Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering
Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By...
Saved in:
Published in | Acta materialia Vol. 200; pp. 35 - 41 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By tailoring the strongly polarized defect dipoles through poling and aging processes, ultrahigh electro-strain and large signal piezoelectric d33* values can be achieved. The electro-strains of 0.41% and 0.50% with d33* ~820 pm/V and ~1000 pm/V are obtained in Fe2+-doped and Cu+-doped KNN samples, respectively, which are 4-fold and 5-fold larger than that of pure KNN. Of particular interest is that the electro-strain and d33* values are found to improve with increasing temperature up to 140°C, accompanied with low strain hysteresis of 10%-20%. A detailed mechanism considering the interaction between defect dipole polarization and spontaneous polarization after poling and aging processes is proposed to explain the observed phenomena, which provides a good paradigm for achieving high piezoelectric response by defect engineering in perovskite-based ferroelectric ceramics.
[Display omitted] |
---|---|
AbstractList | Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such as Fe2+ and Cu+, -doped (K0.5N0.5)NbO3 (KNN) ceramics are fabricated in reduced atmosphere by the conventional solid-state reaction method. By tailoring the strongly polarized defect dipoles through poling and aging processes, ultrahigh electro-strain and large signal piezoelectric d33* values can be achieved. The electro-strains of 0.41% and 0.50% with d33* ~820 pm/V and ~1000 pm/V are obtained in Fe2+-doped and Cu+-doped KNN samples, respectively, which are 4-fold and 5-fold larger than that of pure KNN. Of particular interest is that the electro-strain and d33* values are found to improve with increasing temperature up to 140°C, accompanied with low strain hysteresis of 10%-20%. A detailed mechanism considering the interaction between defect dipole polarization and spontaneous polarization after poling and aging processes is proposed to explain the observed phenomena, which provides a good paradigm for achieving high piezoelectric response by defect engineering in perovskite-based ferroelectric ceramics.
[Display omitted] |
Author | Zhang, Shujun Dai, Yejing Lv, Yukai Zhao, Zhihao |
Author_xml | – sequence: 1 givenname: Zhihao surname: Zhao fullname: Zhao, Zhihao organization: School of Materials, Sun Yat-sen University, Guangzhou, 510275, PR China – sequence: 2 givenname: Yukai surname: Lv fullname: Lv, Yukai organization: Key Laboratory of Advanced Ceramics and Machining Technology Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, PR China – sequence: 3 givenname: Yejing surname: Dai fullname: Dai, Yejing email: daiyj8@mail.sysu.edu.cn organization: School of Materials, Sun Yat-sen University, Guangzhou, 510275, PR China – sequence: 4 givenname: Shujun surname: Zhang fullname: Zhang, Shujun email: shujun@uow.edu.au organization: Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia |
BookMark | eNqFkMtqwzAQRUVJoUnaTyjoB-zKkvyii1JCXzSkm2Yt5NE4UXAsI4tA-_VVSFbdBAZmuHAuzJmRSe96JOQ-Y2nGsuJhl2oIeq9DyhlnKatSVoorMs2qUiRc5mISb5HXSSFzeUNm47hjLOOlZFPSrrvg9dZuthQ7hOBdMsbA9jSOBsAhOJ8YN6Chn6sV7VCbpPWIdLD4606MBQro9d7CSA9WU4NtjCn2G9sjettvbsl1q7sR7857TtavL9-L92T59faxeF4mIMo8JEUOvJCiRglci7owbQ1SoAFZcIZYNw1qXedFm7VYAWtKiCnPStB1w6tcizl5PPWCd-PosVVggw7W9cenOpUxdVSmduqsTB2VKVapqCzS-T968Hav_c9F7unEYXztYNGrESz2gMb6KEIZZy80_AGCKo4u |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2021_03_172 crossref_primary_10_1063_5_0035779 crossref_primary_10_1021_acs_nanolett_4c03042 crossref_primary_10_1016_j_jmat_2023_04_009 crossref_primary_10_1016_j_jmst_2024_06_047 crossref_primary_10_1111_jace_18049 crossref_primary_10_2139_ssrn_3981240 crossref_primary_10_26599_JAC_2023_9220687 crossref_primary_10_1039_D4TC05103C crossref_primary_10_1016_j_ceramint_2024_08_393 crossref_primary_10_1016_j_ceramint_2023_08_153 crossref_primary_10_1038_s41467_024_46800_z crossref_primary_10_1016_j_jeurceramsoc_2022_10_061 crossref_primary_10_1371_journal_pone_0318768 crossref_primary_10_1016_j_mser_2024_100793 crossref_primary_10_1002_adfm_202306416 crossref_primary_10_1126_science_ade2964 crossref_primary_10_1038_s41467_024_51082_6 crossref_primary_10_1126_sciadv_adn2829 crossref_primary_10_1016_j_jeurceramsoc_2024_117091 crossref_primary_10_1016_j_ceramint_2021_07_064 crossref_primary_10_1103_PhysRevLett_133_186802 crossref_primary_10_1016_j_ceramint_2024_01_416 crossref_primary_10_1016_j_ceramint_2024_08_069 crossref_primary_10_1016_j_jallcom_2021_161720 crossref_primary_10_1021_acs_cgd_3c01208 crossref_primary_10_1016_j_ceramint_2023_08_326 crossref_primary_10_1016_j_ceramint_2025_01_399 crossref_primary_10_1021_acsami_4c09282 crossref_primary_10_1063_5_0056041 crossref_primary_10_26599_JAC_2023_9220698 crossref_primary_10_1007_s10854_022_07848_z crossref_primary_10_1016_j_jeurceramsoc_2024_116810 crossref_primary_10_1002_adfm_202214643 crossref_primary_10_1021_acsami_3c12068 crossref_primary_10_26599_JAC_2024_9220861 crossref_primary_10_1007_s10854_023_10575_8 crossref_primary_10_1016_j_ceramint_2025_02_038 crossref_primary_10_1111_jace_18894 crossref_primary_10_1007_s10854_024_14050_w crossref_primary_10_1016_j_ceramint_2023_11_135 crossref_primary_10_1016_j_jmat_2024_07_001 crossref_primary_10_1016_j_sna_2024_115205 crossref_primary_10_1088_1361_665X_ad65a7 crossref_primary_10_3390_ma16114008 crossref_primary_10_1016_j_ceramint_2024_05_081 crossref_primary_10_1016_j_actamat_2024_120520 crossref_primary_10_1007_s10854_024_12816_w crossref_primary_10_1016_j_ceramint_2021_04_157 crossref_primary_10_1016_j_ceramint_2024_03_119 crossref_primary_10_1016_j_sintl_2022_100226 crossref_primary_10_1016_j_est_2025_115699 crossref_primary_10_1080_00150193_2022_2041922 crossref_primary_10_1021_acsami_2c21631 crossref_primary_10_1016_j_ceramint_2022_10_110 crossref_primary_10_1016_j_nanoen_2021_106519 crossref_primary_10_1021_acsaem_1c04017 crossref_primary_10_1002_smll_202407848 crossref_primary_10_1016_j_mtchem_2022_101237 crossref_primary_10_3390_coatings15010051 crossref_primary_10_1002_adom_202201721 crossref_primary_10_1016_j_mseb_2023_116709 crossref_primary_10_1021_acsami_2c09062 crossref_primary_10_1016_j_sna_2023_114874 crossref_primary_10_1038_s41563_024_02092_8 crossref_primary_10_1007_s10854_022_08602_1 crossref_primary_10_3934_matersci_2023045 crossref_primary_10_1002_adma_202404682 crossref_primary_10_1016_j_jeurceramsoc_2021_12_023 crossref_primary_10_1016_j_jeurceramsoc_2022_10_058 crossref_primary_10_1111_jace_18952 crossref_primary_10_1126_sciadv_ade7078 crossref_primary_10_1016_j_mtcomm_2022_103358 crossref_primary_10_1016_j_ceramint_2024_12_206 crossref_primary_10_1016_j_jeurceramsoc_2024_116874 crossref_primary_10_1016_j_ceramint_2022_02_284 crossref_primary_10_1002_adma_202300519 crossref_primary_10_1016_j_jallcom_2023_170916 crossref_primary_10_1016_j_mseb_2025_118040 crossref_primary_10_1002_adfm_202313879 crossref_primary_10_1007_s10853_022_07281_x crossref_primary_10_1016_j_ceramint_2022_09_324 crossref_primary_10_1016_j_nanoen_2023_108546 crossref_primary_10_1007_s10854_022_09578_8 crossref_primary_10_1016_j_jeurceramsoc_2024_01_033 crossref_primary_10_3390_cryst13030463 crossref_primary_10_1016_j_jeurceramsoc_2024_05_056 |
Cites_doi | 10.1038/nature03028 10.1021/cr5006809 10.1039/C4DT04038D 10.1063/1.3640214 10.1016/j.actamat.2017.02.037 10.1038/srep22053 10.1039/C6TC00875E 10.1002/adma.201503768 10.1016/j.jeurceramsoc.2014.05.044 10.1016/j.ceramint.2016.06.127 10.1016/j.mser.2018.08.001 10.1002/anie.201509115 10.1111/j.1551-2916.2008.02303.x 10.1016/j.materresbull.2014.10.063 10.1016/j.actamat.2015.07.034 10.1063/1.4927281 10.1143/JJAP.43.6683 10.1016/j.matdes.2017.10.003 10.1088/0022-3727/49/27/275303 10.1039/C5DT04891E 10.1109/TUFFC.2008.757 10.1016/j.jmat.2018.09.006 10.1016/j.sna.2009.12.027 10.1039/C6EE03597C 10.1063/1.4948305 10.1016/j.jeurceramsoc.2005.03.078 10.1016/j.actamat.2014.07.058 10.1038/nmat1051 10.1016/j.jallcom.2013.09.152 10.1103/PhysRevB.91.024101 10.1063/1.4818732 10.1038/s41563-018-0034-4 10.1016/j.apcata.2016.10.006 10.1063/1.4875797 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.actamat.2020.08.073 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
EndPage | 41 |
ExternalDocumentID | 10_1016_j_actamat_2020_08_073 S1359645420306832 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSM SSQ SSZ T5K T9H TN5 XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c375t-65c26439e4c2a396df9c43edc4620ee9bbeaa956f1fe8c0b7c0ee217ca9b285a3 |
IEDL.DBID | .~1 |
ISSN | 1359-6454 |
IngestDate | Thu Apr 24 22:54:50 EDT 2025 Tue Jul 01 01:30:06 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electro-strain Defect engineering (K0.5N0.5)NbO3 Lead-free piezoelectric ceramics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-65c26439e4c2a396df9c43edc4620ee9bbeaa956f1fe8c0b7c0ee217ca9b285a3 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_actamat_2020_08_073 crossref_primary_10_1016_j_actamat_2020_08_073 elsevier_sciencedirect_doi_10_1016_j_actamat_2020_08_073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Tan (bib0005) 2016; 28 Sapper, Dittmer, Damjanovic, Erdem, Keeble, Jo, Granzow, Roedel (bib0013) 2014 Khansur, Kawashima, Wada, Hudspeth, Daniels (bib0007) 2015; 98 Luo, Zhang, Li, Yan, He, Zhang, Shrout (bib0033) 2014; 104 Saito, Takao, Tani, Nonoyama, Takatori, Homma, Nagaya, Nakamura (bib0001) 2004; 432 Zhao, Dai, Li, Zhao, Zhang (bib0010) 2016; 108 Li, Hao, Xu, Li, Chu, Li (bib0023) 2016; 42 Wu, Xiao, Zhu (bib0002) 2015; 115 Li, Cheng, Zhang, Chang, Wang, Wang, Lv, Dong, Yang, Li (bib0015) 2016; 528 Hao, Li, Zhai, Chen (bib0004) 2019; 135 Lv, Wu, Xiao, Tao, Yuan, Zhu, Wang, Lou (bib0025) 2015; 44 Pan, Chen, Fan, Wang, Liu, Fang, Xing (bib0031) 2015; 61 Dai, Zhao, Zhao, Zhao, Zhou, Zhang (bib0012) 2016; 49 Eichel (bib0035) 2008; 91 Hussain, Ahn, Lee, Ullah, Kim (bib0020) 2010; 158 Kalyani, Krishnan, Sen, Senyshyn, Ranjan (bib0022) 2015; 91 Jin, Wang, Wei, Tang, Li, Yao, Tian, Shi (bib0021) 2014; 585 Zhao, Wang, Xiong, Wu (bib0028) 2016; 45 Hayashi, Hasegawa (bib0032) 2005; 25 Moriana, Zhang (bib0006) 2018; 4 Li, Lou, Ke, Cheng, Mi, Wang, Shi, Liu, Dong, Fan, Wang, Tan (bib0024) 2017; 128 Zhao, Ye, Ji, Li, Zhang, Dai (bib0003) 2018; 137 Ren (bib0011) 2004; 3 Liu, Zhang, Luo, Chen, Wang, Wu, Su, Huang (bib0016) 2015; 54 Erdem, Eichel, Kungl, Hoffmann, Ozarowski, van Tol, Brunel (bib0034) 2008; 55 Xue, Zhou, Bao, Gao, Zhou, Ren (bib0027) 2011; 99 Acosta, Novak, Jo, Rödel (bib0017) 2014; 80 Chen, Chen, Tu, Chang (bib0018) 2014; 34 Zhao, Dai, Huang (bib0014) 2019; 20 Hayashi, Hasegawa, Akiyama (bib0030) 2004; 43 Huan, Wang, Koruza, Wang, Webber, Hao, Li (bib0019) 2016; 6 Zhu, Zhang, Zhao, Zhao, Yao, Han, Zhou, Li (bib0029) 2013; 103 Zheng, Wu, Yuan, Lv, Li, Men, Zhao, Xiao, Wu, Wang, Li, Gu, Zhu, Pennycook (bib0008) 2017; 10 Li, Lin, Chen, Cheng, Wang, Li, Xu, Huang, Liao, Chen, Shrout, Zhang (bib0009) 2018; 17 Tao, Wu, Zheng, Wang, Lou (bib0026) 2015; 118 Luo, Zhang, Li, Yan, Zhang, Ansell, Luo, Shrout (bib0036) 2016; 4 Zhao (10.1016/j.actamat.2020.08.073_bib0014) 2019; 20 Zhao (10.1016/j.actamat.2020.08.073_bib0010) 2016; 108 Li (10.1016/j.actamat.2020.08.073_bib0024) 2017; 128 Li (10.1016/j.actamat.2020.08.073_bib0023) 2016; 42 Erdem (10.1016/j.actamat.2020.08.073_bib0034) 2008; 55 Wu (10.1016/j.actamat.2020.08.073_bib0002) 2015; 115 Zhao (10.1016/j.actamat.2020.08.073_bib0028) 2016; 45 Tao (10.1016/j.actamat.2020.08.073_bib0026) 2015; 118 Lv (10.1016/j.actamat.2020.08.073_bib0025) 2015; 44 Pan (10.1016/j.actamat.2020.08.073_bib0031) 2015; 61 Jin (10.1016/j.actamat.2020.08.073_bib0021) 2014; 585 Zhu (10.1016/j.actamat.2020.08.073_bib0029) 2013; 103 Hao (10.1016/j.actamat.2020.08.073_bib0004) 2019; 135 Chen (10.1016/j.actamat.2020.08.073_bib0018) 2014; 34 Khansur (10.1016/j.actamat.2020.08.073_bib0007) 2015; 98 Luo (10.1016/j.actamat.2020.08.073_bib0033) 2014; 104 Liu (10.1016/j.actamat.2020.08.073_bib0005) 2016; 28 Liu (10.1016/j.actamat.2020.08.073_bib0016) 2015; 54 Acosta (10.1016/j.actamat.2020.08.073_bib0017) 2014; 80 Moriana (10.1016/j.actamat.2020.08.073_bib0006) 2018; 4 Hayashi (10.1016/j.actamat.2020.08.073_bib0032) 2005; 25 Eichel (10.1016/j.actamat.2020.08.073_bib0035) 2008; 91 Kalyani (10.1016/j.actamat.2020.08.073_bib0022) 2015; 91 Saito (10.1016/j.actamat.2020.08.073_bib0001) 2004; 432 Li (10.1016/j.actamat.2020.08.073_bib0009) 2018; 17 Luo (10.1016/j.actamat.2020.08.073_bib0036) 2016; 4 Xue (10.1016/j.actamat.2020.08.073_bib0027) 2011; 99 Zheng (10.1016/j.actamat.2020.08.073_bib0008) 2017; 10 Hayashi (10.1016/j.actamat.2020.08.073_bib0030) 2004; 43 Dai (10.1016/j.actamat.2020.08.073_bib0012) 2016; 49 Huan (10.1016/j.actamat.2020.08.073_bib0019) 2016; 6 Zhao (10.1016/j.actamat.2020.08.073_bib0003) 2018; 137 Li (10.1016/j.actamat.2020.08.073_bib0015) 2016; 528 Sapper (10.1016/j.actamat.2020.08.073_bib0013) 2014 Ren (10.1016/j.actamat.2020.08.073_bib0011) 2004; 3 Hussain (10.1016/j.actamat.2020.08.073_bib0020) 2010; 158 |
References_xml | – volume: 25 start-page: 2437 year: 2005 end-page: 2441 ident: bib0032 article-title: Piezoelectric properties of low-temperature sintered Pb publication-title: J. Eur. Ceram. Soc. – start-page: 116 year: 2014 ident: bib0013 article-title: Aging in the relaxor and ferroelectric state of Fe-doped (1- publication-title: J. Appl. Phys. – volume: 3 start-page: 91 year: 2004 ident: bib0011 article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching publication-title: Nat. Mater. – volume: 55 start-page: 1061 year: 2008 end-page: 1068 ident: bib0034 article-title: Characterization of (Fe publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control – volume: 44 start-page: 4440 year: 2015 end-page: 4448 ident: bib0025 article-title: (1- publication-title: Dalton Trans. – volume: 28 start-page: 574 year: 2016 end-page: 578 ident: bib0005 article-title: Giant strains in non-textured (Bi publication-title: Adv. Mater. – volume: 115 start-page: 2559 year: 2015 end-page: 2595 ident: bib0002 article-title: Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries publication-title: Chem. Rev. – volume: 43 start-page: 6683 year: 2004 end-page: 6688 ident: bib0030 article-title: Enhancement of piezoelectric properties of low-temperature-fabricated Pb(Mg publication-title: Jpn. J. Appl. Phys. – volume: 17 start-page: 349 year: 2018 end-page: 354 ident: bib0009 article-title: Ultrahigh piezoelectricity in ferroelectric ceramics by design publication-title: Nat. Mater. – volume: 108 year: 2016 ident: bib0010 article-title: The evolution mechanism of defect dipoles and high strain in MnO publication-title: Appl. Phys. Lett. – volume: 6 start-page: 22053 year: 2016 ident: bib0019 article-title: Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO publication-title: Sci. Rep. – volume: 45 start-page: 6466 year: 2016 end-page: 6480 ident: bib0028 article-title: Composition-driven phase boundary and electrical properties in (Ba publication-title: Dalton Trans. – volume: 61 start-page: 448 year: 2015 end-page: 452 ident: bib0031 article-title: Both electric field and temperature independent behavior of piezoelectric property of Pb(Ni publication-title: Mater. Res. Bull. – volume: 432 start-page: 84 year: 2004 ident: bib0001 article-title: Lead-free piezoceramics publication-title: Nature – volume: 91 year: 2015 ident: bib0022 article-title: Polarization switching and high piezoelectric response in Sn-modified BaTiO publication-title: Phys. Rev. B – volume: 98 start-page: 182 year: 2015 end-page: 189 ident: bib0007 article-title: Enhanced extrinsic domain switching strain in core-shell structured BaTiO publication-title: Acta Mater. – volume: 91 start-page: 691 year: 2008 end-page: 701 ident: bib0035 article-title: Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy publication-title: J. Am. Ceram. Soc. – volume: 158 start-page: 84 year: 2010 end-page: 89 ident: bib0020 article-title: Large electric-field-induced strain in Zr-modified lead-free Bi publication-title: Sens. Actuators A – volume: 137 start-page: 184 year: 2018 end-page: 191 ident: bib0003 article-title: Enhanced piezoelectric properties and strain response in <001>textured BNT-BKT-BT ceramics publication-title: Mater. Des. – volume: 135 start-page: 1 year: 2019 end-page: 57 ident: bib0004 article-title: Progress in high-strain perovskite piezoelectric ceramics publication-title: Mater. Sci. Eng.: R: Rep. – volume: 10 start-page: 528 year: 2017 end-page: 537 ident: bib0008 article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics publication-title: Energy Environ. Sci. – volume: 128 start-page: 337 year: 2017 end-page: 344 ident: bib0024 article-title: Giant strain with low hysteresis in A-site-deficient (Bi publication-title: Acta Mater. – volume: 99 year: 2011 ident: bib0027 article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O publication-title: Appl. Phys. Lett. – volume: 585 start-page: 185 year: 2014 end-page: 191 ident: bib0021 article-title: Influence of B-site complex-ion substitution on the structure and electrical properties in Bi publication-title: J. Alloys Compd. – volume: 118 year: 2015 ident: bib0026 article-title: New (1- publication-title: J. Appl. Phys. – volume: 104 year: 2014 ident: bib0033 article-title: PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability publication-title: Appl. Phys. Lett. – volume: 528 start-page: 131 year: 2016 end-page: 141 ident: bib0015 article-title: Effect of alkalis on iron-based Fischer-Tropsch synthesis catalysts: Alkali-FeO publication-title: Appl. Catal. A – volume: 103 year: 2013 ident: bib0029 article-title: Phase transition and high piezoelectricity in (Ba,Ca)(Ti publication-title: Appl. Phys. Lett. – volume: 80 start-page: 48 year: 2014 end-page: 55 ident: bib0017 article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr publication-title: Acta Mater. – volume: 49 year: 2016 ident: bib0012 article-title: High electrostrictive strain induced by defect dipoles in acceptor-doped (K publication-title: J. Phys. D Appl. Phys. – volume: 42 start-page: 14886 year: 2016 end-page: 14893 ident: bib0023 article-title: Large strain response in (Mn,Sb)-modified (Bi publication-title: Ceram. Int. – volume: 20 start-page: e00092 year: 2019 ident: bib0014 article-title: The formation and effect of defect dipoles in lead-free piezoelectric ceramics: a review publication-title: Sustain. Mater. Technol. – volume: 4 start-page: 277 year: 2018 end-page: 303 ident: bib0006 article-title: Lead-free textured piezoceramics using tape casting: A review publication-title: J. Materiomics – volume: 34 start-page: 4223 year: 2014 end-page: 4233 ident: bib0018 article-title: Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi publication-title: J. Eur. Ceram. Soc. – volume: 54 start-page: 15260 year: 2015 end-page: 15265 ident: bib0016 article-title: TiO publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 4568 year: 2016 end-page: 4576 ident: bib0036 article-title: Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO publication-title: J. Mater. Chem. C – volume: 432 start-page: 84 year: 2004 ident: 10.1016/j.actamat.2020.08.073_bib0001 article-title: Lead-free piezoceramics publication-title: Nature doi: 10.1038/nature03028 – volume: 115 start-page: 2559 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0002 article-title: Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries publication-title: Chem. Rev. doi: 10.1021/cr5006809 – volume: 44 start-page: 4440 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0025 article-title: (1-x)(K0.48Na0.52)(Nb0.95- y- zTazSby)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 lead-free ceramics: composition dependence of the phase boundaries and electrical properties publication-title: Dalton Trans. doi: 10.1039/C4DT04038D – volume: 99 year: 2011 ident: 10.1016/j.actamat.2020.08.073_bib0027 article-title: Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.3640214 – volume: 128 start-page: 337 year: 2017 ident: 10.1016/j.actamat.2020.08.073_bib0024 article-title: Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.02.037 – volume: 6 start-page: 22053 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0019 article-title: Inverted electro-mechanical behaviour induced by the irreversible domain configuration transformation in (K,Na)NbO3-based ceramics publication-title: Sci. Rep. doi: 10.1038/srep22053 – volume: 4 start-page: 4568 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0036 article-title: Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO3 single crystals publication-title: J. Mater. Chem. C doi: 10.1039/C6TC00875E – volume: 28 start-page: 574 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0005 article-title: Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics publication-title: Adv. Mater. doi: 10.1002/adma.201503768 – volume: 34 start-page: 4223 year: 2014 ident: 10.1016/j.actamat.2020.08.073_bib0018 article-title: Large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.05.044 – volume: 42 start-page: 14886 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0023 article-title: Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.06.127 – volume: 135 start-page: 1 year: 2019 ident: 10.1016/j.actamat.2020.08.073_bib0004 article-title: Progress in high-strain perovskite piezoelectric ceramics publication-title: Mater. Sci. Eng.: R: Rep. doi: 10.1016/j.mser.2018.08.001 – volume: 54 start-page: 15260 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0016 article-title: TiO2/Cu2O core/ultrathin shell nanorods as efficient and stable photocatalysts for water reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509115 – volume: 91 start-page: 691 year: 2008 ident: 10.1016/j.actamat.2020.08.073_bib0035 article-title: Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02303.x – volume: 20 start-page: e00092 year: 2019 ident: 10.1016/j.actamat.2020.08.073_bib0014 article-title: The formation and effect of defect dipoles in lead-free piezoelectric ceramics: a review publication-title: Sustain. Mater. Technol. – volume: 61 start-page: 448 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0031 article-title: Both electric field and temperature independent behavior of piezoelectric property of Pb(Ni1/3Nb2/3)O3-PbTiO3 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.10.063 – volume: 98 start-page: 182 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0007 article-title: Enhanced extrinsic domain switching strain in core-shell structured BaTiO3-KNbO3 ceramics publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.034 – volume: 118 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0026 article-title: New (1-x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties publication-title: J. Appl. Phys. doi: 10.1063/1.4927281 – volume: 43 start-page: 6683 year: 2004 ident: 10.1016/j.actamat.2020.08.073_bib0030 article-title: Enhancement of piezoelectric properties of low-temperature-fabricated Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 ceramics with LiBiO2 sintering aid by post-annealing process publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.6683 – volume: 137 start-page: 184 year: 2018 ident: 10.1016/j.actamat.2020.08.073_bib0003 article-title: Enhanced piezoelectric properties and strain response in <001>textured BNT-BKT-BT ceramics publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.003 – volume: 49 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0012 article-title: High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/49/27/275303 – volume: 45 start-page: 6466 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0028 article-title: Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1- xMx)O3 (M = Sn, Hf, Zr) lead-free ceramics publication-title: Dalton Trans. doi: 10.1039/C5DT04891E – volume: 55 start-page: 1061 year: 2008 ident: 10.1016/j.actamat.2020.08.073_bib0034 article-title: Characterization of (Fe´ (Zr,Ti)-VO˙˙)˙ defect dipoles in (La,Fe)-codoped PZT 52.5/47.5 piezoelectric ceramics by multifrequency electron paramagnetic resonance spectroscopy publication-title: IEEE Trans. Ultrasonics Ferroelectrics Frequency Control doi: 10.1109/TUFFC.2008.757 – volume: 4 start-page: 277 year: 2018 ident: 10.1016/j.actamat.2020.08.073_bib0006 article-title: Lead-free textured piezoceramics using tape casting: A review publication-title: J. Materiomics doi: 10.1016/j.jmat.2018.09.006 – volume: 158 start-page: 84 year: 2010 ident: 10.1016/j.actamat.2020.08.073_bib0020 article-title: Large electric-field-induced strain in Zr-modified lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics publication-title: Sens. Actuators A doi: 10.1016/j.sna.2009.12.027 – volume: 10 start-page: 528 year: 2017 ident: 10.1016/j.actamat.2020.08.073_bib0008 article-title: The structural origin of enhanced piezoelectric performance and stability in lead free ceramics publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03597C – volume: 108 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0010 article-title: The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948305 – volume: 25 start-page: 2437 year: 2005 ident: 10.1016/j.actamat.2020.08.073_bib0032 article-title: Piezoelectric properties of low-temperature sintered Pb0.95Ba0.05 [(Mg1/3Nb2/3)0.125Zr0.445Ti0.43]O3 ceramics with chemically-added LiBiO2 sintering aid publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2005.03.078 – volume: 80 start-page: 48 year: 2014 ident: 10.1016/j.actamat.2020.08.073_bib0017 article-title: Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.07.058 – volume: 3 start-page: 91 year: 2004 ident: 10.1016/j.actamat.2020.08.073_bib0011 article-title: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching publication-title: Nat. Mater. doi: 10.1038/nmat1051 – volume: 585 start-page: 185 year: 2014 ident: 10.1016/j.actamat.2020.08.073_bib0021 article-title: Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.09.152 – volume: 91 year: 2015 ident: 10.1016/j.actamat.2020.08.073_bib0022 article-title: Polarization switching and high piezoelectric response in Sn-modified BaTiO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.024101 – volume: 103 year: 2013 ident: 10.1016/j.actamat.2020.08.073_bib0029 article-title: Phase transition and high piezoelectricity in (Ba,Ca)(Ti1- xSnx)O3 lead-free ceramics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4818732 – volume: 17 start-page: 349 year: 2018 ident: 10.1016/j.actamat.2020.08.073_bib0009 article-title: Ultrahigh piezoelectricity in ferroelectric ceramics by design publication-title: Nat. Mater. doi: 10.1038/s41563-018-0034-4 – volume: 528 start-page: 131 year: 2016 ident: 10.1016/j.actamat.2020.08.073_bib0015 article-title: Effect of alkalis on iron-based Fischer-Tropsch synthesis catalysts: Alkali-FeOx interaction, reduction, and catalytic performance publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2016.10.006 – volume: 104 year: 2014 ident: 10.1016/j.actamat.2020.08.073_bib0033 article-title: PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4875797 – start-page: 116 year: 2014 ident: 10.1016/j.actamat.2020.08.073_bib0013 article-title: Aging in the relaxor and ferroelectric state of Fe-doped (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 piezoelectric ceramics publication-title: J. Appl. Phys. |
SSID | ssj0012740 |
Score | 2.5961738 |
Snippet | Defect dipoles in acceptor-doped perovskite-based ferroelectric ceramics play an important role in piezoelectric properties. In this work, the acceptor, such... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | (K0.5N0.5)NbO3 Defect engineering Electro-strain Lead-free piezoelectric ceramics |
Title | Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering |
URI | https://dx.doi.org/10.1016/j.actamat.2020.08.073 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EL3oQn_gse_C6No_dJHsUsVTFXrTgLWwms5BS2tBGDx787c4m6UMQBSGXLJlkMzN8OwMz8zF2lejcl1ZJ4eXKEzK0Shg6RwVYo6WBCOKazudpEPWH8uFVvW6w20UvjCurbLG_wfQarduVbqvNblkU3Wc_VNrNowpc2EuO6TrYZey8_PpzWebhU9bVdAorLdzTqy6e7oi2XBkKDClNDLx6kmcc_nw-rZ05vT222waL_KbZzz7bwMkB21kbIXjI7HBcEV5Qis1bRhsxr2kfOF0GXNHKdCbyaYk5fxwM-JhsKuwMkZcFfkwbmQI44Mwx08_5e2F4jq7Ig-PqQ0ds2Lt7ue2LljtBQBirSkQKAhdsoITAhDrKrQYZYg4yCjxEnWVoDOVG1reYgJfFQKuUnoDRWZAoEx6zzcl0gieM5z4ZTnroaWOljgjcswTo_ZkHECHKUyYXGkuhHSzufnScLirIRmmr6NQpOnW8l3F4yq6XYmUzWeMvgWRhjvSbi6SE_r-Lnv1f9Jxtu7um_fCCbVazN7ykOKTKOrWjddjWzf1jf_AFiP_gRw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4GHIAD4ine5MA1rI-kbY4IgcZju7BJ3KrUdaSiaZu2woEDvx2n7QZICCSkntK6TWzXD8n2x9h5onNfWiWFlytPyNAqYciPCrBGSwMRxBWcT7cXdQby7kk9tdjVvBfGlVU2tr-26ZW1blbaDTfbk6JoP_qh0m4eVeDCXlLMJbYi6fd1MAYX74s6D5_SrrpVWGnhHv9s42k_055LQ5Eh5YmBV43yjMOfHdQXp3OzyTaaaJFf1hvaYi0cbbP1LzMEd5gdDEsyGJRj8wbSRswq3AdOlwFXtTKeinw8wZzf93p8SEIVdorIJwW-jWuaAjjg1EHTz_hrYXiOrsqD4-eHdtng5rp_1RENeIKAMFaliBQELtpACYEJdZRbDTLEHGQUeIg6y9AYSo6sbzEBL4uBVik_AaOzIFEm3GPLo_EI9xnPfZKc9NDTxkodkXXPEqD3Zx5AhCgPmJxzLIVmsrg76DCdl5A9pw2jU8fo1AFfxuEBu1iQTerRGn8RJHNxpN90JCXz_zvp4f9Jz9hqp999SB9ue_dHbM3dqXsRj9lyOX3BEwpKyuy0UroPwCTh1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh+electro-strain+in+acceptor-doped+KNN+lead-free+piezoelectric+ceramics+via+defect+engineering&rft.jtitle=Acta+materialia&rft.au=Zhao%2C+Zhihao&rft.au=Lv%2C+Yukai&rft.au=Dai%2C+Yejing&rft.au=Zhang%2C+Shujun&rft.date=2020-11-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6454&rft.eissn=1873-2453&rft.volume=200&rft.spage=35&rft.epage=41&rft_id=info:doi/10.1016%2Fj.actamat.2020.08.073&rft.externalDocID=S1359645420306832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |