid.37.061903.175743
10.1016/j.jcp.2009.05.036
10.1016/j.proci.2008.06.141
10.1016/j.combustflame.2022.112125
10.1016/j.jcp.2008.03.027
10.1016/j.combustflame.2010.10.002
ContentType Journal Article
Copyright 2024 The Combustion Institute
Copyright_xml – notice: 2024 The Combustion Institute
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.proci.2024.105500
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2704
ExternalDocumentID 2407153
10_1016_j_proci_2024_105500
S1540748924003080
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
~G-
AAYXX
CITATION
EFKBS
AACTN
AFKWA
AJOXV
AMFUW
OTOTI
ID FETCH-LOGICAL-c375t-6ed9d0966bd37f04f219605679e6024e9ebc3d215a8fcfbcf555fc79d95974fc3
IEDL.DBID .~1
ISSN 1540-7489
IngestDate Mon Aug 05 07:10:15 EDT 2024
Thu Apr 24 23:02:57 EDT 2025
Tue Aug 05 12:09:03 EDT 2025
Sat Jul 05 17:12:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-4
Keywords Hydrogen
Differential diffusion
Tabulated chemistry
Lewis number
Large Eddy simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-6ed9d0966bd37f04f219605679e6024e9ebc3d215a8fcfbcf555fc79d95974fc3
Notes USDOE
BES-ERCAP0023603; AC02-05CH11231
ORCID 0000-0002-5074-9728
0000-0001-6141-1477
0000000250749728
0000000161411477
OpenAccessLink https://www.osti.gov/biblio/2407153
ParticipantIDs osti_scitechconnect_2407153
crossref_primary_10_1016_j_proci_2024_105500
crossref_citationtrail_10_1016_j_proci_2024_105500
elsevier_sciencedirect_doi_10_1016_j_proci_2024_105500
PublicationCentury 2000
PublicationDate 2024
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the Combustion Institute
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jiang, Shu (b23) 1996; 126
Colin, Ducros, Veynante, Poinsot (b3) 2000; 12
Smith (b27) 1999
Anand, Pope (b5) 1987; 67
Pierce (b22) 2001
Hong, Davidson, Hanson (b24) 2011; 158
Van Oijen, Bastiaans, Groot, De Goey (b11) 2005; 75
Fiorina, Gicquel, Vervisch, Carpentier, Darabiha (b32) 2005; 30
Cheng, Littlejohn, Strakey, Sidwell (b1) 2009; 32
Van Oijen, Bastiaans, De Goey (b9) 2007; 31
de Swart, Bastiaans, van Oijen, de Goey, Cant (b12) 2010; 85
Pitsch (b38) 1998
Lapointe, Blanquart (b35) 2017; 176
Böttler, Chen, Xie, Scholtissek, Chen, Hasse (b15) 2022; 243
Donini, Bastiaans, Van Oijen, De Goey (b13) 2015; 35
Legier, Poinsot, Veynante (b4) 2000
Lindstedt, Vaos (b6) 2006; 145
Kang, Iaccarino, Ham, Moin (b29) 2009; 228
Schlup, Blanquart (b40) 2018; 191
Desjardins, Blanquart, Balarac, Pitsch (b21) 2008; 227
Van Oijen, Lammers, De Goey (b8) 2001; 127
Schlup, Blanquart (b18) 2019; 37
Smolke, Lapointe, Paxton, Blanquart, Carbone, Fincham, Egolfopoulos (b36) 2017; 36
Mittal, Iaccarino (b28) 2005; 37
Réveillon, Vervisch (b30) 1996; 8
Gicquel, Darabiha, Thévenin (b7) 2000; 28
Vervisch, Bidaux, Bray, Kollmann (b31) 1995; 7
Hernández-Pérez, Yuen, Groth, Gülder (b33) 2011; 33
Day, Bell, Bremer, Pascucci, Beckner, Lijewski (b2) 2009; 156
Mukundakumar, Efimov, Beishuizen, van Oijen (b14) 2021; 25
Hong, Lam, Sur, Wang, Davidson, Hanson (b25) 2013; 34
Mukhopadhyay, Van Oijen, De Goey (b34) 2015; 159
Pierce, Moin (b37) 1998; 10
Najafi-Yazdi, Cuenot, Mongeau (b10) 2012; 159
Schlup (b19) 2018
Lam, Davidson, Hanson (b26) 2013; 45
Böttler, Lulic, Steinhausen, Wen, Hasse, Scholtissek (b16) 2023; 39
Schlup, Blanquart (b39) 2018; 22
Meneveau, Lund, Cabot (b20) 1996; 319
Regele, Knudsen, Pitsch, Blanquart (b17) 2013; 160
Berger, Attili, Wang, Maeda, Pitsch (b41) 2022
Day (10.1016/j.proci.2024.105500_b2) 2009; 156
Regele (10.1016/j.proci.2024.105500_b17) 2013; 160
de Swart (10.1016/j.proci.2024.105500_b12) 2010; 85
Schlup (10.1016/j.proci.2024.105500_b19) 2018
Meneveau (10.1016/j.proci.2024.105500_b20) 1996; 319
Böttler (10.1016/j.proci.2024.105500_b16) 2023; 39
Smolke (10.1016/j.proci.2024.105500_b36) 2017; 36
Berger (10.1016/j.proci.2024.105500_b41) 2022
Anand (10.1016/j.proci.2024.105500_b5) 1987; 67
Schlup (10.1016/j.proci.2024.105500_b18) 2019; 37
Hong (10.1016/j.proci.2024.105500_b25) 2013; 34
Kang (10.1016/j.proci.2024.105500_b29) 2009; 228
Mukhopadhyay (10.1016/j.proci.2024.105500_b34) 2015; 159
Smith (10.1016/j.proci.2024.105500_b27) 1999
Hernández-Pérez (10.1016/j.proci.2024.105500_b33) 2011; 33
Van Oijen (10.1016/j.proci.2024.105500_b9) 2007; 31
Pierce (10.1016/j.proci.2024.105500_b37) 1998; 10
Legier (10.1016/j.proci.2024.105500_b4) 2000
Böttler (10.1016/j.proci.2024.105500_b15) 2022; 243
Donini (10.1016/j.proci.2024.105500_b13) 2015; 35
Hong (10.1016/j.proci.2024.105500_b24) 2011; 158
Réveillon (10.1016/j.proci.2024.105500_b30) 1996; 8
Pitsch (10.1016/j.proci.2024.105500_b38) 1998
Schlup (10.1016/j.proci.2024.105500_b40) 2018; 191
Colin (10.1016/j.proci.2024.105500_b3) 2000; 12
Pierce (10.1016/j.proci.2024.105500_b22) 2001
Van Oijen (10.1016/j.proci.2024.105500_b8) 2001; 127
Najafi-Yazdi (10.1016/j.proci.2024.105500_b10) 2012; 159
Mukundakumar (10.1016/j.proci.2024.105500_b14) 2021; 25
Lindstedt (10.1016/j.proci.2024.105500_b6) 2006; 145
Schlup (10.1016/j.proci.2024.105500_b39) 2018; 22
Vervisch (10.1016/j.proci.2024.105500_b31) 1995; 7
Desjardins (10.1016/j.proci.2024.105500_b21) 2008; 227
Lapointe (10.1016/j.proci.2024.105500_b35) 2017; 176
Mittal (10.1016/j.proci.2024.105500_b28) 2005; 37
Gicquel (10.1016/j.proci.2024.105500_b7) 2000; 28
Lam (10.1016/j.proci.2024.105500_b26) 2013; 45
Fiorina (10.1016/j.proci.2024.105500_b32) 2005; 30
Van Oijen (10.1016/j.proci.2024.105500_b11) 2005; 75
Jiang (10.1016/j.proci.2024.105500_b23) 1996; 126
Cheng (10.1016/j.proci.2024.105500_b1) 2009; 32
References_xml – volume: 158
  start-page: 633
  year: 2011
  end-page: 644
  ident: b24
  article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements
  publication-title: Combust. Flame
– volume: 8
  start-page: 2248
  year: 1996
  end-page: 2250
  ident: b30
  article-title: Response of the dynamic LES model to heat release induced effects
  publication-title: Phys. Fluids
– volume: 75
  start-page: 67
  year: 2005
  end-page: 84
  ident: b11
  article-title: Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis
  publication-title: Flow Turbul. Combust.
– volume: 319
  start-page: 353
  year: 1996
  end-page: 385
  ident: b20
  article-title: A Lagrangian dynamic subgrid-scale model of turbulence
  publication-title: J. Fluid Mech.
– volume: 160
  start-page: 240
  year: 2013
  end-page: 250
  ident: b17
  article-title: A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames
  publication-title: Combust. Flame
– volume: 10
  start-page: 3041
  year: 1998
  end-page: 3044
  ident: b37
  article-title: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar
  publication-title: Phys. Fluids
– volume: 31
  start-page: 1377
  year: 2007
  end-page: 1384
  ident: b9
  article-title: Low-dimensional manifolds in Direct Numerical Simulations of premixed turbulent flames
  publication-title: Proc. Combust. Inst.
– volume: 34
  start-page: 565
  year: 2013
  end-page: 571
  ident: b25
  article-title: On the rate constants of OH+ HO2 and HO2+ HO2: A comprehensive study of H2O2 thermal decomposition using multi-species laser absorption
  publication-title: Proc. Combust. Inst.
– volume: 176
  start-page: 500
  year: 2017
  end-page: 510
  ident: b35
  article-title: A priori filtered chemical source term modeling for LES of high Karlovitz number premixed flames
  publication-title: Combust. Flame
– volume: 12
  start-page: 1843
  year: 2000
  end-page: 1863
  ident: b3
  article-title: A thickened flame model for large eddy simulations of turbulent premixed combustion
  publication-title: Phys. Fluids
– volume: 159
  start-page: 728
  year: 2015
  end-page: 740
  ident: b34
  article-title: A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance
  publication-title: Fuel
– volume: 156
  start-page: 1035
  year: 2009
  end-page: 1045
  ident: b2
  article-title: Turbulence effects on cellular burning structures in lean premixed hydrogen flames
  publication-title: Combust. Flame
– volume: 35
  start-page: 831
  year: 2015
  end-page: 837
  ident: b13
  article-title: Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames
  publication-title: Proc. Combust. Inst.
– volume: 228
  start-page: 6753
  year: 2009
  end-page: 6772
  ident: b29
  article-title: Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method
  publication-title: J. Comput. Phys.
– volume: 32
  start-page: 3001
  year: 2009
  end-page: 3009
  ident: b1
  article-title: Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions
  publication-title: Proc. Combust. Inst.
– volume: 243
  year: 2022
  ident: b15
  article-title: Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures
  publication-title: Combust. Flame
– volume: 227
  start-page: 7125
  year: 2008
  end-page: 7159
  ident: b21
  article-title: High order conservative finite difference scheme for variable density low mach number turbulent flows
  publication-title: J. Comput. Phys.
– volume: 191
  start-page: 1
  year: 2018
  end-page: 8
  ident: b40
  article-title: A reduced thermal diffusion model for H and H2
  publication-title: Combust. Flame
– start-page: 247
  year: 2022
  ident: b41
  article-title: Development of large-eddy simulation combustion models for thermodiffusive instabilities in turbulent hydrogen flames
  publication-title: Proceeding of the Summer Program
– volume: 37
  start-page: 2511
  year: 2019
  end-page: 2518
  ident: b18
  article-title: Reproducing curvature effects due to differential diffusion in tabulated chemistry for premixed flames
  publication-title: Proc. Combust. Inst.
– volume: 127
  start-page: 2124
  year: 2001
  end-page: 2134
  ident: b8
  article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds
  publication-title: Combust. Flame
– volume: 39
  start-page: 1567
  year: 2023
  end-page: 1576
  ident: b16
  article-title: Flamelet modeling of thermo-diffusively unstable hydrogen-air flames
  publication-title: Proc. Combust. Inst.
– volume: 30
  start-page: 867
  year: 2005
  end-page: 874
  ident: b32
  article-title: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF
  publication-title: Proc. Combust. Inst.
– volume: 145
  start-page: 495
  year: 2006
  end-page: 511
  ident: b6
  article-title: Transported PDF modeling of high-Reynolds-number premixed turbulent flames
  publication-title: Combust. Flame
– volume: 45
  start-page: 363
  year: 2013
  end-page: 373
  ident: b26
  article-title: A shock tube study of H2+ OH
  publication-title: Int. J. Chem. Kinet.
– volume: 25
  start-page: 1245
  year: 2021
  end-page: 1267
  ident: b14
  article-title: A new preferential diffusion model applied to FGM simulations of hydrogen flames
  publication-title: Combust. Theory Model.
– volume: 67
  start-page: 127
  year: 1987
  end-page: 142
  ident: b5
  article-title: Calculations of premixed turbulent flames by PDF methods
  publication-title: Combust. Flame
– year: 2018
  ident: b19
  article-title: Numerical Investigations of Transport and Chemistry Modeling for Lean Premixed Hydrogen Combustion
– year: 2001
  ident: b22
  article-title: Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion
– volume: 33
  start-page: 1365
  year: 2011
  end-page: 1371
  ident: b33
  article-title: LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models
  publication-title: Proc. Combust. Inst.
– volume: 36
  start-page: 1877
  year: 2017
  end-page: 1884
  ident: b36
  article-title: Experimental and numerical studies of fuel and hydrodynamic effects on piloted turbulent premixed jet flames
  publication-title: Proc. Combust. Inst.
– year: 1998
  ident: b38
  article-title: FlameMaster: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations
– volume: 126
  start-page: 202
  year: 1996
  end-page: 228
  ident: b23
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
– volume: 159
  start-page: 1197
  year: 2012
  end-page: 1204
  ident: b10
  article-title: Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation
  publication-title: Combust. Flame
– volume: 28
  start-page: 1901
  year: 2000
  end-page: 1908
  ident: b7
  article-title: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion
  publication-title: Proc. Combust. Inst.
– year: 1999
  ident: b27
  article-title: GRI-Mech 3.0
– volume: 22
  start-page: 264
  year: 2018
  end-page: 290
  ident: b39
  article-title: Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
  publication-title: Combust. Theor. Model.
– volume: 7
  start-page: 2496
  year: 1995
  end-page: 2503
  ident: b31
  article-title: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches
  publication-title: Phys. Fluids
– start-page: 157
  year: 2000
  end-page: 168
  ident: b4
  article-title: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion
  publication-title: Proceedings of the Summer Program, Vol. 12
– volume: 85
  start-page: 473
  year: 2010
  end-page: 511
  ident: b12
  article-title: Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds
  publication-title: Flow Turbul. Combust.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: b28
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 39
  start-page: 1567
  issue: 2
  year: 2023
  ident: 10.1016/j.proci.2024.105500_b16
  article-title: Flamelet modeling of thermo-diffusively unstable hydrogen-air flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2022.07.159
– year: 2018
  ident: 10.1016/j.proci.2024.105500_b19
– volume: 8
  start-page: 2248
  issue: 8
  year: 1996
  ident: 10.1016/j.proci.2024.105500_b30
  article-title: Response of the dynamic LES model to heat release induced effects
  publication-title: Phys. Fluids
  doi: 10.1063/1.868999
– volume: 12
  start-page: 1843
  issue: 7
  year: 2000
  ident: 10.1016/j.proci.2024.105500_b3
  article-title: A thickened flame model for large eddy simulations of turbulent premixed combustion
  publication-title: Phys. Fluids
  doi: 10.1063/1.870436
– volume: 35
  start-page: 831
  issue: 1
  year: 2015
  ident: 10.1016/j.proci.2024.105500_b13
  article-title: Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.06.050
– volume: 319
  start-page: 353
  year: 1996
  ident: 10.1016/j.proci.2024.105500_b20
  article-title: A Lagrangian dynamic subgrid-scale model of turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096007379
– volume: 67
  start-page: 127
  issue: 2
  year: 1987
  ident: 10.1016/j.proci.2024.105500_b5
  article-title: Calculations of premixed turbulent flames by PDF methods
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(87)90146-5
– volume: 25
  start-page: 1245
  issue: 7
  year: 2021
  ident: 10.1016/j.proci.2024.105500_b14
  article-title: A new preferential diffusion model applied to FGM simulations of hydrogen flames
  publication-title: Combust. Theory Model.
  doi: 10.1080/13647830.2021.1970232
– volume: 22
  start-page: 264
  issue: 2
  year: 2018
  ident: 10.1016/j.proci.2024.105500_b39
  article-title: Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
  publication-title: Combust. Theor. Model.
  doi: 10.1080/13647830.2017.1398350
– volume: 28
  start-page: 1901
  issue: 2
  year: 2000
  ident: 10.1016/j.proci.2024.105500_b7
  article-title: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80594-9
– volume: 160
  start-page: 240
  issue: 2
  year: 2013
  ident: 10.1016/j.proci.2024.105500_b17
  article-title: A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.10.004
– volume: 145
  start-page: 495
  issue: 3
  year: 2006
  ident: 10.1016/j.proci.2024.105500_b6
  article-title: Transported PDF modeling of high-Reynolds-number premixed turbulent flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2005.12.015
– year: 1999
  ident: 10.1016/j.proci.2024.105500_b27
– volume: 176
  start-page: 500
  year: 2017
  ident: 10.1016/j.proci.2024.105500_b35
  article-title: A priori filtered chemical source term modeling for LES of high Karlovitz number premixed flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2016.11.015
– volume: 7
  start-page: 2496
  issue: 10
  year: 1995
  ident: 10.1016/j.proci.2024.105500_b31
  article-title: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches
  publication-title: Phys. Fluids
  doi: 10.1063/1.868693
– volume: 156
  start-page: 1035
  issue: 5
  year: 2009
  ident: 10.1016/j.proci.2024.105500_b2
  article-title: Turbulence effects on cellular burning structures in lean premixed hydrogen flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.10.029
– volume: 34
  start-page: 565
  issue: 1
  year: 2013
  ident: 10.1016/j.proci.2024.105500_b25
  article-title: On the rate constants of OH+ HO2 and HO2+ HO2: A comprehensive study of H2O2 thermal decomposition using multi-species laser absorption
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2012.06.108
– volume: 36
  start-page: 1877
  issue: 2
  year: 2017
  ident: 10.1016/j.proci.2024.105500_b36
  article-title: Experimental and numerical studies of fuel and hydrodynamic effects on piloted turbulent premixed jet flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.07.127
– year: 2001
  ident: 10.1016/j.proci.2024.105500_b22
– volume: 45
  start-page: 363
  issue: 6
  year: 2013
  ident: 10.1016/j.proci.2024.105500_b26
  article-title: A shock tube study of H2+ OH→ H2O+ H using OH laser absorption
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.20771
– volume: 33
  start-page: 1365
  issue: 1
  year: 2011
  ident: 10.1016/j.proci.2024.105500_b33
  article-title: LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2010.06.010
– volume: 159
  start-page: 728
  year: 2015
  ident: 10.1016/j.proci.2024.105500_b34
  article-title: A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.016
– volume: 191
  start-page: 1
  year: 2018
  ident: 10.1016/j.proci.2024.105500_b40
  article-title: A reduced thermal diffusion model for H and H2
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.12.022
– volume: 126
  start-page: 202
  issue: 1
  year: 1996
  ident: 10.1016/j.proci.2024.105500_b23
  article-title: Efficient implementation of weighted ENO schemes
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– volume: 127
  start-page: 2124
  issue: 3
  year: 2001
  ident: 10.1016/j.proci.2024.105500_b8
  article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(01)00316-9
– volume: 37
  start-page: 2511
  issue: 2
  year: 2019
  ident: 10.1016/j.proci.2024.105500_b18
  article-title: Reproducing curvature effects due to differential diffusion in tabulated chemistry for premixed flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.06.211
– volume: 85
  start-page: 473
  issue: 3
  year: 2010
  ident: 10.1016/j.proci.2024.105500_b12
  article-title: Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-010-9279-y
– volume: 31
  start-page: 1377
  issue: 1
  year: 2007
  ident: 10.1016/j.proci.2024.105500_b9
  article-title: Low-dimensional manifolds in Direct Numerical Simulations of premixed turbulent flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.076
– volume: 30
  start-page: 867
  issue: 1
  year: 2005
  ident: 10.1016/j.proci.2024.105500_b32
  article-title: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2004.08.062
– start-page: 247
  year: 2022
  ident: 10.1016/j.proci.2024.105500_b41
  article-title: Development of large-eddy simulation combustion models for thermodiffusive instabilities in turbulent hydrogen flames
– start-page: 157
  year: 2000
  ident: 10.1016/j.proci.2024.105500_b4
  article-title: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion
– year: 1998
  ident: 10.1016/j.proci.2024.105500_b38
– volume: 10
  start-page: 3041
  issue: 12
  year: 1998
  ident: 10.1016/j.proci.2024.105500_b37
  article-title: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar
  publication-title: Phys. Fluids
  doi: 10.1063/1.869832
– volume: 159
  start-page: 1197
  issue: 3
  year: 2012
  ident: 10.1016/j.proci.2024.105500_b10
  article-title: Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.10.003
– volume: 75
  start-page: 67
  issue: 1
  year: 2005
  ident: 10.1016/j.proci.2024.105500_b11
  article-title: Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-005-8592-3
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.proci.2024.105500_b28
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 228
  start-page: 6753
  issue: 18
  year: 2009
  ident: 10.1016/j.proci.2024.105500_b29
  article-title: Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.036
– volume: 32
  start-page: 3001
  issue: 2
  year: 2009
  ident: 10.1016/j.proci.2024.105500_b1
  article-title: Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.141
– volume: 243
  year: 2022
  ident: 10.1016/j.proci.2024.105500_b15
  article-title: Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.112125
– volume: 227
  start-page: 7125
  issue: 15
  year: 2008
  ident: 10.1016/j.proci.2024.105500_b21
  article-title: High order conservative finite difference scheme for variable density low mach number turbulent flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.03.027
– volume: 158
  start-page: 633
  issue: 4
  year: 2011
  ident: 10.1016/j.proci.2024.105500_b24
  article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.10.002
SSID ssj0037035
Score 2.4145672
Snippet The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 105500
SubjectTerms Differential diffusion
Hydrogen
Large Eddy simulation
Lewis number
Tabulated chemistry
Title Capturing differential diffusion effects in large eddy simulation of turbulent premixed flames
URI https://dx.doi.org/10.1016/j.proci.2024.105500
https://www.osti.gov/biblio/2407153
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGKtlj14NLbJJtnusRRLVexFCz0Zkn1ApE1DTUEv_nZnNkmpID1ITht2QjK7O7Oz-eYbQm6E0sIgeorHXDlg_VxHSFc7CLlQhnHhKvyj-zwJx1P_cRbMGmRY58IgrLKy_aVNt9a6utOttNnN07T74iJ3nN8XiIJksPHBDHafI6zv7nsD82AwowPLmYrIOehdMw9ZjBc6iRSCRM_HercBprn97Z2aS1hwW45ndEQOqx0jHZQvdUwaOjshB1s8gqfkbRjnhc03pHXBE1i4c9tY43EYrWAbNM3oHLHfVCv1RT_SRVW9iy4NhScka3RCNF_pRfqpFTVzBNGekeno_nU4dqrCCY5kPCicUCuhIDYJE8W46fkGzBKELSEXOoRv1UInkilw9nHfSJNIEwSBkVwogeGFkeycNLNlpi8I7SUKL6kU-nrDhRd7PJRe2I9BY37cIl6tsEhWrOJY3GIe1fCx98hqOUItR6WWW-R2I5SXpBq7u4f1SES_5kYEZn-3YBvHDYWQEVcidAikbBAbsMv_PrZN9rFVHsRckWaxWutr2JoUScfOvQ7ZGzw8jSc_rI3j5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlaH3vwaGib13aPUpTWai9a8GRI9gGRNC01Bf33ziQbqSA9SE55zJLM7s5j8-03ANdCaWEIPcVjrhy0fl1HyK52CHKhjMdFV9Ef3adxOJj4D6_BawP69V4YglVa21_Z9NJa2yttq832PE3bz13ijvN7glCQHgY-G7BJ7FR-EzZvh6PBuDbIHg7qoKRNJfAcCtTkQyXMi_xEinmi61PJ24B2uv3toJoznHMrvud-D3Zt0Mhuq_fah4bOD2BnhUrwEN768bwotxyyuuYJzt2sPFnSihizyA2W5iwj-DfTSn2xj3RqC3ixmWHYQrIkP8TmCz1NP7ViJiMc7RFM7u9e-gPH1k5wpMeDwgm1EgrTkzBRHjcd36Blwswl5EKH-K1a6ER6Cv193DPSJNIEQWAkF0pQhmGkdwzNfJbrE2CdRNEhlSJ3b7hwY5eH0g17MWrMj0_BrRUWSUssTvUtsqhGkL1HpZYj0nJUafkUbn6E5hWvxvrHw7onol_DI0LLv16wRf1GQkSKKwk9hFJlHht4Z_9t9gq2Bi9Pj9HjcDxqwTbdqdZlzqFZLJb6AiOVIrm0I_EbgSPmlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+differential+diffusion+effects+in+large+eddy+simulation+of+turbulent+premixed+flames&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Yao%2C+Matthew+X.&rft.au=Blanquart%2C+Guillaume&rft.date=2024&rft.pub=Elsevier+Inc&rft.issn=1540-7489&rft.volume=40&rft.issue=1-4&rft_id=info:doi/10.1016%2Fj.proci.2024.105500&rft.externalDocID=S1540748924003080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon