Fast ground-to-air transition with avian-inspired multifunctional legs

Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight 1 . These capabilities have insp...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 636; no. 8041; pp. 86 - 91
Main Authors Shin, Won Dong, Phan, Hoang-Vu, Daley, Monica A., Ijspeert, Auke J., Floreano, Dario
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.12.2024
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight 1 . These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility 2 limits most existing aerial robots to only one additional locomotor mode 3 , 4 – 5 . Here we overcome the complexity–versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed 6 , 7 , 8 – 9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits. A bird-inspired robot that can jump into flight, walk on the ground and hop over obstacles shows that jumping for take-off is more energy efficient than taking off without the jump.
AbstractList Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-offfor transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-offbetween mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-offwith RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-offcontributes substantially to the initial flight take-offspeed6-9 and, remarkably, that it is more energy efficient than taking offwithout the jump. Our analysis suggests an important trade-offin mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraftin complex terrains through autonomous take-offs and multimodal gaits.
Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight 1 . These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility 2 limits most existing aerial robots to only one additional locomotor mode 3 , 4 – 5 . Here we overcome the complexity–versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed 6 , 7 , 8 – 9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits. A bird-inspired robot that can jump into flight, walk on the ground and hop over obstacles shows that jumping for take-off is more energy efficient than taking off without the jump.
Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight . These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility limits most existing aerial robots to only one additional locomotor mode . Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.
Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed6-9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed6-9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.
Author Shin, Won Dong
Daley, Monica A.
Floreano, Dario
Phan, Hoang-Vu
Ijspeert, Auke J.
Author_xml – sequence: 1
  givenname: Won Dong
  orcidid: 0000-0002-2339-4132
  surname: Shin
  fullname: Shin, Won Dong
  email: wdshin123@gmail.com
  organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne
– sequence: 2
  givenname: Hoang-Vu
  orcidid: 0000-0002-4943-9765
  surname: Phan
  fullname: Phan, Hoang-Vu
  organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne
– sequence: 3
  givenname: Monica A.
  surname: Daley
  fullname: Daley, Monica A.
  organization: Neuromechanics Lab, University of California, Irvine
– sequence: 4
  givenname: Auke J.
  orcidid: 0000-0003-1417-9980
  surname: Ijspeert
  fullname: Ijspeert, Auke J.
  organization: Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne
– sequence: 5
  givenname: Dario
  orcidid: 0000-0002-5330-4863
  surname: Floreano
  fullname: Floreano, Dario
  organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39633193$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LxDAQxYMourv6BTxIwYuXaP40bXoUcVVY8KLnME2TNUs3XZNU8dvbursIHjwNDL83vHlvig595w1C55RcU8LlTcypkAUmLMdEMiZxdYAmNC8LnBeyPEQTQoYlkbw4QdMYV4QQQcv8GJ3wquCcVnyC5nOIKVuGrvcNTh0GF7IUwEeXXOezT5feMvhw4LHzceOCabJ13yZne69HAtqsNct4io4stNGc7eYMvc7vX-4e8eL54enudoE1L0XCQlut67q2YI2RohKskgBMNoaUpW60YZxRW-SsBsFFKSw0NQEry4Y0lELFZ-hqe3cTuvfexKTWLmrTtuBN10fFaV4IWhGaD-jlH3TV9WEwPFKioFJWQg7UxY7q67Vp1Ca4NYQvtU9oAOQW0KGLMRirtEswvj7E5FpFiRrLUNsy1FCG-ilDjWbZH-n--r8ivhXFAfZLE35t_6P6BhWgnKM
CitedBy_id crossref_primary_10_1038_d41586_024_03845_w
Cites_doi 10.1038/s41467-022-35356-5
10.1109/IROS.2018.8593875
10.1126/scirobotics.abg4055
10.1177/0278364906069150
10.1016/S1095-6433(02)00158-7
10.1007/s004350050070
10.1088/1748-3190/aafff5
10.1242/jeb.114.1.285
10.1126/scirobotics.abf8136
10.1242/jeb.203.21.3319
10.1177/0278364914541301
10.1111/j.1469-7580.2006.00658.x
10.1186/1742-9994-11-37
10.1038/s41467-023-37317-y
10.1109/ICRA46639.2022.9811790
10.1109/IRDS.2002.1041632
10.1126/science.1107799
10.1109/ICRA.2016.7487325
10.1109/IROS.2016.7758092
10.1111/bij.12110
10.1371/journal.pone.0192172
10.1109/IROS.2018.8593885
10.1109/IROS.2003.1250609
10.1109/ICAR.1991.240390
10.5281/zenodo.13326431
10.1642/0004-8038(2003)120[0941:EOALCO]2.0.CO;2
10.1006/jtbi.2001.2387
10.1126/scirobotics.abj7562
10.1088/1748-3190/ab2ab7
10.1109/MRA.2013.2248310
10.1038/srep28825
10.1093/sysbio/syaa015
10.1016/j.mechmachtheory.2008.08.008
10.1111/evo.12576
10.3390/ani9050215
10.1242/jeb.199.2.435
10.1126/scirobotics.aag2048
10.1038/s41586-022-04477-8
10.1098/rsos.140350
10.1109/ICRA.2011.5980156
10.1109/IROS.2009.5354561
10.1088/1748-3190/10/2/025006
10.1242/dev.125.20.4019
10.1098/rsfs.2016.0088
10.1038/s41586-022-04861-4
10.1016/0025-5564(68)90090-4
10.1109/TSMC.1986.289285
10.1242/jeb.000992
10.1371/journal.pone.0005400
10.1098/rspb.2010.2022
10.1126/science.288.5463.100
10.1163/156855307781503781
10.1111/j.1469-7998.1977.tb04168.x
10.1038/nature14542
10.7554/eLife.46415
10.1007/s10336-012-0856-9
10.1088/1748-3182/9/2/025009
10.1088/1748-3190/10/1/016005
10.5281/zenodo.13326012
10.1109/TMECH.2023.3331357
10.1007/978-3-642-36279-8_31
10.1177/0278364913489205
10.1109/IROS.2017.8202172
10.1242/jeb.01764
10.1109/TRO.2022.3189249
10.1038/s41586-022-04606-3
10.1242/jeb.204.21.3601
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright Nature Publishing Group Dec 5, 2024
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: Copyright Nature Publishing Group Dec 5, 2024
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
DOI 10.1038/s41586-024-08228-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 91
ExternalDocumentID 39633193
10_1038_s41586_024_08228_9
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AARCD
AASDW
AAYEP
AAYZH
ABDQB
ABFSG
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACSTC
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEZWR
AFANA
AFBBN
AFFNX
AFHIU
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGSOS
AHMBA
AHSBF
AHWEU
AIDUJ
AIXLP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NAPCQ
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UKR
UMD
UQL
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~88
~KM
AAYXX
ACMFV
CITATION
.-4
.GJ
.HR
00M
08P
0B8
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
3V.
4.4
41X
41~
42X
4R4
663
79B
7X2
7X7
7XC
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAEEF
AAJYS
AAKAS
AAVBQ
AAYOK
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABMOR
ABNNU
ABTAH
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGHTU
AGNAY
AGOIJ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M0L
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
UIG
UKHRP
USG
VOH
VQA
WOW
X7L
XOL
YCJ
YIF
YIN
YQI
YQJ
YV5
YXA
YYP
YYQ
Z5M
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
ID FETCH-LOGICAL-c375t-5cfccbbbfafee8595298aa28de077cdce2321f642ba53575fadb0af87d0d11a93
ISSN 0028-0836
1476-4687
IngestDate Tue Aug 05 11:24:39 EDT 2025
Sat Aug 23 12:43:41 EDT 2025
Wed Feb 19 02:18:00 EST 2025
Tue Jul 01 02:59:05 EDT 2025
Thu Apr 24 23:10:02 EDT 2025
Mon Jul 21 06:09:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8041
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-5cfccbbbfafee8595298aa28de077cdce2321f642ba53575fadb0af87d0d11a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2339-4132
0000-0003-1417-9980
0000-0002-4943-9765
0000-0002-5330-4863
PMID 39633193
PQID 3156188958
PQPubID 40569
PageCount 6
ParticipantIDs proquest_miscellaneous_3146519014
proquest_journals_3156188958
pubmed_primary_39633193
crossref_citationtrail_10_1038_s41586_024_08228_9
crossref_primary_10_1038_s41586_024_08228_9
springer_journals_10_1038_s41586_024_08228_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-05
PublicationDateYYYYMMDD 2024-12-05
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BW Tobalske (8228_CR37) 2000; 203
NT Truong (8228_CR44) 2019; 14
I-W Park (8228_CR51) 2007; 21
8228_CR46
L Daler (8228_CR33) 2015; 10
8228_CR47
8228_CR48
RR Watson (8228_CR35) 2011; 278
AI Dagc (8228_CR24) 1977; 182
A Spröwitz (8228_CR65) 2013; 32
RB McGhee (8228_CR49) 1968; 3
M Verstappen (8228_CR26) 1998; 118
M KleinHeerenbrink (8228_CR14) 2022; 607
MA Woodward (8228_CR19) 2014; 33
P Provini (8228_CR9) 2012; 215
CW Wampler (8228_CR56) 1986; 16
JR Hutchinson (8228_CR29) 2002; 133
8228_CR18
PJ Bishop (8228_CR41) 2018; 13
WR Roderick (8228_CR4) 2021; 6
8228_CR57
A Vidyasagar (8228_CR16) 2015; 10
D Preininger (8228_CR45) 2019; 9
BM Kilbourne (8228_CR43) 2014; 11
DW Haldane (8228_CR20) 2016; 1
S Kim (8228_CR63) 2006; 25
P Provini (8228_CR23) 2020; 69
K Karydis (8228_CR34) 2017; 7
8228_CR54
8228_CR55
RJ Bachmann (8228_CR32) 2009; 14
K Kim (8228_CR3) 2021; 6
WD Shin (8228_CR21) 2022; 39
C Harvey (8228_CR59) 2022; 603
G Kardon (8228_CR10) 1998; 125
8228_CR50
K Sato (8228_CR40) 2009; 4
8228_CR69
8228_CR27
C Nie (8228_CR2) 2013; 20
FH Heppner (8228_CR6) 1985; 114
AL Desbiens (8228_CR15) 2014; 9
HT Henry (8228_CR8) 2005; 208
8228_CR64
8228_CR66
WD Shin (8228_CR68) 2019; 14
8228_CR67
N Smith (8228_CR58) 2006; 209
8228_CR60
S Macaulay (8228_CR52) 2023; 14
8228_CR61
BM Kilbourne (8228_CR28) 2013; 110
S Collins (8228_CR62) 2005; 307
D Floreano (8228_CR12) 2015; 521
J Rubenson (8228_CR36) 2007; 210
AM Heers (8228_CR38) 2015; 69
R Zufferey (8228_CR5) 2022; 13
A Abourachid (8228_CR1) 2012; 153
A Badri-Spröwitz (8228_CR17) 2022; 7
GN Askew (8228_CR31) 2001; 204
MH Dickinson (8228_CR11) 2000; 288
WR Roderick (8228_CR13) 2019; 8
SB Backus (8228_CR30) 2015; 2
KP Dial (8228_CR39) 2003; 120
8228_CR70
EW Hawkes (8228_CR22) 2022; 604
VA Tucker (8228_CR42) 1975; 63
AL Thomas (8228_CR53) 2001; 212
R Bonser (8228_CR7) 1996; 199
J Lees (8228_CR25) 2016; 6
8228_CR71
8228_CR72
References_xml – volume: 13
  year: 2022
  ident: 8228_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35356-5
– volume: 215
  start-page: 4115
  year: 2012
  ident: 8228_CR9
  publication-title: J. Exp. Biol.
– ident: 8228_CR47
  doi: 10.1109/IROS.2018.8593875
– volume: 7
  start-page: eabg4055
  year: 2022
  ident: 8228_CR17
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abg4055
– volume: 25
  start-page: 903
  year: 2006
  ident: 8228_CR63
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364906069150
– volume: 133
  start-page: 1051
  year: 2002
  ident: 8228_CR29
  publication-title: Comp. Biochem. Physiol. A
  doi: 10.1016/S1095-6433(02)00158-7
– volume: 118
  start-page: 207
  year: 1998
  ident: 8228_CR26
  publication-title: Zoomorphology
  doi: 10.1007/s004350050070
– volume: 14
  start-page: 036010
  year: 2019
  ident: 8228_CR44
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/aafff5
– volume: 114
  start-page: 285
  year: 1985
  ident: 8228_CR6
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.114.1.285
– volume: 6
  start-page: eabf8136
  year: 2021
  ident: 8228_CR3
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abf8136
– volume: 203
  start-page: 3319
  year: 2000
  ident: 8228_CR37
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.203.21.3319
– volume: 33
  start-page: 1511
  year: 2014
  ident: 8228_CR19
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364914541301
– volume: 209
  start-page: 765
  year: 2006
  ident: 8228_CR58
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2006.00658.x
– volume: 11
  start-page: 37
  year: 2014
  ident: 8228_CR43
  publication-title: Front. Zool.
  doi: 10.1186/1742-9994-11-37
– volume: 14
  year: 2023
  ident: 8228_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37317-y
– ident: 8228_CR18
  doi: 10.1109/ICRA46639.2022.9811790
– ident: 8228_CR50
  doi: 10.1109/IRDS.2002.1041632
– volume: 307
  start-page: 1082
  year: 2005
  ident: 8228_CR62
  publication-title: Science
  doi: 10.1126/science.1107799
– ident: 8228_CR70
  doi: 10.1109/ICRA.2016.7487325
– ident: 8228_CR66
  doi: 10.1109/IROS.2016.7758092
– volume: 110
  start-page: 14
  year: 2013
  ident: 8228_CR28
  publication-title: Biol. J. Linn. Soc.
  doi: 10.1111/bij.12110
– volume: 13
  start-page: e0192172
  year: 2018
  ident: 8228_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192172
– ident: 8228_CR67
  doi: 10.1109/IROS.2018.8593885
– ident: 8228_CR60
  doi: 10.1109/IROS.2003.1250609
– ident: 8228_CR55
  doi: 10.1109/ICAR.1991.240390
– ident: 8228_CR72
  doi: 10.5281/zenodo.13326431
– volume: 120
  start-page: 941
  year: 2003
  ident: 8228_CR39
  publication-title: Auk
  doi: 10.1642/0004-8038(2003)120[0941:EOALCO]2.0.CO;2
– volume: 212
  start-page: 399
  year: 2001
  ident: 8228_CR53
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.2001.2387
– volume: 6
  start-page: eabj7562
  year: 2021
  ident: 8228_CR4
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abj7562
– volume: 14
  start-page: 056009
  year: 2019
  ident: 8228_CR68
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/ab2ab7
– volume: 20
  start-page: 72
  year: 2013
  ident: 8228_CR2
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2013.2248310
– volume: 6
  year: 2016
  ident: 8228_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep28825
– volume: 69
  start-page: 962
  year: 2020
  ident: 8228_CR23
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syaa015
– volume: 14
  start-page: 513
  year: 2009
  ident: 8228_CR32
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2008.08.008
– volume: 69
  start-page: 305
  year: 2015
  ident: 8228_CR38
  publication-title: Evolution
  doi: 10.1111/evo.12576
– volume: 9
  start-page: 215
  year: 2019
  ident: 8228_CR45
  publication-title: Animals
  doi: 10.3390/ani9050215
– volume: 199
  start-page: 435
  year: 1996
  ident: 8228_CR7
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.199.2.435
– volume: 1
  start-page: eaag2048
  year: 2016
  ident: 8228_CR20
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aag2048
– volume: 603
  start-page: 648
  year: 2022
  ident: 8228_CR59
  publication-title: Nature
  doi: 10.1038/s41586-022-04477-8
– volume: 2
  start-page: 140350
  year: 2015
  ident: 8228_CR30
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.140350
– ident: 8228_CR57
  doi: 10.1109/ICRA.2011.5980156
– ident: 8228_CR64
  doi: 10.1109/IROS.2009.5354561
– volume: 10
  start-page: 025006
  year: 2015
  ident: 8228_CR16
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/2/025006
– volume: 125
  start-page: 4019
  year: 1998
  ident: 8228_CR10
  publication-title: Development
  doi: 10.1242/dev.125.20.4019
– volume: 7
  start-page: 20160088
  year: 2017
  ident: 8228_CR34
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2016.0088
– volume: 607
  start-page: 91
  year: 2022
  ident: 8228_CR14
  publication-title: Nature
  doi: 10.1038/s41586-022-04861-4
– volume: 3
  start-page: 331
  year: 1968
  ident: 8228_CR49
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(68)90090-4
– volume: 16
  start-page: 93
  year: 1986
  ident: 8228_CR56
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1986.289285
– volume: 210
  start-page: 3513
  year: 2007
  ident: 8228_CR36
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.000992
– volume: 4
  start-page: e5400
  year: 2009
  ident: 8228_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005400
– volume: 278
  start-page: 2040
  year: 2011
  ident: 8228_CR35
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2010.2022
– volume: 63
  start-page: 413
  year: 1975
  ident: 8228_CR42
  publication-title: Am. Sci.
– volume: 288
  start-page: 100
  year: 2000
  ident: 8228_CR11
  publication-title: Science
  doi: 10.1126/science.288.5463.100
– volume: 21
  start-page: 1305
  year: 2007
  ident: 8228_CR51
  publication-title: Adv. Robot.
  doi: 10.1163/156855307781503781
– volume: 182
  start-page: 529
  year: 1977
  ident: 8228_CR24
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.1977.tb04168.x
– volume: 521
  start-page: 460
  year: 2015
  ident: 8228_CR12
  publication-title: Nature
  doi: 10.1038/nature14542
– volume: 8
  start-page: e46415
  year: 2019
  ident: 8228_CR13
  publication-title: eLife
  doi: 10.7554/eLife.46415
– ident: 8228_CR61
– volume: 153
  start-page: 193
  year: 2012
  ident: 8228_CR1
  publication-title: J. Ornithol.
  doi: 10.1007/s10336-012-0856-9
– volume: 9
  start-page: 025009
  year: 2014
  ident: 8228_CR15
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/9/2/025009
– volume: 10
  start-page: 016005
  year: 2015
  ident: 8228_CR33
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/1/016005
– ident: 8228_CR71
  doi: 10.5281/zenodo.13326012
– ident: 8228_CR48
  doi: 10.1109/TMECH.2023.3331357
– ident: 8228_CR69
  doi: 10.1007/978-3-642-36279-8_31
– volume: 32
  start-page: 932
  year: 2013
  ident: 8228_CR65
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913489205
– ident: 8228_CR46
  doi: 10.1109/IROS.2017.8202172
– volume: 208
  start-page: 3293
  year: 2005
  ident: 8228_CR8
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01764
– ident: 8228_CR54
– ident: 8228_CR27
– volume: 39
  start-page: 558
  year: 2022
  ident: 8228_CR21
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2022.3189249
– volume: 604
  start-page: 657
  year: 2022
  ident: 8228_CR22
  publication-title: Nature
  doi: 10.1038/s41586-022-04606-3
– volume: 204
  start-page: 3601
  year: 2001
  ident: 8228_CR31
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.21.3601
SSID ssj0005174
Score 2.5098872
Snippet Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 86
SubjectTerms 631/601/18
631/61/2049
639/166/988
Air
Aircraft - instrumentation
Animals
Ankle
Biomechanical Phenomena
Biomimetics - instrumentation
Biomimetics - methods
Birds
Birds - anatomy & histology
Birds - physiology
Complexity
Energy distribution
Energy efficiency
Extremities - anatomy & histology
Extremities - physiology
Flight
Flight, Animal - physiology
Gait
Gait - physiology
Hip joint
Humanities and Social Sciences
Jumping
Kinematics
Leg
Legs
Limbs
Locomotion
Locomotion - physiology
Mass distribution
Motion
multidisciplinary
Robot dynamics
Robotics
Robotics - instrumentation
Robotics - methods
Robots
Science
Science (multidisciplinary)
Terrestrial environments
Walking
Walking - physiology
Wings
Wings, Animal - physiology
Title Fast ground-to-air transition with avian-inspired multifunctional legs
URI https://link.springer.com/article/10.1038/s41586-024-08228-9
https://www.ncbi.nlm.nih.gov/pubmed/39633193
https://www.proquest.com/docview/3156188958
https://www.proquest.com/docview/3146519014
Volume 636
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiRe0DZu2cYUJB5Aw6y5O48dW9QNKEjbYG-W7TiwaUqmJd0Dv57jS5J2LRPwErWpazs-J-fmcz4j9FpKCVo3j8Et4UyV5MA7F7AYiySFefuSpLpQ-PMkHp-Fx-fR-WBwO5O1NG34e_FraV3J_1AV7gFdVZXsP1C26xRuwGegL1yBwnD9KxpnrG52VV1GmeOmwuziRh35UJo0LFu2dgv0xxel2lAH21LnDypdZkOAV9LGya19OtE4n7PnfHSBgpOfBm7gO3R9UFmFp_cTTAx1XLHyB_427WPfNhyuxIZgfdD06LK-lrZUaKSSQ45nQw--BjgcRn1mhpnS0nhZWypg4K-NsjESNkxiHMZWy1oRHNsmhtcUJNKMTG2hsvWX1PuyVPAbmPcazBGikqpDrJDsQZT3aq7d2h-PTujXg4x-Opp8fIBWfXAvQD6ujrL9_UmfHHQHv9uWW8Eoe4tjzJs0C37Kwh67Nl1O19Bj63O4I8NA62ggyw30UOf-inoDrVv5XrtvLAj52ycoU7zlzvGW2_OWq3jLnect9w5vuYq3nqKz7PD0wxjbMzewCJKowZEohOCcF6yQUmHf-SlhzCe5HCaJyIUEC9wrwGnlLArA1C9YzoesIEk-zD2PpcEztFJWpXyB3LzgPJU5rKQoQhEIAtI-BZdf8pAnnhQO8tplo8IC0qtzUa6oTowICDVLTWGpqV5qmjpot_vPtYFjubf1dksNal_bmgYeuAyEpBFx0KvuZxCqaqeMlbKaqjZhHClTOXTQc0PFbrgAVBY8SeCgdy1Z-87_PJfN--eyhR71b9g2WmlupvIlmLsN37G8-Rs-7qcl
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+ground-to-air+transition+with+avian-inspired+multifunctional+legs&rft.jtitle=Nature+%28London%29&rft.au=Shin%2C+Won+Dong&rft.au=Phan%2C+Hoang-Vu&rft.au=Daley%2C+Monica+A&rft.au=Ijspeert%2C+Auke+J&rft.date=2024-12-05&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=636&rft.issue=8041&rft.spage=86&rft.epage=91O&rft_id=info:doi/10.1038%2Fs41586-024-08228-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon