Capturing differential diffusion effects in large eddy simulation of turbulent premixed flames
The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and...
Saved in:
Published in | Proceedings of the Combustion Institute Vol. 40; no. 1-4; p. 105500 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1540-7489 1873-2704 |
DOI | 10.1016/j.proci.2024.105500 |
Cover
Loading…
Abstract | The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and hence small Lewis number, of hydrogen. The numerical modelling of these flows remains challenging because the transition of small scale instabilities into large scale turbulent structures cannot be modelled by conventional strategies. Recently, Schlup and Blanquart (2019) developed a two-equation model which captures successfully the phenomena arising from differential diffusion and curvature effects. The chemistry tabulation framework is based on the classical progress variable approach and introduces an additional transport equation to account for fluctuations in the local equivalence ratio due to these effects. In the current work, this model is extended to large eddy simulation (LES) of an LSB. The LES model is applied first to a CH4/air flame (ϕ=0.59) to validate the overall simulation framework and then to a H2/air flame (ϕ=0.4). The results obtained with this new formulation show significant improvement over the traditional one-equation formulation. The unique flow field exhibited by lean hydrogen is reproduced successfully using the two-equation model. |
---|---|
AbstractList | The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions and high efficiency. However, lean hydrogen premixed flames are subject to thermodiffusive instabilities induced by the large diffusivity, and hence small Lewis number, of hydrogen. The numerical modelling of these flows remains challenging because the transition of small scale instabilities into large scale turbulent structures cannot be modelled by conventional strategies. Recently, Schlup and Blanquart (2019) developed a two-equation model which captures successfully the phenomena arising from differential diffusion and curvature effects. The chemistry tabulation framework is based on the classical progress variable approach and introduces an additional transport equation to account for fluctuations in the local equivalence ratio due to these effects. In the current work, this model is extended to large eddy simulation (LES) of an LSB. The LES model is applied first to a CH4/air flame (ϕ=0.59) to validate the overall simulation framework and then to a H2/air flame (ϕ=0.4). The results obtained with this new formulation show significant improvement over the traditional one-equation formulation. The unique flow field exhibited by lean hydrogen is reproduced successfully using the two-equation model. |
ArticleNumber | 105500 |
Author | Yao, Matthew X. Blanquart, Guillaume |
Author_xml | – sequence: 1 givenname: Matthew X. orcidid: 0000-0001-6141-1477 surname: Yao fullname: Yao, Matthew X. email: mxyao@princeton.edu – sequence: 2 givenname: Guillaume orcidid: 0000-0002-5074-9728 surname: Blanquart fullname: Blanquart, Guillaume |
BackLink | https://www.osti.gov/biblio/2407153$$D View this record in Osti.gov |
BookMark | eNqFkL1OwzAUhS1UJErhCVgs9hQnjuN6YEAVf1IlFlixHPu6uEqcyE4RfXuchokBJl9fne_onnOOZr7zgNBVTpY5yaub3bIPnXbLghRl2jBGyAma5ytOs4KTcpZmVpKMlytxhs5j3BFCOaFsjt7Xqh_2wfktNs5aCOAHp5rjZx9d5zGkrR4idh43KmwBgzEHHF27b9QwCjqLk0O9bxKK-wCt-wKDbaNaiBfo1KomwuXPu0BvD_ev66ds8_L4vL7bZJpyNmQVGGGIqKraUG5JaYtcVIRVXECVIoGAWlNT5EytrLa1towxq7kwggleWk0X6Hry7eLgZNRuAP2hO-_T6bIoCc8ZTSI6iXToYgxgZR9cq8JB5kSOPcqdPPYoxx7l1GOixC8quR-TD0G55h_2dmIhZf90EMbTwGswLoyXmc79yX8De2KTbg |
CitedBy_id | crossref_primary_10_1017_dce_2025_1 |
Cites_doi | 10.1016/j.proci.2022.07.159 10.1063/1.868999 10.1063/1.870436 10.1016/j.proci.2014.06.050 10.1017/S0022112096007379 10.1016/0010-2180(87)90146-5 10.1080/13647830.2021.1970232 10.1080/13647830.2017.1398350 10.1016/S0082-0784(00)80594-9 10.1016/j.combustflame.2012.10.004 10.1016/j.combustflame.2005.12.015 10.1016/j.combustflame.2016.11.015 10.1063/1.868693 10.1016/j.combustflame.2008.10.029 10.1016/j.proci.2012.06.108 10.1016/j.proci.2016.07.127 10.1002/kin.20771 10.1016/j.proci.2010.06.010 10.1016/j.fuel.2015.07.016 10.1016/j.combustflame.2017.12.022 10.1006/jcph.1996.0130 10.1016/S0010-2180(01)00316-9 10.1016/j.proci.2018.06.211 10.1007/s10494-010-9279-y 10.1016/j.proci.2006.07.076 10.1016/j.proci.2004.08.062 10.1063/1.869832 10.1016/j.combustflame.2011.10.003 10.1007/s10494-005-8592-3 10.1146/annurev.fluid.37.061903.175743 10.1016/j.jcp.2009.05.036 10.1016/j.proci.2008.06.141 10.1016/j.combustflame.2022.112125 10.1016/j.jcp.2008.03.027 10.1016/j.combustflame.2010.10.002 |
ContentType | Journal Article |
Copyright | 2024 The Combustion Institute |
Copyright_xml | – notice: 2024 The Combustion Institute |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.proci.2024.105500 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2704 |
ExternalDocumentID | 2407153 10_1016_j_proci_2024_105500 S1540748924003080 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSH SSR SST SSZ T5K ~G- AAYXX CITATION EFKBS AACTN AFKWA AJOXV AMFUW OTOTI |
ID | FETCH-LOGICAL-c375t-6ed9d0966bd37f04f219605679e6024e9ebc3d215a8fcfbcf555fc79d95974fc3 |
IEDL.DBID | .~1 |
ISSN | 1540-7489 |
IngestDate | Mon Aug 05 07:10:15 EDT 2024 Thu Apr 24 23:02:57 EDT 2025 Tue Aug 05 12:09:03 EDT 2025 Sat Jul 05 17:12:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-4 |
Keywords | Hydrogen Differential diffusion Tabulated chemistry Lewis number Large Eddy simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-6ed9d0966bd37f04f219605679e6024e9ebc3d215a8fcfbcf555fc79d95974fc3 |
Notes | USDOE BES-ERCAP0023603; AC02-05CH11231 |
ORCID | 0000-0002-5074-9728 0000-0001-6141-1477 0000000250749728 0000000161411477 |
OpenAccessLink | https://www.osti.gov/biblio/2407153 |
ParticipantIDs | osti_scitechconnect_2407153 crossref_primary_10_1016_j_proci_2024_105500 crossref_citationtrail_10_1016_j_proci_2024_105500 elsevier_sciencedirect_doi_10_1016_j_proci_2024_105500 |
PublicationCentury | 2000 |
PublicationDate | 2024 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the Combustion Institute |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jiang, Shu (b23) 1996; 126 Colin, Ducros, Veynante, Poinsot (b3) 2000; 12 Smith (b27) 1999 Anand, Pope (b5) 1987; 67 Pierce (b22) 2001 Hong, Davidson, Hanson (b24) 2011; 158 Van Oijen, Bastiaans, Groot, De Goey (b11) 2005; 75 Fiorina, Gicquel, Vervisch, Carpentier, Darabiha (b32) 2005; 30 Cheng, Littlejohn, Strakey, Sidwell (b1) 2009; 32 Van Oijen, Bastiaans, De Goey (b9) 2007; 31 de Swart, Bastiaans, van Oijen, de Goey, Cant (b12) 2010; 85 Pitsch (b38) 1998 Lapointe, Blanquart (b35) 2017; 176 Böttler, Chen, Xie, Scholtissek, Chen, Hasse (b15) 2022; 243 Donini, Bastiaans, Van Oijen, De Goey (b13) 2015; 35 Legier, Poinsot, Veynante (b4) 2000 Lindstedt, Vaos (b6) 2006; 145 Kang, Iaccarino, Ham, Moin (b29) 2009; 228 Schlup, Blanquart (b40) 2018; 191 Desjardins, Blanquart, Balarac, Pitsch (b21) 2008; 227 Van Oijen, Lammers, De Goey (b8) 2001; 127 Schlup, Blanquart (b18) 2019; 37 Smolke, Lapointe, Paxton, Blanquart, Carbone, Fincham, Egolfopoulos (b36) 2017; 36 Mittal, Iaccarino (b28) 2005; 37 Réveillon, Vervisch (b30) 1996; 8 Gicquel, Darabiha, Thévenin (b7) 2000; 28 Vervisch, Bidaux, Bray, Kollmann (b31) 1995; 7 Hernández-Pérez, Yuen, Groth, Gülder (b33) 2011; 33 Day, Bell, Bremer, Pascucci, Beckner, Lijewski (b2) 2009; 156 Mukundakumar, Efimov, Beishuizen, van Oijen (b14) 2021; 25 Hong, Lam, Sur, Wang, Davidson, Hanson (b25) 2013; 34 Mukhopadhyay, Van Oijen, De Goey (b34) 2015; 159 Pierce, Moin (b37) 1998; 10 Najafi-Yazdi, Cuenot, Mongeau (b10) 2012; 159 Schlup (b19) 2018 Lam, Davidson, Hanson (b26) 2013; 45 Böttler, Lulic, Steinhausen, Wen, Hasse, Scholtissek (b16) 2023; 39 Schlup, Blanquart (b39) 2018; 22 Meneveau, Lund, Cabot (b20) 1996; 319 Regele, Knudsen, Pitsch, Blanquart (b17) 2013; 160 Berger, Attili, Wang, Maeda, Pitsch (b41) 2022 Day (10.1016/j.proci.2024.105500_b2) 2009; 156 Regele (10.1016/j.proci.2024.105500_b17) 2013; 160 de Swart (10.1016/j.proci.2024.105500_b12) 2010; 85 Schlup (10.1016/j.proci.2024.105500_b19) 2018 Meneveau (10.1016/j.proci.2024.105500_b20) 1996; 319 Böttler (10.1016/j.proci.2024.105500_b16) 2023; 39 Smolke (10.1016/j.proci.2024.105500_b36) 2017; 36 Berger (10.1016/j.proci.2024.105500_b41) 2022 Anand (10.1016/j.proci.2024.105500_b5) 1987; 67 Schlup (10.1016/j.proci.2024.105500_b18) 2019; 37 Hong (10.1016/j.proci.2024.105500_b25) 2013; 34 Kang (10.1016/j.proci.2024.105500_b29) 2009; 228 Mukhopadhyay (10.1016/j.proci.2024.105500_b34) 2015; 159 Smith (10.1016/j.proci.2024.105500_b27) 1999 Hernández-Pérez (10.1016/j.proci.2024.105500_b33) 2011; 33 Van Oijen (10.1016/j.proci.2024.105500_b9) 2007; 31 Pierce (10.1016/j.proci.2024.105500_b37) 1998; 10 Legier (10.1016/j.proci.2024.105500_b4) 2000 Böttler (10.1016/j.proci.2024.105500_b15) 2022; 243 Donini (10.1016/j.proci.2024.105500_b13) 2015; 35 Hong (10.1016/j.proci.2024.105500_b24) 2011; 158 Réveillon (10.1016/j.proci.2024.105500_b30) 1996; 8 Pitsch (10.1016/j.proci.2024.105500_b38) 1998 Schlup (10.1016/j.proci.2024.105500_b40) 2018; 191 Colin (10.1016/j.proci.2024.105500_b3) 2000; 12 Pierce (10.1016/j.proci.2024.105500_b22) 2001 Van Oijen (10.1016/j.proci.2024.105500_b8) 2001; 127 Najafi-Yazdi (10.1016/j.proci.2024.105500_b10) 2012; 159 Mukundakumar (10.1016/j.proci.2024.105500_b14) 2021; 25 Lindstedt (10.1016/j.proci.2024.105500_b6) 2006; 145 Schlup (10.1016/j.proci.2024.105500_b39) 2018; 22 Vervisch (10.1016/j.proci.2024.105500_b31) 1995; 7 Desjardins (10.1016/j.proci.2024.105500_b21) 2008; 227 Lapointe (10.1016/j.proci.2024.105500_b35) 2017; 176 Mittal (10.1016/j.proci.2024.105500_b28) 2005; 37 Gicquel (10.1016/j.proci.2024.105500_b7) 2000; 28 Lam (10.1016/j.proci.2024.105500_b26) 2013; 45 Fiorina (10.1016/j.proci.2024.105500_b32) 2005; 30 Van Oijen (10.1016/j.proci.2024.105500_b11) 2005; 75 Jiang (10.1016/j.proci.2024.105500_b23) 1996; 126 Cheng (10.1016/j.proci.2024.105500_b1) 2009; 32 |
References_xml | – volume: 158 start-page: 633 year: 2011 end-page: 644 ident: b24 article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements publication-title: Combust. Flame – volume: 8 start-page: 2248 year: 1996 end-page: 2250 ident: b30 article-title: Response of the dynamic LES model to heat release induced effects publication-title: Phys. Fluids – volume: 75 start-page: 67 year: 2005 end-page: 84 ident: b11 article-title: Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis publication-title: Flow Turbul. Combust. – volume: 319 start-page: 353 year: 1996 end-page: 385 ident: b20 article-title: A Lagrangian dynamic subgrid-scale model of turbulence publication-title: J. Fluid Mech. – volume: 160 start-page: 240 year: 2013 end-page: 250 ident: b17 article-title: A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames publication-title: Combust. Flame – volume: 10 start-page: 3041 year: 1998 end-page: 3044 ident: b37 article-title: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar publication-title: Phys. Fluids – volume: 31 start-page: 1377 year: 2007 end-page: 1384 ident: b9 article-title: Low-dimensional manifolds in Direct Numerical Simulations of premixed turbulent flames publication-title: Proc. Combust. Inst. – volume: 34 start-page: 565 year: 2013 end-page: 571 ident: b25 article-title: On the rate constants of OH+ HO2 and HO2+ HO2: A comprehensive study of H2O2 thermal decomposition using multi-species laser absorption publication-title: Proc. Combust. Inst. – volume: 176 start-page: 500 year: 2017 end-page: 510 ident: b35 article-title: A priori filtered chemical source term modeling for LES of high Karlovitz number premixed flames publication-title: Combust. Flame – volume: 12 start-page: 1843 year: 2000 end-page: 1863 ident: b3 article-title: A thickened flame model for large eddy simulations of turbulent premixed combustion publication-title: Phys. Fluids – volume: 159 start-page: 728 year: 2015 end-page: 740 ident: b34 article-title: A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance publication-title: Fuel – volume: 156 start-page: 1035 year: 2009 end-page: 1045 ident: b2 article-title: Turbulence effects on cellular burning structures in lean premixed hydrogen flames publication-title: Combust. Flame – volume: 35 start-page: 831 year: 2015 end-page: 837 ident: b13 article-title: Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames publication-title: Proc. Combust. Inst. – volume: 228 start-page: 6753 year: 2009 end-page: 6772 ident: b29 article-title: Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method publication-title: J. Comput. Phys. – volume: 32 start-page: 3001 year: 2009 end-page: 3009 ident: b1 article-title: Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions publication-title: Proc. Combust. Inst. – volume: 243 year: 2022 ident: b15 article-title: Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures publication-title: Combust. Flame – volume: 227 start-page: 7125 year: 2008 end-page: 7159 ident: b21 article-title: High order conservative finite difference scheme for variable density low mach number turbulent flows publication-title: J. Comput. Phys. – volume: 191 start-page: 1 year: 2018 end-page: 8 ident: b40 article-title: A reduced thermal diffusion model for H and H2 publication-title: Combust. Flame – start-page: 247 year: 2022 ident: b41 article-title: Development of large-eddy simulation combustion models for thermodiffusive instabilities in turbulent hydrogen flames publication-title: Proceeding of the Summer Program – volume: 37 start-page: 2511 year: 2019 end-page: 2518 ident: b18 article-title: Reproducing curvature effects due to differential diffusion in tabulated chemistry for premixed flames publication-title: Proc. Combust. Inst. – volume: 127 start-page: 2124 year: 2001 end-page: 2134 ident: b8 article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds publication-title: Combust. Flame – volume: 39 start-page: 1567 year: 2023 end-page: 1576 ident: b16 article-title: Flamelet modeling of thermo-diffusively unstable hydrogen-air flames publication-title: Proc. Combust. Inst. – volume: 30 start-page: 867 year: 2005 end-page: 874 ident: b32 article-title: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF publication-title: Proc. Combust. Inst. – volume: 145 start-page: 495 year: 2006 end-page: 511 ident: b6 article-title: Transported PDF modeling of high-Reynolds-number premixed turbulent flames publication-title: Combust. Flame – volume: 45 start-page: 363 year: 2013 end-page: 373 ident: b26 article-title: A shock tube study of H2+ OH publication-title: Int. J. Chem. Kinet. – volume: 25 start-page: 1245 year: 2021 end-page: 1267 ident: b14 article-title: A new preferential diffusion model applied to FGM simulations of hydrogen flames publication-title: Combust. Theory Model. – volume: 67 start-page: 127 year: 1987 end-page: 142 ident: b5 article-title: Calculations of premixed turbulent flames by PDF methods publication-title: Combust. Flame – year: 2018 ident: b19 article-title: Numerical Investigations of Transport and Chemistry Modeling for Lean Premixed Hydrogen Combustion – year: 2001 ident: b22 article-title: Progress-Variable Approach for Large-Eddy Simulation of Turbulent Combustion – volume: 33 start-page: 1365 year: 2011 end-page: 1371 ident: b33 article-title: LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models publication-title: Proc. Combust. Inst. – volume: 36 start-page: 1877 year: 2017 end-page: 1884 ident: b36 article-title: Experimental and numerical studies of fuel and hydrodynamic effects on piloted turbulent premixed jet flames publication-title: Proc. Combust. Inst. – year: 1998 ident: b38 article-title: FlameMaster: A C++ Computer Program for 0D Combustion and 1D Laminar Flame Calculations – volume: 126 start-page: 202 year: 1996 end-page: 228 ident: b23 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. – volume: 159 start-page: 1197 year: 2012 end-page: 1204 ident: b10 article-title: Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation publication-title: Combust. Flame – volume: 28 start-page: 1901 year: 2000 end-page: 1908 ident: b7 article-title: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion publication-title: Proc. Combust. Inst. – year: 1999 ident: b27 article-title: GRI-Mech 3.0 – volume: 22 start-page: 264 year: 2018 end-page: 290 ident: b39 article-title: Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames publication-title: Combust. Theor. Model. – volume: 7 start-page: 2496 year: 1995 end-page: 2503 ident: b31 article-title: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches publication-title: Phys. Fluids – start-page: 157 year: 2000 end-page: 168 ident: b4 article-title: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion publication-title: Proceedings of the Summer Program, Vol. 12 – volume: 85 start-page: 473 year: 2010 end-page: 511 ident: b12 article-title: Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds publication-title: Flow Turbul. Combust. – volume: 37 start-page: 239 year: 2005 end-page: 261 ident: b28 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. – volume: 39 start-page: 1567 issue: 2 year: 2023 ident: 10.1016/j.proci.2024.105500_b16 article-title: Flamelet modeling of thermo-diffusively unstable hydrogen-air flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2022.07.159 – year: 2018 ident: 10.1016/j.proci.2024.105500_b19 – volume: 8 start-page: 2248 issue: 8 year: 1996 ident: 10.1016/j.proci.2024.105500_b30 article-title: Response of the dynamic LES model to heat release induced effects publication-title: Phys. Fluids doi: 10.1063/1.868999 – volume: 12 start-page: 1843 issue: 7 year: 2000 ident: 10.1016/j.proci.2024.105500_b3 article-title: A thickened flame model for large eddy simulations of turbulent premixed combustion publication-title: Phys. Fluids doi: 10.1063/1.870436 – volume: 35 start-page: 831 issue: 1 year: 2015 ident: 10.1016/j.proci.2024.105500_b13 article-title: Differential diffusion effects inclusion with flamelet generated manifold for the modeling of stratified premixed cooled flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.06.050 – volume: 319 start-page: 353 year: 1996 ident: 10.1016/j.proci.2024.105500_b20 article-title: A Lagrangian dynamic subgrid-scale model of turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112096007379 – volume: 67 start-page: 127 issue: 2 year: 1987 ident: 10.1016/j.proci.2024.105500_b5 article-title: Calculations of premixed turbulent flames by PDF methods publication-title: Combust. Flame doi: 10.1016/0010-2180(87)90146-5 – volume: 25 start-page: 1245 issue: 7 year: 2021 ident: 10.1016/j.proci.2024.105500_b14 article-title: A new preferential diffusion model applied to FGM simulations of hydrogen flames publication-title: Combust. Theory Model. doi: 10.1080/13647830.2021.1970232 – volume: 22 start-page: 264 issue: 2 year: 2018 ident: 10.1016/j.proci.2024.105500_b39 article-title: Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames publication-title: Combust. Theor. Model. doi: 10.1080/13647830.2017.1398350 – volume: 28 start-page: 1901 issue: 2 year: 2000 ident: 10.1016/j.proci.2024.105500_b7 article-title: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80594-9 – volume: 160 start-page: 240 issue: 2 year: 2013 ident: 10.1016/j.proci.2024.105500_b17 article-title: A two-equation model for non-unity Lewis number differential diffusion in lean premixed laminar flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2012.10.004 – volume: 145 start-page: 495 issue: 3 year: 2006 ident: 10.1016/j.proci.2024.105500_b6 article-title: Transported PDF modeling of high-Reynolds-number premixed turbulent flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2005.12.015 – year: 1999 ident: 10.1016/j.proci.2024.105500_b27 – volume: 176 start-page: 500 year: 2017 ident: 10.1016/j.proci.2024.105500_b35 article-title: A priori filtered chemical source term modeling for LES of high Karlovitz number premixed flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2016.11.015 – volume: 7 start-page: 2496 issue: 10 year: 1995 ident: 10.1016/j.proci.2024.105500_b31 article-title: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches publication-title: Phys. Fluids doi: 10.1063/1.868693 – volume: 156 start-page: 1035 issue: 5 year: 2009 ident: 10.1016/j.proci.2024.105500_b2 article-title: Turbulence effects on cellular burning structures in lean premixed hydrogen flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.10.029 – volume: 34 start-page: 565 issue: 1 year: 2013 ident: 10.1016/j.proci.2024.105500_b25 article-title: On the rate constants of OH+ HO2 and HO2+ HO2: A comprehensive study of H2O2 thermal decomposition using multi-species laser absorption publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2012.06.108 – volume: 36 start-page: 1877 issue: 2 year: 2017 ident: 10.1016/j.proci.2024.105500_b36 article-title: Experimental and numerical studies of fuel and hydrodynamic effects on piloted turbulent premixed jet flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.07.127 – year: 2001 ident: 10.1016/j.proci.2024.105500_b22 – volume: 45 start-page: 363 issue: 6 year: 2013 ident: 10.1016/j.proci.2024.105500_b26 article-title: A shock tube study of H2+ OH→ H2O+ H using OH laser absorption publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.20771 – volume: 33 start-page: 1365 issue: 1 year: 2011 ident: 10.1016/j.proci.2024.105500_b33 article-title: LES of a laboratory-scale turbulent premixed bunsen flame using FSD, PCM-FPI and thickened flame models publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2010.06.010 – volume: 159 start-page: 728 year: 2015 ident: 10.1016/j.proci.2024.105500_b34 article-title: A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance publication-title: Fuel doi: 10.1016/j.fuel.2015.07.016 – volume: 191 start-page: 1 year: 2018 ident: 10.1016/j.proci.2024.105500_b40 article-title: A reduced thermal diffusion model for H and H2 publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.12.022 – volume: 126 start-page: 202 issue: 1 year: 1996 ident: 10.1016/j.proci.2024.105500_b23 article-title: Efficient implementation of weighted ENO schemes publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume: 127 start-page: 2124 issue: 3 year: 2001 ident: 10.1016/j.proci.2024.105500_b8 article-title: Modeling of complex premixed burner systems by using flamelet-generated manifolds publication-title: Combust. Flame doi: 10.1016/S0010-2180(01)00316-9 – volume: 37 start-page: 2511 issue: 2 year: 2019 ident: 10.1016/j.proci.2024.105500_b18 article-title: Reproducing curvature effects due to differential diffusion in tabulated chemistry for premixed flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.06.211 – volume: 85 start-page: 473 issue: 3 year: 2010 ident: 10.1016/j.proci.2024.105500_b12 article-title: Inclusion of preferential diffusion in simulations of premixed combustion of hydrogen/methane mixtures with flamelet generated manifolds publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-010-9279-y – volume: 31 start-page: 1377 issue: 1 year: 2007 ident: 10.1016/j.proci.2024.105500_b9 article-title: Low-dimensional manifolds in Direct Numerical Simulations of premixed turbulent flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.076 – volume: 30 start-page: 867 issue: 1 year: 2005 ident: 10.1016/j.proci.2024.105500_b32 article-title: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2004.08.062 – start-page: 247 year: 2022 ident: 10.1016/j.proci.2024.105500_b41 article-title: Development of large-eddy simulation combustion models for thermodiffusive instabilities in turbulent hydrogen flames – start-page: 157 year: 2000 ident: 10.1016/j.proci.2024.105500_b4 article-title: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion – year: 1998 ident: 10.1016/j.proci.2024.105500_b38 – volume: 10 start-page: 3041 issue: 12 year: 1998 ident: 10.1016/j.proci.2024.105500_b37 article-title: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar publication-title: Phys. Fluids doi: 10.1063/1.869832 – volume: 159 start-page: 1197 issue: 3 year: 2012 ident: 10.1016/j.proci.2024.105500_b10 article-title: Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.10.003 – volume: 75 start-page: 67 issue: 1 year: 2005 ident: 10.1016/j.proci.2024.105500_b11 article-title: Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-005-8592-3 – volume: 37 start-page: 239 year: 2005 ident: 10.1016/j.proci.2024.105500_b28 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175743 – volume: 228 start-page: 6753 issue: 18 year: 2009 ident: 10.1016/j.proci.2024.105500_b29 article-title: Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.036 – volume: 32 start-page: 3001 issue: 2 year: 2009 ident: 10.1016/j.proci.2024.105500_b1 article-title: Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.141 – volume: 243 year: 2022 ident: 10.1016/j.proci.2024.105500_b15 article-title: Flamelet modeling of forced ignition and flame propagation in hydrogen-air mixtures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.112125 – volume: 227 start-page: 7125 issue: 15 year: 2008 ident: 10.1016/j.proci.2024.105500_b21 article-title: High order conservative finite difference scheme for variable density low mach number turbulent flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.03.027 – volume: 158 start-page: 633 issue: 4 year: 2011 ident: 10.1016/j.proci.2024.105500_b24 article-title: An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.10.002 |
SSID | ssj0037035 |
Score | 2.4145672 |
Snippet | The combustion of hydrogen in low-swirl burners (LSB) is considered as an alternative means of generating power because it is characterized by low emissions... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 105500 |
SubjectTerms | Differential diffusion Hydrogen Large Eddy simulation Lewis number Tabulated chemistry |
Title | Capturing differential diffusion effects in large eddy simulation of turbulent premixed flames |
URI | https://dx.doi.org/10.1016/j.proci.2024.105500 https://www.osti.gov/biblio/2407153 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGKtlj14NLbJJtnusRRLVexFCz0Zkn1ApE1DTUEv_nZnNkmpID1ITht2QjK7O7Oz-eYbQm6E0sIgeorHXDlg_VxHSFc7CLlQhnHhKvyj-zwJx1P_cRbMGmRY58IgrLKy_aVNt9a6utOttNnN07T74iJ3nN8XiIJksPHBDHafI6zv7nsD82AwowPLmYrIOehdMw9ZjBc6iRSCRM_HercBprn97Z2aS1hwW45ndEQOqx0jHZQvdUwaOjshB1s8gqfkbRjnhc03pHXBE1i4c9tY43EYrWAbNM3oHLHfVCv1RT_SRVW9iy4NhScka3RCNF_pRfqpFTVzBNGekeno_nU4dqrCCY5kPCicUCuhIDYJE8W46fkGzBKELSEXOoRv1UInkilw9nHfSJNIEwSBkVwogeGFkeycNLNlpi8I7SUKL6kU-nrDhRd7PJRe2I9BY37cIl6tsEhWrOJY3GIe1fCx98hqOUItR6WWW-R2I5SXpBq7u4f1SES_5kYEZn-3YBvHDYWQEVcidAikbBAbsMv_PrZN9rFVHsRckWaxWutr2JoUScfOvQ7ZGzw8jSc_rI3j5Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlaH3vwaGib13aPUpTWai9a8GRI9gGRNC01Bf33ziQbqSA9SE55zJLM7s5j8-03ANdCaWEIPcVjrhy0fl1HyK52CHKhjMdFV9Ef3adxOJj4D6_BawP69V4YglVa21_Z9NJa2yttq832PE3bz13ijvN7glCQHgY-G7BJ7FR-EzZvh6PBuDbIHg7qoKRNJfAcCtTkQyXMi_xEinmi61PJ24B2uv3toJoznHMrvud-D3Zt0Mhuq_fah4bOD2BnhUrwEN768bwotxyyuuYJzt2sPFnSihizyA2W5iwj-DfTSn2xj3RqC3ixmWHYQrIkP8TmCz1NP7ViJiMc7RFM7u9e-gPH1k5wpMeDwgm1EgrTkzBRHjcd36Blwswl5EKH-K1a6ER6Cv193DPSJNIEQWAkF0pQhmGkdwzNfJbrE2CdRNEhlSJ3b7hwY5eH0g17MWrMj0_BrRUWSUssTvUtsqhGkL1HpZYj0nJUafkUbn6E5hWvxvrHw7onol_DI0LLv16wRf1GQkSKKwk9hFJlHht4Z_9t9gq2Bi9Pj9HjcDxqwTbdqdZlzqFZLJb6AiOVIrm0I_EbgSPmlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+differential+diffusion+effects+in+large+eddy+simulation+of+turbulent+premixed+flames&rft.jtitle=Proceedings+of+the+Combustion+Institute&rft.au=Yao%2C+Matthew+X.&rft.au=Blanquart%2C+Guillaume&rft.date=2024&rft.pub=Elsevier+Inc&rft.issn=1540-7489&rft.volume=40&rft.issue=1-4&rft_id=info:doi/10.1016%2Fj.proci.2024.105500&rft.externalDocID=S1540748924003080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1540-7489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1540-7489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1540-7489&client=summon |