Slow Resting State Fluctuations Enhance Neuronal and Behavioral Responses to Looming Sounds
We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this...
Saved in:
Published in | Brain topography Vol. 35; no. 1; pp. 121 - 141 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0896-0267 1573-6792 1573-6792 |
DOI | 10.1007/s10548-021-00826-4 |
Cover
Loading…
Abstract | We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or “gain” during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus–response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times. |
---|---|
AbstractList | We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or “gain” during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus–response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times. We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or "gain" during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus-response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times. We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or "gain" during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus-response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times.We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the presentation of sounds with acoustic intensities that increase exponentially (looming) or remain constant (flat). We focus on the link between this EEG tracking response, behavioral reaction times and the time scale of fluctuations in the resting state, which show considerable inter-subject variability. Looming sounds are shown to generally elicit a sustained power increase in the alpha and beta frequency bands. In contrast, flat sounds only elicit a transient upsurge at frequencies ranging from 7 to 45 Hz. Likewise, reaction times (RTs) in an audio-tactile task at different latencies from sound onset also present significant differences between sound types. RTs decrease with increasing looming intensities, i.e. as the sense of urgency increases, but remain constant with stationary flat intensities. We define the reaction time variation or "gain" during looming sound presentation, and show that higher RT gains are associated with stronger correlations between EEG power responses and sound intensity. Higher RT gain further entails higher relative power differences between loom and flat in the alpha and beta bands. The full-width-at-half-maximum of the autocorrelation function of the eyes-closed resting state EEG also increases with RT gain. The effects are topographically located over the central and frontal electrodes. A computational model reveals that the increase in stimulus-response correlation in subjects with slower resting state fluctuations is expected when EEG power fluctuations at each electrode and in a given band are viewed as simple coupled low-pass filtered noise processes jointly driven by the sound intensity. The model assumes that the strength of stimulus-power coupling is proportional to RT gain in different coupling scenarios, suggesting a mechanism by which slower resting state fluctuations enhance EEG response and shorten reaction times. |
Author | Sancristóbal, B. Romani, G. L. Northoff, G. Perrucci, M. G. Ferri, F. Longtin, A. |
Author_xml | – sequence: 1 givenname: B. orcidid: 0000-0002-9272-1029 surname: Sancristóbal fullname: Sancristóbal, B. email: bdesancristobal@elisava.net organization: Physics Department, University of Ottawa, Royal’s Institute of Mental Health Research, University of Ottawa, ELISAVA University School of Design and Engineering – sequence: 2 givenname: F. surname: Ferri fullname: Ferri, F. organization: Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D’Annunzio – sequence: 3 givenname: A. surname: Longtin fullname: Longtin, A. organization: Physics Department, University of Ottawa, Brain and Mind Research Institute, University of Ottawa – sequence: 4 givenname: M. G. surname: Perrucci fullname: Perrucci, M. G. organization: Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D’Annunzio – sequence: 5 givenname: G. L. surname: Romani fullname: Romani, G. L. organization: Department of Neuroscience, Imaging and Clinical Science and Institute of Advanced Biomedical Technologies, University G. D’Annunzio – sequence: 6 givenname: G. surname: Northoff fullname: Northoff, G. organization: Royal’s Institute of Mental Health Research, University of Ottawa, Brain and Mind Research Institute, University of Ottawa, Centre for Cognition and Brain Disorders, Normal University Hangzhou, Research Center for Mind, Brain, and Learning, National Chengchi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33768383$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1KJDEUhYMo2vb4ArMYAm7clHOTVH5qqeIfNCOMMysXIZVOaUl10iYpxbc33a0ILlyFkO875N6zj7Z98A6hnwSOCYD8nQjwWlVASQWgqKjqLTQhXLJKyIZuowmoRpRnIffQfkqPAMAaKXfRHmNSKKbYBN3dDuEF_3Up9_4e32aTHb4YRptHk_vgEz73D8Zbh_-4MQZvBmz8HJ-6B_Pch1iuRV0WziWcA56FsFjnhNHP0w-005khuYP3c4r-X5z_O7uqZjeX12cns8oyyXPFjaklpbyxqlOEs1pyQcFaJdumkZzIGgoHZt7RxjDVKkFaVTswjVNtVxs2RUeb3GUMT2MZRS_6ZN0wGO_CmDTlIKiUJaygh1_QxzDGMlahBOWEEQIr6tc7NbYLN9fL2C9MfNUfayuA2gA2hpSi67Tt83phOZp-0AT0qiG9aUiXhvS6IV0XlX5RP9K_ldhGSgX29y5-fvsb6w1N1KEc |
CitedBy_id | crossref_primary_10_1038_s42003_021_02483_6 crossref_primary_10_1007_s10548_022_00889_x crossref_primary_10_1093_cercor_bhaf034 crossref_primary_10_3389_fams_2022_879866 crossref_primary_10_3390_e25071086 crossref_primary_10_1038_s42003_023_05566_8 |
Cites_doi | 10.1016/j.tics.2015.10.002 10.1016/S0893-6080(00)00026-5 10.1016/j.neuroimage.2003.07.015 10.1038/nn1541 10.1523/JNEUROSCI.0556-08.2008 10.1016/j.jneumeth.2007.03.024 10.7554/eLife.24573 10.1016/j.brainresrev.2006.06.003 10.1523/JNEUROSCI.2816-12.2013 10.1073/pnas.1010674108 10.3758/BF03193737 10.1111/ejn.13672 10.1523/jneurosci.21-04-01370.2001 10.1017/S0140525X00003253 10.1073/pnas.1216855110 10.1016/j.neuroimage.2006.09.037 10.1016/j.neuroimage.2007.07.011 10.1523/JNEUROSCI.0875-06.2006 10.1016/0165-1684(94)90029-9 10.1016/S0167-8760(97)00767-8 10.1103/PhysRev.36.823 10.1162/neco.2006.18.8.1896 10.3389/fnene.2010.00023 10.1016/j.conb.2007.07.001 10.1038/nn.3862 10.3389/fncom.2013.00018 10.1523/JNEUROSCI.2584-04.2004 10.1523/JNEUROSCI.4889-13.2014 10.1007/BF00199471 10.1162/jocn.2006.18.9.1423 10.1016/j.pain.2007.06.008 10.1016/S0960-9822(02)01356-8 10.1007/BF00198095 10.1371/journal.pone.0161488 10.1523/JNEUROSCI.3801-13.2014 10.1371/journal.pone.0044306 10.7554/eLife.32054 10.1126/science.273.5283.1868 10.1016/j.neuroimage.2010.01.010 10.1016/j.neuron.2012.08.011 10.1109/PROC.1982.12433 10.1016/j.neuron.2012.12.028 10.1523/JNEUROSCI.3522-07.2007 10.1093/cercor/bhv288 10.1038/nrn2374 10.3389/fnene.2012.00010 10.1523/JNEUROSCI.1696-15.2015 10.1038/nrn3000 10.1016/j.brainres.2019.146507 10.1006/nimg.2000.0599 10.1016/j.jneumeth.2010.06.020 10.1371/journal.pone.0196855 10.1093/cercor/bhr329 10.1523/JNEUROSCI.0330-07.2007 10.1523/JNEUROSCI.2922-12.2013 10.1523/JNEUROSCI.5644-11.2012 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ Q9U 7X8 |
DOI | 10.1007/s10548-021-00826-4 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Proquest Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-6792 |
EndPage | 141 |
ExternalDocumentID | 33768383 10_1007_s10548_021_00826_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2014-06204 funderid: http://dx.doi.org/10.13039/501100002790 – fundername: Canada Institue of Health Research grantid: CIHR, 201103MOP-244752-BSB-CECA-179644 – fundername: EJLB-Michael Smith Foundation grantid: 200809EJL-194083-EJL-CECA-179644 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UAP UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7X ZGI ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c375t-5aa472259c8f8153475620cc87b997517403750adf29a38b861b84e0a9e8bf4a3 |
IEDL.DBID | U2A |
ISSN | 0896-0267 1573-6792 |
IngestDate | Fri Jul 11 02:31:25 EDT 2025 Sat Aug 23 14:02:40 EDT 2025 Wed Feb 19 02:26:36 EST 2025 Tue Jul 01 02:16:35 EDT 2025 Thu Apr 24 23:01:09 EDT 2025 Fri Feb 21 02:47:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Looming and flat sound Multisensory integration Resting state Ornstein–Uhlenbeck process Inter-subject variability EEG |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c375t-5aa472259c8f8153475620cc87b997517403750adf29a38b861b84e0a9e8bf4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9272-1029 |
PMID | 33768383 |
PQID | 2625131107 |
PQPubID | 37296 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2506277997 proquest_journals_2625131107 pubmed_primary_33768383 crossref_citationtrail_10_1007_s10548_021_00826_4 crossref_primary_10_1007_s10548_021_00826_4 springer_journals_10_1007_s10548_021_00826_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | A Journal of Cerebral Function and Dynamics |
PublicationTitle | Brain topography |
PublicationTitleAbbrev | Brain Topogr |
PublicationTitleAlternate | Brain Topogr |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Nielsen, Stubhaug, Price, Vassend, Czajkowski, Harris (CR40) 2008 Maier, Ghazanfar (CR33) 2007 Saka (CR44) 2010 Maris, Oostenveld (CR36) 2007 Thomson (CR49) 1982 Linkenkaer-Hansen, Nikouline, Palva, Ilmoniemi (CR30) 2001 Thut, Nietzel, Brandt, Pascual-Leone (CR50) 2006 Lindner, Longtin (CR29) 2006 Murray, Bernacchia, Freedman, Romo, Wallis, Cai, Padoa-Schioppa, Pasternak, Seo, Lee, Wang (CR39) 2014 Werkle-Bergner, Grandy, Chicherio, Schmiedek, Lövdén, Lindenberger (CR55) 2014 Lange, Halacz, Van Dijk, Kahlbrock, Schnitzler (CR25) 2012 Canzoneri, Magosso, Serino (CR5) 2012 Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (CR38) 2013 Hanslmayr, Aslan, Staudigl, Klimesch, Herrmann, Bäuml (CR12) 2007 Liebrand, Kristek, Tzvi, Krämer (CR27) 2018 Linkenkaer-Hansen, Nikulin, Palva, Ilmoniemi, Palva (CR31) 2004 Allen, Josephs, Turner (CR1) 2000 Huang, Zhang, Longtin, Dumont, Duncan, Pokorny, Qin, Dai, Ferri, Weng, Northoff (CR16) 2017 Jansen, Rit (CR21) 1995 Mantini, Perrucci, Cugini, Ferretti, Romani, Del Gratta (CR34) 2007 Tsuchiya, Wilke, Frässle, Lamme (CR51) 2015 Vanderperren, De Vos, Ramautar, Novitskiy, Mennes, Assecondi, Vanrumste, Stiers, Van den Bergh, Wagemans, Lagae, Sunaert, Van Huffel (CR53) 2010 Seifritz, Neuhoff, Bilecen, Scheffler, Mustovic, Schächinger, Elefante, Di Salle (CR47) 2002 Hwang, Ghuman, Manoach, Jones, Luna (CR18) 2014 Kanai, Rees (CR22) 2011 Lopes Da Silva, Pijn, Velis, Nijssen (CR32) 1997 Martens, Munneke, Smid, Johnson (CR37) 2006 Honey, Thesen, Donner, Silbert, Carlson, Devinsky, Doyle, Rubin, Heeger, Hasson (CR15) 2012 Klimesch, Sauseng, Hanslmayr (CR24) 2007 Bidelman, Myers (CR3) 2020 Wright, Kydd, Sergejew (CR56) 1990 Uhlenbeck, Ornstein (CR52) 1930 Grassi, Darwin (CR11) 2006 Ferri, Costantini, Huang, Perrucci, Ferretti, Romani, Northoff (CR10) 2015 Nunez (CR41) 2000 He (CR13) 2013 Smit, Linkenkaer-Hansen, de Geus (CR48) 2013 Heekeren, Marrett, Ungerleider (CR14) 2008 Marder (CR35) 2011 CR57 Hyvärinen, Oja (CR19) 2000 David, Friston (CR7) 2003 Irrmischer, Poil, Mansvelder, Intra, Linkenkaer-Hansen (CR20) 2018 Bokil, Andrews, Kulkarni, Mehta, Mitra (CR4) 2010 Sancristóbal, Vicente, Sancho, Garcia-Ojalvo (CR46) 2013 Khanna, Carmena (CR23) 2017 Saka, Berwick, Jones (CR45) 2012 Comon (CR6) 1994 Palva, Zhigalov, Hirvonen, Korhonen, Linkenkaer-Hansen, Palva (CR42) 2013 CR28 Ploran, Nelson, Velanova, Donaldson, Petersen, Wheeler (CR43) 2007 Arieli, Sterkin, Grinvald, Aertsen (CR2) 1996 Drew, Vogel (CR9) 2008 Lefebvre, Hutt, Frohlich (CR26) 2017 Dean, Harper, McAlpine (CR8) 2005 Hutt, Mierau, Lefebvre (CR17) 2016 Wark, Lundstrom, Fairhall (CR54) 2007 M Saka (826_CR45) 2012 JM Palva (826_CR42) 2013 K Linkenkaer-Hansen (826_CR30) 2001 826_CR57 A Arieli (826_CR2) 1996 S Mueller (826_CR38) 2013 D Mantini (826_CR34) 2007 E Canzoneri (826_CR5) 2012 Z Huang (826_CR16) 2017 S Hanslmayr (826_CR12) 2007 J Lange (826_CR25) 2012 DJA Smit (826_CR48) 2013 M Werkle-Bergner (826_CR55) 2014 PL Nunez (826_CR41) 2000 GE Uhlenbeck (826_CR52) 1930 S Martens (826_CR37) 2006 B Sancristóbal (826_CR46) 2013 JD Murray (826_CR39) 2014 E Maris (826_CR36) 2007 R Kanai (826_CR22) 2011 A Hutt (826_CR17) 2016 M Liebrand (826_CR27) 2018 F Ferri (826_CR10) 2015 CS Nielsen (826_CR40) 2008 E Seifritz (826_CR47) 2002 JJ Wright (826_CR56) 1990 A Hyvärinen (826_CR19) 2000 M Irrmischer (826_CR20) 2018 N Tsuchiya (826_CR51) 2015 E Marder (826_CR35) 2011 EJ Ploran (826_CR43) 2007 CJ Honey (826_CR15) 2012 DJ Thomson (826_CR49) 1982 O David (826_CR7) 2003 I Dean (826_CR8) 2005 T Drew (826_CR9) 2008 H Bokil (826_CR4) 2010 K Hwang (826_CR18) 2014 BH Jansen (826_CR21) 1995 K Vanderperren (826_CR53) 2010 P Khanna (826_CR23) 2017 BJ He (826_CR13) 2013 M Grassi (826_CR11) 2006 G Thut (826_CR50) 2006 JX Maier (826_CR33) 2007 826_CR28 W Klimesch (826_CR24) 2007 M Saka (826_CR44) 2010 GM Bidelman (826_CR3) 2020 P Comon (826_CR6) 1994 K Linkenkaer-Hansen (826_CR31) 2004 J Lefebvre (826_CR26) 2017 B Wark (826_CR54) 2007 B Lindner (826_CR29) 2006 HR Heekeren (826_CR14) 2008 FH Lopes Da Silva (826_CR32) 1997 PJ Allen (826_CR1) 2000 |
References_xml | – year: 2015 ident: CR51 article-title: No-report paradigms: extracting the true neural correlates of consciousness publication-title: Trends CognSci doi: 10.1016/j.tics.2015.10.002 – year: 2000 ident: CR19 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00026-5 – year: 2003 ident: CR7 article-title: A neural mass model for MEG/EEG: coupling and neuronal dynamics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.07.015 – year: 2005 ident: CR8 article-title: Neural population coding of sound level adapts to stimulus statistics publication-title: Nat Neurosci doi: 10.1038/nn1541 – year: 2008 ident: CR9 article-title: Neural measures of individual differences in selecting and tracking multiple moving objects publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0556-08.2008 – year: 2007 ident: CR36 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2017 ident: CR23 article-title: Beta band oscillations in motor cortex reflect neural population signals that delay movement onset publication-title: ELife doi: 10.7554/eLife.24573 – year: 2007 ident: CR24 article-title: EEG alpha oscillations: the inhibition-timing hypothesis publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.06.003 – year: 2013 ident: CR48 article-title: Long-range temporal correlations in resting-state alpha oscillations predict human timing-error dynamics publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2816-12.2013 – year: 2011 ident: CR35 article-title: Variability, compensation, and modulation in neurons and circuits publication-title: ProcNatlAcadSci USA doi: 10.1073/pnas.1010674108 – year: 2006 ident: CR11 article-title: The subjective duration of ramped and damped sounds publication-title: Percept Psychophys doi: 10.3758/BF03193737 – year: 2018 ident: CR20 article-title: Strong long-range temporal correlations of beta/gamma oscillations are associated with poor sustained visual attention performance publication-title: Eur J Neurosci doi: 10.1111/ejn.13672 – year: 2001 ident: CR30 article-title: Long-range temporal correlations and scaling behavior in human brain oscillations publication-title: J Neurosci doi: 10.1523/jneurosci.21-04-01370.2001 – year: 2000 ident: CR41 article-title: Toward a quantitive description of large-scale neocortical dynamic function and EEG publication-title: Behav Brain Sci doi: 10.1017/S0140525X00003253 – year: 2013 ident: CR42 article-title: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws publication-title: ProcNatlAcadSci USA doi: 10.1073/pnas.1216855110 – year: 2007 ident: CR34 article-title: Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.037 – year: 2007 ident: CR12 article-title: Prestimulus oscillations predict visual perception performance between and within subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.011 – year: 2006 ident: CR50 article-title: α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0875-06.2006 – year: 1994 ident: CR6 article-title: Independent component analysis, a new concept? publication-title: Signal Process doi: 10.1016/0165-1684(94)90029-9 – year: 1997 ident: CR32 article-title: Alpha rhythms: Noise, dynamics and models publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00767-8 – year: 1930 ident: CR52 article-title: On the theory of the Brownian motion publication-title: Phys Rev doi: 10.1103/PhysRev.36.823 – year: 2006 ident: CR29 article-title: Comment on “characterization of subthreshold voltage fluctuations in neuronal membranes,” by M. Rudolph and A. Destexhe publication-title: Neural Comput doi: 10.1162/neco.2006.18.8.1896 – year: 2010 ident: CR44 article-title: Linear superposition of sensory-evoked and ongoing cortical hemodynamics publication-title: Front Neuroenerg doi: 10.3389/fnene.2010.00023 – ident: CR57 – year: 2007 ident: CR54 article-title: Sensory adaptation publication-title: CurrOpinNeurobiol doi: 10.1016/j.conb.2007.07.001 – year: 2014 ident: CR39 article-title: A hierarchy of intrinsic timescales across primate cortex publication-title: Nat Neurosci doi: 10.1038/nn.3862 – year: 2013 ident: CR46 article-title: Emergent bimodal firing patterns implement different encoding strategies during gamma-band oscillations publication-title: Front ComputNeurosci doi: 10.3389/fncom.2013.00018 – year: 2004 ident: CR31 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2584-04.2004 – year: 2014 ident: CR18 article-title: Cortical neurodynamics of inhibitory control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4889-13.2014 – year: 1995 ident: CR21 article-title: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns publication-title: BiolCybern doi: 10.1007/BF00199471 – year: 2006 ident: CR37 article-title: Quick minds don’t blink: electrophysiological correlates of individual differences in attentional selection publication-title: J CognNeurosci doi: 10.1162/jocn.2006.18.9.1423 – year: 2008 ident: CR40 article-title: Individual differences in pain sensitivity: Genetic and environmental contributions publication-title: Pain doi: 10.1016/j.pain.2007.06.008 – year: 2002 ident: CR47 article-title: Neural processing of auditory looming in the human brain publication-title: CurrBiol doi: 10.1016/S0960-9822(02)01356-8 – year: 1990 ident: CR56 article-title: Autoregression models of EEG—results compared with expectations for a multilinear near-equilibrium biophysical process publication-title: BiolCybern doi: 10.1007/BF00198095 – year: 2016 ident: CR17 article-title: Dynamic control of synchronous activity in networks of spiking neurons publication-title: PLoS ONE doi: 10.1371/journal.pone.0161488 – year: 2014 ident: CR55 article-title: Coordinated within-trial dynamics of low-frequency neural rhythms controls evidence accumulation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3801-13.2014 – year: 2012 ident: CR5 article-title: Dynamic sounds capture the boundaries of peripersonal space representation in humans publication-title: PLoS ONE doi: 10.1371/journal.pone.0044306 – year: 2017 ident: CR26 article-title: Stochastic resonance mediates the state-dependent effect of periodic stimulation on cortical alpha oscillations publication-title: ELife doi: 10.7554/eLife.32054 – year: 1996 ident: CR2 article-title: Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses publication-title: Science doi: 10.1126/science.273.5283.1868 – year: 2010 ident: CR53 article-title: Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.010 – year: 2012 ident: CR15 article-title: Slow cortical dynamics and the accumulation of information over long timescales publication-title: Neuron doi: 10.1016/j.neuron.2012.08.011 – year: 1982 ident: CR49 article-title: Spectrum estimation and harmonic analysis publication-title: Proc IEEE doi: 10.1109/PROC.1982.12433 – year: 2013 ident: CR38 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – year: 2007 ident: CR43 article-title: Evidence accumulation and the moment of recognition: dissociating perceptual recognition processes using fMRI publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3522-07.2007 – year: 2017 ident: CR16 article-title: Is there a nonadditive interaction between spontaneous and evoked activity? Phase-dependence and its relation to the temporal structure of scale-free brain activity publication-title: Cereb Cortex doi: 10.1093/cercor/bhv288 – year: 2008 ident: CR14 article-title: The neural systems that mediate human perceptual decision making publication-title: Nat Rev Neurosci doi: 10.1038/nrn2374 – year: 2012 ident: CR45 article-title: Inter-trial variability in sensory-evoked cortical hemodynamic responses: the role of the magnitude of pre-stimulus fluctuations publication-title: Front Neuroenerg doi: 10.3389/fnene.2012.00010 – year: 2015 ident: CR10 article-title: Intertrial variability in the premotor cortex accounts for individual differences in peripersonal space publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1696-15.2015 – year: 2011 ident: CR22 article-title: The structural basis of inter-individual differences in human behaviour and cognition publication-title: Nat Rev Neurosci doi: 10.1038/nrn3000 – year: 2020 ident: CR3 article-title: Frontal cortex selectively overrides auditory processing to bias perception for looming sonic motion publication-title: Brain Res doi: 10.1016/j.brainres.2019.146507 – year: 2000 ident: CR1 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: Neuroimage doi: 10.1006/nimg.2000.0599 – year: 2010 ident: CR4 article-title: Chronux: a platform for analyzing neural signals publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.06.020 – year: 2018 ident: CR27 article-title: Ready for change: Oscillatory mechanisms of proactive motor control publication-title: PLoS ONE doi: 10.1371/journal.pone.0196855 – year: 2012 ident: CR25 article-title: Fluctuations of prestimulus oscillatory power predict subjective perception of tactile simultaneity publication-title: Cereb Cortex doi: 10.1093/cercor/bhr329 – ident: CR28 – year: 2007 ident: CR33 article-title: Looming biases in monkey auditory cortex publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0330-07.2007 – year: 2013 ident: CR13 article-title: Spontaneous and task-evoked brain activity negatively interact publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2922-12.2013 – year: 2010 ident: 826_CR53 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.010 – year: 2014 ident: 826_CR39 publication-title: Nat Neurosci doi: 10.1038/nn.3862 – year: 2015 ident: 826_CR10 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1696-15.2015 – year: 2013 ident: 826_CR38 publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – year: 2000 ident: 826_CR41 publication-title: Behav Brain Sci doi: 10.1017/S0140525X00003253 – year: 2010 ident: 826_CR44 publication-title: Front Neuroenerg doi: 10.3389/fnene.2010.00023 – year: 2012 ident: 826_CR15 publication-title: Neuron doi: 10.1016/j.neuron.2012.08.011 – year: 2013 ident: 826_CR46 publication-title: Front ComputNeurosci doi: 10.3389/fncom.2013.00018 – year: 2017 ident: 826_CR23 publication-title: ELife doi: 10.7554/eLife.24573 – year: 2005 ident: 826_CR8 publication-title: Nat Neurosci doi: 10.1038/nn1541 – year: 2016 ident: 826_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0161488 – year: 2007 ident: 826_CR12 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.011 – year: 2018 ident: 826_CR20 publication-title: Eur J Neurosci doi: 10.1111/ejn.13672 – year: 2011 ident: 826_CR22 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3000 – year: 2007 ident: 826_CR33 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0330-07.2007 – year: 2007 ident: 826_CR54 publication-title: CurrOpinNeurobiol doi: 10.1016/j.conb.2007.07.001 – year: 2014 ident: 826_CR55 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3801-13.2014 – year: 2000 ident: 826_CR19 publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00026-5 – ident: 826_CR57 doi: 10.1523/JNEUROSCI.5644-11.2012 – year: 2007 ident: 826_CR43 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3522-07.2007 – year: 2013 ident: 826_CR42 publication-title: ProcNatlAcadSci USA doi: 10.1073/pnas.1216855110 – year: 2012 ident: 826_CR45 publication-title: Front Neuroenerg doi: 10.3389/fnene.2012.00010 – year: 1995 ident: 826_CR21 publication-title: BiolCybern doi: 10.1007/BF00199471 – year: 1997 ident: 826_CR32 publication-title: Int J Psychophysiol doi: 10.1016/S0167-8760(97)00767-8 – year: 2006 ident: 826_CR11 publication-title: Percept Psychophys doi: 10.3758/BF03193737 – year: 2007 ident: 826_CR36 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2007 ident: 826_CR24 publication-title: Brain Res Rev doi: 10.1016/j.brainresrev.2006.06.003 – year: 2010 ident: 826_CR4 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2010.06.020 – year: 2003 ident: 826_CR7 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.07.015 – year: 2000 ident: 826_CR1 publication-title: Neuroimage doi: 10.1006/nimg.2000.0599 – year: 2011 ident: 826_CR35 publication-title: ProcNatlAcadSci USA doi: 10.1073/pnas.1010674108 – year: 2008 ident: 826_CR9 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0556-08.2008 – year: 2006 ident: 826_CR50 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0875-06.2006 – year: 2006 ident: 826_CR37 publication-title: J CognNeurosci doi: 10.1162/jocn.2006.18.9.1423 – year: 1996 ident: 826_CR2 publication-title: Science doi: 10.1126/science.273.5283.1868 – year: 2020 ident: 826_CR3 publication-title: Brain Res doi: 10.1016/j.brainres.2019.146507 – year: 2013 ident: 826_CR13 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2922-12.2013 – year: 1994 ident: 826_CR6 publication-title: Signal Process doi: 10.1016/0165-1684(94)90029-9 – year: 2012 ident: 826_CR25 publication-title: Cereb Cortex doi: 10.1093/cercor/bhr329 – year: 2007 ident: 826_CR34 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.037 – ident: 826_CR28 – year: 2014 ident: 826_CR18 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4889-13.2014 – year: 2001 ident: 826_CR30 publication-title: J Neurosci doi: 10.1523/jneurosci.21-04-01370.2001 – year: 2008 ident: 826_CR40 publication-title: Pain doi: 10.1016/j.pain.2007.06.008 – year: 2004 ident: 826_CR31 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2584-04.2004 – year: 2008 ident: 826_CR14 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2374 – year: 2006 ident: 826_CR29 publication-title: Neural Comput doi: 10.1162/neco.2006.18.8.1896 – year: 1990 ident: 826_CR56 publication-title: BiolCybern doi: 10.1007/BF00198095 – year: 1982 ident: 826_CR49 publication-title: Proc IEEE doi: 10.1109/PROC.1982.12433 – year: 2015 ident: 826_CR51 publication-title: Trends CognSci doi: 10.1016/j.tics.2015.10.002 – year: 2013 ident: 826_CR48 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2816-12.2013 – year: 2017 ident: 826_CR16 publication-title: Cereb Cortex doi: 10.1093/cercor/bhv288 – year: 2017 ident: 826_CR26 publication-title: ELife doi: 10.7554/eLife.32054 – year: 2002 ident: 826_CR47 publication-title: CurrBiol doi: 10.1016/S0960-9822(02)01356-8 – year: 1930 ident: 826_CR52 publication-title: Phys Rev doi: 10.1103/PhysRev.36.823 – year: 2012 ident: 826_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0044306 – year: 2018 ident: 826_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0196855 |
SSID | ssj0003977 |
Score | 2.3554792 |
Snippet | We investigate both experimentally and using a computational model how the power of the electroencephalogram (EEG) recorded in human subjects tracks the... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | Acoustic Stimulation Biomedical and Life Sciences Biomedicine Computational neuroscience Contemporary Challenges in M/EEG Modelling EEG Electrodes Electroencephalography Humans Neurology Neurosciences Original Paper Psychiatry Reaction Time Reaction time task Sound Tactile stimuli |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90gvgifludEsE3DfYjadInUdkY4nxQBwMfSpq2-jDa6Tb8981lWYeIPjdN07vk8kvu7ncA52aPjUuuYhrEPDQHFB1TxVlJWeHnpTb4Igowd7j_GPcG7H7Ih-7CbeLCKhc20RrqvNZ4R34VGqCO1DC-uB5_UKwahd5VV0JjFdaQugxDusSwOXD5CG4sirSBtrFwSTMudc5gdYoBCrgLxpT93Jh-oc1fnlK7AXW3YNMhR3IzV_U2rBTVDqz3nW98F16fR_UXeULWjOqNWBBJuqMZJojYuUU61TuqmFg-DuxKVTm5bdL08VUMly0mZFqTBwOobT9YdmmyB4Nu5-WuR13pBKojwaeUK4UskDzRspTGqDFhcI6vtRRZkghkp8bat77KyzBRkcxkHGTS6EclhcxKpqJ9aFV1VRwCCXRYyqRkQmSc5TzJkKC-yAMV5H7Os8CDYCG3VDtecSxvMUqXjMgo69TIOrWyTpkHF8074zmrxr-t2wt1pG6FTdLlfPDgrHls1gY6PFRV1DPThiMJszB_7MHBXI3N5yJjWaU5nntwudDrsvO_x3L0_1iOYSPE_Ah7R9OG1vRzVpwY1DLNTu3U_AZrxeQ2 priority: 102 providerName: ProQuest |
Title | Slow Resting State Fluctuations Enhance Neuronal and Behavioral Responses to Looming Sounds |
URI | https://link.springer.com/article/10.1007/s10548-021-00826-4 https://www.ncbi.nlm.nih.gov/pubmed/33768383 https://www.proquest.com/docview/2625131107 https://www.proquest.com/docview/2506277997 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58gHgR30ZrWcGbBvLYzW6OVVpFbRG1UPEQNi89lFRsi3_fmW2SKj7AUw7ZnSQz-_gmO_MNwDHusUEudGC7gfDQQUkCWwue2zxz0jxBfOG7lDvc7QWXfX41EIMyKWxcRbtXR5Jmpf6U7Ibo2qaQAtq3ApsvwrIg3x1Hcd9r1esvQRqDHU14bSDLVJmfZXzdjr5hzG_no2bb6azDWokXWWtm4A1YyIpNWOmWJ-Jb8HQ_HL2zO-LKKJ6ZgY6sM5xSWogZUaxdvJBhmWHhIFG6SNlZnZxPXSlINhuzyYjdIIw2cqjY0ngb-p32w_mlXRZMsBNfiokttCbuRxEmKle4lHGJ6MZJEiXjMJTESU0Vbx2d5l6ofRWrwI0VWkWHmYpzrv0dWCpGRbYHzE28XIU5lzIWPBVhTLT0WepqN3VSEbsWuJXeoqRkE6eiFsNozoNMuo5Q15HRdcQtOKn7vM64NP5s3ajMEZXzahx56K4RQZAjLTiqb-OMoGMOXWSjKbYRRL0s8Yst2J2ZsX6cj-upQqfcgtPKrnPhv7_L_v-aH8CqR1kS5k9NA5Ymb9PsELHLJG7CohzIJiy3Lh6v23g9a_du75pmAH8ATQvlRg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQS9IN4EChgJTmCRhx07B4Qo7GpLd1eotFKlHoLjOOWwSgq7q4o_xW9kxptkhSp66znOxBnPjD8_5huAVzjHppU0KY9SGeMCxabcSFFx4cKysogvkohyh6ezdHwsvpzIky340-XC0LXKLib6QF02lvbI38UI1IkaJlQfzn9yqhpFp6tdCY21WRy43xe4ZFu83_-M4_s6jkfDo09j3lYV4DZRcsmlMUSQKDOrK43-LhRCgNBarYosU0TcTGVhQ1NWcWYSXeg0KjR23WROF5UwCcq9AdsiwaXMALb3hrOvh33sJzjlcau_2puqNk2nTdbD1QGnKxE076Zc_DsVXsK3l85m_ZQ3ugO3W6zKPq6N6y5sufoe3Jy2p_H34fTbvLlgh8TTUZ8xD1vZaL6ilBRvzWxY_yCjYp4BhESZumR7PTEAvUoXdN2CLRs2QQjv5VChp8UDOL4WtT6EQd3U7jGwyMaVziqhVCFFKbOCKPFdGZmoDEtZRAFEnd5y2zKZU0GNeb7hYCZd56jr3Os6FwG86d85X_N4XNl6txuOvPXpRb6xwABe9o_RG-mIxdSuWWEbSbTPCv84gEfrYew_l2As14lOAnjbjetG-P_78uTqvryAW-Oj6SSf7M8OnsJOTNkZfodoFwbLXyv3DDHTsnjeGiqD79ftG38B72gglg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG_SFjASnMBqHnbsHCoEtKuWPoSASitxSB3HhsMqabu7qvhr_XXMeJOsUEVvPcd27PGM_dme-QbgDe6xuZcm50kuUzyg2JwbKTwXLq69RXyRJRQ7fHSc752IL2M5XoGrPhaG3Cr7NTEs1HVr6Y58K0WgTtQwsdrynVvE153Rh7NzThmk6KW1T6exUJED9-cSj2_T7f0dnOu3aTra_fF5j3cZBrjNlJxxaQyRJcrCaq_R9oVCOBBbq1VVFIpInClFbGxqnxYm05XOk0rjMEzhdOWFybDdO3BXZdg1tCU1Hg57MQGrgGCDk2-uuoCdLmwPzwmcnCNoB865-HdTvIZ0r73Shs1v9ADud6iVfVyo2UNYcc0jWDvq3uUfw8_vk_aSfSPGjuYXCwCWjSZzCk4Jes12m9-kXixwgVBTpqnZp4EigKqSq66bslnLDhHMh3Yo5dP0CZzcilCfwmrTNu45sMSmXhdeKFVJUcuiInJ8VycmqeNaVkkESS-30nac5pRaY1Iu2ZhJ1iXKugyyLkUE74Y6ZwtGjxtLb_bTUXbWPS2XuhjB6-Ez2iU9tpjGtXMsI4kAWuGII3i2mMbhdxmu6jrTWQTv-3ldNv7_vqzf3JdXsIYWUR7uHx9swL2UwjTCVdEmrM4u5u4FgqdZ9TJoKYPT2zaLv6AxI2Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slow+Resting+State+Fluctuations+Enhance+Neuronal+and+Behavioral+Responses+to+Looming+Sounds&rft.jtitle=Brain+topography&rft.au=Sancrist%C3%B3bal%2C+B&rft.au=Ferri%2C+F&rft.au=Longtin%2C+A&rft.au=Perrucci%2C+M+G&rft.date=2022-01-01&rft.eissn=1573-6792&rft.volume=35&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1007%2Fs10548-021-00826-4&rft_id=info%3Apmid%2F33768383&rft.externalDocID=33768383 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-0267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-0267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-0267&client=summon |