Experimental assessment of convective and radiative heat transfer coefficients for various clothing ensembles

The convective and radiative heat transfer coefficients of clothing are important parameters for human thermoregulation and comfort models. Many researchers have studied convective and radiative heat transfer coefficients of the naked human body. However, there is limited information on convective a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biometeorology Vol. 65; no. 11; pp. 1811 - 1822
Main Authors Gao, Shan, Ooka, Ryozo, Oh, Wonseok
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The convective and radiative heat transfer coefficients of clothing are important parameters for human thermoregulation and comfort models. Many researchers have studied convective and radiative heat transfer coefficients of the naked human body. However, there is limited information on convective and radiative heat transfer coefficients for the clothed human body. Therefore, this study aims to confirm whether the convective and radiative heat transfer coefficients vary with different clothing ensembles in addition to clarifying how the difference in clothing heat transfer coefficients affects the prediction of thermal comfort index, such as the predicted mean vote (PMV) index. The convective and radiative heat transfer coefficients for eight sets of clothing ensembles were measured through a manikin experiment. The results demonstrated that (1) the largest difference between convective heat transfer coefficients for various clothing ensembles was 32%, and (2) PMV values differed between the clothing ensembles with the largest value being approximately 0.2, which corresponds nearly 1 °C change in the indoor temperature. Therefore, it is necessary to consider the actual clothing convective heat transfer coefficient for the precise prediction of thermal comfort.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-7128
1432-1254
DOI:10.1007/s00484-021-02138-5