Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering

Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By...

Full description

Saved in:
Bibliographic Details
Published inActa materialia Vol. 200; pp. 35 - 41
Main Authors Zhao, Zhihao, Lv, Yukai, Dai, Yejing, Zhang, Shujun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By tailoring the strongly polarized defect dipoles through poling and aging processes, ultrahigh electro-strain and large signal piezoelectric d33* values can be achieved. The electro-strains of 0.41% and 0.50% with d33* ~820 pm/V and ~1000 pm/V are obtained in Fe2+-doped and Cu+-doped KNN samples, respectively, which are 4-fold and 5-fold larger than that of pure KNN. Of particular interest is that the electro-strain and d33* values are found to improve with increasing temperature up to 140°C, accompanied with low strain hysteresis of 10%-20%. A detailed mechanism considering the interaction between defect dipole polarization and spontaneous polarization after poling and aging processes is proposed to explain the observed phenomena, which provides a good paradigm for achieving high piezoelectric response by defect engineering in perovskite-based ferroelectric ceramics. [Display omitted]
AbstractList Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By tailoring the strongly polarized defect dipoles through poling and aging processes, ultrahigh electro-strain and large signal piezoelectric d33* values can be achieved. The electro-strains of 0.41% and 0.50% with d33* ~820 pm/V and ~1000 pm/V are obtained in Fe2+-doped and Cu+-doped KNN samples, respectively, which are 4-fold and 5-fold larger than that of pure KNN. Of particular interest is that the electro-strain and d33* values are found to improve with increasing temperature up to 140°C, accompanied with low strain hysteresis of 10%-20%. A detailed mechanism considering the interaction between defect dipole polarization and spontaneous polarization after poling and aging processes is proposed to explain the observed phenomena, which provides a good paradigm for achieving high piezoelectric response by defect engineering in perovskite-based ferroelectric ceramics. [Display omitted]
Author Zhang, Shujun
Dai, Yejing
Lv, Yukai
Zhao, Zhihao
Author_xml – sequence: 1
  givenname: Zhihao
  surname: Zhao
  fullname: Zhao, Zhihao
  organization: School of Materials, Sun Yat-sen University, Guangzhou, 510275, PR China
– sequence: 2
  givenname: Yukai
  surname: Lv
  fullname: Lv, Yukai
  organization: Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, PR China
– sequence: 3
  givenname: Yejing
  surname: Dai
  fullname: Dai, Yejing
  email: daiyj8@mail.sysu.edu.cn
  organization: School of Materials, Sun Yat-sen University, Guangzhou, 510275, PR China
– sequence: 4
  givenname: Shujun
  surname: Zhang
  fullname: Zhang, Shujun
  email: shujun@uow.edu.au
  organization: Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia
BookMark eNqFkMtqwzAQRUVJoUnaTyjoB-zKkvyii1JCXzSkm2Yt5NE4UXAsI4tA-_VVSFbdBAZmuHAuzJmRSe96JOQ-Y2nGsuJhl2oIeq9DyhlnKatSVoorMs2qUiRc5mISb5HXSSFzeUNm47hjLOOlZFPSrrvg9dZuthQ7hOBdMsbA9jSOBsAhOJ8YN6Chn6sV7VCbpPWIdLD4606MBQro9d7CSA9WU4NtjCn2G9sjettvbsl1q7sR7857TtavL9-L92T59faxeF4mIMo8JEUOvJCiRglci7owbQ1SoAFZcIZYNw1qXedFm7VYAWtKiCnPStB1w6tcizl5PPWCd-PosVVggw7W9cenOpUxdVSmduqsTB2VKVapqCzS-T968Hav_c9F7unEYXztYNGrESz2gMb6KEIZZy80_AGCKo4u
CitedBy_id crossref_primary_10_1016_j_ceramint_2021_03_172
crossref_primary_10_1063_5_0035779
crossref_primary_10_1021_acs_nanolett_4c03042
crossref_primary_10_1016_j_jmat_2023_04_009
crossref_primary_10_1016_j_jmst_2024_06_047
crossref_primary_10_1111_jace_18049
crossref_primary_10_2139_ssrn_3981240
crossref_primary_10_26599_JAC_2023_9220687
crossref_primary_10_1039_D4TC05103C
crossref_primary_10_1016_j_ceramint_2024_08_393
crossref_primary_10_1016_j_ceramint_2023_08_153
crossref_primary_10_1038_s41467_024_46800_z
crossref_primary_10_1016_j_jeurceramsoc_2022_10_061
crossref_primary_10_1371_journal_pone_0318768
crossref_primary_10_1016_j_mser_2024_100793
crossref_primary_10_1002_adfm_202306416
crossref_primary_10_1126_science_ade2964
crossref_primary_10_1038_s41467_024_51082_6
crossref_primary_10_1126_sciadv_adn2829
crossref_primary_10_1016_j_jeurceramsoc_2024_117091
crossref_primary_10_1016_j_ceramint_2021_07_064
crossref_primary_10_1103_PhysRevLett_133_186802
crossref_primary_10_1016_j_ceramint_2024_01_416
crossref_primary_10_1016_j_ceramint_2024_08_069
crossref_primary_10_1016_j_jallcom_2021_161720
crossref_primary_10_1021_acs_cgd_3c01208
crossref_primary_10_1016_j_ceramint_2023_08_326
crossref_primary_10_1016_j_ceramint_2025_01_399
crossref_primary_10_1021_acsami_4c09282
crossref_primary_10_1063_5_0056041
crossref_primary_10_26599_JAC_2023_9220698
crossref_primary_10_1007_s10854_022_07848_z
crossref_primary_10_1016_j_jeurceramsoc_2024_116810
crossref_primary_10_1002_adfm_202214643
crossref_primary_10_1021_acsami_3c12068
crossref_primary_10_26599_JAC_2024_9220861
crossref_primary_10_1007_s10854_023_10575_8
crossref_primary_10_1016_j_ceramint_2025_02_038
crossref_primary_10_1111_jace_18894
crossref_primary_10_1007_s10854_024_14050_w
crossref_primary_10_1016_j_ceramint_2023_11_135
crossref_primary_10_1016_j_jmat_2024_07_001
crossref_primary_10_1016_j_sna_2024_115205
crossref_primary_10_1088_1361_665X_ad65a7
crossref_primary_10_3390_ma16114008
crossref_primary_10_1016_j_ceramint_2024_05_081
crossref_primary_10_1016_j_actamat_2024_120520
crossref_primary_10_1007_s10854_024_12816_w
crossref_primary_10_1016_j_ceramint_2021_04_157
crossref_primary_10_1016_j_ceramint_2024_03_119
crossref_primary_10_1016_j_sintl_2022_100226
crossref_primary_10_1016_j_est_2025_115699
crossref_primary_10_1080_00150193_2022_2041922
crossref_primary_10_1021_acsami_2c21631
crossref_primary_10_1016_j_ceramint_2022_10_110
crossref_primary_10_1016_j_nanoen_2021_106519
crossref_primary_10_1021_acsaem_1c04017
crossref_primary_10_1002_smll_202407848
crossref_primary_10_1016_j_mtchem_2022_101237
crossref_primary_10_3390_coatings15010051
crossref_primary_10_1002_adom_202201721
crossref_primary_10_1016_j_mseb_2023_116709
crossref_primary_10_1021_acsami_2c09062
crossref_primary_10_1016_j_sna_2023_114874
crossref_primary_10_1038_s41563_024_02092_8
crossref_primary_10_1007_s10854_022_08602_1
crossref_primary_10_3934_matersci_2023045
crossref_primary_10_1002_adma_202404682
crossref_primary_10_1016_j_jeurceramsoc_2021_12_023
crossref_primary_10_1016_j_jeurceramsoc_2022_10_058
crossref_primary_10_1111_jace_18952
crossref_primary_10_1126_sciadv_ade7078
crossref_primary_10_1016_j_mtcomm_2022_103358
crossref_primary_10_1016_j_ceramint_2024_12_206
crossref_primary_10_1016_j_jeurceramsoc_2024_116874
crossref_primary_10_1016_j_ceramint_2022_02_284
crossref_primary_10_1002_adma_202300519
crossref_primary_10_1016_j_jallcom_2023_170916
crossref_primary_10_1016_j_mseb_2025_118040
crossref_primary_10_1002_adfm_202313879
crossref_primary_10_1007_s10853_022_07281_x
crossref_primary_10_1016_j_ceramint_2022_09_324
crossref_primary_10_1016_j_nanoen_2023_108546
crossref_primary_10_1007_s10854_022_09578_8
crossref_primary_10_1016_j_jeurceramsoc_2024_01_033
crossref_primary_10_3390_cryst13030463
crossref_primary_10_1016_j_jeurceramsoc_2024_05_056
Cites_doi 10.1038/nature03028
10.1021/cr5006809
10.1039/C4DT04038D
10.1063/1.3640214
10.1016/j.actamat.2017.02.037
10.1038/srep22053
10.1039/C6TC00875E
10.1002/adma.201503768
10.1016/j.jeurceramsoc.2014.05.044
10.1016/j.ceramint.2016.06.127
10.1016/j.mser.2018.08.001
10.1002/anie.201509115
10.1111/j.1551-2916.2008.02303.x
10.1016/j.materresbull.2014.10.063
10.1016/j.actamat.2015.07.034
10.1063/1.4927281
10.1143/JJAP.43.6683
10.1016/j.matdes.2017.10.003
10.1088/0022-3727/49/27/275303
10.1039/C5DT04891E
10.1109/TUFFC.2008.757
10.1016/j.jmat.2018.09.006
10.1016/j.sna.2009.12.027
10.1039/C6EE03597C
10.1063/1.4948305
10.1016/j.jeurceramsoc.2005.03.078
10.1016/j.actamat.2014.07.058
10.1038/nmat1051
10.1016/j.jallcom.2013.09.152
10.1103/PhysRevB.91.024101
10.1063/1.4818732
10.1038/s41563-018-0034-4
10.1016/j.apcata.2016.10.006
10.1063/1.4875797
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.actamat.2020.08.073
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2453
EndPage 41
ExternalDocumentID 10_1016_j_actamat_2020_08_073
S1359645420306832
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
T9H
TN5
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c375t-65c26439e4c2a396df9c43edc4620ee9bbeaa956f1fe8c0b7c0ee217ca9b285a3
IEDL.DBID .~1
ISSN 1359-6454
IngestDate Thu Apr 24 22:54:50 EDT 2025
Tue Jul 01 01:30:06 EDT 2025
Fri Feb 23 02:39:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electro-strain
Defect engineering
(K0.5N0.5)NbO3
Lead-free piezoelectric ceramics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-65c26439e4c2a396df9c43edc4620ee9bbeaa956f1fe8c0b7c0ee217ca9b285a3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_actamat_2020_08_073
crossref_primary_10_1016_j_actamat_2020_08_073
elsevier_sciencedirect_doi_10_1016_j_actamat_2020_08_073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Acta materialia
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Tan (bib0005) 2016; 28
Sapper, Dittmer, Damjanovic, Erdem, Keeble, Jo, Granzow, Roedel (bib0013) 2014
Khansur, Kawashima, Wada, Hudspeth, Daniels (bib0007) 2015; 98
Luo, Zhang, Li, Yan, He, Zhang, Shrout (bib0033) 2014; 104
Saito, Takao, Tani, Nonoyama, Takatori, Homma, Nagaya, Nakamura (bib0001) 2004; 432
Zhao, Dai, Li, Zhao, Zhang (bib0010) 2016; 108
Li, Hao, Xu, Li, Chu, Li (bib0023) 2016; 42
Wu, Xiao, Zhu (bib0002) 2015; 115
Li, Cheng, Zhang, Chang, Wang, Wang, Lv, Dong, Yang, Li (bib0015) 2016; 528
Hao, Li, Zhai, Chen (bib0004) 2019; 135
Lv, Wu, Xiao, Tao, Yuan, Zhu, Wang, Lou (bib0025) 2015; 44
Pan, Chen, Fan, Wang, Liu, Fang, Xing (bib0031) 2015; 61
Dai, Zhao, Zhao, Zhao, Zhou, Zhang (bib0012) 2016; 49
Eichel (bib0035) 2008; 91
Hussain, Ahn, Lee, Ullah, Kim (bib0020) 2010; 158
Kalyani, Krishnan, Sen, Senyshyn, Ranjan (bib0022) 2015; 91
Jin, Wang, Wei, Tang, Li, Yao, Tian, Shi (bib0021) 2014; 585
Zhao, Wang, Xiong, Wu (bib0028) 2016; 45
Hayashi, Hasegawa (bib0032) 2005; 25
Moriana, Zhang (bib0006) 2018; 4
Li, Lou, Ke, Cheng, Mi, Wang, Shi, Liu, Dong, Fan, Wang, Tan (bib0024) 2017; 128
Zhao, Ye, Ji, Li, Zhang, Dai (bib0003) 2018; 137
Ren (bib0011) 2004; 3
Liu, Zhang, Luo, Chen, Wang, Wu, Su, Huang (bib0016) 2015; 54
Erdem, Eichel, Kungl, Hoffmann, Ozarowski, van Tol, Brunel (bib0034) 2008; 55
Xue, Zhou, Bao, Gao, Zhou, Ren (bib0027) 2011; 99
Acosta, Novak, Jo, Rödel (bib0017) 2014; 80
Chen, Chen, Tu, Chang (bib0018) 2014; 34
Zhao, Dai, Huang (bib0014) 2019; 20
Hayashi, Hasegawa, Akiyama (bib0030) 2004; 43
Huan, Wang, Koruza, Wang, Webber, Hao, Li (bib0019) 2016; 6
Zhu, Zhang, Zhao, Zhao, Yao, Han, Zhou, Li (bib0029) 2013; 103
Zheng, Wu, Yuan, Lv, Li, Men, Zhao, Xiao, Wu, Wang, Li, Gu, Zhu, Pennycook (bib0008) 2017; 10
Li, Lin, Chen, Cheng, Wang, Li, Xu, Huang, Liao, Chen, Shrout, Zhang (bib0009) 2018; 17
Tao, Wu, Zheng, Wang, Lou (bib0026) 2015; 118
Luo, Zhang, Li, Yan, Zhang, Ansell, Luo, Shrout (bib0036) 2016; 4
Zhao (10.1016/j.actamat.2020.08.073_bib0014) 2019; 20
Zhao (10.1016/j.actamat.2020.08.073_bib0010) 2016; 108
Li (10.1016/j.actamat.2020.08.073_bib0024) 2017; 128
Li (10.1016/j.actamat.2020.08.073_bib0023) 2016; 42
Erdem (10.1016/j.actamat.2020.08.073_bib0034) 2008; 55
Wu (10.1016/j.actamat.2020.08.073_bib0002) 2015; 115
Zhao (10.1016/j.actamat.2020.08.073_bib0028) 2016; 45
Tao (10.1016/j.actamat.2020.08.073_bib0026) 2015; 118
Lv (10.1016/j.actamat.2020.08.073_bib0025) 2015; 44
Pan (10.1016/j.actamat.2020.08.073_bib0031) 2015; 61
Jin (10.1016/j.actamat.2020.08.073_bib0021) 2014; 585
Zhu (10.1016/j.actamat.2020.08.073_bib0029) 2013; 103
Hao (10.1016/j.actamat.2020.08.073_bib0004) 2019; 135
Chen (10.1016/j.actamat.2020.08.073_bib0018) 2014; 34
Khansur (10.1016/j.actamat.2020.08.073_bib0007) 2015; 98
Luo (10.1016/j.actamat.2020.08.073_bib0033) 2014; 104
Liu (10.1016/j.actamat.2020.08.073_bib0005) 2016; 28
Liu (10.1016/j.actamat.2020.08.073_bib0016) 2015; 54
Acosta (10.1016/j.actamat.2020.08.073_bib0017) 2014; 80
Moriana (10.1016/j.actamat.2020.08.073_bib0006) 2018; 4
Hayashi (10.1016/j.actamat.2020.08.073_bib0032) 2005; 25
Eichel (10.1016/j.actamat.2020.08.073_bib0035) 2008; 91
Kalyani (10.1016/j.actamat.2020.08.073_bib0022) 2015; 91
Saito (10.1016/j.actamat.2020.08.073_bib0001) 2004; 432
Li (10.1016/j.actamat.2020.08.073_bib0009) 2018; 17
Luo (10.1016/j.actamat.2020.08.073_bib0036) 2016; 4
Xue (10.1016/j.actamat.2020.08.073_bib0027) 2011; 99
Zheng (10.1016/j.actamat.2020.08.073_bib0008) 2017; 10
Hayashi (10.1016/j.actamat.2020.08.073_bib0030) 2004; 43
Dai (10.1016/j.actamat.2020.08.073_bib0012) 2016; 49
Huan (10.1016/j.actamat.2020.08.073_bib0019) 2016; 6
Zhao (10.1016/j.actamat.2020.08.073_bib0003) 2018; 137
Li (10.1016/j.actamat.2020.08.073_bib0015) 2016; 528
Sapper (10.1016/j.actamat.2020.08.073_bib0013) 2014
Ren (10.1016/j.actamat.2020.08.073_bib0011) 2004; 3
Hussain (10.1016/j.actamat.2020.08.073_bib0020) 2010; 158
References_xml – volume: 25
  start-page: 2437
  year: 2005
  end-page: 2441
  ident: bib0032
  article-title: Piezoelectric properties of low-temperature sintered Pb
  publication-title: J. Eur. Ceram. Soc.
– start-page: 116
  year: 2014
  ident: bib0013
  article-title: Aging in the relaxor and ferroelectric state of Fe-doped (1-
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 91
  year: 2004
  ident: bib0011
  article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching
  publication-title: Nat. Mater.
– volume: 55
  start-page: 1061
  year: 2008
  end-page: 1068
  ident: bib0034
  article-title: Characterization of (Fe
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
– volume: 44
  start-page: 4440
  year: 2015
  end-page: 4448
  ident: bib0025
  article-title: (1-
  publication-title: Dalton Trans.
– volume: 28
  start-page: 574
  year: 2016
  end-page: 578
  ident: bib0005
  article-title: Giant strains in non-textured (Bi
  publication-title: Adv. Mater.
– volume: 115
  start-page: 2559
  year: 2015
  end-page: 2595
  ident: bib0002
  article-title: Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries
  publication-title: Chem. Rev.
– volume: 43
  start-page: 6683
  year: 2004
  end-page: 6688
  ident: bib0030
  article-title: Enhancement of piezoelectric properties of low-temperature-fabricated Pb(Mg
  publication-title: Jpn. J. Appl. Phys.
– volume: 17
  start-page: 349
  year: 2018
  end-page: 354
  ident: bib0009
  article-title: Ultrahigh piezoelectricity in ferroelectric ceramics by design
  publication-title: Nat. Mater.
– volume: 108
  year: 2016
  ident: bib0010
  article-title: The evolution mechanism of defect dipoles and high strain in MnO
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 22053
  year: 2016
  ident: bib0019
  article-title: Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO
  publication-title: Sci. Rep.
– volume: 45
  start-page: 6466
  year: 2016
  end-page: 6480
  ident: bib0028
  article-title: Composition-driven phase boundary and electrical properties in (Ba
  publication-title: Dalton Trans.
– volume: 61
  start-page: 448
  year: 2015
  end-page: 452
  ident: bib0031
  article-title: Both electric field and temperature independent behavior of piezoelectric property of Pb(Ni
  publication-title: Mater. Res. Bull.
– volume: 432
  start-page: 84
  year: 2004
  ident: bib0001
  article-title: Lead-free piezoceramics
  publication-title: Nature
– volume: 91
  year: 2015
  ident: bib0022
  article-title: Polarization switching and high piezoelectric response in Sn-modified BaTiO
  publication-title: Phys. Rev. B
– volume: 98
  start-page: 182
  year: 2015
  end-page: 189
  ident: bib0007
  article-title: Enhanced extrinsic domain switching strain in core-shell structured BaTiO
  publication-title: Acta Mater.
– volume: 91
  start-page: 691
  year: 2008
  end-page: 701
  ident: bib0035
  article-title: Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy
  publication-title: J. Am. Ceram. Soc.
– volume: 158
  start-page: 84
  year: 2010
  end-page: 89
  ident: bib0020
  article-title: Large electric-field-induced strain in Zr-modified lead-free Bi
  publication-title: Sens. Actuators A
– volume: 137
  start-page: 184
  year: 2018
  end-page: 191
  ident: bib0003
  article-title: Enhanced piezoelectric properties and strain response in <001>textured BNT-BKT-BT ceramics
  publication-title: Mater. Des.
– volume: 135
  start-page: 1
  year: 2019
  end-page: 57
  ident: bib0004
  article-title: Progress in high-strain perovskite piezoelectric ceramics
  publication-title: Mater. Sci. Eng.: R: Rep.
– volume: 10
  start-page: 528
  year: 2017
  end-page: 537
  ident: bib0008
  article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics
  publication-title: Energy Environ. Sci.
– volume: 128
  start-page: 337
  year: 2017
  end-page: 344
  ident: bib0024
  article-title: Giant strain with low hysteresis in A-site-deficient (Bi
  publication-title: Acta Mater.
– volume: 99
  year: 2011
  ident: bib0027
  article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O
  publication-title: Appl. Phys. Lett.
– volume: 585
  start-page: 185
  year: 2014
  end-page: 191
  ident: bib0021
  article-title: Influence of B-site complex-ion substitution on the structure and electrical properties in Bi
  publication-title: J. Alloys Compd.
– volume: 118
  year: 2015
  ident: bib0026
  article-title: New (1-
  publication-title: J. Appl. Phys.
– volume: 104
  year: 2014
  ident: bib0033
  article-title: PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability
  publication-title: Appl. Phys. Lett.
– volume: 528
  start-page: 131
  year: 2016
  end-page: 141
  ident: bib0015
  article-title: Effect of alkalis on iron-based Fischer-Tropsch synthesis catalysts: Alkali-FeO
  publication-title: Appl. Catal. A
– volume: 103
  year: 2013
  ident: bib0029
  article-title: Phase transition and high piezoelectricity in (Ba,Ca)(Ti
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 48
  year: 2014
  end-page: 55
  ident: bib0017
  article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr
  publication-title: Acta Mater.
– volume: 49
  year: 2016
  ident: bib0012
  article-title: High electrostrictive strain induced by defect dipoles in acceptor-doped (K
  publication-title: J. Phys. D Appl. Phys.
– volume: 42
  start-page: 14886
  year: 2016
  end-page: 14893
  ident: bib0023
  article-title: Large strain response in (Mn,Sb)-modified (Bi
  publication-title: Ceram. Int.
– volume: 20
  start-page: e00092
  year: 2019
  ident: bib0014
  article-title: The formation and effect of defect dipoles in lead-free piezoelectric ceramics: a review
  publication-title: Sustain. Mater. Technol.
– volume: 4
  start-page: 277
  year: 2018
  end-page: 303
  ident: bib0006
  article-title: Lead-free textured piezoceramics using tape casting: A review
  publication-title: J. Materiomics
– volume: 34
  start-page: 4223
  year: 2014
  end-page: 4233
  ident: bib0018
  article-title: Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi
  publication-title: J. Eur. Ceram. Soc.
– volume: 54
  start-page: 15260
  year: 2015
  end-page: 15265
  ident: bib0016
  article-title: TiO
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 4568
  year: 2016
  end-page: 4576
  ident: bib0036
  article-title: Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO
  publication-title: J. Mater. Chem. C
– volume: 432
  start-page: 84
  year: 2004
  ident: 10.1016/j.actamat.2020.08.073_bib0001
  article-title: Lead-free piezoceramics
  publication-title: Nature
  doi: 10.1038/nature03028
– volume: 115
  start-page: 2559
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0002
  article-title: Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006809
– volume: 44
  start-page: 4440
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0025
  article-title: (1-x)(K0.48Na0.52)(Nb0.95- y- zTazSby)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 lead-free ceramics: composition dependence of the phase boundaries and electrical properties
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT04038D
– volume: 99
  year: 2011
  ident: 10.1016/j.actamat.2020.08.073_bib0027
  article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3640214
– volume: 128
  start-page: 337
  year: 2017
  ident: 10.1016/j.actamat.2020.08.073_bib0024
  article-title: Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.037
– volume: 6
  start-page: 22053
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0019
  article-title: Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO3-based ceramics
  publication-title: Sci. Rep.
  doi: 10.1038/srep22053
– volume: 4
  start-page: 4568
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0036
  article-title: Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO3 single crystals
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00875E
– volume: 28
  start-page: 574
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0005
  article-title: Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503768
– volume: 34
  start-page: 4223
  year: 2014
  ident: 10.1016/j.actamat.2020.08.073_bib0018
  article-title: Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.05.044
– volume: 42
  start-page: 14886
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0023
  article-title: Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.06.127
– volume: 135
  start-page: 1
  year: 2019
  ident: 10.1016/j.actamat.2020.08.073_bib0004
  article-title: Progress in high-strain perovskite piezoelectric ceramics
  publication-title: Mater. Sci. Eng.: R: Rep.
  doi: 10.1016/j.mser.2018.08.001
– volume: 54
  start-page: 15260
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0016
  article-title: TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509115
– volume: 91
  start-page: 691
  year: 2008
  ident: 10.1016/j.actamat.2020.08.073_bib0035
  article-title: Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02303.x
– volume: 20
  start-page: e00092
  year: 2019
  ident: 10.1016/j.actamat.2020.08.073_bib0014
  article-title: The formation and effect of defect dipoles in lead-free piezoelectric ceramics: a review
  publication-title: Sustain. Mater. Technol.
– volume: 61
  start-page: 448
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0031
  article-title: Both electric field and temperature independent behavior of piezoelectric property of Pb(Ni1/3Nb2/3)O3-PbTiO3
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2014.10.063
– volume: 98
  start-page: 182
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0007
  article-title: Enhanced extrinsic domain switching strain in core-shell structured BaTiO3-KNbO3 ceramics
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.034
– volume: 118
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0026
  article-title: New (1-x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4927281
– volume: 43
  start-page: 6683
  year: 2004
  ident: 10.1016/j.actamat.2020.08.073_bib0030
  article-title: Enhancement of piezoelectric properties of low-temperature-fabricated Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with LiBiO2 sintering aid by post-annealing process
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.43.6683
– volume: 137
  start-page: 184
  year: 2018
  ident: 10.1016/j.actamat.2020.08.073_bib0003
  article-title: Enhanced piezoelectric properties and strain response in <001>textured BNT-BKT-BT ceramics
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.10.003
– volume: 49
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0012
  article-title: High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/49/27/275303
– volume: 45
  start-page: 6466
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0028
  article-title: Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1- xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04891E
– volume: 55
  start-page: 1061
  year: 2008
  ident: 10.1016/j.actamat.2020.08.073_bib0034
  article-title: Characterization of (Fe´ (Zr,Ti)-VO˙˙)˙ defect dipoles in (La,Fe)-codoped PZT 52.5/47.5 piezoelectric ceramics by multifrequency electron paramagnetic resonance spectroscopy
  publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control
  doi: 10.1109/TUFFC.2008.757
– volume: 4
  start-page: 277
  year: 2018
  ident: 10.1016/j.actamat.2020.08.073_bib0006
  article-title: Lead-free textured piezoceramics using tape casting: A review
  publication-title: J. Materiomics
  doi: 10.1016/j.jmat.2018.09.006
– volume: 158
  start-page: 84
  year: 2010
  ident: 10.1016/j.actamat.2020.08.073_bib0020
  article-title: Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2009.12.027
– volume: 10
  start-page: 528
  year: 2017
  ident: 10.1016/j.actamat.2020.08.073_bib0008
  article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03597C
– volume: 108
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0010
  article-title: The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948305
– volume: 25
  start-page: 2437
  year: 2005
  ident: 10.1016/j.actamat.2020.08.073_bib0032
  article-title: Piezoelectric properties of low-temperature sintered Pb0.95Ba0.05 [(Mg1/3Nb2/3)0.125Zr0.445Ti0.43]O3 ceramics with chemically-added LiBiO2 sintering aid
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2005.03.078
– volume: 80
  start-page: 48
  year: 2014
  ident: 10.1016/j.actamat.2020.08.073_bib0017
  article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2014.07.058
– volume: 3
  start-page: 91
  year: 2004
  ident: 10.1016/j.actamat.2020.08.073_bib0011
  article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1051
– volume: 585
  start-page: 185
  year: 2014
  ident: 10.1016/j.actamat.2020.08.073_bib0021
  article-title: Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.09.152
– volume: 91
  year: 2015
  ident: 10.1016/j.actamat.2020.08.073_bib0022
  article-title: Polarization switching and high piezoelectric response in Sn-modified BaTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.024101
– volume: 103
  year: 2013
  ident: 10.1016/j.actamat.2020.08.073_bib0029
  article-title: Phase transition and high piezoelectricity in (Ba,Ca)(Ti1- xSnx)O3 lead-free ceramics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4818732
– volume: 17
  start-page: 349
  year: 2018
  ident: 10.1016/j.actamat.2020.08.073_bib0009
  article-title: Ultrahigh piezoelectricity in ferroelectric ceramics by design
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0034-4
– volume: 528
  start-page: 131
  year: 2016
  ident: 10.1016/j.actamat.2020.08.073_bib0015
  article-title: Effect of alkalis on iron-based Fischer-Tropsch synthesis catalysts: Alkali-FeOx interaction, reduction, and catalytic performance
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2016.10.006
– volume: 104
  year: 2014
  ident: 10.1016/j.actamat.2020.08.073_bib0033
  article-title: PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4875797
– start-page: 116
  year: 2014
  ident: 10.1016/j.actamat.2020.08.073_bib0013
  article-title: Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 piezoelectric ceramics
  publication-title: J. Appl. Phys.
SSID ssj0012740
Score 2.5961738
Snippet Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms (K0.5N0.5)NbO3
Defect engineering
Electro-strain
Lead-free piezoelectric ceramics
Title Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering
URI https://dx.doi.org/10.1016/j.actamat.2020.08.073
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_C6No_dJHsUsVTFXrTgLWwms5BS2tBGDx787c4m6UMQBSGXLJlkMzN8OwMz8zF2lejcl1ZJ4eXKEzK0Shg6RwVYo6WBCOKazudpEPWH8uFVvW6w20UvjCurbLG_wfQarduVbqvNblkU3Wc_VNrNowpc2EuO6TrYZey8_PpzWebhU9bVdAorLdzTqy6e7oi2XBkKDClNDLx6kmcc_nw-rZ05vT222waL_KbZzz7bwMkB21kbIXjI7HBcEV5Qis1bRhsxr2kfOF0GXNHKdCbyaYk5fxwM-JhsKuwMkZcFfkwbmQI44Mwx08_5e2F4jq7Ig-PqQ0ds2Lt7ue2LljtBQBirSkQKAhdsoITAhDrKrQYZYg4yCjxEnWVoDOVG1reYgJfFQKuUnoDRWZAoEx6zzcl0gieM5z4ZTnroaWOljgjcswTo_ZkHECHKUyYXGkuhHSzufnScLirIRmmr6NQpOnW8l3F4yq6XYmUzWeMvgWRhjvSbi6SE_r-Lnv1f9Jxtu7um_fCCbVazN7ykOKTKOrWjddjWzf1jf_AFiP_gRw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ine5MA1rI-kbY4IgcZju7BJ3KrUdaSiaZu2woEDvx2n7QZICCSkntK6TWzXD8n2x9h5onNfWiWFlytPyNAqYciPCrBGSwMRxBWcT7cXdQby7kk9tdjVvBfGlVU2tr-26ZW1blbaDTfbk6JoP_qh0m4eVeDCXlLMJbYi6fd1MAYX74s6D5_SrrpVWGnhHv9s42k_055LQ5Eh5YmBV43yjMOfHdQXp3OzyTaaaJFf1hvaYi0cbbP1LzMEd5gdDEsyGJRj8wbSRswq3AdOlwFXtTKeinw8wZzf93p8SEIVdorIJwW-jWuaAjjg1EHTz_hrYXiOrsqD4-eHdtng5rp_1RENeIKAMFaliBQELtpACYEJdZRbDTLEHGQUeIg6y9AYSo6sbzEBL4uBVik_AaOzIFEm3GPLo_EI9xnPfZKc9NDTxkodkXXPEqD3Zx5AhCgPmJxzLIVmsrg76DCdl5A9pw2jU8fo1AFfxuEBu1iQTerRGn8RJHNxpN90JCXz_zvp4f9Jz9hqp999SB9ue_dHbM3dqXsRj9lyOX3BEwpKyuy0UroPwCTh1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+electro-strain+in+acceptor-doped+KNN+lead-free+piezoelectric+ceramics+via+defect+engineering&rft.jtitle=Acta+materialia&rft.au=Zhao%2C+Zhihao&rft.au=Lv%2C+Yukai&rft.au=Dai%2C+Yejing&rft.au=Zhang%2C+Shujun&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=200&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.actamat.2020.08.073&rft.externalDocID=S1359645420306832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon