Space and ground segment performance and lessons learned of the FORMOSAT-3/COSMIC mission: four years in orbit

The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) Mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The atmosp...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 4; no. 6; pp. 1115 - 1132
Main Authors Fong, C.-J., Whiteley, D., Yang, E., Cook, K., Chu, V., Schreiner, B., Ector, D., Wilczynski, P., Liu, T.-Y., Yen, N.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 01.06.2011
Copernicus Publications
Online AccessGet full text

Cover

Loading…
More Information
Summary:The FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) Mission consisting of six Low-Earth-Orbit (LEO) satellites is the world's first demonstration constellation using radio occultation signals from Global Positioning System (GPS) satellites. The atmospheric profiles derived by processing radio occultation signals are retrieved in near real-time for global weather/climate monitoring, numerical weather prediction, and space weather research. The mission has processed, on average, 1400 to 1800 high-quality atmospheric sounding profiles per day. The atmospheric radio occultation data are assimilated into operational numerical weather prediction models for global weather prediction, including typhoon/hurricane/cyclone forecasts. The radio occultation data has shown a positive impact on weather predictions at many national weather forecast centers. A follow-on mission was proposed that transitions the current experimental research mission into a significantly improved real-time operational mission, which will reliably provide 8000 radio occultation soundings per day. The follow-on mission, as planned, will consist of 12 LEO satellites (compared to 6 satellites for the current mission) with data latency requirement of 45 min (compared to 3 h for the current mission), which will provide greatly enhanced opportunities for operational forecasts and scientific research. This paper will address the FORMOSAT-3/COSMIC system and mission overview, the spacecraft and ground system performance after four years in orbit, the lessons learned from the encountered technical challenges and observations, and the expected design improvements for the spacecraft and ground system for FORMOSAT-7/COSMIC-2.
ISSN:1867-8548
1867-1381
1867-8548
DOI:10.5194/amt-4-1115-2011