Mechanisms of Andreev reflection in quantum Hall graphene

We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized ed...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics core Vol. 5; no. 3; p. 045
Main Authors Manesco, Antonio, Flór, Ian Matthias, Liu, Chun-Xiao, Akhmerov, Anton
Format Journal Article
LanguageEnglish
Published SciPost 01.07.2022
Online AccessGet full text
ISSN2666-9366
2666-9366
DOI10.21468/SciPostPhysCore.5.3.045

Cover

Loading…
Abstract We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the appearance of the counter-propagating states generated by the interface density mismatch. Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects.
AbstractList We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et. al. Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the previously overlooked appearance of the counter-propagating states generated by the interface density mismatch. Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects.
We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the appearance of the counter-propagating states generated by the interface density mismatch. Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects.
ArticleNumber 045
Author Flór, Ian Matthias
Liu, Chun-Xiao
Manesco, Antonio
Akhmerov, Anton
Author_xml – sequence: 1
  givenname: Antonio
  surname: Manesco
  fullname: Manesco, Antonio
  organization: University of Sao Paulo, Delft University of Technology
– sequence: 2
  givenname: Ian Matthias
  surname: Flór
  fullname: Flór, Ian Matthias
  organization: Delft University of Technology
– sequence: 3
  givenname: Chun-Xiao
  surname: Liu
  fullname: Liu, Chun-Xiao
  organization: Delft University of Technology
– sequence: 4
  givenname: Anton
  surname: Akhmerov
  fullname: Akhmerov, Anton
  organization: Delft University of Technology
BookMark eNqFkN1KAzEQhYNUsNa-w77Arsnmb_dGKEVtoaKgXoc0mbQp201NtkLf3rVVkN54NcMM88055xoN2tACQhnBRUmYqG5fjX8JqXtZH9I0RCh4QQvM-AUalkKIvKZCDP70V2ic0gZjXFaScY6HqH4Cs9atT9uUBZdNWhsBPrMIrgHT-dBmvs0-9rrt9ttsppsmW0W9W0MLN-jS6SbB-KeO0PvD_dt0li-eH-fTySI3VPIuFwRLQVhZ6ooLK0vb_xVEGCBE1BWmYJnEUPJKVsy5fsnB6N6aFJY6kEBHaH7i2qA3ahf9VseDCtqr4yDEldKx86YBBQQcd5Y4VglGlqCtxFZzgYFqRuplz7o7sUwMKfUmlfGd_rbZRe0bRbA65qrOclVcUdXn2gOqM8CvoH9PvwCTA4T8
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c04223
crossref_primary_10_1103_PhysRevB_106_174501
crossref_primary_10_1103_PhysRevX_13_031027
crossref_primary_10_1103_PhysRevB_110_L161407
crossref_primary_10_1103_PhysRevLett_131_176604
crossref_primary_10_1103_PhysRevB_109_035430
crossref_primary_10_1103_PhysRevB_109_064519
crossref_primary_10_1103_PhysRevB_106_245411
crossref_primary_10_1038_s41586_023_06764_4
crossref_primary_10_1103_PhysRevB_110_024518
crossref_primary_10_1103_PhysRevB_109_115416
crossref_primary_10_1103_PhysRevB_107_125416
crossref_primary_10_1103_PhysRevB_107_L161105
crossref_primary_10_1103_PhysRevResearch_5_013066
crossref_primary_10_1038_s41467_023_37794_1
Cites_doi 10.1103/PhysRevB.85.205404
10.1088/1367-2630/16/6/063065
10.5281/zenodo.1182437
10.1038/s41586-020-2752-4
10.1103/RevModPhys.83.1193
10.1038/nmat3335
10.1103/PhysRevB.77.085423
10.1103/PhysRevLett.120.086603
10.1103/PhysRevX.12.021057
10.1038/nnano.2015.156
10.5281/zenodo.4597080
10.1103/PhysRevB.101.195405
10.1038/s41598-017-11209-w
10.1103/PhysRevB.77.184507
10.1021/acs.nanolett.0c00903
10.1103/PhysRevB.100.125411
10.1103/PhysRevB.98.121411
10.1103/PhysRevLett.98.157003
10.1038/nphys4084
10.1038/s41567-020-0898-5
10.1103/PhysRevLett.114.036601
10.1103/PhysRevLett.121.146801
10.1103/PhysRevB.73.195408
10.1103/PhysRevB.74.041401
10.1103/PhysRevLett.104.047001
10.1038/nature05555
10.1103/PhysRevLett.121.037002
10.1103/PhysRevB.95.201403
10.1038/s41467-018-06595-2
10.1103/RevModPhys.81.109
10.1103/PhysRevResearch.1.033084
10.1016/j.ssc.2007.02.044
10.1103/PhysRevLett.97.067007
10.1103/PhysRevX.5.041042
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21468/SciPostPhysCore.5.3.045
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2666-9366
ExternalDocumentID oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b
10_21468_SciPostPhysCore_5_3_045
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
ID FETCH-LOGICAL-c375t-610761422a856d72d455616ce1169803ed470e258784ff4555eca46876d3fe7e3
IEDL.DBID DOA
ISSN 2666-9366
IngestDate Wed Aug 27 01:10:52 EDT 2025
Thu Apr 24 22:57:36 EDT 2025
Tue Jul 01 03:28:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-610761422a856d72d455616ce1169803ed470e258784ff4555eca46876d3fe7e3
OpenAccessLink https://doaj.org/article/e1ef5fd1f48641bead70da560e3a419b
ParticipantIDs doaj_primary_oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b
crossref_citationtrail_10_21468_SciPostPhysCore_5_3_045
crossref_primary_10_21468_SciPostPhysCore_5_3_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle SciPost physics core
PublicationYear 2022
Publisher SciPost
Publisher_xml – name: SciPost
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref12
  doi: 10.1103/PhysRevB.85.205404
– ident: ref23
  doi: 10.1088/1367-2630/16/6/063065
– ident: ref31
  doi: 10.5281/zenodo.1182437
– ident: ref14
  doi: 10.1038/s41586-020-2752-4
– ident: ref22
  doi: 10.1103/RevModPhys.83.1193
– ident: ref11
  doi: 10.1038/nmat3335
– ident: ref21
  doi: 10.1103/PhysRevB.77.085423
– ident: ref32
  doi: 10.1103/PhysRevLett.120.086603
– ident: ref17
  doi: 10.1103/PhysRevX.12.021057
– ident: ref5
  doi: 10.1038/nnano.2015.156
– ident: ref30
  doi: 10.5281/zenodo.4597080
– ident: ref26
  doi: 10.1103/PhysRevB.101.195405
– ident: ref18
  doi: 10.1038/s41598-017-11209-w
– ident: ref8
  doi: 10.1103/PhysRevB.77.184507
– ident: ref9
  doi: 10.1021/acs.nanolett.0c00903
– ident: ref29
  doi: 10.1103/PhysRevB.100.125411
– ident: ref3
  doi: 10.1103/PhysRevB.98.121411
– ident: ref19
  doi: 10.1103/PhysRevLett.98.157003
– ident: ref15
  doi: 10.1038/nphys4084
– ident: ref16
  doi: 10.1038/s41567-020-0898-5
– ident: ref24
  doi: 10.1103/PhysRevLett.114.036601
– ident: ref33
  doi: 10.1103/PhysRevLett.121.146801
– ident: ref20
  doi: 10.1103/PhysRevB.73.195408
– ident: ref6
  doi: 10.1103/PhysRevB.74.041401
– ident: ref10
  doi: 10.1103/PhysRevLett.104.047001
– ident: ref2
  doi: 10.1038/nature05555
– ident: ref34
  doi: 10.1103/PhysRevLett.121.037002
– ident: ref4
  doi: 10.1103/PhysRevB.95.201403
– ident: ref13
  doi: 10.1038/s41467-018-06595-2
– ident: ref25
  doi: 10.1103/RevModPhys.81.109
– ident: ref7
  doi: 10.1103/PhysRevResearch.1.033084
– ident: ref1
  doi: 10.1016/j.ssc.2007.02.044
– ident: ref27
  doi: 10.1103/PhysRevLett.97.067007
– ident: ref28
  doi: 10.1103/PhysRevX.5.041042
SSID ssj0002874550
Score 2.3506973
Snippet We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 045
Title Mechanisms of Andreev reflection in quantum Hall graphene
URI https://doaj.org/article/e1ef5fd1f48641bead70da560e3a419b
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgfWtHZsx8kIVasKqUxU6hY5sS0VpSnQlpHfzp0TqogFBpYMiW3l7hLfnXX3HiF3HmLYQlsV8UyzSBqpIpMwG6G3hnBeWq-xwXn2lEzn8nGhFh2qL6wJa-CBG8UNHXdeecu9TBPJCxBcM2vATzthJM8K3H3B53WSqZdwZKSxXbcp3UHu6nQI_wry32Jh5QgBItVADBh2MXX8UQe2P_iXyTE5agNDet-80Ak5cPUpyWYOO3OXm9WGrj0N1Yfug8IqVSihqumypm870M5uRaemqmgAoIb964zMJ-Pn0TRqyQ6iUmi1hRQOTxRkHJtUJVbHViJxZVI6zpMsZcJZqZmLVapT6T08VK40IJdOrPBOO3FOevW6dheEal1yLzwEKs7IVPmsKDlLtYiFKDLDsj7R3yLnZYsEjoQUVQ4ZQVBW_kNZucpFDsrqE76f-dqgYfxhzgNqdT8e8azDDbBy3lo5_83Kl_-xyBU5jLF5IRTbXpPe9n3nbiCk2Ba34euB6-xz_AXr8Mx3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Andreev+reflection+in+quantum+Hall+graphene&rft.jtitle=SciPost+physics+core&rft.au=Antonio+L.+R.+Manesco%2C+Ian+Matthias+Fl%C3%B3r%2C+Chun-Xiao+Liu%2C+Anton+R.+Akhmerov&rft.date=2022-07-01&rft.pub=SciPost&rft.eissn=2666-9366&rft.volume=5&rft.issue=3&rft.spage=045&rft_id=info:doi/10.21468%2FSciPostPhysCore.5.3.045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9366&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9366&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9366&client=summon