Mechanisms of Andreev reflection in quantum Hall graphene
We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized ed...
Saved in:
Published in | SciPost physics core Vol. 5; no. 3; p. 045 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
SciPost
01.07.2022
|
Online Access | Get full text |
ISSN | 2666-9366 2666-9366 |
DOI | 10.21468/SciPostPhysCore.5.3.045 |
Cover
Loading…
Abstract | We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)].
In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the appearance of the counter-propagating states generated by the interface density mismatch.
Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects. |
---|---|
AbstractList | We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et. al. Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the previously overlooked appearance of the counter-propagating states generated by the interface density mismatch. Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects. We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent experiment [Zhao et al., Nature Physics 16, (2020)]. In addition to the previously studied Mach-Zehnder interference between the valley-polarized edge states, we consider disorder-induced scattering, and the appearance of the counter-propagating states generated by the interface density mismatch. Comparing our results with the experiment, we conclude that the observed oscillations are induced by the interfacial disorder, and that lattice-matched superconductors are necessary to observe the alternative ballistic effects. |
ArticleNumber | 045 |
Author | Flór, Ian Matthias Liu, Chun-Xiao Manesco, Antonio Akhmerov, Anton |
Author_xml | – sequence: 1 givenname: Antonio surname: Manesco fullname: Manesco, Antonio organization: University of Sao Paulo, Delft University of Technology – sequence: 2 givenname: Ian Matthias surname: Flór fullname: Flór, Ian Matthias organization: Delft University of Technology – sequence: 3 givenname: Chun-Xiao surname: Liu fullname: Liu, Chun-Xiao organization: Delft University of Technology – sequence: 4 givenname: Anton surname: Akhmerov fullname: Akhmerov, Anton organization: Delft University of Technology |
BookMark | eNqFkN1KAzEQhYNUsNa-w77Arsnmb_dGKEVtoaKgXoc0mbQp201NtkLf3rVVkN54NcMM88055xoN2tACQhnBRUmYqG5fjX8JqXtZH9I0RCh4QQvM-AUalkKIvKZCDP70V2ic0gZjXFaScY6HqH4Cs9atT9uUBZdNWhsBPrMIrgHT-dBmvs0-9rrt9ttsppsmW0W9W0MLN-jS6SbB-KeO0PvD_dt0li-eH-fTySI3VPIuFwRLQVhZ6ooLK0vb_xVEGCBE1BWmYJnEUPJKVsy5fsnB6N6aFJY6kEBHaH7i2qA3ahf9VseDCtqr4yDEldKx86YBBQQcd5Y4VglGlqCtxFZzgYFqRuplz7o7sUwMKfUmlfGd_rbZRe0bRbA65qrOclVcUdXn2gOqM8CvoH9PvwCTA4T8 |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c04223 crossref_primary_10_1103_PhysRevB_106_174501 crossref_primary_10_1103_PhysRevX_13_031027 crossref_primary_10_1103_PhysRevB_110_L161407 crossref_primary_10_1103_PhysRevLett_131_176604 crossref_primary_10_1103_PhysRevB_109_035430 crossref_primary_10_1103_PhysRevB_109_064519 crossref_primary_10_1103_PhysRevB_106_245411 crossref_primary_10_1038_s41586_023_06764_4 crossref_primary_10_1103_PhysRevB_110_024518 crossref_primary_10_1103_PhysRevB_109_115416 crossref_primary_10_1103_PhysRevB_107_125416 crossref_primary_10_1103_PhysRevB_107_L161105 crossref_primary_10_1103_PhysRevResearch_5_013066 crossref_primary_10_1038_s41467_023_37794_1 |
Cites_doi | 10.1103/PhysRevB.85.205404 10.1088/1367-2630/16/6/063065 10.5281/zenodo.1182437 10.1038/s41586-020-2752-4 10.1103/RevModPhys.83.1193 10.1038/nmat3335 10.1103/PhysRevB.77.085423 10.1103/PhysRevLett.120.086603 10.1103/PhysRevX.12.021057 10.1038/nnano.2015.156 10.5281/zenodo.4597080 10.1103/PhysRevB.101.195405 10.1038/s41598-017-11209-w 10.1103/PhysRevB.77.184507 10.1021/acs.nanolett.0c00903 10.1103/PhysRevB.100.125411 10.1103/PhysRevB.98.121411 10.1103/PhysRevLett.98.157003 10.1038/nphys4084 10.1038/s41567-020-0898-5 10.1103/PhysRevLett.114.036601 10.1103/PhysRevLett.121.146801 10.1103/PhysRevB.73.195408 10.1103/PhysRevB.74.041401 10.1103/PhysRevLett.104.047001 10.1038/nature05555 10.1103/PhysRevLett.121.037002 10.1103/PhysRevB.95.201403 10.1038/s41467-018-06595-2 10.1103/RevModPhys.81.109 10.1103/PhysRevResearch.1.033084 10.1016/j.ssc.2007.02.044 10.1103/PhysRevLett.97.067007 10.1103/PhysRevX.5.041042 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.21468/SciPostPhysCore.5.3.045 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2666-9366 |
ExternalDocumentID | oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b 10_21468_SciPostPhysCore_5_3_045 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c375t-610761422a856d72d455616ce1169803ed470e258784ff4555eca46876d3fe7e3 |
IEDL.DBID | DOA |
ISSN | 2666-9366 |
IngestDate | Wed Aug 27 01:10:52 EDT 2025 Thu Apr 24 22:57:36 EDT 2025 Tue Jul 01 03:28:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-610761422a856d72d455616ce1169803ed470e258784ff4555eca46876d3fe7e3 |
OpenAccessLink | https://doaj.org/article/e1ef5fd1f48641bead70da560e3a419b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b crossref_citationtrail_10_21468_SciPostPhysCore_5_3_045 crossref_primary_10_21468_SciPostPhysCore_5_3_045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | SciPost physics core |
PublicationYear | 2022 |
Publisher | SciPost |
Publisher_xml | – name: SciPost |
References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref12 doi: 10.1103/PhysRevB.85.205404 – ident: ref23 doi: 10.1088/1367-2630/16/6/063065 – ident: ref31 doi: 10.5281/zenodo.1182437 – ident: ref14 doi: 10.1038/s41586-020-2752-4 – ident: ref22 doi: 10.1103/RevModPhys.83.1193 – ident: ref11 doi: 10.1038/nmat3335 – ident: ref21 doi: 10.1103/PhysRevB.77.085423 – ident: ref32 doi: 10.1103/PhysRevLett.120.086603 – ident: ref17 doi: 10.1103/PhysRevX.12.021057 – ident: ref5 doi: 10.1038/nnano.2015.156 – ident: ref30 doi: 10.5281/zenodo.4597080 – ident: ref26 doi: 10.1103/PhysRevB.101.195405 – ident: ref18 doi: 10.1038/s41598-017-11209-w – ident: ref8 doi: 10.1103/PhysRevB.77.184507 – ident: ref9 doi: 10.1021/acs.nanolett.0c00903 – ident: ref29 doi: 10.1103/PhysRevB.100.125411 – ident: ref3 doi: 10.1103/PhysRevB.98.121411 – ident: ref19 doi: 10.1103/PhysRevLett.98.157003 – ident: ref15 doi: 10.1038/nphys4084 – ident: ref16 doi: 10.1038/s41567-020-0898-5 – ident: ref24 doi: 10.1103/PhysRevLett.114.036601 – ident: ref33 doi: 10.1103/PhysRevLett.121.146801 – ident: ref20 doi: 10.1103/PhysRevB.73.195408 – ident: ref6 doi: 10.1103/PhysRevB.74.041401 – ident: ref10 doi: 10.1103/PhysRevLett.104.047001 – ident: ref2 doi: 10.1038/nature05555 – ident: ref34 doi: 10.1103/PhysRevLett.121.037002 – ident: ref4 doi: 10.1103/PhysRevB.95.201403 – ident: ref13 doi: 10.1038/s41467-018-06595-2 – ident: ref25 doi: 10.1103/RevModPhys.81.109 – ident: ref7 doi: 10.1103/PhysRevResearch.1.033084 – ident: ref1 doi: 10.1016/j.ssc.2007.02.044 – ident: ref27 doi: 10.1103/PhysRevLett.97.067007 – ident: ref28 doi: 10.1103/PhysRevX.5.041042 |
SSID | ssj0002874550 |
Score | 2.3506973 |
Snippet | We simulate a hybrid superconductor-graphene device in the quantum Hall regime to identify the origin of downstream resistance oscillations in a recent... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 045 |
Title | Mechanisms of Andreev reflection in quantum Hall graphene |
URI | https://doaj.org/article/e1ef5fd1f48641bead70da560e3a419b |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgfWtHZsx8kIVasKqUxU6hY5sS0VpSnQlpHfzp0TqogFBpYMiW3l7hLfnXX3HiF3HmLYQlsV8UyzSBqpIpMwG6G3hnBeWq-xwXn2lEzn8nGhFh2qL6wJa-CBG8UNHXdeecu9TBPJCxBcM2vATzthJM8K3H3B53WSqZdwZKSxXbcp3UHu6nQI_wry32Jh5QgBItVADBh2MXX8UQe2P_iXyTE5agNDet-80Ak5cPUpyWYOO3OXm9WGrj0N1Yfug8IqVSihqumypm870M5uRaemqmgAoIb964zMJ-Pn0TRqyQ6iUmi1hRQOTxRkHJtUJVbHViJxZVI6zpMsZcJZqZmLVapT6T08VK40IJdOrPBOO3FOevW6dheEal1yLzwEKs7IVPmsKDlLtYiFKDLDsj7R3yLnZYsEjoQUVQ4ZQVBW_kNZucpFDsrqE76f-dqgYfxhzgNqdT8e8azDDbBy3lo5_83Kl_-xyBU5jLF5IRTbXpPe9n3nbiCk2Ba34euB6-xz_AXr8Mx3 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Andreev+reflection+in+quantum+Hall+graphene&rft.jtitle=SciPost+physics+core&rft.au=Antonio+L.+R.+Manesco%2C+Ian+Matthias+Fl%C3%B3r%2C+Chun-Xiao+Liu%2C+Anton+R.+Akhmerov&rft.date=2022-07-01&rft.pub=SciPost&rft.eissn=2666-9366&rft.volume=5&rft.issue=3&rft.spage=045&rft_id=info:doi/10.21468%2FSciPostPhysCore.5.3.045&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e1ef5fd1f48641bead70da560e3a419b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-9366&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-9366&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-9366&client=summon |