Fast ground-to-air transition with avian-inspired multifunctional legs
Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight 1 . These capabilities have insp...
Saved in:
Published in | Nature (London) Vol. 636; no. 8041; pp. 86 - 91 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.12.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight
1
. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility
2
limits most existing aerial robots to only one additional locomotor mode
3
,
4
–
5
. Here we overcome the complexity–versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed
6
,
7
,
8
–
9
and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.
A bird-inspired robot that can jump into flight, walk on the ground and hop over obstacles shows that jumping for take-off is more energy efficient than taking off without the jump. |
---|---|
AbstractList | Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-offfor transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-offbetween mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-offwith RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-offcontributes substantially to the initial flight take-offspeed6-9 and, remarkably, that it is more energy efficient than taking offwithout the jump. Our analysis suggests an important trade-offin mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraftin complex terrains through autonomous take-offs and multimodal gaits. Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight 1 . These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility 2 limits most existing aerial robots to only one additional locomotor mode 3 , 4 – 5 . Here we overcome the complexity–versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed 6 , 7 , 8 – 9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits. A bird-inspired robot that can jump into flight, walk on the ground and hop over obstacles shows that jumping for take-off is more energy efficient than taking off without the jump. Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight . These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility limits most existing aerial robots to only one additional locomotor mode . Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits. Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed6-9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits.Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs serve diverse functions such as walking, hopping and leaping, and jumping take-off for transitions into flight1. These capabilities have inspired engineers to aim for similar multimodality in aerial robots, expanding their range of applications across diverse environments. However, challenges remain in reproducing multimodal locomotion, across gaits with distinct kinematics and propulsive characteristics, such as walking and jumping, while preserving lightweight mass for flight. This trade-off between mechanical complexity and versatility2 limits most existing aerial robots to only one additional locomotor mode3-5. Here we overcome the complexity-versatility trade-off with RAVEN (Robotic Avian-inspired Vehicle for multiple ENvironments), which uses its bird-inspired multifunctional legs to jump rapidly into flight, walk on the ground, and hop over obstacles and gaps similar to the multimodal locomotion of birds. We show that jumping for take-off contributes substantially to the initial flight take-off speed6-9 and, remarkably, that it is more energy efficient than taking off without the jump. Our analysis suggests an important trade-off in mass distribution between legs and body among birds adapted for different locomotor strategies, with greater investment in leg mass among terrestrial birds with multimodal gait demands. Multifunctional robot legs expand the opportunities to deploy traditional fixed-wing aircraft in complex terrains through autonomous take-offs and multimodal gaits. |
Author | Shin, Won Dong Daley, Monica A. Floreano, Dario Phan, Hoang-Vu Ijspeert, Auke J. |
Author_xml | – sequence: 1 givenname: Won Dong orcidid: 0000-0002-2339-4132 surname: Shin fullname: Shin, Won Dong email: wdshin123@gmail.com organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne – sequence: 2 givenname: Hoang-Vu orcidid: 0000-0002-4943-9765 surname: Phan fullname: Phan, Hoang-Vu organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne – sequence: 3 givenname: Monica A. surname: Daley fullname: Daley, Monica A. organization: Neuromechanics Lab, University of California, Irvine – sequence: 4 givenname: Auke J. orcidid: 0000-0003-1417-9980 surname: Ijspeert fullname: Ijspeert, Auke J. organization: Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne – sequence: 5 givenname: Dario orcidid: 0000-0002-5330-4863 surname: Floreano fullname: Floreano, Dario organization: Laboratory of Intelligent Systems, École Polytechnique Fédérale de Lausanne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39633193$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9LxDAQxYMourv6BTxIwYuXaP40bXoUcVVY8KLnME2TNUs3XZNU8dvbursIHjwNDL83vHlvig595w1C55RcU8LlTcypkAUmLMdEMiZxdYAmNC8LnBeyPEQTQoYlkbw4QdMYV4QQQcv8GJ3wquCcVnyC5nOIKVuGrvcNTh0GF7IUwEeXXOezT5feMvhw4LHzceOCabJ13yZne69HAtqsNct4io4stNGc7eYMvc7vX-4e8eL54enudoE1L0XCQlut67q2YI2RohKskgBMNoaUpW60YZxRW-SsBsFFKSw0NQEry4Y0lELFZ-hqe3cTuvfexKTWLmrTtuBN10fFaV4IWhGaD-jlH3TV9WEwPFKioFJWQg7UxY7q67Vp1Ca4NYQvtU9oAOQW0KGLMRirtEswvj7E5FpFiRrLUNsy1FCG-ilDjWbZH-n--r8ivhXFAfZLE35t_6P6BhWgnKM |
CitedBy_id | crossref_primary_10_1038_d41586_024_03845_w |
Cites_doi | 10.1038/s41467-022-35356-5 10.1109/IROS.2018.8593875 10.1126/scirobotics.abg4055 10.1177/0278364906069150 10.1016/S1095-6433(02)00158-7 10.1007/s004350050070 10.1088/1748-3190/aafff5 10.1242/jeb.114.1.285 10.1126/scirobotics.abf8136 10.1242/jeb.203.21.3319 10.1177/0278364914541301 10.1111/j.1469-7580.2006.00658.x 10.1186/1742-9994-11-37 10.1038/s41467-023-37317-y 10.1109/ICRA46639.2022.9811790 10.1109/IRDS.2002.1041632 10.1126/science.1107799 10.1109/ICRA.2016.7487325 10.1109/IROS.2016.7758092 10.1111/bij.12110 10.1371/journal.pone.0192172 10.1109/IROS.2018.8593885 10.1109/IROS.2003.1250609 10.1109/ICAR.1991.240390 10.5281/zenodo.13326431 10.1642/0004-8038(2003)120[0941:EOALCO]2.0.CO;2 10.1006/jtbi.2001.2387 10.1126/scirobotics.abj7562 10.1088/1748-3190/ab2ab7 10.1109/MRA.2013.2248310 10.1038/srep28825 10.1093/sysbio/syaa015 10.1016/j.mechmachtheory.2008.08.008 10.1111/evo.12576 10.3390/ani9050215 10.1242/jeb.199.2.435 10.1126/scirobotics.aag2048 10.1038/s41586-022-04477-8 10.1098/rsos.140350 10.1109/ICRA.2011.5980156 10.1109/IROS.2009.5354561 10.1088/1748-3190/10/2/025006 10.1242/dev.125.20.4019 10.1098/rsfs.2016.0088 10.1038/s41586-022-04861-4 10.1016/0025-5564(68)90090-4 10.1109/TSMC.1986.289285 10.1242/jeb.000992 10.1371/journal.pone.0005400 10.1098/rspb.2010.2022 10.1126/science.288.5463.100 10.1163/156855307781503781 10.1111/j.1469-7998.1977.tb04168.x 10.1038/nature14542 10.7554/eLife.46415 10.1007/s10336-012-0856-9 10.1088/1748-3182/9/2/025009 10.1088/1748-3190/10/1/016005 10.5281/zenodo.13326012 10.1109/TMECH.2023.3331357 10.1007/978-3-642-36279-8_31 10.1177/0278364913489205 10.1109/IROS.2017.8202172 10.1242/jeb.01764 10.1109/TRO.2022.3189249 10.1038/s41586-022-04606-3 10.1242/jeb.204.21.3601 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. Copyright Nature Publishing Group Dec 5, 2024 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. – notice: Copyright Nature Publishing Group Dec 5, 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 |
DOI | 10.1038/s41586-024-08228-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 91 |
ExternalDocumentID | 39633193 10_1038_s41586_024_08228_9 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AARCD AASDW AAYEP AAYZH ABDQB ABFSG ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACSTC ACWUS ADBBV ADFRT ADUKH AENEX AEZWR AFANA AFBBN AFFNX AFHIU AFLOW AFRAH AFSHS AGAYW AGHSJ AGSOS AHMBA AHSBF AHWEU AIDUJ AIXLP ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NAPCQ NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UKR UMD UQL VVN WH7 X7M XIH XKW XZL Y6R YAE YFH YJ6 YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~88 ~KM AAYXX ACMFV CITATION .-4 .GJ .HR 00M 08P 0B8 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 3V. 4.4 41X 41~ 42X 4R4 663 79B 7X2 7X7 7XC 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAEEF AAJYS AAKAS AAVBQ AAYOK AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABMOR ABNNU ABTAH ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGHTU AGNAY AGOIJ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU CGR CUY CVF D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M0L M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UAO UBY UHB UIG UKHRP USG VOH VQA WOW X7L XOL YCJ YIF YIN YQI YQJ YV5 YXA YYP YYQ Z5M ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD AFKWF C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c375t-5cfccbbbfafee8595298aa28de077cdce2321f642ba53575fadb0af87d0d11a93 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Tue Aug 05 11:24:39 EDT 2025 Sat Aug 23 12:43:41 EDT 2025 Wed Feb 19 02:18:00 EST 2025 Tue Jul 01 02:59:05 EDT 2025 Thu Apr 24 23:10:02 EDT 2025 Mon Jul 21 06:09:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8041 |
Language | English |
License | 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c375t-5cfccbbbfafee8595298aa28de077cdce2321f642ba53575fadb0af87d0d11a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2339-4132 0000-0003-1417-9980 0000-0002-4943-9765 0000-0002-5330-4863 |
PMID | 39633193 |
PQID | 3156188958 |
PQPubID | 40569 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_3146519014 proquest_journals_3156188958 pubmed_primary_39633193 crossref_citationtrail_10_1038_s41586_024_08228_9 crossref_primary_10_1038_s41586_024_08228_9 springer_journals_10_1038_s41586_024_08228_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-05 |
PublicationDateYYYYMMDD | 2024-12-05 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BW Tobalske (8228_CR37) 2000; 203 NT Truong (8228_CR44) 2019; 14 I-W Park (8228_CR51) 2007; 21 8228_CR46 L Daler (8228_CR33) 2015; 10 8228_CR47 8228_CR48 RR Watson (8228_CR35) 2011; 278 AI Dagc (8228_CR24) 1977; 182 A Spröwitz (8228_CR65) 2013; 32 RB McGhee (8228_CR49) 1968; 3 M Verstappen (8228_CR26) 1998; 118 M KleinHeerenbrink (8228_CR14) 2022; 607 MA Woodward (8228_CR19) 2014; 33 P Provini (8228_CR9) 2012; 215 CW Wampler (8228_CR56) 1986; 16 JR Hutchinson (8228_CR29) 2002; 133 8228_CR18 PJ Bishop (8228_CR41) 2018; 13 WR Roderick (8228_CR4) 2021; 6 8228_CR57 A Vidyasagar (8228_CR16) 2015; 10 D Preininger (8228_CR45) 2019; 9 BM Kilbourne (8228_CR43) 2014; 11 DW Haldane (8228_CR20) 2016; 1 S Kim (8228_CR63) 2006; 25 P Provini (8228_CR23) 2020; 69 K Karydis (8228_CR34) 2017; 7 8228_CR54 8228_CR55 RJ Bachmann (8228_CR32) 2009; 14 K Kim (8228_CR3) 2021; 6 WD Shin (8228_CR21) 2022; 39 C Harvey (8228_CR59) 2022; 603 G Kardon (8228_CR10) 1998; 125 8228_CR50 K Sato (8228_CR40) 2009; 4 8228_CR69 8228_CR27 C Nie (8228_CR2) 2013; 20 FH Heppner (8228_CR6) 1985; 114 AL Desbiens (8228_CR15) 2014; 9 HT Henry (8228_CR8) 2005; 208 8228_CR64 8228_CR66 WD Shin (8228_CR68) 2019; 14 8228_CR67 N Smith (8228_CR58) 2006; 209 8228_CR60 S Macaulay (8228_CR52) 2023; 14 8228_CR61 BM Kilbourne (8228_CR28) 2013; 110 S Collins (8228_CR62) 2005; 307 D Floreano (8228_CR12) 2015; 521 J Rubenson (8228_CR36) 2007; 210 AM Heers (8228_CR38) 2015; 69 R Zufferey (8228_CR5) 2022; 13 A Abourachid (8228_CR1) 2012; 153 A Badri-Spröwitz (8228_CR17) 2022; 7 GN Askew (8228_CR31) 2001; 204 MH Dickinson (8228_CR11) 2000; 288 WR Roderick (8228_CR13) 2019; 8 SB Backus (8228_CR30) 2015; 2 KP Dial (8228_CR39) 2003; 120 8228_CR70 EW Hawkes (8228_CR22) 2022; 604 VA Tucker (8228_CR42) 1975; 63 AL Thomas (8228_CR53) 2001; 212 R Bonser (8228_CR7) 1996; 199 J Lees (8228_CR25) 2016; 6 8228_CR71 8228_CR72 |
References_xml | – volume: 13 year: 2022 ident: 8228_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35356-5 – volume: 215 start-page: 4115 year: 2012 ident: 8228_CR9 publication-title: J. Exp. Biol. – ident: 8228_CR47 doi: 10.1109/IROS.2018.8593875 – volume: 7 start-page: eabg4055 year: 2022 ident: 8228_CR17 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abg4055 – volume: 25 start-page: 903 year: 2006 ident: 8228_CR63 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364906069150 – volume: 133 start-page: 1051 year: 2002 ident: 8228_CR29 publication-title: Comp. Biochem. Physiol. A doi: 10.1016/S1095-6433(02)00158-7 – volume: 118 start-page: 207 year: 1998 ident: 8228_CR26 publication-title: Zoomorphology doi: 10.1007/s004350050070 – volume: 14 start-page: 036010 year: 2019 ident: 8228_CR44 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/aafff5 – volume: 114 start-page: 285 year: 1985 ident: 8228_CR6 publication-title: J. Exp. Biol. doi: 10.1242/jeb.114.1.285 – volume: 6 start-page: eabf8136 year: 2021 ident: 8228_CR3 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abf8136 – volume: 203 start-page: 3319 year: 2000 ident: 8228_CR37 publication-title: J. Exp. Biol. doi: 10.1242/jeb.203.21.3319 – volume: 33 start-page: 1511 year: 2014 ident: 8228_CR19 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364914541301 – volume: 209 start-page: 765 year: 2006 ident: 8228_CR58 publication-title: J. Anat. doi: 10.1111/j.1469-7580.2006.00658.x – volume: 11 start-page: 37 year: 2014 ident: 8228_CR43 publication-title: Front. Zool. doi: 10.1186/1742-9994-11-37 – volume: 14 year: 2023 ident: 8228_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37317-y – ident: 8228_CR18 doi: 10.1109/ICRA46639.2022.9811790 – ident: 8228_CR50 doi: 10.1109/IRDS.2002.1041632 – volume: 307 start-page: 1082 year: 2005 ident: 8228_CR62 publication-title: Science doi: 10.1126/science.1107799 – ident: 8228_CR70 doi: 10.1109/ICRA.2016.7487325 – ident: 8228_CR66 doi: 10.1109/IROS.2016.7758092 – volume: 110 start-page: 14 year: 2013 ident: 8228_CR28 publication-title: Biol. J. Linn. Soc. doi: 10.1111/bij.12110 – volume: 13 start-page: e0192172 year: 2018 ident: 8228_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192172 – ident: 8228_CR67 doi: 10.1109/IROS.2018.8593885 – ident: 8228_CR60 doi: 10.1109/IROS.2003.1250609 – ident: 8228_CR55 doi: 10.1109/ICAR.1991.240390 – ident: 8228_CR72 doi: 10.5281/zenodo.13326431 – volume: 120 start-page: 941 year: 2003 ident: 8228_CR39 publication-title: Auk doi: 10.1642/0004-8038(2003)120[0941:EOALCO]2.0.CO;2 – volume: 212 start-page: 399 year: 2001 ident: 8228_CR53 publication-title: J. Theor. Biol. doi: 10.1006/jtbi.2001.2387 – volume: 6 start-page: eabj7562 year: 2021 ident: 8228_CR4 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abj7562 – volume: 14 start-page: 056009 year: 2019 ident: 8228_CR68 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/ab2ab7 – volume: 20 start-page: 72 year: 2013 ident: 8228_CR2 publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2013.2248310 – volume: 6 year: 2016 ident: 8228_CR25 publication-title: Sci. Rep. doi: 10.1038/srep28825 – volume: 69 start-page: 962 year: 2020 ident: 8228_CR23 publication-title: Syst. Biol. doi: 10.1093/sysbio/syaa015 – volume: 14 start-page: 513 year: 2009 ident: 8228_CR32 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2008.08.008 – volume: 69 start-page: 305 year: 2015 ident: 8228_CR38 publication-title: Evolution doi: 10.1111/evo.12576 – volume: 9 start-page: 215 year: 2019 ident: 8228_CR45 publication-title: Animals doi: 10.3390/ani9050215 – volume: 199 start-page: 435 year: 1996 ident: 8228_CR7 publication-title: J. Exp. Biol. doi: 10.1242/jeb.199.2.435 – volume: 1 start-page: eaag2048 year: 2016 ident: 8228_CR20 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aag2048 – volume: 603 start-page: 648 year: 2022 ident: 8228_CR59 publication-title: Nature doi: 10.1038/s41586-022-04477-8 – volume: 2 start-page: 140350 year: 2015 ident: 8228_CR30 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.140350 – ident: 8228_CR57 doi: 10.1109/ICRA.2011.5980156 – ident: 8228_CR64 doi: 10.1109/IROS.2009.5354561 – volume: 10 start-page: 025006 year: 2015 ident: 8228_CR16 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/2/025006 – volume: 125 start-page: 4019 year: 1998 ident: 8228_CR10 publication-title: Development doi: 10.1242/dev.125.20.4019 – volume: 7 start-page: 20160088 year: 2017 ident: 8228_CR34 publication-title: Interface Focus doi: 10.1098/rsfs.2016.0088 – volume: 607 start-page: 91 year: 2022 ident: 8228_CR14 publication-title: Nature doi: 10.1038/s41586-022-04861-4 – volume: 3 start-page: 331 year: 1968 ident: 8228_CR49 publication-title: Math. Biosci. doi: 10.1016/0025-5564(68)90090-4 – volume: 16 start-page: 93 year: 1986 ident: 8228_CR56 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1986.289285 – volume: 210 start-page: 3513 year: 2007 ident: 8228_CR36 publication-title: J. Exp. Biol. doi: 10.1242/jeb.000992 – volume: 4 start-page: e5400 year: 2009 ident: 8228_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0005400 – volume: 278 start-page: 2040 year: 2011 ident: 8228_CR35 publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2010.2022 – volume: 63 start-page: 413 year: 1975 ident: 8228_CR42 publication-title: Am. Sci. – volume: 288 start-page: 100 year: 2000 ident: 8228_CR11 publication-title: Science doi: 10.1126/science.288.5463.100 – volume: 21 start-page: 1305 year: 2007 ident: 8228_CR51 publication-title: Adv. Robot. doi: 10.1163/156855307781503781 – volume: 182 start-page: 529 year: 1977 ident: 8228_CR24 publication-title: J. Zool. doi: 10.1111/j.1469-7998.1977.tb04168.x – volume: 521 start-page: 460 year: 2015 ident: 8228_CR12 publication-title: Nature doi: 10.1038/nature14542 – volume: 8 start-page: e46415 year: 2019 ident: 8228_CR13 publication-title: eLife doi: 10.7554/eLife.46415 – ident: 8228_CR61 – volume: 153 start-page: 193 year: 2012 ident: 8228_CR1 publication-title: J. Ornithol. doi: 10.1007/s10336-012-0856-9 – volume: 9 start-page: 025009 year: 2014 ident: 8228_CR15 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3182/9/2/025009 – volume: 10 start-page: 016005 year: 2015 ident: 8228_CR33 publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/1/016005 – ident: 8228_CR71 doi: 10.5281/zenodo.13326012 – ident: 8228_CR48 doi: 10.1109/TMECH.2023.3331357 – ident: 8228_CR69 doi: 10.1007/978-3-642-36279-8_31 – volume: 32 start-page: 932 year: 2013 ident: 8228_CR65 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913489205 – ident: 8228_CR46 doi: 10.1109/IROS.2017.8202172 – volume: 208 start-page: 3293 year: 2005 ident: 8228_CR8 publication-title: J. Exp. Biol. doi: 10.1242/jeb.01764 – ident: 8228_CR54 – ident: 8228_CR27 – volume: 39 start-page: 558 year: 2022 ident: 8228_CR21 publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2022.3189249 – volume: 604 start-page: 657 year: 2022 ident: 8228_CR22 publication-title: Nature doi: 10.1038/s41586-022-04606-3 – volume: 204 start-page: 3601 year: 2001 ident: 8228_CR31 publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.21.3601 |
SSID | ssj0005174 |
Score | 2.5098872 |
Snippet | Most birds can navigate seamlessly between aerial and terrestrial environments. Whereas the forelimbs evolved into wings primarily for flight, the hindlimbs... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | 631/601/18 631/61/2049 639/166/988 Air Aircraft - instrumentation Animals Ankle Biomechanical Phenomena Biomimetics - instrumentation Biomimetics - methods Birds Birds - anatomy & histology Birds - physiology Complexity Energy distribution Energy efficiency Extremities - anatomy & histology Extremities - physiology Flight Flight, Animal - physiology Gait Gait - physiology Hip joint Humanities and Social Sciences Jumping Kinematics Leg Legs Limbs Locomotion Locomotion - physiology Mass distribution Motion multidisciplinary Robot dynamics Robotics Robotics - instrumentation Robotics - methods Robots Science Science (multidisciplinary) Terrestrial environments Walking Walking - physiology Wings Wings, Animal - physiology |
Title | Fast ground-to-air transition with avian-inspired multifunctional legs |
URI | https://link.springer.com/article/10.1038/s41586-024-08228-9 https://www.ncbi.nlm.nih.gov/pubmed/39633193 https://www.proquest.com/docview/3156188958 https://www.proquest.com/docview/3146519014 |
Volume | 636 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJiRe0DZu2cYUJB5Aw6y5O48dW9QNKEjbYG-W7TiwaUqmJd0Dv57jS5J2LRPwErWpazs-J-fmcz4j9FpKCVo3j8Et4UyV5MA7F7AYiySFefuSpLpQ-PMkHp-Fx-fR-WBwO5O1NG34e_FraV3J_1AV7gFdVZXsP1C26xRuwGegL1yBwnD9KxpnrG52VV1GmeOmwuziRh35UJo0LFu2dgv0xxel2lAH21LnDypdZkOAV9LGya19OtE4n7PnfHSBgpOfBm7gO3R9UFmFp_cTTAx1XLHyB_427WPfNhyuxIZgfdD06LK-lrZUaKSSQ45nQw--BjgcRn1mhpnS0nhZWypg4K-NsjESNkxiHMZWy1oRHNsmhtcUJNKMTG2hsvWX1PuyVPAbmPcazBGikqpDrJDsQZT3aq7d2h-PTujXg4x-Opp8fIBWfXAvQD6ujrL9_UmfHHQHv9uWW8Eoe4tjzJs0C37Kwh67Nl1O19Bj63O4I8NA62ggyw30UOf-inoDrVv5XrtvLAj52ycoU7zlzvGW2_OWq3jLnect9w5vuYq3nqKz7PD0wxjbMzewCJKowZEohOCcF6yQUmHf-SlhzCe5HCaJyIUEC9wrwGnlLArA1C9YzoesIEk-zD2PpcEztFJWpXyB3LzgPJU5rKQoQhEIAtI-BZdf8pAnnhQO8tplo8IC0qtzUa6oTowICDVLTWGpqV5qmjpot_vPtYFjubf1dksNal_bmgYeuAyEpBFx0KvuZxCqaqeMlbKaqjZhHClTOXTQc0PFbrgAVBY8SeCgdy1Z-87_PJfN--eyhR71b9g2WmlupvIlmLsN37G8-Rs-7qcl |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+ground-to-air+transition+with+avian-inspired+multifunctional+legs&rft.jtitle=Nature+%28London%29&rft.au=Shin%2C+Won+Dong&rft.au=Phan%2C+Hoang-Vu&rft.au=Daley%2C+Monica+A&rft.au=Ijspeert%2C+Auke+J&rft.date=2024-12-05&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=636&rft.issue=8041&rft.spage=86&rft.epage=91O&rft_id=info:doi/10.1038%2Fs41586-024-08228-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |